
181© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Types,
https://doi.org/10.1007/978-1-4842-3901-8_6

CHAPTER 6

Understanding JSON
As SQL Server evolves, more and more nonrelational features are being

added to the product, blurring the lines between relational and NoSQL

technologies. JSON is an example of this. JSON (JavaScript object notation)

is a document format, designed as a method of lightweight data interchange.

It is similar to XML, in the respect that it is a self-describing, hierarchical

data-interchange format. Unlike XML, however, JSON tags are minimal,

making JSON documents shorter and both easier to read and quicker to parse.

In this chapter, I will introduce the JSON format. I will discuss the

structure of a JSON document and compare it to an XML document.

Finally, I will discuss usage scenarios for JSON data within SQL Server.

�Understanding the JSON Format
The basic JSON syntax uses name/value pairs, separated by a colon.

The JSON object is then enclosed by braces. The name must be a string,

enclosed with double quotes, and the value must be

•	 A string (enclosed by double quotes)

•	 A number

•	 A nested JSON object

•	 A Boolean value

•	 An array (enclosed by square brackets)

•	 NULL

https://doi.org/10.1007/978-1-4842-3901-8_6

182

For instance, consider the simple example in Listing 6-1.

Listing 6-1.  Simple JSON Document

{ "FirstName" : "Pete" }

If multiple name/value pairs occur within a JSON document, they

are separated by a comma. For example, consider the JSON document in

Listing 6-2. You will notice that the value for age is not enclosed in double

quotes, because it is a number, as opposed to a string.

Listing 6-2.  Simple JSON Document with Multiple Name/Value

Pairs

{ "FirstName" : "Pete" , "LastName" : "Carter" , "Age" : 38 }

If you were to represent as a JSON flat document a row set in a table,

the result would be an array of JSON objects. For example, consider the

query in Listing 6-3.

Listing 6-3.  Top Vehicle Temperatures

USE WideWorldImporters

GO

SELECT TOP 3

 VehicleRegistration

 , ChillerSensorNumber

 , Temperature

FROM Warehouse.VehicleTemperatures

ORDER BY Temperature DESC ;

Chapter 6 Understanding JSON

183

If this result set were to be expressed as a JSON document, it would

look like the document in Listing 6-4.

Listing 6-4.  Top Vehicle Temperatures Expressed As JSON

[

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5

 },

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 2,

 "Temperature": 5

 },

 {

Figure 6-1.  Top vehicle temperatures

This query will produce the results displayed in Figure 6-1.

Chapter 6 Understanding JSON

184

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5

 }

]

You can see that the results are an array of JSON objects; therefore, the

document is enclosed in square brackets. Each JSON object (representing

a single row in the table) is enclosed in braces and separated by commas.

Within each JSON object, comma separated name/value pairs represent

each column in the tabular representation of the results.

The Warehouse.VehicleTemperatures table, in the WideWorldImporters

database also includes a column with the JSON data type, which records

the full sensor data. Consider the query in Listing 6-5.

Listing 6-5.  Vehicle Temperatures with Full Sensor Data

USE WideWorldImporters

GO

SELECT TOP 3

 VehicleRegistration

 , ChillerSensorNumber

 , Temperature

 , FullSensorData

FROM Warehouse.VehicleTemperatures

ORDER BY Temperature DESC ;

Chapter 6 Understanding JSON

185

If we were to represent this result set as a JSON document, we would

have an array of JSON objects in which one of the objects is a nested JSON

object, as shown in Listing 6-6.

Listing 6-6.  Vehicle Temperatures with Full Sensor Data Expressed

As JSON

[

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5,

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-107.9037602,43.1198494] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"1,\"when\":\"2016-05-31T09:34:39\",

\"temp\":5.00}}]"

 },

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 2,

 "Temperature": 5,

Figure 6-2.  Results of temperatures with full sensor data

This query returns the results displayed in Figure 6-2.

