
19
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_2

CHAPTER 2

Introduction to
the Python World
The Python language, and the world around it, is made by interpreters, tools, editors,

libraries, notebooks, etc. This Python world has expanded greatly in recent years, enriching

and taking forms that developers who approach it for the first time can sometimes find

complicated and somewhat misleading. Thus if you are approaching Python for the first

time, you might feel lost among so many choices, especially on where to start.

This chapter gives you an overview of the entire Python world. First you will read a

description of the Python language and its unique characteristics. You’ll see where to

start, what an interpreter is, and how to begin writing the first lines of code in Python.

Then you are presented with some new, more advanced, forms of interactive writing

with respect to the shells, such as IPython and IPython Notebook.

�Python—The Programming Language
The Python programming language was created by Guido Von Rossum in 1991 and

started with a previous language called ABC. This language can be characterized by a

series of adjectives:

•	 Interpreted

•	 Portable

•	 Object-oriented

•	 Interactive

•	 Interfaced

•	 Open source

•	 Easy to understand and use

https://doi.org/10.1007/978-1-4842-3913-1_2

20

Python is an interpreted programming language, that is, it’s pseudo-compiled. Once

you write the code, you need an interpreter to run it. The interpreter is a program that is

installed on each machine that has the task of interpreting the source code and running

it. Unlike with languages such as C, C++, and Java, there is no compile time with Python.

Python is a highly portable programming language. The decision to use an

interpreter as an interface for reading and running code has a key advantage: portability.

In fact, you can install an interpreter on any platform (Linux, Windows, and Mac)

and the Python code will not change. Because of this, Python is often used as the

programming language for many small-form devices, such as the Raspberry Pi and other

microcontrollers.

Python is an object-oriented programming language. In fact, it allows you to specify

classes of objects and implement their inheritance. But unlike C++ and Java, there are no

constructors or destructors. Python also allows you to implement specific constructs in

your code to manage exceptions. However, the structure of the language is so

flexible that it allows you to program with alternative approaches with respect to the

object-oriented one. For example, you can use functional or vectorial approaches.

Python is an interactive programming language. Thanks to the fact that Python uses

an interpreter to be executed, this language can take on very different aspects depending

on the context in which it is used. In fact, you can write code made of a lot of lines,

similar to what you might do in languages like C++ or Java, and then launch the program,

or you can enter the command line at once and execute it, immediately getting the

results of the command. Then, depending on the results, you can decide what command

to run next. This highly interactive way to execute code makes the Python computing

environment similar to MATLAB. This feature of Python is one reason it’s popular with

the scientific community.

Python is a programming language that can be interfaced. In fact, this programming

language can be interfaced with code written in other programming languages such

as C/C++ and FORTRAN. Even this was a winning choice. In fact, thanks to this aspect,

Python can compensate for what is perhaps its only weak point, the speed of execution.

The nature of Python, as a highly dynamic programming language, can sometimes lead

to execution of programs up to 100 times slower than the corresponding static programs

compiled with other languages. Thus the solution to this kind of performance problem is

to interface Python to the compiled code of other languages by using it as if it were

its own.

Chapter 2 Introduction to the Python World

21

Python is an open-source programming language. CPython, which is the

reference implementation of the Python language, is completely free and open

source. Additionally every module or library in the network is open source and their

code is available online. Every month, an extensive developer community includes

improvements to make this language and all its libraries even richer and more efficient.

CPython is managed by the nonprofit Python Software Foundation, which was created

in 2001 and has given itself the task of promoting, protecting, and advancing the Python

programming language.

Finally, Python is a simple language to use and learn. This aspect is perhaps the most

important, because it is the most direct aspect that a developer, even a novice, faces.

The high intuitiveness and ease of reading of Python code often leads to “sympathy”

for this programming language, and consequently it is the choice of most newcomers

to programming. However, its simplicity does not mean narrowness, since Python is a

language that is spreading in every field of computing. Furthermore, Python is doing all

of this so simply, in comparison to existing programming languages such as C++, Java,

and FORTRAN, which by their nature are very complex.

�Python—The Interpreter
As described in the previous sections, each time you run the python command, the

Python interpreter starts, characterized by a >>> prompt.

The Python interpreter is simply a program that reads and interprets the commands

passed to the prompt. You have seen that the interpreter can accept either a single

command at a time or entire files of Python code. However the approach by which it

performs this is always the same.

