
251© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Types,
https://doi.org/10.1007/978-1-4842-3901-8_9

CHAPTER 9

Working with the
JSON Data Type
In this chapter, I will discuss the T-SQL functions that allow developers to

query JSON data. I will then discuss how JSON data can be indexed.

 Querying JSON Data
SQL Server has introduced the JSON_VALUE(), JSON_QUERY(), JSON_MODIFY(),

and ISJSON() functions to help developers interrogate and interact with

JSON data. The following sections will discuss each of these functions.

 Using ISJSON()
Because JSON data is stored in NVARCHAR(MAX) columns, as opposed to

using its own data type, it is very useful to ensure that a tuple contains

a valid JSON document, before calling a JSON function against it. The

ISJSON() function will evaluate a string to check if it is a valid JSON

document. The function will return a value of 1 if the string is valid JSON

and 0 if it is not. Therefore, a common usage of the function is within an IF

statement. For example, consider the query in Listing 9-1.

https://doi.org/10.1007/978-1-4842-3901-8_9

252

Listing 9-1. Incorrectly Formatted JSON

DECLARE @JSON NVARCHAR(MAX) ;

SET @JSON = '{"I am not:"Correctly formatted"}' ;

SELECT *

FROM OPENJSON(@JSON) ;

Because the name of the key is missing a closing double quotation

mark, the query will fail, with the error shown in Figure 9-1.

Figure 9-1. Error thrown by invalid JSON

Instead of our script failing, we could instead use the ISJSON()

function in an IF statement, as demonstrated in Listing 9-2.

Listing 9-2. Use ISJSON() in an IF Statement

DECLARE @JSON NVARCHAR(MAX) ;

SET @JSON = '{"I am not:"Correctly formatted"}' ;

IF ISJSON(@JSON) = 1

Chapter 9 Working With the JSon Data type

253

BEGIN

 SELECT *

 FROM OPENJSON(@JSON) ;

END

This time, the script will complete without errors, as the query against

the OPENJSON() function will never run.

Tip a full description of the usage of OPENJSON() can be found in
Chapter 8.

The ISJSON() function could also be used in the WHERE clause of a

SELECT statement. For example, consider the script in Listing 9-3. The

script creates a simple temporary table and inserts two values into an

NVARCHAR(MAX) column. One of the values is valid JSON data, and the other

is not. The script then calls the OPENJSON() function against the column.

Listing 9-3. Filter Results That Are Not JSON

--Create a temp table

CREATE TABLE #JsonTemp

(

 JSONData NVARCHAR(MAX)

) ;

--Populate temp table with one JSON value and one non-JSON value

INSERT INTO #JsonTemp

VALUES ('{"I am JSON":"True"}'),

 ('I am JSON - False') ;

--Call OPENJSON() against only rows where data is JSON

Chapter 9 Working With the JSon Data type

https://doi.org/10.1007/978-1-4842-3901-8_8

254

SELECT JSON.*

FROM #JsonTemp Base

OUTER APPLY OPENJSON(Base.JSONData) JSON

WHERE ISJSON(Base.JSONData) = 1 ;

--Drop temp table

DROP TABLE #JsonTemp ;

Because the WHERE clause removes any rows that do not contain valid

JSON data, before the OPENJSON() function is applied, the script completes

successfully and returns the results shown in Figure 9-2.

Figure 9-2. Results of filtering non-JSON data

 Using JSON_VALUE()
The JSON_VALUE() function can be used to return a single scalar value

from a JSON document. The function accepts two parameters. The first

parameter is the JSON document, from which to retrieve the data. The

second is a path expression to the value you wish to return. As described in

Chapter 8, when using path expressions with OPENJSON(), path expressions

can be used in either lax mode or strict mode. When lax mode is used, if

Chapter 9 Working With the JSon Data type

https://doi.org/10.1007/978-1-4842-3901-8_8

255

there is an error in the path expression, NULL results will be returned, and

no error will be raised. When used in strict mode, if there is an error in the

path expression, an error will be thrown.

