
229© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Types,
https://doi.org/10.1007/978-1-4842-3901-8_8

CHAPTER 8

Shredding JSON Data
In Chapter 7, I discussed how we can convert relational data into JSON

documents, but what if we had to shred a JSON document (just as you

learned to shred XML documents in Chapter 4) into a relational dataset?

We could achieve this by using the OPENJSON() function. The OPENJSON()

function accepts a single JSON document as an input parameter and

outputs a tabular result set. The OPENJSON() function can be called either

with or without specifying an explicit schema for the result set. OPENJSON()

also supports the use of JSON path expressions. This chapter will examine

each of these options.

 OPENJSON() with Default Schema
In order to understand how the OPENJSON() function works with the

default schema, let’s examine the CustomFields column of the Application.

People table in the WideWorldImporters database. The query in Listing 8-1,

returns the PersonID (the primary key of the table), the FullName column,

and the CustomFields column, which contains a JSON document.

Tip Unlike the other data types discussed in this book, a JSON data
type has not actually been created in SQL Server 2017. Instead, JSON
documents are stored in NVARCHAR columns, and JSON-aware functions
are called against the data, to parse and interact with the JSON.

https://doi.org/10.1007/978-1-4842-3901-8_8
https://doi.org/10.1007/978-1-4842-3901-8_7
https://doi.org/10.1007/978-1-4842-3901-8_4

230

Listing 8-1. Inspecting the Application.Person Table

USE WideWorldImporters

GO

SELECT

 PersonID

 , FullName

 , CustomFields

FROM Application.People ;

You will notice, from the partial result set shown in Figure 8-1, that the

CustomFields column contains a JSON document specifying each person’s

properties, such as their hire data (for staff), languages spoken, and their title.

Figure 8-1. Results of inspecting the Application.Person table

If we wanted to use OPENJSON() to shred the details of a specific user, we

would first have to pass the JSON document into a variable, before passing

the variable into the OPENJSON() function. This technique is demonstrated

in Listing 8-2, which returns the custom fields for Anthony Grosse.

Listing 8-2. Shredding a Single JSON Document

USE WideWorldImporters

GO

DECLARE @CustomFields NVARCHAR(MAX) ;

Chapter 8 ShreddINg JSON data

231

SET @CustomFields = (

 SELECT CustomFields

 FROM Application.People

 WHERE FullName = 'Anthony Grosse'

) ;

SELECT *

FROM OPENJSON(@CustomFields) ;

The results of this script are illustrated in Figure 8-2.

The key column contains the name of the name/value pair; the value

column contains the value of the name/value pair; and the type column

indicates the data type. Table 8-1 details the data types that can be

returned.

Figure 8-2. Results of shredding a single JSON document

Chapter 8 ShreddINg JSON data

232

 Shredding a Column
But what if we wanted to shred an entire column? The OPENJSON()

function only accepts a single JSON object, so we could not pass in values

from multiple rows. Instead, we would have to use the OUTER APPLY

operator against the table.

The OUTER APPLY operator applies a function to every row in a result

set. If the function returns a NULL value, the row will be included in the

result set. This contrasts with the CROSS APPLY operator, which also applies

a function to every row in a result set but omits the row, if the applied

function returns NULL.

The query in Listing 8-3 demonstrates how to use the OUTER APPLY

operator against the Application.People table, to shred the CustomFields

document.

Listing 8-3. Using OUTER APPLY with OPENJSON()

USE WideWorldImporters

GO

SELECT PersonID, FullName, CustomFields, JSON.*

FROM Application.People

OUTER APPLY OPENJSON(CustomFields) JSON ;

Table 8-1. Data Types

Data Type ID Data Type

1 String

2 Number

3 Boolean

4 Array

5 Object

Chapter 8 ShreddINg JSON data

233

Partial results from this query are shown in Figure 8-3.

Figure 8-3. Results of using OUTER APPLY with OPENJSON()

You will notice that the results from the Application.Person table are

duplicated for each row returned from the OPENJSON() function. This is

known as a Cartesian product.

Tip If we had used CROSS APPLY instead of OUTER APPLY, the
results for PersonID 1 would have been omitted.

To turn this data into columns, to avoid rows being duplicated, you

could use the PIVOT operator. The PIVOT operator works by rotating

unique values from a column into separate columns. This could also be

described as changing rows to columns. It will then perform aggregations

on remaining columns, as required. The same could be achieved by using

multiple CASE statements, but the PIVOT operator is far more efficient.

The syntax of the PIVOT operator has an outer query, followed by two

subqueries. The first subquery contains the base query, while the second

contains the pivot specification. Because our values are often textual, and

aggregation isn’t appropriate, we will use the MAX() aggregate function.