Each time you press the Enter key, the interpreter begins to scan the code (either

a row or a full file of code) token by token (called tokenization). These tokens are

fragments of text that the interpreter arranges in a tree structure. The tree obtained is the

logical structure of the program, which is then converted to bytecode (.pyc or .pyo). The

process chain ends with the bytecode that will be executed by a Python virtual machine

(PVM). See Figure 2-1.

Chapter 2 Introduction to the Python World

22

You can find very good documentation on this process at https://www.ics.uci.

edu/~pattis/ICS-31/lectures/tokens.pdf.

The standard Python interpreter is reported as Cython, since it was written in C.

There are other areas that have been developed using other programming languages,

such as Jython, developed in Java; IronPython, developed in C# (only for Windows); and

PyPy, developed entirely in Python.

�Cython

The Cython project is based on creating a compiler that translates Python code into

C. This code is then executed within a Cython environment at runtime. This type of

compilation system has made it possible to introduce C semantics into the Python

code to make it even more efficient. This system has led to the merging of two worlds

of programming language with the birth of Cython, which can be considered a new

programming language. You can find a lot of documentation about it online; I advise you

to visit http://docs.cython.org.

�Jython

In parallel to Cython, there is a version totally built and compiled in Java, named Jython. It

was created by Jim Hugunin in 1997 (http://www.jython.org). Jython is an implementation

of the Python programming language in Java; it is further characterized by using Java classes

instead of Python modules to implement extensions and packages of Python.

�PyPy

The PyPy interpreter is a JIT (just-in-time) compiler, and it converts the Python code

directly in machine code at runtime. This choice was made to speed up the execution of

Python. However, this choice has led to the use of a smaller subset of Python commands,

defined as RPython. For more information on this, consult the official website at

http://pypy.org.

Figure 2-1.  The steps performed by the Python interpreter

Chapter 2 Introduction to the Python World

﻿https://www.ics.uci.edu/~pattis/ICS-31/lectures/tokens.pdf﻿
﻿https://www.ics.uci.edu/~pattis/ICS-31/lectures/tokens.pdf﻿
http://docs.cython.org
﻿http://www.jython.org﻿
http://pypy.org

23

�Python 2 and Python 3
The Python community is still in transition from interpreters of the Series 2 to Series 3.

In fact, you will currently find two releases of Python that are used in parallel (version 2.7

and version 3.6). This kind of ambiguity can create confusion, especially in terms of

choosing which version to use and the differences between these two versions. One

question that you surely must be asking is why version 2.x is still being released if it is

distributed around a much more enhanced version such as 3.x.

When Guido Van Rossum (the creator of Python) decided to bring significant

changes to the Python language, he soon found that these changes would make the new

version incompatible with a lot of existing code. Thus he decided to start with a new

version of Python called Python 3.0. To overcome the problem of incompatibility and

avoid creating huge amounts of unusable code, it was decided to maintain a compatible

version, 2.7 to be precise.

Python 3.0 made its first appearance in 2008, while version 2.7 was released in 2010

with a promise that it would not be followed by big releases, and at the moment the

current version is 3.6.5 (2018).

In the book we refer to the Python 3.x version; however, with a few exceptions, there

should be no problem with the Python 2.7.x version (the last version is 2.7.14 and was

released in September 2017).

�Installing Python
In order to develop programs in Python you have to install it on your operating system.

Linux distributions and MacOS X machines should already have a preinstalled version

of Python. If not, or if you would like to replace that version with another, you can easily

install it. The installation of Python differs from operating system to operating system;

however, it is a rather simple operation.

On Debian-Ubuntu Linux systems, run this command

apt-get install python

On Red Hat Fedora Linux systems working with rpm packages, run this command

yum install python

Chapter 2 Introduction to the Python World

24

If you are running Windows or MacOS X, you can go to the official Python site

(http://www.python.org) and download the version you prefer. The packages in this

case are installed automatically.

However, today there are distributions that provide a number of tools that make the

management and installation of Python, all libraries, and associated applications easier.

I strongly recommend you choose one of the distributions available online.

�Python Distributions
Due to the success of the Python programming language, many Python tools have been

developed to meet various functionalities over the years. There are so many that it’s

virtually impossible to manage all of them manually.

In this regard, many Python distributions efficiently manage hundreds of Python

packages. In fact, instead of individually downloading the interpreter, which includes

only the standard libraries, and then needing to individually install all the additional

libraries, it is much easier to install a Python distribution.