The value returned is always of data type NVARCHAR(4000). This means

that if the value exceeds 4000 characters, JSON_VALUE() will either return

NULL or throw an error, depending on whether lax mode or strict mode has

been used.

To look more closely at the JSON_VALUE() function, let’s consider

the Warehouse.StockItems table in the WideWorldImporters database.

The CustomFields column of this table contains a JSON document that

includes a key called Tags, which has a value of an array, containing

product tags.

The script in Listing 9-4 will first populate a variable with the content

of CustomFields for a single product. Subsequently, it will check that the

variable contains a valid JSON document, by using the ISJSON() function,

before passing the document into the JSON_VALUE() function.

The path expression of the JSON_VALUE() function starts by

specifying that we wish to use the path expression in lax mode. It then

uses a $ to represent the context, before using a dot-separated path to

the node we wish to extract. Because the Tags node is an array, and the

JSON_VALUE() function can only return a scalar value, we will use square

brackets to denote the element within the array that we would like to

extract. This is mandatory syntax, even if there is only a single element in

the array.

Tip the array is always zero-based.

Chapter 9 Working With the JSon Data type

256

Listing 9-4. UsingJSON_VALUE() Against a JSON Document

DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the

following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio

Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems

WHERE StockItemID = 61) ;

IF ISJSON(@JSON) = 1

BEGIN

 SELECT JSON_VALUE(@Json,'lax $.Tags[0]') ;

END

This script produces the results illustrated in Figure 9-3.

Figure 9-3. Results of using JSON_VALUE() against a JSON document

So, what if we want to use the JSON_VALUE() function against a column

in a table? Where it is a scalar function, we cannot use OUTER APPLY or

CROSS APPLY. Instead, we must include it in the SELECT list of our query.

This is demonstrated in Listing 9-5.

Chapter 9 Working With the JSon Data type

257

Listing 9-5. Using JSON_VALUE() in a SELECT List

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(customfields,'lax $.Tags[0]')

FROM Warehouse.StockItems ;

You will notice that instead of passing in a variable, we simply pass in

the name of the column that contains the JSON document. Partial results

of this query can be found in Figure 9-4.

Figure 9-4. Results of using JSON_VALUE() against a table

Chapter 9 Working With the JSon Data type

258

Our original JSON document referred to Stock Item ID 61, which is a

remote-controlled car. We could also use JSON_VALUE in the WHERE clause

of our query, to filter the result set, so that only rows in which the first tag

contains the value Radio Control are returned. This is demonstrated in

Listing 9-6, in which we have also enhanced the query, to ensure that only

valid JSON documents are returned, by using the ISJSON() function.

Listing 9-6. Using JSON_VALUE() in a WHERE Clause

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

FROM Warehouse.StockItems

WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control'

 AND ISJSON(CustomFields) = 1 ;

The results of this query are illustrated in Figure 9-5.

Figure 9-5. Results of using JSON_VALUE() in a WHERE clause

Chapter 9 Working With the JSon Data type

259

The third tag of remote-controlled car products denotes if the item

is vintage. There are two vintage cars in the product table. Therefore, in

Listing 9-7, we will further filter the result set to include only products for

which the third tag has a value of Vintage. We will also enhance the SELECT

list, to contain the first three tags in the array. Finally, we will change the

JSON_VALUE() functions in the WHERE clause, to use strict path expressions,

so that an error will result in the query failing.

Listing 9-7. Enhancing the Query

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

FROM Warehouse.StockItems

WHERE JSON_VALUE(CustomFields,'strict $.Tags[0]') = 'Radio Control'

 AND JSON_VALUE(CustomFields,'strict $.Tags[2]') = 'Vintage'

 AND ISJSON(CustomFields) = 1 ;

Unfortunately, this time, even though the ISJSON() function is

ensuring that any non-valid JSON documents are not in the result set, the

query returns the error shown in Figure 9-6. This is because not all JSON

documents in the CustomFields column have a Tags key. From those that

do, not all documents have three tags. Therefore, the path expressions for

two JSON_VALUE() calls in the WHERE clause are not valid. Because we have

changed from lax mode to strict mode, the query fails.

