CHAPTER 8

Shredding JSON Data

In Chapter 7, I discussed how we can convert relational data into JSON
documents, but what if we had to shred a JSON document (just as you
learned to shred XML documents in Chapter 4) into a relational dataset?
We could achieve this by using the OPENJSON() function. The OPENJSON()
function accepts a single JSON document as an input parameter and
outputs a tabular result set. The OPENJSON() function can be called either
with or without specifying an explicit schema for the result set. OPENJSON()
also supports the use of JSON path expressions. This chapter will examine
each of these options.

OPENJSON() with Default Schema

In order to understand how the OPENJSON() function works with the
default schema, let’s examine the CustomFields column of the Application.
People table in the WideWorldImporters database. The query in Listing 8-1,
returns the PersonID (the primary key of the table), the FullName column,
and the CustomFields column, which contains a JSON document.

Tip Unlike the other data types discussed in this book, a JSON data
type has not actually been created in SQL Server 2017. Instead, JSON
documents are stored in NVARCHAR columns, and JSON-aware functions
are called against the data, to parse and interact with the JSON.

© Peter A. Carter 2018 229
P. A. Carter, SQL Server Advanced Data Type:s,
https://doi.org/10.1007/978-1-4842-3901-8_8

https://doi.org/10.1007/978-1-4842-3901-8_8
https://doi.org/10.1007/978-1-4842-3901-8_7
https://doi.org/10.1007/978-1-4842-3901-8_4

CHAPTER 8 SHREDDING JSON DATA

Listing 8-1. Inspecting the Application.Person Table

USE WideWorldImporters
GO

SELECT
PersonID
, FullName
, CustomFields
FROM Application.People ;

You will notice, from the partial result set shown in Figure 8-1, that the
CustomFields column contains a JSON document specifying each person’s
properties, such as their hire data (for staff), languages spoken, and their title.

[Renits il Messages
FesoniD FulName CustomFisids
1 B | Dot Conwemon Oty HULL
%] Kayls Wookceoh ["CererLarguages”™ ["Poish” Chinese™ "Joparese™] Hre Diste™ 2008 04 15T00:00 00", Taie ™ “Team Mesmbes™ “Primary Sabes Termtony” “Plaina”, Commsasionfiate ™ "0.867)
32 Hudson Oriom: [Otterlarusges™ (| HoeDate™ “2012403.05T00.00 00 Tt “Toam Merrboer™ “Peiruary Saen Tetiory™“Naw England”. Commimsicn Rate™ 367}
4 lesbels R {"Otherlanguages™ ["Turkish”.“Soverian”] e Dabe™2010-08-24T00 0000 " Te™ “Taarm Mesrer”]
L) Eva Muindens { “Otferlargusges™ [ihusrian'] ,“HreCinte™ “31201- 22T00-00.00" “Tee ™ Team Member”)
6 & Sophia Hinton { "CerwrLarguages™ [Swedksh™) "HreDate™ "2007-06-14T00 00.00"."Tese™ T, y " "Southeas” "o A
Al Aoy Trel {"Otherlanguages™ [Sovak™, Soarish™ Poish'] . HoeDate™"2005-02-15T0G:00-00" Tt ™ Tewm Mersber™ “Primary Saies Testony™ " Sculesst™. Tommasionfiate™ "058°]
LI | Frthony Grosse. {“Offerlanguages™ [Crostien” "Dutch” “Bomil™] e Date™“20M-I7-ZYT00-00-00", Tile™ Tmam Mmber™ “Provary Ssies Tartory ™ “Mdsaat”, Commiasioniiats ™0 117
LI) Hica Pz [Otwrlanguiages™ (|, HeaDints™ “2007-1257T00:00.00".“Tte™ “Ganeral Marper”]
wow Sels Romrhar: {"Otwrlarguages™ [Dutch™. Frvinh”."Lthurian] HeeOatn ™" 2007-11-17TD0.00:00" Teke™ Waeeheuse Sugmrviesr)
nom B Orakow {"Omerlanguages™ [|."HeeDate™ 21TTO00000". Tite™ “Warshouse Supenisar™)
- I Harry Fadonge. { “CenerLanguages™ [k, "Sovak”] e lnbe ™ 20081313700 0600, “Teke™Tanm Mamber] -
) Query executed nccessholy. DATATYPES (140 BTM) DATATYPES Admini 000000 1111 rows

Figure 8-1. Results of inspecting the Application.Person table

If we wanted to use OPENJSON() to shred the details of a specific user, we
would first have to pass the JSON document into a variable, before passing
the variable into the OPENJSON() function. This technique is demonstrated
in Listing 8-2, which returns the custom fields for Anthony Grosse.