At the heart of these distributions are the package managers, which are nothing more

than applications that automatically manage, install, upgrade, configure, and remove

Python packages that are part of the distribution.

Their functionality is very useful, since the user simply makes a request on a

particular package (which could be an installation for example), and the package

manager, usually via the Internet, performs the operation by analyzing the necessary

version, alongside all dependencies with any other packages, and downloading them if

they not present.

�Anaconda

Anaconda is a free distribution of Python packages distributed by Continuum Analytics

(https://www.anaconda.com). This distribution supports Linux, Windows, and MacOS

X operating systems. Anaconda, in addition to providing the latest packages released

in the Python world, comes bundled with most of the tools you need to set up a Python

development environment.

Indeed, when you install the Anaconda distribution on your system, you can use

many tools and applications described in this chapter, without worrying about having to

install and manage each separately. The basic distribution includes Spyder as the IDE,

IPython QtConsole, and Notebook.

Chapter 2 Introduction to the Python World

﻿http://www.python.org﻿
﻿https://www.anaconda.com﻿

25

The management of the entire Anaconda distribution is performed by an application

called conda. This is the package manager and the environment manager of the

Anaconda distribution and it handles all of the packages and their versions.

conda install <package name>

One of the most interesting aspects of this distribution is the ability to manage

multiple development environments, each with its own version of Python. Indeed,

when you install Anaconda, the Python version 2.7 is installed by default. All installed

packages then will refer to that version. This is not a problem, because Anaconda offers

the possibility to work simultaneously and independently with other Python versions

by creating a new environment. You can create, for instance, an environment based on

Python 3.6.

conda create -n py36 python=3.6 anaconda

This will generate a new Anaconda environment with all the packages related to the

Python 3.6 version. This installation will not affect in any way the environment built with

Python 2.7. Once it’s installed, you can activate the new environment by entering the

following command.

source activate py36

On Windows, use this instead:

activate py36

C:\Users\Fabio>activate py36

 (py36) C:\Users\Fabio>

You can create as many versions of Python as you want; you need only to change the

parameter passed with the python option in the conda create command. When you want

to return to work with the original Python version, you have to use the following command:

source deactivate

On Windows, use this:

(py36) C:\Users\Fabio>deactivate

Deactivating environment "py36"...

C:\Users\Fabio>

Chapter 2 Introduction to the Python World

26

�Enthought Canopy

There is another distribution very similar to Anaconda and it is the Canopy distribution

provided by Enthought, a company founded in 2001 and known for the SciPy project

(https://www.enthought.com/products/canopy/). This distribution supports Linux,

Windows, and MacOS X systems and it consists of a large amount of packages, tools,

and applications managed by a package manager. The package manager of Canopy, as

opposed to conda, is graphical.

Unfortunately, only the basic version of this distribution, called Canopy Express, is

free; in addition to the package normally distributed, it also includes IPython and an IDE

of Canopy that has a special feature that is not present in other IDEs. It has embedded the

IPython in order to use this environment as a window for testing and debugging code.

�Python(x,y)

Python(x,y) is a free distribution that works only on Windows and is downloadable from

http://code.google.com/p/pythonxy/. This distribution uses Spyder as the IDE.

�Using Python
Python is rich but simple and very flexible. It allows expansion of your development

activities in many areas of work (data analysis, scientific, graphic interfaces, etc.).

Precisely for this reason, Python can be used in many different contexts, often according

to the taste and ability of the developer. This section presents the various approaches

to using Python in the course of the book. According to the various topics discussed in

different chapters, these different approaches will be used specifically, as they will be

more suited to the task at hand.

�Python Shell

The easiest way to approach the Python world is to open a session in the Python shell,

which is a terminal running a command line. In fact, you can enter one command at

a time and test its operation immediately. This mode makes clear the nature of the

interpreter that underlies Python. In fact, the interpreter can read one command at a

time, keeping the status of the variables specified in the previous lines, a behavior similar

to that of MATLAB and other calculation software.

Chapter 2 Introduction to the Python World

﻿https://www.enthought.com/products/canopy/﻿
﻿http://code.google.com/p/pythonxy/﻿

27

This approach is helpful when approaching Python the first time. You can test

commands one at a time without having to write, edit, and run an entire program, which

could be composed of many lines of code.

