
473
© Fabio Nelli 2018
F. Nelli, Python Data Analytics, https://doi.org/10.1007/978-1-4842-3913-1_12

CHAPTER 12

Recognizing
Handwritten Digits
So far you have seen how to apply the techniques of data analysis to Pandas dataframes

containing numbers and strings. Indeed, data analysis is not limited to numbers and

strings, because images and sounds can also be analyzed and classified.

In this short but no-less-important chapter, you’ll learn about handwriting

recognition.

�Handwriting Recognition
Recognizing handwritten text is a problem that can be traced back to the first automatic

machines that needed to recognize individual characters in handwritten documents.

Think about, for example, the ZIP codes on letters at the post office and the automation

needed to recognize these five digits. Perfect recognition of these codes is necessary in

order to sort mail automatically and efficiently.

Included among the other applications that may come to mind is OCR (Optical

Character Recognition) software. OCR software must read handwritten text, or pages of

printed books, for general electronic documents in which each character is well defined.

But the problem of handwriting recognition goes farther back in time, more

precisely to the early 20th Century (1920s), when Emanuel Goldberg (1881–1970) began

his studies regarding this issue and suggested that a statistical approach would be an

optimal choice.

To address this issue in Python, the scikit-learn library provides a good example

to better understand this technique, the issues involved, and the possibility of making

predictions.

https://doi.org/10.1007/978-1-4842-3913-1_12

474

�Recognizing Handwritten Digits with scikit-learn
The scikit-learn library (http://scikit-learn.org/) enables you to approach this

type of data analysis in a way that is slightly different from what you’ve used in the book

so far. The data to be analyzed is closely related to numerical values or strings, but can

also involve images and sounds.

The problem you have to face in this chapter involves predicting a numeric value,

and then reading and interpreting an image that uses a handwritten font.

So even in this case you will have an estimator with the task of learning through

a fit() function, and once it has reached a degree of predictive capability (a model

sufficiently valid), it will produce a prediction with the predict() function. Then we will

discuss the training set and validation set, created this time from a series of images.

Now open a new IPython Notebook session from the command line by entering the

following command:

ipython notebook

Then create a new Notebook by choosing New ➤ Python 3, as shown in Figure 12-1.

Figure 12-1.  The home page of the IPython Notebook (Jupyter)

Chapter 12 Recognizing Handwritten Digits

http://scikit-learn.org/

475

An estimator that is useful in this case is sklearn.svm.SVC, which uses the technique

of Support Vector Classification (SVC).

Thus, you have to import the svm module of the scikit-learn library. You can create

an estimator of SVC type and then choose an initial setting, assigning the values C and

gamma generic values. These values can then be adjusted in a different way during the

course of the analysis.

from sklearn import svm

svc = svm.SVC(gamma=0.001, C=100.)

�The Digits Dataset
As you saw in Chapter 8, the scikit-learn library provides numerous datasets that are

useful for testing many problems of data analysis and prediction of the results. Also in

this case there is a dataset of images called Digits.

This dataset consists of 1,797 images that are 8x8 pixels in size. Each image is a

handwritten digit in grayscale, as shown in Figure 12-2.

Figure 12-2.  One of 1,797 handwritten number images that make up the dataset
digit

Chapter 12 Recognizing Handwritten Digits

https://doi.org/10.1007/978-1-4842-3913-1_8

476

Thus, you can load the Digits dataset into your Notebook.

from sklearn import datasets

digits = datasets.load_digits()

After loading the dataset, you can analyze the content. First, you can read lots of

information about the datasets by calling the DESCR attribute.

print(digits.DESCR)

For a textual description of the dataset, the authors who contributed to its creation

and the references will appear as shown in Figure 12-3.

Figure 12-3.  Each dataset in the scikit-learn library has a field containing all the
information

Chapter 12 Recognizing Handwritten Digits

477

The images of the handwritten digits are contained in a digits.images array. Each

element of this array is an image that is represented by an 8x8 matrix of numerical values

that correspond to a grayscale from white, with a value of 0, to black, with the value 15.

digits.images[0]

You will get the following result:

array([[0., 0., 5., 13., 9., 1., 0., 0.],

 [0., 0., 13., 15., 10., 15., 5., 0.],

 [0., 3., 15., 2., 0., 11., 8., 0.],

 [0., 4., 12., 0., 0., 8., 8., 0.],

 [0., 5., 8., 0., 0., 9., 8., 0.],

 [0., 4., 11., 0., 1., 12., 7., 0.],

 [0., 2., 14., 5., 10., 12., 0., 0.],

 [0., 0., 6., 13., 10., 0., 0., 0.]])

You can visually check the contents of this result using the matplotlib library.

import matplotlib.pyplot as plt

%matplotlib inline

plt.imshow(digits.images[0], cmap=plt.cm.gray_r, interpolation='nearest')

By launching this command, you will obtain the grayscale image shown in

Figure 12-4.