Listing 8-2. Shredding a Single JSON Document

USE WideWorldImporters
GO

DECLARE @CustomFields NVARCHAR(MAX) ;

230

CHAPTER 8 SHREDDING JSON DATA

SET @CustomFields = (
SELECT CustomFields
FROM Application.People
WHERE FullName = 'Anthony Grosse'
) 5
SELECT *
FROM OPENJSON(@CustomFields) ;

The results of this script are illustrated in Figure 8-2.

g Results @i Messages

key value type
1 i Otherlanguages | ['Croatian”,"Dutch”."Bokmal"] 4
2 HireDate 2010-07-23700:00:00 1
3 Title Team Member 1
4 PrimarySalesTemtory Mideast 1
5 CommissionRate 0N 1

€@ Query executed successfully.

Figure 8-2. Results of shredding a single JSON document

The key column contains the name of the name/value pair; the value
column contains the value of the name/value pair; and the type column

indicates the data type. Table 8-1 details the data types that can be
returned.

231

CHAPTER 8 SHREDDING JSON DATA

Table 8-1. Data Types

Data Type ID Data Type
1 String

2 Number

3 Boolean
4 Array

5 Object

Shredding a Column

But what if we wanted to shred an entire column? The OPENJSON()
function only accepts a single JSON object, so we could not pass in values
from multiple rows. Instead, we would have to use the OUTER APPLY
operator against the table.

The OUTER APPLY operator applies a function to every row in a result
set. If the function returns a NULL value, the row will be included in the
result set. This contrasts with the CROSS APPLY operator, which also applies
a function to every row in a result set but omits the row, if the applied
function returns NULL.

The query in Listing 8-3 demonstrates how to use the OUTER APPLY
operator against the Application.People table, to shred the CustomFields
document.

Listing 8-3. Using OUTER APPLY with OPENJSON()

USE WideWorldImporters
GO

SELECT PersonID, FullName, CustomFields, JSON.*
FROM Application.People
OUTER APPLY OPENJSON(CustomFields) JSON ;

232

CHAPTER 8 SHREDDING JSON DATA

Partial results from this query are shown in Figure 8-3.

B Resuts Gl Messages
PemoniD Fulllame CusonFisids ey value toe

1 [Dets Comversonrly HULL NUL WL HULL
AT s Wosdonck { Otwrlarguagee™ [Polsh™. Thinese™."Jacaress™] “HiDate™ "2006-04-15TOC-00-00". Tele™ " Team Mestr™ “FimanyS.. Otherlanguages [Polh™ CThiness™"Japanem] 4

12 Kana Woadcock: {7 1 o™ “2006-04- 19TO0-00-00", "Tiele ™" Team Merbear™ “PrmanyS . Hmlisle. 2008-04-19T00-00-00 1

4 2 s Woodcock "~ 2006-04- 19TO0-00.00", Tike . Team Memter" “PamaryS.. Tde Team Memtce: 1

8 |2 Koy Wosdcock " 2008 04 19TO000 00" Teke™ Team Membar” “Pamany5.. PrmieySalesTestory Plang 1

§ 2 s Wosdcock " 200604 1ITOO-00-00", Tl ™ Team Mesbar™ "Frimary5.. Commissionfiate 0w 1

T3 Tils™"Toam Mombar™, “PrmarySafes Taston™ "New England™"_. Ctherlanguages | 4

1] S ¥ " Team Member™,“Prmary Sales Temtory™ “New England™,"_. HreDite 201203:05T00.00:00 1

