
507
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_14

CHAPTER 14

Image Analysis
and Computer Vision
with OpenCV
In the previous chapters, the analysis of data was centered entirely on numerical and

tabulated data, while in the previous one we saw how to process and analyze data in

textual form. This book rightfully closes by introducing the last aspect of data analysis:

image analysis.

During the chapter, topics such as computer vision and face recognition will be

introduced. You will see how the techniques of deep learning are at the base of this king

of analysis. Furthermore, another library will be introduced, called openCV, which has

always been the reference point for image analysis.

 Image Analysis and Computer Vision
Throughout the book, you have seen how the purpose of the analysis is to extract

new information, to draw new concepts and characteristics from a system under

investigation. You did it with numerical and textual data, but the same can be done

with images.

This branch of analysis is called image analysis and is based on some calculation

techniques applied to them (image filters), which you will see in the next sections.

In recent years, especially because of the development of deep learning, image

analysis has experienced huge development in solving problems that were previously

impossible, giving rise to a new discipline called computer vision.

https://doi.org/10.1007/978-1-4842-3913-1_14

508

In Chapter 9, you learned about artificial intelligence, which is the branch of

calculation that deals with solving problems of pure “human relevance”. Computer

vision is part of this, since its purpose is to reproduce the way the human brain perceives

images.

In fact, seeing is not just the acquisition of a two-dimensional image, but above all

it is the interpretation of the content of that area. The captured image is decomposed

and elaborated into levels of representation that are gradually more abstract (contours,

figures, objects, and words) and therefore recognizable by the human mind.

In the same way, computer vision intends to process a two-dimensional image and

extract the same levels of representation from it. This is done through various operations

that can be classified as follows:

• Detection: Detect shapes, objects, or other subjects of investigation in

an image (for example finding cars)

• Recognition: The identified subjects are then led back to generic

classes (for example, subdividing cars by brands and types)

• Identification: An instance of the previous class is identified

(for example, find my car)

 OpenCV and Python
OpenCV (Open Source Computer Vision) is a library written in C ++ that is specialized

for computer vision and image analysis (https://opencv.org/). This powerful library,

designed by Gary Bradsky, was born as an Intel project and in 2000 the first version was

released. Then with the passage of time, it was released under an open source license,

and since then has gradually becoming more widespread, reaching the version 3.3

(2017). At this time, OpenCV supports many algorithms related to computer vision and

machine learning and is expanding day by day.

Its usefulness and spread is due precisely to its antagonist: MATLAB. In fact, those

who need to work with image analysis can follow only two ways: purchase MATLAB

packages or compile and install the open source version of OpenCV. Well, it is easy to see

why many have opted for the second choice.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://doi.org/10.1007/978-1-4842-3913-1_9
https://opencv.org/

509

 OpenCV and Deep Learning
There is a close relationship between computer vision and deep learning. Since 2017

was a significant year for the development of deep learning (read my article about

it at http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-

frameworks/), the release of the new version of OpenCV 3.3 has seen the enhancement

of the library with many new features of deep learning and neural networks in general.

In fact, the library has a module called dnn (deep neural networks) dedicated to this

aspect. This module has been specifically developed for use with many deep learning

frameworks, including Caffe2, TensorFlow, and PyTorch (for information on these

frameworks see Chapter 9).

 Installing OpenCV
Installing a OpenCV package on many operating systems (Windows, iOS, and Android)

is done through the official website (https://opencv.org/releases.html).

If you use Anaconda as a distribution medium, I recommend using this approach.

The installation is very simple and clean.

conda install opencv

Unfortunately for Linux systems there is no official PyPI package (with pip to be

clear) to be installed. Manual installation is required and may vary depending on the

distribution and version used. Many procedures are present on the Internet, some

more or less valid. For those with Ubuntu 16, I recommend this installation procedure

(see https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-

Ubuntu- 16.04).

 First Approaches to Image Processing and Analysis
In this section, you will begin to familiarize yourself with the OpenCV library. First

you will start to see how to upload and view images. Then you will pass some simple

operations to them, add and subtract two images, and see an example of image blending.

All these operations will be very useful as they will serve as a basis for any other image

analysis operation.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-frameworks/
http://www.meccanismocomplesso.org/en/2017-year-of-deep-learning-frameworks/
https://doi.org/10.1007/978-1-4842-3913-1_9
https://opencv.org/releases.html
https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-Ubuntu-16.04
https://github.com/BVLC/caffe/wiki/OpenCV-3.3-Installation-Guide-on-Ubuntu-16.04

510

 Before Starting
Once the OpenCV library is installed, you can open an IPython session on the Jupyter

QtConsole or Jupyter Notebook.