Chapter 9 Working With the JSon Data type

260

If we were to change back to lax mode path expressions, the query

would return the results displayed in Figure 9-7.

Figure 9-6. Error thrown by the query

Figure 9-7. Query results with lax mode path expressions

With SQL Server 2017 and later versions, it is also possible to pass in a

path expression as a variable. Therefore, the query in Listing 9-8 will return

the same results as shown in Figure 9-7.

Chapter 9 Working With the JSon Data type

261

Tip you must use SQL Server 2017 or later versions, to run the
query in Listing 9-8.

Listing 9-8. Using a Variable As a Path

USE WideWorldImporters

GO

DECLARE @Path NVARCHAR(MAX) = 'lax $.Tags[2]' ;

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,@Path) AS Tag2

FROM Warehouse.StockItems

WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control'

 AND JSON_VALUE(CustomFields,'lax $.Tags[2]') = 'Vintage'

 AND ISJSON(CustomFields) = 1 ;

 Using JSON_QUERY()
Unlike JSON_VALUE(), which returns a scalar value, JSON_QUERY() can

be used to extract a JSON object, or an array, from a JSON document.

For example, consider the script in Listing 9-9. The script uses the same

JSON document that we used in Listing 9-4, which extracted a single array

element from the Tags array for Stock Item ID 61. This time, however,

instead of extracting a single array element, we will extract the entire Tags

array. Because we are extracting the entire array, there is no need to specify

the array element number in square brackets, as we did when using JSON_

VALUE() against the document.

Chapter 9 Working With the JSon Data type

262

Listing 9-9. Using JSON_QUERY() Against a JSON Document

DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the

following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio

Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems

WHERE StockItemID = 61) ;

IF ISJSON(@JSON) = 1

BEGIN

 SELECT JSON_QUERY(@Json,'lax $.Tags') ;

END

The results of this script are illustrated in Figure 9-8.

Figure 9-8. Results of using JSON_QUERY() against a JSON document

Chapter 9 Working With the JSon Data type

263

As with JSON_VALUE(), if we want to use JSON_QUERY() against a

column in a table, we will use it in the SELECT list, as opposed to using

a CROSS APPLY or OUTER APPLY operator. The difference between JSON_

VALUE() and JSON_QUERY() is demonstrated in Listing 9-10. Here, we use

the same query as in Listing 9-7 but enhance it to include a column in the

result set that includes the whole Tags array, using JSON_QUERY().

Listing 9-10. Using JSON_QUERY() in a SELECT List

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

FROM Warehouse.StockItems

WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control'

 AND JSON_VALUE(CustomFields,'lax $.Tags[2]') = 'Vintage'

 AND ISJSON(CustomFields) = 1 ;

This query returns the results shown in Figure 9-9.

Figure 9-9. Results of using JSON_QUERY() in a SELECT list

Chapter 9 Working With the JSon Data type

264

The JSON_QUERY() function can also be used in a WHERE clause.

Consider the query in Listing 9-11, which has been rewritten, so that the

JSON_QUERY() function is used to filter out any rows in which the JSON

document does contain an empty Tags array. You will notice that the query

uses a mix of lax mode and strict mode.

Listing 9-11. Using JSON_QUERY() in a WHERE Clause

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

FROM Warehouse.StockItems

WHERE JSON_QUERY(CustomFields,'strict $.Tags') <> '[]'

 AND ISJSON(CustomFields) = 1 ;

If only the document context ($) is passed to the path expression,

the entire JSON document will be returned. It is also worth noting that

a variable can be used to pass the path, from SQL Server 2017 onward,

just as it can for OPENJSON() and JSON_VALUE(). Both these concepts

are demonstrated in Listing 9-12, which uses a variable to pass only the

document context, as the path expression, to an additional column in the

result set.