This mode is also good for testing and debugging Python code one line at a time, or

simply to make calculations. To start a session on the terminal, simply type this on the

command line:

>>> python

Python 3.6.3 (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)]

on win32

Type "help", "copyright", "credits" or "license" for more information.

>>>

Now the Python shell is active and the interpreter is ready to receive commands in

Python. Start by entering the simplest of commands, but a classic for getting started with

programming.

>>> print("Hello World!")

Hello World!

�Run an Entire Program

The best way to become familiar with Python is to write an entire program and then run

it from the terminal. First write a program using a simple text editor. For example, you

can use the code shown in Listing 2-1 and save it as MyFirstProgram.py.

Listing 2-1.  MyFirstProgram.py

myname = input("What is your name? ")

print("Hi " + myname + ", I'm glad to say: Hello world!")

Now you’ve written your first program in Python, and you can run it directly from the

command line by calling the python command and then the name of the file containing

the program code.

python MyFirstProgram.py

What is your name? Fabio Nelli

Hi Fabio Nelli, I'm glad to say: Hello world!

Chapter 2 Introduction to the Python World

28

�Implement the Code Using an IDE

A more comprehensive approach than the previous ones is the use of an IDE (an

Integrated Development Environment). These editors provide a work environment on

which to develop your Python code. They are rich in tools that make developers’ lives

easier, especially when debugging. In the following sections, you will see in detail what

IDEs are currently available.

�Interact with Python

The last approach, and in my opinion, perhaps the most innovative, is the interactive

one. In fact, in addition to the three previous approaches, this approach provides you the

opportunity to interact directly with the Python code.

In this regard, the Python world has been greatly enriched with the introduction

of IPython. IPython is a very powerful tool, designed specifically to meet the needs

of interacting between the Python interpreter and the developer, which under this

approach takes the role of analyst, engineer, or researcher. IPython and its features are

explained in more detail in a later section.

�Writing Python Code
In the previous section you saw how to write a simple program in which the string

"Hello World" was printed. Now in this section you will get a brief overview of the

basics of the Python language.

This section is not intended to teach you to program in Python, or to illustrate syntax

rules of the programming language, but just to give you a quick overview of some basic

principles of Python necessary to continue with the topics covered in this book.

If you already know the Python language, you can safely skip this introductory

section. Instead if you are not familiar with programming and you find it difficult

to understand the topics, I highly recommend that you visit online documentation,

tutorials, and courses of various kinds.

Chapter 2 Introduction to the Python World

29

�Make Calculations

You have already seen that the print() function is useful for printing almost anything.

Python, in addition to being a printing tool, is also a great calculator. Start a session on

the Python shell and begin to perform these mathematical operations:

>>> 1 + 2

3

>>> (1.045 * 3)/4

0.78375

>>> 4 ** 2

16

>>> ((4 + 5j) * (2 + 3j))

(-7+22j)

>>> 4 < (2*3)

True

Python can calculate many types of data including complex numbers and conditions

with Boolean values. As you can see from these calculations, the Python interpreter

directly returns the result of the calculations without the need to use the print()

function. The same thing applies to values contained in variables. It’s enough to call the

variable to see its contents.

>>> a = 12 * 3.4

>>> a

40.8

�Import New Libraries and Functions

You saw that Python is characterized by the ability to extend its functionality by importing

numerous packages and modules. To import a module in its entirety, you have to use the

import command.

>>> import math

Chapter 2 Introduction to the Python World

30

In this way all the functions contained in the math package are available in your

Python session so you can call them directly. Thus you have extended the standard set of

functions available when you start a Python session. These functions are called with the

following expression.

library_name.function_name()

For example, you can now calculate the sine of the value contained in the variable a.

>>> math.sin(a)

As you can see, the function is called along with the name of the library. Sometimes

you might find the following expression for declaring an import.

>>> from math import *

Even if this works properly, it is to be avoided for good practice. In fact, writing an

import in this way involves the importation of all functions without necessarily defining

the library to which they belong.

>>> sin(a)

0.040693257349864856

This form of import can lead to very large errors, especially if the imported libraries

are numerous. In fact, it is not unlikely that different libraries have functions with the

same name, and importing all of these would result in an override of all functions with

the same name previously imported. Therefore the behavior of the program could

generate numerous errors or worse, abnormal behavior.

Actually, this way to import is generally used for only a limited number of functions,

that is, functions that are strictly necessary for the functioning of the program, thus

avoiding the importation of an entire library when it is completely unnecessary.