9 3 Hugon Qraicw {W 0 "HeeOate™ 7201203 05T00 00007, Tile™. " Team Mermber”™."Pemary Saies Tomtony™ "New England”™ T Toam Momter 1

w o3 . [“HeaDiste” a CO00"Tel™ Taam Marsba” “PrimavySaiea Tamsony” “Hew Frgiand™" PrimarySaleeTamsry Mw Engiand 1

n 3 O { Ol 01 “HreOste™ Q0-05T00 00:00". “Titke™“Team Merber”, “Prmary Sabes Temtory™ “New England”, Commssone 182 1

12 4 babela Rugo { Ontwerlarguages™. [Tusiosh”,“Sovenian] ,“HireDate ™ "2010.03- 24 T00:00.007, Tide™ Team Member™) Cthelanguages [Tuosh™ " Sevenion] 4

- saala Fugp | Tt aeguinges™ [Tistish™ "Serverian"] “HeeOnta™ 201003 24700000 " Tela™ " Taaes Mernser™) HrsDte 2010.08:24T0000:00 1

Mo sbals Fugp { Dbl aruages™ [Tiskier™ " Sovarian’] “HisDate™ 2010032400000 " Teia™Taaes Marriser™) Tela Tam Martar '
L Eva Murden { "OtherLanguages™. ["Lthuanian"] ,“HreDate™"2012.01-22T00.00.00" "Tile ™ “Team Member) Dtherlanguages [Mithusnan] 4

% Eva Murden { OherLarguages™: [Lthuaran™] “HreDate™"2012.01- 22700 0000 "Tale™ “Team Member) HreClate. 201201 22T0000:00 1

” Fun Murden { Dot argrimgee™ [Letuarinn™] “HraDste™ 20120127700 000" "Tele™ “Team Marber) Tl Tanrn Marta 1 -
) Chuery exccuted success! fully. DATATYPES (140 TM) DATATYPES: 2 o000 118 sows

Figure 8-3. Results of using OUTER APPLY with OPENJSON()

You will notice that the results from the Application.Person table are
duplicated for each row returned from the OPENJSON() function. This is
known as a Cartesian product.

Tip If we had used CROSS APPLY instead of OUTER APPLY, the
results for PersonID 1 would have been omitted.

To turn this data into columns, to avoid rows being duplicated, you
could use the PIVOT operator. The PIVOT operator works by rotating
unique values from a column into separate columns. This could also be
described as changing rows to columns. It will then perform aggregations
on remaining columns, as required. The same could be achieved by using
multiple CASE statements, but the PIVOT operator is far more efficient.

The syntax of the PIVOT operator has an outer query, followed by two
subqueries. The first subquery contains the base query, while the second
contains the pivot specification. Because our values are often textual, and
aggregation isn’t appropriate, we will use the MAX () aggregate function.
This is demonstrated with the query in Listing 8-4.

233

CHAPTER 8 SHREDDING JSON DATA

Listing 8-4. Using PIVOT with OPENJSON()

USE WideWorldImporters
GO

SELECT
PersonID
, FullName
[OtherLanguages]
[HireDate]

, [Title]
[PrimarySalesTerritory]
[CommissionRate]

FROM (

SELECT

PersonID
, FullName
, JSON.[Key] AS JSONName
, JSON.value AS JSONValue

FROM Application.People

OUTER APPLY OPENJSON(CustomFields) JSON

) Src

PIVOT

(
MAX (JSONValue)

FOR JSONName IN ([OtherLanguages], [HireDate],

[PrimarySalesTerritory], [CommissionRate])
) pvt ;

234

[Title],

CHAPTER 8 SHREDDING JSON DATA

The partial results of this query can be seen in Figure 8-4.