Tip you must be running SQL Server 2017 or later versions to run
the query in Listing 9-12.

Chapter 9 Working With the JSon Data type

265

Listing 9-12. Using Path Variables and Document Context

USE WideWorldImporters

GO

DECLARE @Path NVARCHAR(MAX) = '$' ;

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

 , JSON_QUERY(CustomFields, @Path) AS EntireDocument

FROM Warehouse.StockItems

WHERE JSON_QUERY(CustomFields,'strict $.Tags') <> '[]'

 AND ISJSON(CustomFields) = 1 ;

The partial results of this query can be seen in Figure 9-10.

Figure 9-10. Results of using path variables and document context

Chapter 9 Working With the JSon Data type

266

 Using JSON_MODIFY()
So far, all the JSON functions that we have examined have allowed us to

interrogate JSON documents. The JSON_MODIFY() function, however, as its

name suggests, allows us to modify the contents of the JSON document. To

explain this further, let’s once again use the CustomFields JSON document

for Stock Item ID 61, as used in Listing 9-4 and Listing 9-9.

The script in Listing 9-13 will modify the second element of the Tags

array, so that the second element is updated to read 'Very Realistic

Sound'. The output of the function is the complete, modified document.

Listing 9-13. Updating a Value

DECLARE @JSON NVARCHAR(MAX) ;

--The CustomFields column for StockItem ID 61 contains the

following JSON document:

--'{ "CountryOfManufacture": "China", "Tags": ["Radio

Control","Realistic Sound"], "MinimumAge": "10" }'

SET @JSON = (SELECT CustomFields FROM Warehouse.StockItems

WHERE StockItemID = 61) ;

IF ISJSON(@JSON) = 1

BEGIN

 SELECT JSON_MODIFY(@Json,'lax $.Tags[1]', 'Very

Realistic Sound') ;

END

This script returns the results in Figure 9-11.

Chapter 9 Working With the JSon Data type

267

You can see how the output from this function could be used

subsequently to update a row in a table containing a JSON document, as

demonstrated in Listing 9-14. Here, instead of passing in a variable as the

JSON document, we pass in the CustomFields column from the table.

Listing 9-14. Using MODIFY_JSON() to Update a Row in a Table

USE WideWorldImporters

GO

UPDATE StockItems

 SET CustomFields = JSON_MODIFY(CustomFields,'lax

$.Tags[1]', 'Very Realistic Sound')

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

The MODIFY_JSON() function can also be used to add an element to an

array. Consider the query in Listing 9-15, which marks Stock Item ID 61

as being vintage, by adding an additional element to the Tags array. You

will notice that because we are adding an additional value to an array, as

Figure 9-11. Results of updating a value

Chapter 9 Working With the JSon Data type

268

opposed to updating an existing value, we have used the append keyword

at the beginning of the path expression. Note, too, that because we are

updating the array, rather than a single element, the array element in

square brackets is not included.

Listing 9-15. Adding an Additional Array Element

USE WideWorldImporters

GO

UPDATE StockItems

 SET CustomFields = JSON_MODIFY(CustomFields,'append lax

$.Tags', 'Vintage')

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

Let’s now use the query in Listing 9-16, to examine the updated record.

Listing 9-16. Examining the Updated Record

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

This query returns the results in Figure 9-12. You will notice that the

second array element now reads "Very Realistic Sound", and the array

now contains a third element, marking the product as vintage.

Chapter 9 Working With the JSon Data type

269

As you might expect, the MODIFY_JSON() function can also be used to

delete data. This is achieved by updating a value with a NULL. For example,

imagine that marking Stock Item ID 61 as vintage was a mistake. We could

correct that mistake by using the query in Listing 9-17.