This is demonstrated with the query in Listing 8-4.

Chapter 8 ShreddINg JSON data

234

Listing 8-4. Using PIVOT with OPENJSON()

USE WideWorldImporters

GO

SELECT

 PersonID

 , FullName

 , [OtherLanguages]

 , [HireDate]

 , [Title]

 , [PrimarySalesTerritory]

 , [CommissionRate]

FROM (

SELECT

 PersonID

 , FullName

 , JSON.[Key] AS JSONName

 , JSON.value AS JSONValue

FROM Application.People

OUTER APPLY OPENJSON(CustomFields) JSON

) Src

PIVOT

(

MAX(JSONValue)

FOR JSONName IN ([OtherLanguages], [HireDate], [Title],

[PrimarySalesTerritory], [CommissionRate])

) pvt ;

Chapter 8 ShreddINg JSON data

235

The limitation of using this approach is that you must know the name

of each key in the JSON document before writing the query. If any key

names are missed, or added later, the data will not appear in the result set.

This can be particularly challenging, as JSON documents cannot be bound

to a schema.

 Dynamic Shredding Based on Document Content
The way to resolve the issue of not knowing the document contents at

development time is to use a dynamic PIVOT. This involves using dynamic

SQL to define the current list of JSON keys to pivot before the query is run.

This technique is demonstrated in Listing 8-5.

Tip QUOTENAME() is a system function that delimits a value by
wrapping it in square brackets.

Figure 8-4. Results of using PIVOT with OPENJSON()

The partial results of this query can be seen in Figure 8-4.

Chapter 8 ShreddINg JSON data

236

Listing 8-5. Using Dynamic PIVOT with OPENJSON()

DECLARE @Columns NVARCHAR(MAX) ;

DECLARE @SQL NVARCHAR(MAX) ;

SET @Columns = ";

SELECT @Columns += ', p.' + QUOTENAME(JSONName)

FROM (

SELECT DISTINCT

 JSON.[Key] AS JSONName

FROM Application.People p

CROSS APPLY OPENJSON(CustomFields) JSON

) AS cols ;

SET @SQL =

'SELECT

 PersonID

 , FullName

 , ' + STUFF(@Columns, 1, 2, ") + '

FROM

(

 SELECT

 PersonID

 , FullName

 , JSON.[Key] AS JSONName

 , JSON.value AS JSONValue

FROM Application.People

OUTER APPLY OPENJSON(CustomFields) JSON

) AS src

PIVOT

Chapter 8 ShreddINg JSON data

237

(

 MAX(JSONValue) FOR JSONName IN ('

 + STUFF(REPLACE(@Columns, ', p.[', ',['), 1, 1, ")

 + ')

) AS p ;' ;

EXEC (@SQL) ;

 OPENJSON() with Explicit Schema
When using OPENJSON() with an explicit schema, you are able to provide

control over the format of the result set that is returned. Instead of a three-

column result set, a column will be returned for every column that you

have specified in the WITH clause. You can also specify the data type of each

column. These data types are T-SQL data types, not JSON data types, so

types such as DATE or DECIMAL can be specified. For example, consider the

script in Listing 8-6.

Listing 8-6. Using OPENJSON() with an Explicit Schema

DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(

SELECT

 CustomFields

FROM Application.People

WHERE PersonID = 2

) ;

SELECT *

FROM OPENJSON(@CustomFields)

WITH (

Chapter 8 ShreddINg JSON data

238

 HireDate DATETIME2

 , Title NVARCHAR(50)

 , PrimarySalesTerritory NVARCHAR(50)

 , CommissionRate DECIMAL(5,2)

) ;

This query returns the results shown in Figure 8-5.

Figure 8-5. Results of using OPENJSON() with an explicit schema

A slight complexity arises when one of the columns returned is a JSON

object. For example, consider the query in Listing 8-7, which adds the

OtherLanguages column to the query. As there is no specific JSON data type,

we will use NVARCHAR(MAX), as it can be stored as NVARCHAR(MAX) in a table.

Listing 8-7. Adding a JSON Column

DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(

SELECT

 CustomFields

FROM Application.People

WHERE PersonID = 2

) ;

Chapter 8 ShreddINg JSON data

239

SELECT *

FROM OPENJSON(@CustomFields)

WITH (

 OtherLanguages NVARCHAR(MAX)

 , HireDate DATETIME2

 , Title NVARCHAR(50)

 , PrimarySalesTerritory NVARCHAR(50)

 , CommissionRate DECIMAL(5,2)

) ;

This query returns the results shown in Figure 8-6.