BE Rests Gl Messages
PersoniD FullName OcherLanguages HreDate Title PrmarySalesTemtory CommissionRate
1 [A777] Data Conversion Ony NULL HULL NULL HULL NULL
2 2 Kayla Woodcook ["Polsh”™,"Chinese”™ “Japanese”] 2008-4-19T00.00:00 Team Member Plains 0%
3 3 Hudsan Onslow 1] 20120305T00-00-00 Team Mamber New England 382
4 4 Isabela Rupp [Turkish™." Sevenian"] 2010-08-24T000000 Team Member NULL NULL
5 5 Eva Murden ["Lithuanian”] 201201-22T00:00:00 Team Mamber NULL NULL
[[Sophia Hinton ["Swedish"] 200705 147000000 Team Member Scutheast 455
7 7 Amy Trefl [*Slovak","Spanish”."Polsh”] 200502-15T00:00:00 Team Mamber Southeast 058
g 8 Anthorry Grosse [Croatian”."Dutch”,"Bokmal™] 201007-23T00:00:00 Team Member Mideast on
3 9 Alica Fainowna] 2007-1207T000000 Gensral Manager NULL NULL
0 10 Steds Rosenhain [Dutch”,Firrush™."Lehuarian™] 2007-11-17T00:00:00 Warshouse Supsrvisor NULL NULL
non Ehan Orsiow] 20111217T000000 Warshouse Supervisor NULL NULL
” 12 Herry Fodonge ["Greek™."Sovak"] 200303-18T0000:00 Team Member NULL NULL
B B Hudson Holinwth ["Croatian’] 2010-11:27T000000 Team Meber New England 024
14 4 Ly Code ["Firnish”"Buigarian”] 201006-06TO0-00:00 Team Mamber Scutheast 1%
515 Taj Shand [Aeabic™ "Graek'] 200503-14T000000 Manager Far West 25
% 16 Archer Lamble [Greek™] 200305-13T00-0000 Team Member Plains 182
7" Per Koch [Rommian® ‘Fotuguese’) 2011015700000 Marager NULL NULL
1B 1B Kt Darwin ["Estonian”,"Romanian"] 200807-12T00-00:00 Team Member NULL NULL
" n Jai Shand ["Frnish” "Dutch™] 2011-11-13T00:00:00 Team Mamber NULL NULL
2 20 Jack Potler [Arabic™] 200505-29T00.00:00 General Manager Seutheast 357
© Query executed successhully. DATATYPES (14.0RTM) | DATATYPES\Administrato... Wil

Figure 8-4. Results of using PIVOT with OPENJSON()

The limitation of using this approach is that you must know the name
of each key in the JSON document before writing the query. If any key
names are missed, or added later, the data will not appear in the result set.

This can be particularly challenging, as JSON documents cannot be bound
to a schema.

Dynamic Shredding Based on Document Content

The way to resolve the issue of not knowing the document contents at
development time is to use a dynamic PIVOT. This involves using dynamic
SQL to define the current list of JSON keys to pivot before the query is run.
This technique is demonstrated in Listing 8-5.

Tip QUOTENAME () is a system function that delimits a value by
wrapping it in square brackets.

235

CHAPTER 8 SHREDDING JSON DATA

Listing 8-5. Using Dynamic PIVOT with OPENJSON()

DECLARE @Columns NVARCHAR(MAX) ;
DECLARE @SQL NVARCHAR(MAX) ;

SET @Columns = ";

SELECT @Columns += ', p.' + QUOTENAME(JSONName)
FROM (
SELECT DISTINCT
JSON. [Key] AS JSONName
FROM Application.People p
CROSS APPLY OPENJSON(CustomFields) JSON
) AS cols ;

SET @SQL =
"SELECT
PersonID
, FullName
, '+ STUFF(@Columns, 1, 2, ") + '
FROM
(
SELECT
PersonID
, FullName
, JSON.[Key] AS JSONName
, JSON.value AS JSONValue
FROM Application.People
OUTER APPLY OPENJSON(CustomFields) JSON
) AS src
PIVOT

236

CHAPTER 8 SHREDDING JSON DATA

MAX(JSONValue) FOR JSONName IN ('
+ STUFF(REPLACE(@Columns, ', p.[', ',["), 1, 1, ")
+")

) AS p ;'

EXEC (@SQL) ;

OPENJSON() with Explicit Schema

When using OPENJSON() with an explicit schema, you are able to provide
control over the format of the result set that is returned. Instead of a three-
column result set, a column will be returned for every column that you
have specified in the WITH clause. You can also specify the data type of each
column. These data types are T-SQL data types, not JSON data types, so
types such as DATE or DECIMAL can be specified. For example, consider the
script in Listing 8-6.