Listing 9-17. Deleting Data with MODIFY_JSON()

USE WideWorldImporters

GO

UPDATE StockItems

 SET CustomFields = JSON_MODIFY(CustomFields,

'lax $.Tags[2]', NULL)

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

Rerunning the query in Listing 9-16 now returns the results shown in

Figure 9-13.

Figure 9-12. Results of examining the modified row

Figure 9-13. Results of reexamining the modified row

Chapter 9 Working With the JSon Data type

270

Alternatively, we could delete the entire Tags array, by using the query

in Listing 9-18.

Listing 9-18. Deleting the Tags Array

USE WideWorldImporters

GO

UPDATE StockItems

 SET CustomFields = JSON_MODIFY(CustomFields,'lax

$.Tags',NULL)

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

The query in Listing 9-19 allows us to examine the modified JSON

document. You will notice that the Tags array no longer exists.

Listing 9-19. Examining the Modified Document

USE WideWorldImporters

GO

SELECT

 StockItemName

 , JSON_QUERY(CustomFields,'lax $') AS EntireDocument

FROM Warehouse.StockItems

WHERE StockItemID = 61 ;

Chapter 9 Working With the JSon Data type

271

 Indexing JSON Data
When querying a table and filtering, grouping, or ordering by properties

within a JSON document, you can improve the performance of your

queries by indexing the data. Because JSON doesn’t have its own data

type, as XML does, there are no JSON indexes, as there are XML indexes.

Instead, to index JSON properties, you must create a computed column

that includes a JSON_VALUE() call, which mirrors the logic in the query you

are optimizing. You can then create an index on the computed column,

and SQL Server will use this index when optimizing the query.

Note actual query performance depends on many factors, including
system hardware, and other resource constraints, such as other
queries that may be running simultaneously. the performance
analysis in this section is meant to illustrate potential impacts, but
performance should always be tested on your own servers, under
realistic workloads.

Before demonstrating this technique, let’s first take a baseline of query

performance against the Warehouse.StockItems table. We will do this by

turning on TIME STATISTICS in our session, before running the query

that we are trying to optimize. Prior to this, however, we will first copy

Figure 9-14. Examining the modified JSON document

The results of this query are shown in Figure 9-14.

Chapter 9 Working With the JSon Data type

272

the data from the StockItems table to a new table. The reason for this is

twofold. First, the StockItems table already has a number of indexes, which

could potentially influence our results. The second reason is because the

StockItems table is system-versioned with indexes. This means that when

we alter the table, to add computed columns, instead of a simple ALTER

TABLE script, we would be required to script out the data to a temp table,

drop and re-create both the table and the archive table, and then script

the data back in. This amount of code would distract from how to add a

computed column, which is the point of this exercise. This is demonstrated

in Listing 9-20.

Tip We use DBCC FREEPROCCACHE to drop any existing plans from
the plan cache. We then use DBCC DROPCLEANBUFFERS to remove
pages from the buffer cache that have not been modified. this helps
make it a fair test.

Listing 9-20. Creating a Performance Baseline

USE WideWorldImporters

GO

--Copy data to a new table

SELECT *

INTO Warehouse.NewStockItems

FROM Warehouse.StockItems

--Clear plan cache

DBCC FREEPROCCACHE

--Clear buffer cache

Chapter 9 Working With the JSon Data type

273

DBCC DROPCLEANBUFFERS

--Turn on statistics

SET STATISTICS TIME ON

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

FROM Warehouse.NewStockItems

WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control' ;

The results in Figure 9-15 show that the query took 6ms to execute.

Figure 9-15. Time statistics

Let’s now create a computer column on the Warehouse.StockItems

table, using the same logic as in our WHERE clause. This can be achieved by

using the script in Listing 9-21.