Figure 12-4.  One of the 1,797 handwritten digits

Chapter 12 Recognizing Handwritten Digits

478

The numerical values represented by images, i.e., the targets, are contained in the

digit.targets array.

digits.target

You will get the following result:

array([0, 1, 2, ..., 8, 9, 8])

It was reported that the dataset is a training set consisting of 1,797 images. You can

determine if that is true.

digits.target.size

This will be the result:

1797

�Learning and Predicting
Now that you have loaded the Digits datasets into your notebook and have defined an

SVC estimator, you can start learning.

As you learned in Chapter 8, once you define a predictive model, you must instruct it

with a training set, which is a set of data in which you already know the belonging class.

Given the large quantity of elements contained in the Digits dataset, you will certainly

obtain a very effective model, i.e., one that’s capable of recognizing with good certainty

the handwritten number.

This dataset contains 1,797 elements, and so you can consider the first 1,791 as a

training set and will use the last six as a validation set.

You can see in detail these six handwritten digits by using the matplotlib library:

import matplotlib.pyplot as plt

%matplotlib inline

plt.subplot(321)

plt.imshow(digits.images[1791], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(322)

plt.imshow(digits.images[1792], cmap=plt.cm.gray_r,

interpolation='nearest')

Chapter 12 Recognizing Handwritten Digits

https://doi.org/10.1007/978-1-4842-3913-1_8

479

plt.subplot(323)

plt.imshow(digits.images[1793], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(324)

plt.imshow(digits.images[1794], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(325)

plt.imshow(digits.images[1795], cmap=plt.cm.gray_r,

interpolation='nearest')

plt.subplot(326)

plt.imshow(digits.images[1796], cmap=plt.cm.gray_r,

interpolation='nearest')

This will produce an image with six digits, as shown in Figure 12-5.

Figure 12-5.  The six digits of the validation set

Chapter 12 Recognizing Handwritten Digits

480

Now you can train the svc estimator that you defined earlier.

svc.fit(digits.data[1:1790], digits.target[1:1790])

After a short time, the trained estimator will appear with text output.

SVC(C=100.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,

 gamma=0.001, kernel='rbf', max_iter=-1, probability=False,

 random_state=None, shrinking=True, tol=0.001, verbose=False)

Now you have to test your estimator, making it interpret the six digits of the

validation set.

svc.predict(digits.data[1791:1976])

You will obtain these results:

array([4, 9, 0, 8, 9, 8])

If you compare them with the actual digits, as follows:

digits.target[1791:1976]

array([4, 9, 0, 8, 9, 8])

You can see that the svc estimator has learned correctly. It is able to recognize the

handwritten digits, interpreting correctly all six digits of the validation set.

�Recognizing Handwritten Digits with TensorFlow
You have just seen an example of how machine learning techniques can recognize

handwritten numbers. Now the same problem will be applied to the deep learning

techniques that we used in Chapter 9.

Given the great value of the MNIST dataset, the TensorFlow library also contains a

copy of it. It will therefore be really easy to perform studies and tests on neural networks

with this dataset, without having to download or import them from other data sources.

Importing the MNIST dataset into the Jupyter Notebook (in any Python session) is

very simple; you just import tensorflow.contrib.learn.python.learn.datasets.

mnist directly like any other Python package. To load the dataset in a variable, you must

use the read_data_sets() function. Thus, an optimal form for importing the dataset is

as follows.

Chapter 12 Recognizing Handwritten Digits

https://doi.org/10.1007/978-1-4842-3913-1_9

481

from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_

sets

import numpy as np

import matplotlib.pyplot as plt

Since the dataset is contained in compressed files, these will automatically be

downloaded to the session workspace as soon as you call the read_data_sets function.

A good practice is to create a directory that contains them as MNIST_data.

mnist = read_data_sets ("MNIST_data/", one_hot=False)

In the output, the downloaded files will be shown as follows:

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

The MNIST data is split into three parts: 55,000 data points of training data (mnist.

train), 10,000 points of test data (mnist.test), and 5,000 points of validation data

(mnist.validation).

Given the large size of this dataset, a good practice is to break it into smaller batches,

especially when it needs to be analyzed as a training set. To help you do this, TensorFlow

uses the next_batch(n) function, which allows you to extract n elements from the

training set. Whenever the next_batch(n) function is called, the n following elements

will be extracted, until the end of the training set is reached.

To view the first 10 elements of the training set, enter the following code.

pixels,real_values = mnist.train.next_batch(10)

print("list of values loaded",real_values)

list of values loaded [2 6 8 3 4 2 0 9 8 7]

By releasing the same code, you will get the following 10 elements of the training set,

and so on.

pixels,real_values = mnist.train.next_batch(10)

print("list of values loaded",real_values)

list of values loaded [6 1 8 5 0 1 8 4 7 3]

Chapter 12 Recognizing Handwritten Digits

482

If you want to see the image of the handwritten digit of one of the elements

contained in pixels (an array containing grayscale images), you can use matplotlib.

image = np.reshape(pixels[1,:],[28,28])

plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()

You will get the black and white image of a handwritten number similar to the one

shown in Figure 12-6.