 >>> from math import sin

�Data Structure

You saw in the previous examples how to use simple variables containing a single value.

Python provides a number of extremely useful data structures. These data structures are

able to contain lots of data simultaneously and sometimes even data of different types.

Chapter 2 Introduction to the Python World

31

The various data structures provided are defined differently depending on how their

data are structured internally.

•	 List

•	 Set

•	 Strings

•	 Tuples

•	 Dictionary

•	 Deque

•	 Heap

This is only a small part of all the data structures that can be made with Python.

Among all these data structures, the most commonly used are dictionaries and lists.

The type dictionary, defined also as dicts, is a data structure in which each particular

value is associated with a particular label, called a key. The data collected in a dictionary

have no internal order but are only definitions of key/value pairs.

>>> dict = {'name':'William', 'age':25, 'city':'London'}

If you want to access a specific value within the dictionary, you have to indicate the

name of the associated key.

>>> dict["name"]

'William'

If you want to iterate the pairs of values in a dictionary, you have to use the for-in

construct. This is possible through the use of the items() function.

>>> for key, value in dict.items():

... print(key,value)

...

name William

age 25

city London

Chapter 2 Introduction to the Python World

32

The type list is a data structure that contains a number of objects in a precise order

to form a sequence to which elements can be added and removed. Each item is marked

with a number corresponding to the order of the sequence, called the index.

>>> list = [1,2,3,4]

>>> list

[1, 2, 3, 4]

If you want to access the individual elements, it is sufficient to specify the index in

square brackets (the first item in the list has 0 as its index), while if you take out a portion

of the list (or a sequence), it is sufficient to specify the range with the indices i and j

corresponding to the extremes of the portion.

>>> list[2]

3

>>> list[1:3]

[2, 3]

If you are using negative indices instead, this means you are considering the last item

in the list and gradually moving to the first.

>>> list[-1]

4

In order to do a scan of the elements of a list, you can use the for-in construct.

>>> items = [1,2,3,4,5]

>>> for item in items:

... print(item + 1)

...

2

3

4

5

6

Chapter 2 Introduction to the Python World

33

�Functional Programming

The for-in loop shown in the previous example is very similar to loops found in other

programming languages. But actually, if you want to be a “Python” developer, you

have to avoid using explicit loops. Python offers alternative approaches, specifying

programming techniques such as functional programming (expression-oriented

programming).

The tools that Python provides to develop functional programming comprise a series

of functions:

•	 map(function, list)

•	 filter(function, list)

•	 reduce(function, list)

•	 lambda

•	 list comprehension

The for loop that you have just seen has a specific purpose, which is to apply an

operation on each item and then somehow gather the result. This can be done by the

map() function.

>>> items = [1,2,3,4,5]

>>> def inc(x): return x+1

...

>>> list(map(inc,items))

[2, 3, 4, 5, 6]

In the previous example, it first defines the function that performs the operation on

every single element, and then it passes it as the first argument to map(). Python allows

you to define the function directly within the first argument using lambda as a function.

This greatly reduces the code and compacts the previous construct into a single line of

code.

>>> list(map((lambda x: x+1),items))

[2, 3, 4, 5, 6]

Chapter 2 Introduction to the Python World

34

Two other functions working in a similar way are filter() and reduce(). The

filter() function extracts the elements of the list for which the function returns True.

The reduce() function instead considers all the elements of the list to produce a single

result. To use reduce(), you must import the module functools.

>>> list(filter((lambda x: x < 4), items))

[1, 2, 3]

>>> from functools import reduce

>>> reduce((lambda x,y: x/y), items)

0.008333333333333333

Both of these functions implement other types by using the for loop. They replace

these cycles and their functionality, which can be alternatively expressed with simple

functions. That is what constitutes functional programming.

The final concept of functional programming is list comprehension. This concept is

used to build lists in a very natural and simple way, referring to them in a manner similar

to how mathematicians describe datasets. The values in the sequence are defined

through a particular function or operation.

>>> S = [x**2 for x in range(5)]

>>> S

[0, 1, 4, 9, 16]

�Indentation

A peculiarity for those coming from other programming languages is the role that

indentation plays. Whereas you used to manage the indentation for purely aesthetic

reasons, making the code somewhat more readable, in Python indentation assumes an

integral role in the implementation of the code, by dividing it into logical blocks. In fact,

while in Java, C, and C++, each line of code is separated from the next by a semicolon (;),

in Python you should not specify any symbol that separates them, included the braces to

indicate a logical block.