Chapter 9 Working With the JSon Data type

274

Listing 9-21. Creating a Computer Column

USE WideWorldImporters

GO

ALTER TABLE Warehouse.NewStockItems

 ADD CustomFieldsTag0 AS JSON_VALUE(CustomFields,

'lax $.Tags[0]') ;

We can now index the computed column (which will also cause the

column to be persisted, as opposed to calculated on the fly, when queried),

by using the script in Listing 9-22.

Listing 9-22. Indexing the Computed Column

USE WideWorldImporters

GO

CREATE NONCLUSTERED INDEX NCI_CustomFieldsTag0

 ON Warehouse.NewStockItems(CustomFieldsTag0) ;

Let’s now check the performance of our query, once again, by using the

simplified script in Listing 9-23.

Listing 9-23. Checking Index Performance

USE WideWorldImporters

GO

--Clear plan chahe

DBCC FREEPROCCACHE

--Clear buffer cache

DBCC DROPCLEANBUFFERS

Chapter 9 Working With the JSon Data type

275

--Turn on statistics

SET STATISTICS TIME ON

SELECT

 StockItemName

 , JSON_VALUE(CustomFields,'lax $.Tags[0]') AS Tag0

 , JSON_VALUE(CustomFields,'lax $.Tags[1]') AS Tag1

 , JSON_VALUE(CustomFields,'lax $.Tags[2]') AS Tag2

 , JSON_QUERY(CustomFields,'lax $.Tags') AS TagsArray

FROM Warehouse.NewStockItems

WHERE JSON_VALUE(CustomFields,'lax $.Tags[0]') = 'Radio Control' ;

You can see from the time statistics shown in Figure 9-16 that the query

executed in 3ms. That’s a 50% performance improvement!

Figure 9-16. Results of checking index performance

Chapter 9 Working With the JSon Data type

276

Tip Because the newStockitems table is so small, there is a
chance that the query optimizer will choose not to use your index.
if this happens, you can force it to use the index, by adding the
WITH (INDEX(NCI_CustomFieldsTag0)) query hint. it is very
important to note, however, that on a general basis, the optimizer is
smart and rarely should be given hints. if you do need to use hints,
then you should always work with the optimizer, rather than against it.
For example, if the optimizer is incorrectly choosing a LOOP JOIN
physical operator, force it to use either MERGE JOIN or HASH JOIN.
Do not choose for it which is better!

 Summary
SQL Server provides the ability to interrogate and modify JSON data with

the ISJSON(), JSON_VALUE(), JSON_QUERY(), and JSON_MODIFY() functions.

The ISJSON() function provides a simple validation that the document has

a valid JSON format. It returns 1 if the document is JSON and 0 if not.

The JSON_VALUE() function can be included in the SELECT list, WHERE

clause, ORDER BY clause, or GROUP BY clause of your query. It returns a

single scalar value from a JSON document that is passed to it, based on a

path expression.

The JSON_QUERY() function can also be included in the SELECT list,

WHERE clause, ORDER BY, or GROUP BY, but instead of returning a single

scalar value, it returns a JSON object or array. As with JSON_VALUE(),

the object returned is based on a path expression that is passed to the

function.

Chapter 9 Working With the JSon Data type

277

The MODIFY_JSON() function can be used to update, insert, or delete

key values. A JSON document and a path expression are passed to the

function, and the complete modified document is returned, making it easy

to use in a standard UPDATE statement. The optional append keyword in the

path expression is used to denote that the intention is to add an additional

value to an array, as opposed to modifying an existing value. Updating a

key value with NULL deletes the key.

Query performance can be improved by indexing the properties of a

JSON document. This is achieved by creating a computed column, based

on the path expression that you wish to optimize. You can then create an

index on the computed column. This allows the query optimizer to use the

index when the column containing the JSON data is queried.

Chapter 9 Working With the JSon Data type

	Chapter 9: Working with the JSON Data Type
	Querying JSON Data
	Using ISJSON()
	Using JSON_VALUE()
	Using JSON_QUERY()
	Using JSON_MODIFY()

	Indexing JSON Data
	Summary