Then before you start programming, you need to import the openCV library.

import numpy as np

import cv2

 Load and Display an Image
First, mainly because OpenCV works on pictures, it is important to know how to

load them in a program in Python, manipulate them again, and finally view them to see

the results.

The first thing you need to do is read the file containing the image using the OpenCV

library. You can do this using the imread() method. This method reads the file in a

compressed format such as JPG and translates it into a data structure that’s made of a

numerical matrix corresponding to color gradations and position.

Note you can find the images and files in the source code of this book.

img = cv2.imread('italy2018.jpg')

If you are interested in more details, you can see the content of an image directly.

You will notice an array of arrays, each corresponding to a specific position of the image,

and each characterized by numbers between 0 and 255.

In fact, if you see the content of the first element of the image, you will get the

following.

img[0]

array([[38, 43, 11],

 [37, 42, 10],

 [36, 41, 9],

 ...,

 [24, 37, 15],

 [22, 36, 12],

 [23, 36, 12]], dtype=uint8)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

511

Continuing with the code, you will now use the imshow() method to create a window

with the image loaded in the variable img. This method takes two parameters—the

window name and the image variable. Once you have created the window, you can use

the waitKey() method.

cv2.imshow('Image', img)

cv2.waitKey(0)

Executing this command, a new window opens and shows the image, as shown in

Figure 14-1.

The waitKey() method starts to display the window and allows you to control the

waiting time of the program before continuing with the next command. This example

used 0 as an argument, which means that the wait will be infinite as long as you press

any key on the keyboard.

Figure 14-1. The photo of the Italian national football team during training

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

512

If you wanted to keep open the window only for a specific period, you need to write

the number of milliseconds as a parameter. Try to replace the value in the program, for

example 2000 (two seconds), and run the program.

Note this behavior can vary greatly from system to system. sometimes the
Ipython kernel could give problems. then use waitKey(0).

cv2.imshow('Image', img)

cv2.waitKey(2000)

The window with the image (as shown in Figure 14-1) should appear and then

disappear after two seconds.

However, for examples that are more complex, it is useful to have direct control over

the closure of a window, without the use of waiting times. The destroyWindow() method

allows you to close the desired window (could be several open) by specifying as an

argument the name of the window, which in your case is Image.

cv2.imshow('Image', img)

cv2.waitKey(2000)

cv2.destroyWindow('Image')

If there are multiple windows open and you want to close them all at once, you can

use a single command, the call to destroyAllWindows() method.

 Working with Images
Now that you’ve seen how to view existing images in your file system, you can proceed

to the next step: processing the image by performing an operation on it and saving the

result to a new file.

Continuing with the previous example, you will use the same code. This time,

however, you will perform a simple image manipulation, for example, by decomposing

the three RGB channels. Then you will exchange the channels to form a new image. This

new image will have all altered colors.

After loading the image, decompose it into the three RGB channels. You can do this

easily by using the split() method.

b,r,g = cv2.split(img)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

513

Now reassemble the three channels, but change the order, for example by

exchanging the red channel with the green channel. You can easily recombine the

channels using the merge() method.

img2 = cv2.merge((b,g,r))

The new image is contained in the img2 variable. Display it along with the original in

a new window.

cv2.imshow('Image2', img2)

cv2.waitKey(0)

By running the program, a new window appears with altered colors (as shown in

Figure 14-2).

Figure 14-2. The processed image has altered colors

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

514

 Save the New Image
Finally you have to save your new image by saving the file system.

At the end of the program, add an imwrite() method with the name of the new file

that you want to save, which can also be of another format, such as PNG.

cv2.imwrite('italy2018altered.png', img2)

Execute this command and you will notice a new italy2018altered.png file in the

workspace.

 Elementary Operations on Images
The most basic operation is the addition of two images. With the openCV library, this

operation is very simple and you can do it using the cv2.add() function. The result

obtained will be the combination of the two images.

But do not forget that the two images must have the same dimensions to be added

together. In this case, the images are both 512x331 pixels.