Chapter 6 Understanding JSON

186

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-108.3927541,58.1174136] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"2,\"when\":\"2016-05-31T09:44:35\",

\"temp\":5.00}}]"

 },

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5,

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-88.2125713,56.0198938] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"1,\"when\":\"2016-05-30T08:14:17\",

\"temp\":5.00}}]"

 }

]

Tip T he nested JSON objects contain a backslash before each
double quote, as an escape character.

You will notice, in this example, that the value for each

FullSensorData node is a JSON object nested inside the JSON object,

which represents a row within the tabular result set.

A root node can also be added to a JSON document, sometimes used

to represent the name of the object’s type or abstraction. This can help give

the document context. Listing 6-7 shows the same document as Listing 6-6,

but with a root node added.

Chapter 6 Understanding JSON

187

Listing 6-7.  Adding a Root Node

{

 "VehicleTemperatures": [

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5,

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-107.9037602,43.1198494] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"1,\"when\":\"2016-05-31T09:34:39\",

\"temp\":5.00}}]"

 },

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 2,

 "Temperature": 5,

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-108.3927541,58.1174136] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"2,\"when\":\"2016-05-31T09:44:35\",

\"temp\":5.00}}]"

 },

 {

 "VehicleRegistration": "WWI-321-A",

 "ChillerSensorNumber": 1,

 "Temperature": 5,

Chapter 6 Understanding JSON

188

 �"FullSensorData": "{\"Recordings\": [{\"type\":\"Feature\",

\"geometry\": {\"type\":\"Point\",

\"coordinates\":[-88.2125713,56.0198938] },

\"properties\":{\"rego\":\"WWI-321-A\",

\"sensor\":\"1,\"when\":\"2016-05-30T08:14:17\",

\"temp\":5.00}}]"

 }

]

}

�JSON vs. XML
Let’s compare a simple JSON document against an XML equivalent

and examine the differences. Consider the XML document in Listing 6-8,

which represents the salespeople within the WideWorldImporters

database.

Listing 6-8.  Sales People—XML

<SalesPeople>

 <SalesPerson>

 <PersonID>2</PersonID>

 <FullName>Kayla Woodcock</FullName>

 <PreferredName>Kayla</PreferredName>

 <LogonName>kaylaw@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>kaylaw@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>3</PersonID>

 <FullName>Hudson Onslow</FullName>

 <PreferredName>Hudson</PreferredName>

Chapter 6 Understanding JSON

189

 <LogonName>hudsono@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>hudsono@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>6</PersonID>

 <FullName>Sophia Hinton</FullName>

 <PreferredName>Sophia</PreferredName>

 <LogonName>sophiah@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>sophiah@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>7</PersonID>

 <FullName>Amy Trefl</FullName>

 <PreferredName>Amy</PreferredName>

 <LogonName>amyt@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>amyt@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>8</PersonID>

 <FullName>Anthony Grosse</FullName>

 <PreferredName>Anthony</PreferredName>

 <LogonName>anthonyg@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>anthonyg@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>13</PersonID>

 <FullName>Hudson Hollinworth</FullName>

Chapter 6 Understanding JSON

190

 <PreferredName>Hudson</PreferredName>

 <LogonName>hudsonh@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>hudsonh@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>14</PersonID>

 <FullName>Lily Code</FullName>

 <PreferredName>Lily</PreferredName>

 <LogonName>lilyc@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>lilyc@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>15</PersonID>

 <FullName>Taj Shand</FullName>

 <PreferredName>Taj</PreferredName>

 <LogonName>tajs@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>tajs@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

 <PersonID>16</PersonID>

 <FullName>Archer Lamble</FullName>

 <PreferredName>Archer</PreferredName>

 <LogonName>archerl@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>archerl@wideworldimporters.com</EmailAddress>

 </SalesPerson>

 <SalesPerson>

Chapter 6 Understanding JSON

191

 <PersonID>20</PersonID>

 <FullName>Jack Potter</FullName>

 <PreferredName>Jack</PreferredName>

 <LogonName>jackp@wideworldimporters.com</LogonName>

 <PhoneNumber>(415) 555-0102</PhoneNumber>

 <EmailAddress>jackp@wideworldimporters.com</EmailAddress>

 </SalesPerson>

</SalesPeople>

Each salesperson has an opening and closing tag element, containing

an opening and closing tag element, for each property related to a

salesperson. A root node, called SalesPeople, has also been added.