Figure 8-6. Results of adding a JSON column

So why has the OtherLanguages column returned NULL? We know that

the column exists, and that it contains data for PersonID 2, owing to the

previous examples in this chapter. When returning a JSON object from

OPENJSON(), we must use additional syntax in the WITH clause, to specify

that the NVARCHAR actually represents a JSON object, as demonstrated in

Listing 8-8.

Listing 8-8. Correctly Returning a JSON Array or Object

DECLARE @CustomFields NVARCHAR(MAX) ;

SET @CustomFields =

(

Chapter 8 ShreddINg JSON data

240

SELECT

 CustomFields

FROM Application.People

WHERE PersonID = 2

) ;

SELECT *

FROM OPENJSON(@CustomFields)

WITH (

 OtherLanguages NVARCHAR(MAX) AS JSON

 , HireDate DATETIME2

 , Title NVARCHAR(50)

 , PrimarySalesTerritory NVARCHAR(50)

 , CommissionRate DECIMAL(5,2)

) ;

The script will now return the results that we expect, as shown in Figure 8-7.

Figure 8-7. Correctly returning JSON data

When you must shred multiple rows, an explicit schema can also be

specified, when using the OUTER APPLY operator. Remember that the OUTER

APPLY operator will not remove rows that return NULL values, in the way

that CROSS APPLY does. This is demonstrated in Listing 8-9.

Chapter 8 ShreddINg JSON data

241

Listing 8-9. Using an Explicit Schema with OUTER APPLY

SELECT

 PersonID

 , FullName

 , JSON.*

FROM Application.People

OUTER APPLY OPENJSON(CustomFields)

 WITH (

 OtherLanguages

NVARCHAR(MAX) AS JSON

 , HireDate DATETIME2

 , Title NVARCHAR(50)

 , PrimarySalesTerritory

NVARCHAR(50)

 , CommissionRate

DECIMAL(5,2)

) JSON ;

As you can see from the partial results in Figure 8-8, some of the need-

to- pivot data has been eliminated. The issue remains, however, that you

must know every possible key in the JSON document before the query is

written. Therefore, if there is not a discrete set of possible values, you may

still be required to use dynamic SQL.

Chapter 8 ShreddINg JSON data

242

 OPENJSON() with Path Expressions
As well as the use of explicit schema, OPENJSON() also supports JSON path

expressions. A path expression allows you to reference specific properties

within a JSON document. For example, consider the JSON document in

Listing 8-10.

Tip You may recognize this document, as we created it in Chapter 7.

Listing 8-10. Sales Orders with Root Node

{

 "SalesOrders": [

 {

 "OrderID": 72646,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-18"

 },

Figure 8-8. Results of using an explicit schema with OUTER APPLY

Chapter 8 ShreddINg JSON data

https://doi.org/10.1007/978-1-4842-3901-8_7

243

 {

 "OrderID": 72738,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-19"

 },

 {

 "OrderID": 72916,

 "CustomerID": 1060,

 "SalespersonPersonID": 6,

 "OrderDate": "2016-05-20"

 },

 {

 "OrderID": 73081,

 "CustomerID": 1060,

 "SalespersonPersonID": 8,

 "OrderDate": "2016-05-24"

 }

]

}

If we used a basic OPENJSON() statement against this document, it would

return the entire SalesOrders array, as partially shown in Figure 8- 9.

Figure 8-9. Results of basic OPENJSON()

Chapter 8 ShreddINg JSON data

244

If we were to use a PATH statement, however, we could choose to only

return the nth item in this array. This would drastically alter the results set,

as OPENJSON() would be able to map each item within the array element

to a relational column, meaning that a row for each key within the element

would be returned, instead of a single row containing a JSON document,

as shown in Figure 8-10, which contains the results of shredding the first

array element (OrderID 72646).

Figure 8-10. Results of shredding a single array element

So, let’s look at how we can get to this result. First, we must understand

that path expressions can be run in one of two modes: strict or lax. If you

run a path expression in lax mode, and the path expression contains an

error, OPENJSON() will “eat the error” and return an empty result set. If

you use strict mode, however, if the path expression contains an error,

OPENJSON() will throw an error message.

We now must understand the elements of the path itself. First, we use a $

to specify the context, followed by dot-separated, nested key names. Finally,

we specify the array element number in square brackets. So, to produce the

results in Figure 8-10, we would use the query in Listing 8-11.