These roles in Python are handled through indentation; that is, depending on the

starting point of the code line, the interpreter determines whether it belongs to a logical

block or not.

Chapter 2 Introduction to the Python World

35

>>> a = 4

>>> if a > 3:

... if a < 5:

... print("I'm four")

... else:

... print("I'm a little number")

...

I'm four

>>> if a > 3:

... if a < 5:

... print("I'm four")

... else:

... print("I'm a big number")

...

I'm four

In this example you can see that depending on how the else command is

indented, the conditions assume two different meanings (specified by me in the strings

themselves).

�IPython
IPython is a further development of Python that includes a number of tools:

•	 The IPython shell, which is a powerful interactive shell resulting in a

greatly enhanced Python terminal.

•	 A QtConsole, which is a hybrid between a shell and a GUI, allowing

you to display graphics inside the console instead of in separate

windows.

•	 The IPython Notebook, which is a web interface that allows you

to mix text, executable code, graphics, and formulas in a single

representation.

Chapter 2 Introduction to the Python World

36

�IPython Shell

This shell apparently resembles a Python session run from a command line, but actually,

it provides many other features that make this shell much more powerful and versatile

than the classic one. To launch this shell, just type ipython on the command line.

> ipython

Python 3.6.3 (default, Oct 15 2017, 3:27:45) [MSC v.1900 64bit (AMD64)]

Type "copyright", "credits", or "license" for more information.

IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help

In [1]:

As you can see, a particular prompt appears with the value In [1]. This means that it

is the first line of input. Indeed, IPython offers a system of numbered prompts (indexed)

with input and output caching.

In [1]: print("Hello World!")

Hello World!

In [2]: 3/2

Out[2]: 1.5

In [3]: 5.0/2

Out[3]: 2.5

In [4]:

The same thing applies to values in output that are indicated with the values Out[1],

Out [2], and so on. IPython saves all inputs that you enter by storing them as variables.

In fact, all the inputs entered were included as fields in a list called In.

In [4]: In

Out[4]: [", 'print "Hello World!"', '3/2', '5.0/2', 'In']

The indices of the list elements are the values that appear in each prompt. Thus, to

access a single line of input, you can simply specify that value.

In [5]: In[3]

Out[5]: '5.0/2'

Chapter 2 Introduction to the Python World

37

For output, you can apply the same concept.

In [6]: Out

Out[6]:

{2: 1,

 3: 2.5,

 4: ['',

 u'print "Hello World!"',

 u'3/2',

 u'5.0/2',

 u'_i2',

 u'In',

 u'In[3]',

 u'Out'],

 5: u'5.0/2'}

�The Jupyter Project

IPython is a project that has grown enormously in recent times, and with the

release of IPython 3.0, everything is moving toward a new project called Jupyter

(https://jupyter.org)—see Figure 2-2.

Figure 2-2.  The Jupyter project logo

Chapter 2 Introduction to the Python World

﻿https://jupyter.org﻿

38

IPython will continue to exist as a Python shell and as a kernel of Jupyter, but the

Notebook and the other language-agnostic components belonging to the IPython

project will move to form the new Jupyter project.

�Jupyter QtConsole

In order to launch this application from the command line, you must enter the following

command:

ipython qtconsole

or

jupyter qtconsole

The application consists of a GUI that has all the functionality present in the IPython

shell. See Figure 2-3.

Figure 2-3.  The IPython QtConsole

Chapter 2 Introduction to the Python World

39

Figure 2-4.  The web page showing the Jupyter Notebook

�Jupyter Notebook

Jupyter Notebook is the latest evolution of this interactive environment (see Figure 2-4).

In fact, with Jupyter Notebook, you can merge executable code, text, formulas, images,

and animations into a single Web document. This is useful for many purposes such as

presentations, tutorials, debug, and so forth.

�PyPI—The Python Package Index
The Python Package Index (PyPI) is a software repository that contains all the software

needed for programming in Python, for example, all Python packages belonging to

other Python libraries. The content repository is managed directly by the developers of

individual packages that deal with updating the repository with the latest versions of

their released libraries. For a list of the packages contained in the repository, go to the

official page of PyPI at https://pypi.python.org/pypi.

As far as the administration of these packages, you can use the pip application,

which is the package manager of PyPI.