�Learning and Predicting
Now that you’ve seen how to get the training set, the testing set, and the validation set

with TensorFlow, it’s time to do an analysis with a neural network very similar to the one

you used in Chapter 9.

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf

import matplotlib.pyplot as plt

Figure 12-6.  A digit of the training set in the MNIST dataset provided by the
TensorFlow library

Chapter 12 Recognizing Handwritten Digits

https://doi.org/10.1007/978-1-4842-3913-1_9

483

Parameters

learning_rate = 0.01

training_epochs = 25

batch_size = 100

display_step = 1

tf Graph Input

x = tf.placeholder("float", [None, 784]) # mnist data image of shape

28*28=784

y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes

Create model

Set model weights

W = tf.Variable(tf.zeros([784, 10]))

b = tf.Variable(tf.zeros([10]))

evidence = tf.matmul(x, W) + b

Construct model

activation = tf.nn.softmax(evidence) # Softmax

Minimize error using cross entropy

cross_entropy = y*tf.log(activation)

cost = tf.reduce_mean(-tf.reduce_sum(cross_entropy,reduction_indices=1))

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

#Plot settings

avg_set = []

epoch_set=[]

Initializing the variables

init = tf.global_variables_initializer()

Launch the graph

with tf.Session() as sess:

 sess.run(init)

 # Training cycle

 for epoch in range(training_epochs):

Chapter 12 Recognizing Handwritten Digits

484

 avg_cost = 0.

 total_batch = int(mnist.train.num_examples/batch_size)

 # Loop over all batches

 for i in range(total_batch):

 batch_xs, batch_ys = mnist.train.next_batch(batch_size)

 sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})

 �avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_

ys})/total_batch

 if epoch % display_step == 0:

 �print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".

format(avg_cost))

 avg_set.append(avg_cost)

 epoch_set.append(epoch+1)

 print("Training phase finished")

 �plt.plot(epoch_set,avg_set, 'o', label='Logistic Regression Training

phase')

 plt.ylabel('cost')

 plt.xlabel('epoch')

 plt.legend()

 plt.show()

 # Test model

 correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))

 # Calculate accuracy

 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

 �print("Model accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.

test.labels}))

By performing the analysis, you will obtain the cost trend during the learning phase

(epoch cycle) and when the neural network will be properly instructed, the testing

set mnist.test will be evaluated. The value of the accuracy obtained will tell you the

percentage of numbers read and correctly interpreted by the neural network.

Chapter 12 Recognizing Handwritten Digits

485

Extracting MNIST_data/train-images-idx3-ubyte.gz

Extracting MNIST_data/train-labels-idx1-ubyte.gz

Extracting MNIST_data/t10k-images-idx3-ubyte.gz

Extracting MNIST_data/t10k-labels-idx1-ubyte.gz

Epoch: 0001 cost= 1.176361134

Epoch: 0002 cost= 0.662538510

Epoch: 0003 cost= 0.550689667

Epoch: 0004 cost= 0.496738935

Epoch: 0005 cost= 0.463713668

Epoch: 0006 cost= 0.440845339

Epoch: 0007 cost= 0.423968329

Epoch: 0008 cost= 0.410662182

Epoch: 0009 cost= 0.399876185

Epoch: 0010 cost= 0.390923975

Epoch: 0011 cost= 0.383305770

Epoch: 0012 cost= 0.376747700

Epoch: 0013 cost= 0.371062683

Epoch: 0014 cost= 0.365925885

Epoch: 0015 cost= 0.361331244

Epoch: 0016 cost= 0.357197133

Epoch: 0017 cost= 0.353523670

Epoch: 0018 cost= 0.350157993

Epoch: 0019 cost= 0.347037680

Epoch: 0020 cost= 0.344143576

Epoch: 0021 cost= 0.341464736

Epoch: 0022 cost= 0.338996708

Epoch: 0023 cost= 0.336639690

Epoch: 0024 cost= 0.334515039

Epoch: 0025 cost= 0.332482831

Training phase finished

Model accuracy: 0.9143

From the data obtained, and observing Figure 12-7, you can see that the learning

phase of the neural network has been completed and has an expected trend.

The accuracy value of 0.91 (91%) indicates that the model you chose works quite

satisfactorily (not completely).

Chapter 12 Recognizing Handwritten Digits

486

�Conclusions
In this short chapter, you learned how many application possibilities this data analysis

process has. It is not limited only to the analysis of numerical or textual data but also can

analyze images, such as the handwritten digits read by a camera or a scanner.

Furthermore, you have seen that predictive models can provide truly optimal

results thanks to machine learning and deep learning techniques, which are easily

implemented thanks to the scikit-learn library.

Figure 12-7.  The cost trend during the learning phase of the neural network

Chapter 12 Recognizing Handwritten Digits

	Chapter 12: Recognizing Handwritten Digits
	Handwriting Recognition
	Recognizing Handwritten Digits with scikit-learn
	The Digits Dataset
	Learning and Predicting
	Recognizing Handwritten Digits with TensorFlow
	Learning and Predicting
	Conclusions