Chapter 8 ShreddINg JSON data

245

Listing 8-11. Using Path Expressions to Return a Single Array Element

DECLARE @JSON NVARCHAR(MAX) ;

SET @JSON = '{

 "SalesOrders": [

 {

 "OrderID": 72646,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-18"

 },

 {

 "OrderID": 72738,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-19"

 },

 {

 "OrderID": 72916,

 "CustomerID": 1060,

 "SalespersonPersonID": 6,

 "OrderDate": "2016-05-20"

 },

 {

 "OrderID": 73081,

 "CustomerID": 1060,

 "SalespersonPersonID": 8,

 "OrderDate": "2016-05-24"

 }

]

}

' ;

Chapter 8 ShreddINg JSON data

246

SELECT *

FROM OPENJSON(@JSON, 'lax $.SalesOrders[0]') ;

You will notice, in this script, that after passing in the JSON document,

we use the lax (or, alternatively, strict) keyword to specify the mode we will

use. After a space comes the path expression itself. Here, we start with $, to

set the context, and then point to the SalesOrders key. We then use square

brackets to specify the array element that we wish to use.

Tip JSON path expressions always use zero-base arrays.

 Shredding Data into Tables
You can now imagine how simple looping techniques could be used to

shred each element within an array. For example, consider the script

in Listing 8-12. This script will shred each of the array elements into a

temporary table called Orders.

Listing 8-12. Shredding Each Element into a Temporary Table

DECLARE @JSON NVARCHAR(MAX) ;

SET @JSON = '{

 "SalesOrders": [

 {

 "OrderID": 72646,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-18"

 },

Chapter 8 ShreddINg JSON data

247

 {

 "OrderID": 72738,

 "CustomerID": 1060,

 "SalespersonPersonID": 14,

 "OrderDate": "2016-05-19"

 },

 {

 "OrderID": 72916,

 "CustomerID": 1060,

 "SalespersonPersonID": 6,

 "OrderDate": "2016-05-20"

 },

 {

 "OrderID": 73081,

 "CustomerID": 1060,

 "SalespersonPersonID": 8,

 "OrderDate": "2016-05-24"

 }

]

}

' ;

CREATE TABLE #Orders

(

 OrderID INT,

 CustomerID INT,

 SalespersonPersonID INT,

 OrderDate DATE

) ;

Chapter 8 ShreddINg JSON data

248

DECLARE @ArrayElement INT = 0 ;

DECLARE @path NVARCHAR(MAX) = 'lax $.SalesOrders[' + CAST(

@ArrayElement AS NVARCHAR) + ']' ;

WHILE @ArrayElement <=3

BEGIN

 INSERT INTO #Orders (OrderID, CustomerID,

SalespersonPersonID, OrderDate)

 SELECT

 OrderID

 , CustomerID

 , SalespersonPersonID

 , OrderDate

 FROM OPENJSON(@JSON, @Path)

 WITH(OrderID INT, CustomerID INT, SalespersonPersonID

INT, OrderDate DATE) ;

 SET @ArrayElement = @ArrayElement + 1 ;

 SET @path = 'lax $.SalesOrders[' + CAST(@ArrayElement

AS NVARCHAR) + ']' ;

END

SELECT * FROM #Orders ;

DROP TABLE #Orders ;

Chapter 8 ShreddINg JSON data

249

The final SELECT statement in this script produces the results

illustrated in Figure 8-11.

Caution While I have used a WHILE loop in this example, I have
done so only because it provides a clear and easy example of how
path expressions can be used. I would never use a WHILE loop or
CURSOR in production code. there is always a way to achieve the
same results, using a set-based approach.

 Summary
JSON data can be shredded into tabular results sets by using the OPENJSON()

function. OPENJSON() can be used either with or without an explicit

Figure 8-11. Results of shredding multiple array elements

Chapter 8 ShreddINg JSON data

250

schema. When a schema is not explicitly defined, OPENJSON(), using a WITH

clause, returns a standard row set, detailing the key (name), value, and

JSON data type ID of each node in the document.

When an explicit schema is supplied, OPENJSON() will return a

formatted result set, which contains a column for each specified in the

WITH clause. Using an explicit schema avoids the need to pivot the data

when you know every node in the document at development time. If the

list of columns is not discrete, however, dynamic SQL will be required, to

build a list of possible results before processing.

OPENJSON() also supports JSON path expressions. Passing path

expressions to the function allows you to navigate to a specific item within

an array, meaning that you can shred data to a more granular level. For

example, instead of shredding an array of JSON objects into a table, you

can use looping methodologies to shred the contents of each array element

into relational data.

Chapter 8 ShreddINg JSON data

	Chapter 8: Shredding JSON Data
	OPENJSON() with Default Schema
	Shredding a Column
	Dynamic Shredding Based on Document Content

	OPENJSON() with Explicit Schema
	OPENJSON() with Path Expressions
	Shredding Data into Tables

	Summary