The first thing you need to do is load a second image with the same dimensions, in

our case soccer.jpg (you can find it in the source code).

img2 = cv2.imread('soccer.jpg')

cv2.imshow('Image2', img2)

cv2.waitKey(0)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

515

By executing the code, you will get the image shown in Figure 14-3.

Now you just have to add the two images using the add() function.

img = cv2.add(img,img2)

cv2.imshow('Sum',img)

By executing this code, you will receive a combination of the two images (as shown

in Figure 14-4). Unfortunately, the effect is not very appealing.

Figure 14-3. A new image that’s the same size (512x331 pixels)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

516

The result is not what we expected. The prevalence of white is in fact the result of

the simple arithmetic sum of the three RGB values, which is calculated for each

individual pixel.

In fact, you know that each of the three RGB components takes values from 0 to 255.

Therefore, if the sum of the values of a given pixel is greater than 255 (which is quite

likely) the value will still be 255. Therefore, the simple task of adding the images does not

lead to an image that’s a merger of the two, but instead shifts gradually more and more

toward white.

Later you will see how the concept of adding two images to create a new image that is

half of the two (it is not the arithmetic sum).

Figure 14-4. A new image obtained by adding the two images

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

517

You can do the same thing by subtracting two images. This operation can be

performed with the cv2.subtract() function. This time we would expect an image that

will tend more and more toward the black. Replace the cv2.add() function with the

following.

img3 = cv2.subtract(img, img2)

cv2.imshow('Sub1',img3)

cv2.waitKey(0)

By running the program you will find a picture tending to the darkness (even if you

do not see much), as shown in Figure 14-5.

Figure 14-5. A new image obtained by subtracting one image from another

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

518

Please note that this effect is even worse if you do the reverse.

img3 = cv2.subtract(img2, img)

cv2.imshow('Sub1',img3)

cv2.waitKey(0)

You get a blackish image, as shown in Figure 14-6.

However, this is useful to know that the order of the operators is important

for the result.

More concretely, you have already seen that an image object created with the OpenCV

library is nothing more than an array of arrays that respond perfectly to the canons of

NumPy. Thus, you can use the operations between matrices provided by NumPy, such as

the addition of matrices. But be careful, the result will certainly not be the same.

img = img1 + img2

Figure 14-6. A new image obtained by subtracting one image from another

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

519

In fact, the cv2.add() and cv2.subtract() functions maintain the values between

0 and 255, regardless of the value of the operators. If the sum exceeds 255 the result is

interpreted differently, thus creating a very strange color effect (maybe as a module of

255). The same thing happens when the removal produces a negative value; the result

would be 0. Arithmetic operations do not have this feature.

However, you can try it directly.

img3 = img + img2

cv2.imshow('numpy',img3)

cv2.waitKey(0)

Executing it, you will get an image with a very strong color contrast (they are the

points over 255), as shown in Figure 14-7.

Figure 14-7. An image obtained by adding two images as two NumPy
matrices

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

520

 Image Blending
In the previous example, you saw that the addition or subtraction of two images does

not produce an intermediate image between the two, but instead changes the coloration

toward whites or blacks.

The correct operation is called blending. That is, you can consider the operation

of superimposing the two images, one above the other, making the one placed above

gradually more and more transparent. By adjusting the transparency gradually, you get a

mixture of the two images, creating a new one that is the intermediate.

The blending operation does not correspond to a simple addition, but the formula

corresponds to the following equation.

img = α · img1 + (1 – α) · img2 with 0 ≥ α ≥ 1

As you can see from the previous equation, the two images have two numerical

coefficients that take values between 0 and 1. With the growth of the α parameter you will

have a smooth transition from the first image to the second.

The OpenCV library provides the operation of blending with the cv2.addWeighted()

function.

Therefore, if you want to create an intermediate image between two source images,

you can use the following code.

img3 = cv2.addWeighted(img, 0.3, img2, 0.7, 0)

cv2.imshow('numpy',img3)

cv2.waitKey(0)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

521

Figure 14-8. An image obtained with image blending

The result will be an image like the one shown in Figure 14-8.

 Image Analysis
The purpose of the examples in the previous section was to understand that images

are nothing but NumPy arrays. As such, these numerical matrices can be processed.

Therefore, you can implement many mathematical functions that will process the

numbers within these matrices to get new images. These new images, obtained from

operations, will serve to provide new information.