Listing 8-6. Using OPENJSON() with an Explicit Schema
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =
(
SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

)

SELECT *
FROM OPENJSON(@CustomFields)
WITH (

237

CHAPTER 8 SHREDDING JSON DATA

HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5,2)

)

This query returns the results shown in Figure 8-5.

B Results B Messages

HireDate Title PrimarySalesTemitory CommissionRate
1 i 2008-04-19 00:00:00.0000000 ; Team Member Plains 0.98

@ Query executed successfully.

Figure 8-5. Results of using OPENISON() with an explicit schema

A slight complexity arises when one of the columns returned is a JSON
object. For example, consider the query in Listing 8-7, which adds the
OtherLanguages column to the query. As there is no specific JSON data type,
we will use NVARCHAR (MAX), as it can be stored as NVARCHAR (MAX) in a table.

Listing 8-7. Adding a JSON Column
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(
SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

)

238

CHAPTER 8 SHREDDING JSON DATA

SELECT *
FROM OPENJSON(@CustomFields)
WITH (
OtherLanguages NVARCHAR(MAX)
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5S,2)
)

This query returns the results shown in Figure 8-6.

BH Resuts 2§ Messages

OH'- _HireDate Title PrimarySalesTemtory CommissionRate
2008-04-19 00:00:00.0000000 Team Member Plains 0.98

@ Query executed successfully.

Figure 8-6. Results of adding a JSON column

So why has the OtherLanguages column returned NULL? We know that
the column exists, and that it contains data for PersonID 2, owing to the
previous examples in this chapter. When returning a JSON object from
OPENJSON(), we must use additional syntax in the WITH clause, to specify
that the NVARCHAR actually represents a JSON object, as demonstrated in
Listing 8-8.

Listing 8-8. Correctly Returning a JSON Array or Object
DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(

239

CHAPTER 8 SHREDDING JSON DATA

SELECT

CustomFields
FROM Application.People
WHERE PersonID = 2

) 5
SELECT *
FROM OPENJSON(@CustomFields)
WITH (
OtherLanguages NVARCHAR(MAX) AS JSON
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory NVARCHAR(50)
, CommissionRate DECIMAL(5,2)
) 5

The script will now return the results that we expect, as shown in Figure 8-7.

EE Results B Messages
OtherLanguages HireDate Title PrimarySalesTemtory CommissionRate
1 | ["Polish” "Chinese"."Japanese”] | 2008-04-19 00:00:00.0000000 Team Member Plains 0.98

@ Query executed successfully.

Figure 8-7. Correctly returning JSON data

When you must shred multiple rows, an explicit schema can also be
specified, when using the OUTER APPLY operator. Remember that the OUTER
APPLY operator will not remove rows that return NULL values, in the way
that CROSS APPLY does. This is demonstrated in Listing 8-9.

240

CHAPTER 8 SHREDDING JSON DATA

Listing 8-9. Using an Explicit Schema with OUTER APPLY

SELECT
PersonID
, FullName
> JSON.*
FROM Application.People
OUTER APPLY OPENJSON(CustomFields)
WITH (
OtherLanguages
NVARCHAR (MAX) AS JSON
, HireDate DATETIME2
, Title NVARCHAR(50)
, PrimarySalesTerritory
NVARCHAR (50)
, CommissionRate
DECIMAL(5,2)
) JSON ;

As you can see from the partial results in Figure 8-8, some of the need-
to-pivot data has been eliminated. The issue remains, however, that you
must know every possible key in the JSON document before the query is
written. Therefore, if there is not a discrete set of possible values, you may
still be required to use dynamic SQL.