By launching it from the command line, you can manage all the packages and

individually decide if a package should be installed, upgraded, or removed. Pip

will check if the package is already installed, or if it needs to be updated, to control

dependencies, and to assess whether other packages are necessary. Furthermore, it

manages the downloading and installation processes.

Chapter 2 Introduction to the Python World

﻿https://pypi.python.org/pypi﻿

40

$ pip install <<package_name>>

$ pip search <<package_name>>

$ pip show <<package_name>>

$ pip unistall <<package_name>>

Regarding the installation, if you have Python 3.4+ (released March 2014) and

Python 2.7.9+ (released December 2014) already installed on your system, the pip

software is already included in these releases of Python. However, if you are still using an

older version of Python, you need to install pip on your system. The installation of pip on

your system depends on the operating system on which you are working.

On Linux Debian-Ubuntu, use this command:

$ sudo apt-get install python-pip

On Linux Fedora, use this command:

$ sudo yum install python-pip

On Windows, visit https://pip.pypa.io/en/latest/installing/ and download

get-pip.py onto your PC. Once the file is downloaded, run this command:

python get-pip.py

This way, you will install the package manager. Remember to add C:\Python3.X\

Scripts to the PATH environment variable.

�The IDEs for Python
Although most of the Python developers are used to implementing their code directly

from the shell (Python or IPython), some IDEs (Interactive Development Environments)

are also available. In fact, in addition to a text editor, these graphics editors also provide

a series of tools that are very useful during the drafting of the code. For example, the

auto-completion of code, viewing the documentation associated with the commands,

debugging, and breakpoints are only some of the tools that this kind of application can

provide.

Chapter 2 Introduction to the Python World

﻿https://pip.pypa.io/en/latest/installing/﻿

41

�Spyder

Spyder (Scientific Python Development Environment) is an IDE that has similar features to

the IDE of MATLAB (see Figure 2-5). The text editor is enriched with syntax highlighting and

code analysis tools. Also, you can integrate ready-to-use widgets in your graphic applications.

Figure 2-5.  The Spyder IDE

�Eclipse (pyDev)

Those of you who have developed in other programming languages certainly know

Eclipse, a universal IDE developed entirely in Java (therefore requiring Java installation

on your PC) that provides a development environment for many programming

languages (see Figure 2-6). There is also an Eclipse version for developing in Python,

thanks to the installation of an additional plugin called pyDev.

Chapter 2 Introduction to the Python World

42

�Sublime

This text editor is one of the preferred environments for Python programmers (see

Figure 2-7). In fact, there are several plugins available for this application that make

Python implementation easy and enjoyable.

Figure 2-6.  The Eclipse IDE

Chapter 2 Introduction to the Python World

43

�Liclipse

Liclipse, similarly to Spyder, is a development environment specifically designed for

the Python language (see Figure 2-8). It is very similar to the Eclipse IDE but it is fully

adapted for a specific use in Python, without needing to install plugins like PyDev. So its

installation and settings are much simpler than Eclipse.

Figure 2-7.  The Sublime IDE

Chapter 2 Introduction to the Python World

44

�NinjaIDE

NinjaIDE (NinjaIDE is “Not Just Another IDE”), which characterized by a name that is

a recursive acronym, is a specialized IDE for the Python language (see Figure 2-9). It’s

a very recent application on which the efforts of many developers are focused. Already

very promising, it is likely that in the coming years, this IDE will be a source of many

surprises.

Figure 2-8.  The Liclipse IDE

Chapter 2 Introduction to the Python World

45

�Komodo IDE

Komodo is a very powerful IDE full of tools that make it a complete and professional

development environment (see Figure 2-10). Paid software and written in C++, the

Komodo development environment is adaptable to many programming languages,

including Python.

Figure 2-9.  The Ninja IDE

Chapter 2 Introduction to the Python World

46

�SciPy
SciPy (pronounced “sigh pie”) is a set of open-source Python libraries specialized for

scientific computing. Many of these libraries are the protagonists of many chapters of the

book, given that their knowledge is critical to data analysis. Together they constitute a

set of tools for calculating and displaying data. It has little to envy from other specialized

environments for calculation and data analysis (such as R or MATLAB). Among the

libraries that are part of the SciPy group, there are three in particular that are discussed

in the following chapters:

•	 NumPy

•	 matplotlib

•	 Pandas

Figure 2-10.  The Komodo IDE

Chapter 2 Introduction to the Python World

47

�NumPy
This library, whose name means numerical Python, constitutes the core of many other

Python libraries that have originated from it. Indeed, NumPy is the foundation library

for scientific computing in Python since it provides data structures and high-performing

functions that the basic package of the Python cannot provide. In fact, as you will see

later in the book, NumPy defines a specific data structure that is an N-dimensional array

defined as ndarray.