This is the concept underlying image analysis. The mathematical operations carried

out by a starting image (matrix) to a resultant image (matrix) are called image filters

(see Figure 14-9). To help you understand this process, you will certainly have to deal

with photo editing applications (like Photoshop). In any case, you have certainly seen

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

522

that filters that can be applied to photos. These filters are nothing more than algorithms

(sequences of mathematical operations) that modify the numerical values in the matrix

of the starting image.

 Edge Detection and Image Gradient Analysis
In the previous sections, you saw how to perform some basic operations that are useful

for image analysis. In this section, you start with a real case of image analysis, called edge

detection.

 Edge Detection
While analyzing an image, and especially during computer vision, one of the

fundamental operations is to understand the content of the image, such as objects

and people. It is necessary first to understand what possible forms are represented in

the image. Nevertheless, to understand the geometries represented, it is necessary to

recognize the outlines that delimit an object from the background or from other objects.

This is precisely the task of the edge detection.

Figure 14-9. A representation of the image filters that are the basis of image
analysis

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

523

In edge detection, a great many algorithms and techniques have been developed and

they exploit different principles in order to determine the contours of objects correctly.

Many of these techniques are based on the principle of color gradients, and exploit the

image gradient analysis process.

 The Image Gradient Theory
Among the various operations that can be applied to images, there are the convolutions

of an image in which certain filters are applied to edit the image in order to obtain

information or some other utility. You have already seen that an image is represented as

a large numerical matrix in which the colors of each pixel are represented by a number

from 0 to 255 in the matrix. The convolutions process all these numerical values by

applying a mathematical operation (image filter) to produce new values in a new matrix

of the same size.

One of these operations is the derivative. In simple words, the derivative is a

mathematical operation that allows you to get the numerical values indicating the speed

at which a value changes (in space, time, etc.).

How could the derivative be important in the case of the images? It has to do with

color variation, called a gradient.

Being able to calculate the gradient of a color is an excellent tool to calculate the

edges of an image. In fact, your eye can distinguish the outlines of a figure present in

an image, thanks to the jumps between one color to another. In addition, your eye can

perceive the depths thanks to the various shades of color ranging from light to dark,

which is the gradient.

From all this, it is quite clear that measuring a gradient in an image is crucial to being

able to detect the edges of the image. It’s done with a simple operation (filter) that is

carried out on the image.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

524

To get a better look at it from a mathematical point of view, look at Figure 14-10.

As you can see in Figure 14-10, an edge is no more than a quick transition from one

hue to another. To simplify, 0 is black and 1 is white. All shades of gray are floating values

between 0 and 1.

If you chart all corresponding values to the gradient values, you get the function f().

As you can see, there is a sudden transition from 0 to 1, which indicates the edge.

Figure 14-10. The image gradient theory representation

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

525

The derivative of the function f() results in the function f'(). As you can see, the

maximum variation of the hue leads to values close to 1. So when converting colors, you

will get a figure in which white will indicate the edge.

 A Practical Example of Edge Detection with the Image
Gradient Analysis
Moving on to the practical part, you will use two images created specifically to test the

analysis of the contours, since they have several important characteristics in them.

The first image (as shown in Figure 14-11) consists of two arrows in black and white

and corresponds to the blackandwhite.jpg file. In this image, the color contrast is very

strong and the contours of the arrows have all the possible orientations (horizontal,

vertical, and diagonal). This test image will serve to evaluate the effect of edge detection

in a black and white system.

The second image, gradients.jpg, shows different gradients of gray, which, when

placed next to each other, create rectangles whose edges have all the possible gradations

and combinations of shades (as shown in Figure 14-12). This image is a good test to

evaluate the true edge detection capabilities of the system.

Figure 14-11. A black and white image representing two arrows

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

526

Now you can start to develop the code needed for edge detection. You will use

matplotlib to display different images in the same window. In this test, we will use two

different types of image filters provided by opencv: sobel and laplacian. In fact, their

names correspond to the name of the mathematical operations performed on the

matrices (images). The openCV library provides cv2.Sobel() and cv2.Laplacian() to

apply these two calculations.

First it starts by analyzing the edge detection applied to the blackandwhite.jpg image.

from matplotlib import pyplot as plt

%matplotlib inline

img = cv2.imread('blackandwhite.jpg',0)

laplacian = cv2.Laplacian(img, cv2.CV_64F)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')

plt.title('Original'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

Figure 14-12. A set of gray gradients placed next to each other

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

527

plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.show()

When you run this code, you get a window with four boxes (as shown in

Figure 14- 13). The first box is the original image in black and white, while the other three

are the result of the three filters applied to the image.