241

CHAPTER 8 SHREDDING JSON DATA

[Resuts Gl Messages
PemonD_ Fulbiame OtherLanguages HireDate Title PrimarySalesTemtory - CommissionRate

1 [T | DetaConversonOny NULL NULL NULL NULL NULL

2 2 Kayla Woedeock [Poleh”,"Chinese","Jepanese”] 2008-04-13 00:00:00.0000000 Team Member Plans 038

3 3 Hudsan Onslow 0 2012-03-05 00:00:00.0000000 Team Member New England 362

4 4 Isabefia Rupp [Turkish™."Slovenian™] 2010-08-24 00:00:00.0000000 Team Member NULL NULL

5 5 Eva Muirden ["Lithuanian] 2012-01-22 00:00:00.0000000 Team Member NULL NULL

E [Sophia Hinton ["Swedish™] 2007-05-14 00:00:00.0000000 Team Member Southeast 455

7 7 Ay Trefl ["Slovak","Spanish","Polish”] 2005-02-15 00:00:00.0000000 Team Member Southeast 058

B 8 Arthony Grosse ["Croatian™,"Dutch™,"Bokmal”] 2010-07-23 00:00-00.0000000 Team Member Mideast on

§ 5 HAiica Fatnowna 0 20071207 00:00-00.0000000 General Manager NULL NULL

0 10 Stella Roserhain [Dutch”,"Finnish”,"Lithuanian™] ~ 2007-11-17 00:00-:00.0000000 Warshouse Supervisor NULL NULL

n M Ethan Onslow i} 20111217 00:00:00.0000000 Warshouse Supervisor NULL NULL

2 n Heney Fodonge [Greek"."Slovak"] 2005-03-18 00:00:00.0000000 Team Member NULL NULL

@ Query executed successfully. DATATYPES (14.0 RTM) DATATYPES\Administ

Figure 8-8. Results of using an explicit schema with OUTER APPLY

OPENJSON() with Path Expressions

As well as the use of explicit schema, OPENJSON() also supports JSON path
expressions. A path expression allows you to reference specific properties
within a JSON document. For example, consider the JSON document in
Listing 8-10.

Tip You may recognize this document, as we created it in Chapter 7.

Listing 8-10. Sales Orders with Root Node
{

"SalesOrders": [

{
"OrderID": 72646,

"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

}s

242

https://doi.org/10.1007/978-1-4842-3901-8_7

CHAPTER 8 SHREDDING JSON DATA

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"
b
{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"
b
{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"
}

If we used a basic OPENJSON() statement against this document, it would
return the entire SalesOrders array, as partially shown in Figure 8-9.

5 Feets ol Massages

ey vae e
1 [SSSORERRN | OwedDTZE, TustomelD: 0080 SsemencPemonil 1, Ouelate” IGOSU), | OuedD" 7278, TitomerD" 160, Ssespencn_ 4
© Cuery executed successtily DATATYPES (M0 ETM) | DATATYPE 020H0 1 rows

Figure 8-9. Results of basic OPENISON()

243

CHAPTER 8 SHREDDING JSON DATA

If we were to use a PATH statement, however, we could choose to only
return the nth item in this array. This would drastically alter the results set,
as OPENJSON() would be able to map each item within the array element
to a relational column, meaning that a row for each key within the element
would be returned, instead of a single row containing a JSON document,

as shown in Figure 8-10, which contains the results of shredding the first
array element (OrderID 72646).

EE Results @i Messages

key value type
1 i OnderlD | 72646 2
2 CustomerlD 1060 2
3 SalespersonPersonlD 14 2
4 OrderDate 20160518 1

@ Query executed successfully.

Figure 8-10. Results of shredding a single array element

So, let’s look at how we can get to this result. First, we must understand
that path expressions can be run in one of two modes: strict or lax. If you
run a path expression in lax mode, and the path expression contains an
error, OPENJSON() will “eat the error” and return an empty result set. If
you use strict mode, however, if the path expression contains an error,
OPENJSON() will throw an error message.

We now must understand the elements of the path itself. First, we use a $
to specify the context, followed by dot-separated, nested key names. Finally,
we specify the array element number in square brackets. So, to produce the
results in Figure 8-10, we would use the query in Listing 8-11.

244

CHAPTER 8 SHREDDING JSON DATA

Listing 8-11. Using Path Expressions to Return a Single Array Element

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{
"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

})

{
"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

}’

{
"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

b

{
"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

}

245

CHAPTER 8 SHREDDING JSON DATA

SELECT *
FROM OPENJSON(@JSON, 'lax $.SalesOrders[o0]') ;

You will notice, in this script, that after passing in the JSON document,
we use the lax (or, alternatively, strict) keyword to specify the mode we will
use. After a space comes the path expression itself. Here, we start with $, to
set the context, and then point to the SalesOrders key. We then use square
brackets to specify the array element that we wish to use.