Knowledge of this library is essential in terms of numerical calculations since its

correct use can greatly influence the performance of your computations. Throughout

the book, this library is almost omnipresent because of its unique characteristics, so an

entire chapter is devoted to it (Chapter 3).

This package provides some features that will be added to the standard Python:

•	 Ndarray: A multidimensional array much faster and more efficient

than those provided by the basic package of Python.

•	 Element-wise computation: A set of functions for performing this type

of calculation with arrays and mathematical operations between

arrays.

•	 Reading-writing datasets: A set of tools for reading and writing data

stored in the hard disk.

•	 Integration with other languages such as C, C++, and FORTRAN: A

set of tools to integrate code developed with these programming

languages.

�Pandas
This package provides complex data structures and functions specifically designed to

make the work on them easy, fast, and effective. This package is the core of data analysis

in Python. Therefore, the study and application of this package is the main goal on which

you will work throughout the book (especially in Chapters 4, 5, and 6). Knowledge of its

every detail, especially when it is applied to data analysis, is a fundamental objective of

this book.

The fundamental concept of this package is the DataFrame, a two-dimensional

tabular data structure with row and column labels.

Chapter 2 Introduction to the Python World

https://doi.org/10.1007/978-1-4842-3913-1_3
https://doi.org/10.1007/978-1-4842-3913-1_4
https://doi.org/10.1007/978-1-4842-3913-1_5
https://doi.org/10.1007/978-1-4842-3913-1_6

48

Pandas applies the high-performance properties of the NumPy library to the

manipulation of data in spreadsheets or in relational databases (SQL databases). In fact,

by using sophisticated indexing, it will be easy to carry out many operations on this kind

of data structure, such as reshaping, slicing, aggregations, and the selection of subsets.

�matplotlib
This package is the Python library that is currently most popular for producing plots and

other data visualizations in 2D. Since data analysis requires visualization tools, this is the

library that best suits this purpose. In Chapter 7, you learn about this rich library in detail

so you will know how to represent the results of your analysis in the best way.

�Conclusions
During the course of this chapter, all the fundamental aspects characterizing the Python

world have been illustrated. The basic concepts of the Python programming language

were introduced, with brief examples explaining its innovative aspects and how it stands

out compared to other programming languages. In addition, different ways of using

Python at various levels were presented. First you saw how to use a simple command-

line interpreter, then a set of simple graphical user interfaces were shown until you got

to complex development environments, known as IDEs, such as Spyder, Liclipse, and

NinjaIDE.

Even the highly innovative project Jupyter (IPython) was presented, showing you

how you can develop Python code interactively, in particular with the Jupyter Notebook.

Moreover, the modular nature of Python was highlighted with the ability to expand

the basic set of standard functions provided by Python’s external libraries. In this regard,

the PyPI online repository was shown along with other Python distributions such as

Anaconda and Enthought Canopy.

In the next chapter, you deal with the first library that is the basis of all numerical

calculations in Python: NumPy. You learn about the ndarray, a data structure which

is the basis of the more complex data structures used in data analysis in the following

chapters.

Chapter 2 Introduction to the Python World

https://doi.org/10.1007/978-1-4842-3913-1_7

	Chapter 2: Introduction to the Python World
	Python—The Programming Language
	Python—The Interpreter
	Cython
	Jython
	PyPy

	Python 2 and Python 3
	Installing Python
	Python Distributions
	Anaconda
	Enthought Canopy
	Python(x,y)

	Using Python
	Python Shell
	Run an Entire Program
	Implement the Code Using an IDE
	Interact with Python

	Writing Python Code
	Make Calculations
	Import New Libraries and Functions
	Data Structure
	Functional Programming
	Indentation

	IPython
	IPython Shell
	The Jupyter Project
	Jupyter QtConsole
	Jupyter Notebook

	PyPI—The Python Package Index
	The IDEs for Python
	Spyder
	Eclipse (pyDev)
	Sublime
	Liclipse
	NinjaIDE
	Komodo IDE

	SciPy
	NumPy
	Pandas
	matplotlib

	Conclusions