In regards to the Sobel filters, edge detection is perfect, even if limited horizontally

or vertically. The diagonal lines are visible in both cases, since they have both horizontal

and vertical components, but the horizontal edges in the Sobel X and those in the

vertical Sobel Y are not detected in any way.

Combining the two filters (the calculation of two derivatives) to obtain the Laplacian

filter, the determination of the edges is omnidirectional but has some loss of resolution.

In fact, you can see that the ripples corresponding to the edges are more subdued.

Figure 14-13. The result from the edge detection applied to the blackandwhite.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

528

The coloring in gray is very useful for detecting edges and gradients, but if you are

interested in only detecting edges, you have to set as output an image file in cv2.CV_8U.

Therefore, you can change the type of output data from cv2.CV_64F to cv2.CV_8U in

the filters function of the previous code. Replace the arguments passed to the two image

filters as follows.

laplacian = cv2.Laplacian(img, cv2.CV_8U)

sobelx = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_8U,0,1,ksize=5)

By running the code, you will get similar results (as shown in Figure 14-14), but

this time only in black and white, where the edges are displayed in white on a black

background.

Figure 14-14. The result from the edge detection applied to the blackandwhite.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

529

But if you look carefully at the panels of the Sobel filter X and Y, you will

notice right away that something is wrong. Where are the missing edges? Note this issue

in Figure 14- 15.

In fact, there was a problem while converting the data. The gradients reported in

the grayscale with cv2.CV_64F values are represented by positive values (positive slope)

when changing from black to white. However, they are represented by negative values

(negative slope) when switching from white to black. In the conversion from cv2.CV_64F

to cv2.CV_8U, all negative slopes are reduced to 0, and then the information relating to

those edges is lost. When the program will display the image, the edges from white to

black will not be shown.

To overcome this, you should keep the data in the output of the filter in cv2.CV_64F

(instead of cv2.CV_8U), then calculate the absolute value, and finally do the conversion

in cv2.CV_8U.

Figure 14-15. Missing edges in the blackandwhite.jpg image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

530

Make these changes to the code.

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)

sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

laplacian = np.uint8(np.absolute(laplacian64))

sobelx = np.uint8(np.absolute(sobelx64))

sobely = np.uint8(np.absolute(sobely64))

plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')

plt.title('Original'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')

plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])

plt.show()

Now, if you execute it, you will get the right representation in white on the black

edges of the arrows (as shown in Figure 14-16). As you can see, the edges do not appear

in Sobel X and Sobel Y because they are parallel to the direction of detection (horizontal

and vertical).

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

531

Figure 14-16. The result from the edge detection applied to the blackandwhite.jpg
image

In addition to the edges, you see that the Laplacian and Sobel filters are also able to

detect the level of gradients across a grayscale. Apply what you’ve seen to the gradient.jpg

image. You have to make some changes to the previous code, leaving only one image

(Laplacian) to be shown.

from matplotlib import pyplot as plt

img = cv2.imread('gradients.jpg',0)

laplacian = cv2.Laplacian(img, cv2.CV_64F)

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

laplacian64 = cv2.Laplacian(img, cv2.CV_64F)

sobelx64 = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)

sobely64 = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

532

laplacian = np.uint8(np.absolute(laplacian64))

sobelx = np.uint8(np.absolute(sobelx64))

sobely = np.uint8(np.absolute(sobely64))

plt.imshow(laplacian,cmap = 'gray')

plt.title('Laplacian'), plt.xticks([]), plt.yticks([])

plt.show()

By executing this code, you will get an image showing the white borders on a black

background (as shown in Figure 14-17).

 A Deep Learning Example: The Face Detection
In this last section of the chapter, you will shift your attention to another highly studied

and used case in computer vision, face detection.

This is a far more complex case than edge detection, and it is based on identifying

human faces in an image. Given the complexity of the problem, face detection uses deep

learning. In fact at the base of this technique, there are neural networks that are specially

designed to recognize different subjects, including the faces of a person, in a photo.

Object detection techniques also work very similarly. So this example will be very useful

to fully understand the heart of computer vision, that of interpreting the subjects present

in a photo.

Figure 14-17. The result from the edge detection applied to the gradients.jpg
image

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

533

In this example, you will use an already learned neural network. In fact, educating a

neural network for this kind of problem can be a complex operation and require a great

deal of time and resources.