Tip JSON path expressions always use zero-base arrays.

Shredding Data into Tables

You can now imagine how simple looping techniques could be used to
shred each element within an array. For example, consider the script
in Listing 8-12. This script will shred each of the array elements into a
temporary table called Orders.

Listing 8-12. Shredding Each Element into a Temporary Table

DECLARE @JSON NVARCHAR(MAX) ;

SET @ISON = '{
"SalesOrders": [
{

"OrderID": 72646,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-18"

b

246

CHAPTER 8 SHREDDING JSON DATA

"OrderID": 72738,
"CustomerID": 1060,
"SalespersonPersonID": 14,
"OrderDate": "2016-05-19"

"OrderID": 72916,
"CustomerID": 1060,
"SalespersonPersonID": 6,
"OrderDate": "2016-05-20"

"OrderID": 73081,
"CustomerID": 1060,
"SalespersonPersonID": 8,
"OrderDate": "2016-05-24"

CREATE TABLE #Orders

(

OrderID INT,
CustomerID INT,
SalespersonPersonID INT,
OrderDate DATE

247

CHAPTER 8 SHREDDING JSON DATA
DECLARE @ArrayElement INT = O ;

DECLARE @path NVARCHAR(MAX) = 'lax $.SalesOrders[' + CAST(
@ArrayElement AS NVARCHAR) + ']' ;

WHILE @ArrayElement <=3
BEGIN
INSERT INTO #Orders (OrderID, CustomerID,
SalespersonPersonID, OrderDate)
SELECT
OrderID
, CustomerID
, SalespersonPersonID
, OrderDate
FROM OPENJSON(@JSON, @Path)
WITH(OrderID INT, CustomerID INT, SalespersonPersonID
INT, OrderDate DATE) ;

SET @ArrayElement = @ArrayElement + 1 ;

SET @path = 'lax $.SalesOrders[' + CAST(@ArrayElement
AS NVARCHAR) + ']' ;
END

SELECT * FROM #Orders ;

DROP TABLE #Orders ;

248

CHAPTER 8 SHREDDING JSON DATA

EH Results @l Messages

1 172646 ;1060 14 2016-05-18
2 72738 1080 14 20160519
3 72916 1060 6 2016-05-20
4 73081 1060 8 20160524

@ Query executed successfully.

Figure 8-11. Results of shredding multiple array elements

The final SELECT statement in this script produces the results
illustrated in Figure 8-11.

Caution While | have used a WHILE loop in this example, | have
done so only because it provides a clear and easy example of how
path expressions can be used. | would never use a WHILE loop or

CURSOR in production code. There is always a way to achieve the

same results, using a set-based approach.

Summary

JSON data can be shredded into tabular results sets by using the OPENJSON()
function. OPENJSON() can be used either with or without an explicit

249

CHAPTER 8 SHREDDING JSON DATA

schema. When a schema is not explicitly defined, OPENJSON(), using a WITH
clause, returns a standard row set, detailing the key (name), value, and
JSON data type ID of each node in the document.

When an explicit schema is supplied, OPENJSON() will return a
formatted result set, which contains a column for each specified in the
WITH clause. Using an explicit schema avoids the need to pivot the data
when you know every node in the document at development time. If the
list of columns is not discrete, however, dynamic SQL will be required, to
build a list of possible results before processing.

OPENJSON() also supports JSON path expressions. Passing path
expressions to the function allows you to navigate to a specific item within
an array, meaning that you can shred data to a more granular level. For
example, instead of shredding an array of JSON objects into a table, you
can use looping methodologies to shred the contents of each array element
into relational data.

250

	Chapter 8: Shredding JSON Data
	OPENJSON() with Default Schema
	Shredding a Column
	Dynamic Shredding Based on Document Content

	OPENJSON() with Explicit Schema
	OPENJSON() with Path Expressions
	Shredding Data into Tables

	Summary