Fortunately, on the web, there are some neural networks already trained to perform

these kinds of operations, and for this test you will use a model developed using the

Caffe2 framework (see Chapter 9 for more information).

When you want to use a deep neural network module with Caffe models in the

OpenCV environment, you need two types of files, as follows:

• A prototxt file, which defines the model architecture (i.e., the layers

themselves). You will use a deploy.prototxt.txt file downloaded

from the web (https://github.com/opencv/opencv/blob/master/

samples/dnn/face_detector/deploy.prototxt).

• The second type of file is a caffemodel file, which contains the weights

for the actual layers in the deep neural network. This file is the

most important because it contains all the “learning” of that neural

network to perform a given task. For your purposes, a caffemodel file

is available at https://github.com/opencv/opencv_3rdparty/tree/

dnn_samples_face_detector_20170830.

Note you can also find these files in the source code of the book.

Now that you have everything you need, start by uploading the neural network

model and all the information about your learning.

The OpenCV library supports many deep learning frameworks, and it has many

features in it that help you with this. In particular (mentioned at the beginning of the

chapter), OpenCV has the dnn module, which specializes in these kinds of operations.

To load a learned neural network you can use the dnn.readNetFromCaffe()

function.

net = cv2.dnn.readNetFromCaffe('deploy.prototxt.txt', 'res10_300x300_ssd_

iter_140000.caffemodel')

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://doi.org/10.1007/978-1-4842-3913-1_9
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830
https://github.com/opencv/opencv_3rdparty/tree/dnn_samples_face_detector_20170830

534

As a test image, you can use the photo with the players of the Italian national team,

italy2018.jpg. This image is a great example, as there are many faces inside.

image = cv2.imread('italy2018.jpg')

(h, w) = image.shape[:2]

Another function, called dnn.blobFromImage(), takes care of preprocessing the

image to be adapted to neural networks. For example, resize the image to 300x300 pixels

so that it can be used by the caffemodel file that has been trained for images of this size.

blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300),

(104.0, 177.0, 123.0))

Then define a confidence threshold with an optimal value of 0.5.

confidence_threshold = 0.5

And finally perform the face detection test.

net.setInput(blob)

detections = net.forward()

for i in range(0, detections.shape[2]):

 confidence = detections[0, 0, i, 2]

 if confidence > confidence_threshold:

 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

 (startX, startY, endX, endY) = box.astype("int")

 text = "{:.2f}%".format(confidence * 100)

 y = startY - 10 if startY - 10 > 10 else startY + 10

 cv2.rectangle(image, (startX, startY), (endX, endY),(0, 0, 255), 2)

 cv2.putText(image, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX,

0.45, (0, 0, 255), 2)

cv2.imshow("Output", image)

cv2.waitKey(0)

By executing the code, a window will appear with the results of processing the face

detection (shown in Figure 14-18). The results are incredible, since the faces of all the

players have been detected. You can see the faces surrounded by a red square that

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

535

Figure 14-18. The faces of the national football players have all been accurately
recognized

highlights them in the image with a percentage of confidence. Confidence percentages

are all greater than 50% for the confidence_threshold parameter that we specified at

the start of the test.

 Conclusions
In this chapter, you saw some simple examples of techniques that form the basis of

image analysis and in particular of computer vision. In fact, you saw how images are

processed through image filters, and how some complex techniques can be built using

edge detection. You also saw how computer vision works by using deep learning neural

networks to recognize faces in an image (face detection).

I hope this chapter is a good starting point for your further insights on the subject.

If you are interested, you will find in-depth information on this topic on my website at

https://meccanismocomplesso.org.

Chapter 14 Image analysIs and Computer VIsIon wIth openCV

https://meccanismocomplesso.org

	Chapter 14: Image Analysis and Computer Vision with OpenCV
	Image Analysis and Computer Vision
	OpenCV and Python
	OpenCV and Deep Learning
	Installing OpenCV
	First Approaches to Image Processing and Analysis
	Before Starting
	Load and Display an Image
	Working with Images
	Save the New Image
	Elementary Operations on Images
	Image Blending

	Image Analysis
	Edge Detection and Image Gradient Analysis
	Edge Detection
	The Image Gradient Theory
	A Practical Example of Edge Detection with the Image Gradient Analysis

	A Deep Learning Example: The Face Detection
	Conclusions