Note T his XML document is element-centric. We could, of course,
also represent the salespeoples’ properties as attributes. Please see
Chapter 3, for further details.

Let’s compare this XML to the JSON document in Listing 6-9.

Listing 6-9.  Sales People—JSON

{

 "SalesPeople": [

 {

 "PersonID": 2,

 "FullName": "Kayla Woodcock",

 "PreferredName": "Kayla",

 "LogonName": "kaylaw@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "kaylaw@wideworldimporters.com"

 },

 {

Chapter 6 Understanding JSON

https://doi.org/10.1007/978-1-4842-3901-8_3

192

 "PersonID": 3,

 "FullName": "Hudson Onslow",

 "PreferredName": "Hudson",

 "LogonName": "hudsono@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "hudsono@wideworldimporters.com"

 },

 {

 "PersonID": 6,

 "FullName": "Sophia Hinton",

 "PreferredName": "Sophia",

 "LogonName": "sophiah@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "sophiah@wideworldimporters.com"

 },

 {

 "PersonID": 7,

 "FullName": "Amy Trefl",

 "PreferredName": "Amy",

 "LogonName": "amyt@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "amyt@wideworldimporters.com"

 },

 {

 "PersonID": 8,

 "FullName": "Anthony Grosse",

 "PreferredName": "Anthony",

 "LogonName": "anthonyg@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "anthonyg@wideworldimporters.com"

 },

 {

Chapter 6 Understanding JSON

193

 "PersonID": 13,

 "FullName": "Hudson Hollinworth",

 "PreferredName": "Hudson",

 "LogonName": "hudsonh@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "hudsonh@wideworldimporters.com"

 },

 {

 "PersonID": 14,

 "FullName": "Lily Code",

 "PreferredName": "Lily",

 "LogonName": "lilyc@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "lilyc@wideworldimporters.com"

 },

 {

 "PersonID": 15,

 "FullName": "Taj Shand",

 "PreferredName": "Taj",

 "LogonName": "tajs@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "tajs@wideworldimporters.com"

 },

 {

 "PersonID": 16,

 "FullName": "Archer Lamble",

 "PreferredName": "Archer",

 "LogonName": "archerl@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "archerl@wideworldimporters.com"

 },

Chapter 6 Understanding JSON

194

 {

 "PersonID": 20,

 "FullName": "Jack Potter",

 "PreferredName": "Jack",

 "LogonName": "jackp@wideworldimporters.com",

 "PhoneNumber": "(415) 555-0102",

 "EmailAddress": "jackp@wideworldimporters.com"

 }

]

}

Instead of using elements, as in the XML document, the JSON

document consists simply of name/value pairs in an array of JSON objects.

A root node, called SalesPeople, has also been added.

The most obvious observation about the JSON document is that the

character count is much shorter, largely due to the lack of closing tags. The

main consequence of this is that the document is easier to parse, and there

is less information to be transferred between application tiers. Arguably,

the document is also more human-readable. These advantages have made

JSON a very popular choice with application developers.

The main disadvantage of the JSON document is that it cannot be

bound to a schema in the way that XML can. The impact of this is that

although the document can be parsed, to ensure that it has valid syntax,

it isn’t possible (without custom code) to ensure that it meets the contract

expected by the recipient before sending.

Other than the differences mentioned, despite their different

appearance, the documents are actually quite similar. They are both self-

describing, extensible documents that can be used for data-interchange.

Both formats are widely used and work with many REST APIs and web

service end points.

Chapter 6 Understanding JSON

195

Tip REST is short for representational state transfer. It is an
architectural style of providing a uniform interface, often between
layers of an application. It provides a stateless approach, with client/
server separation.

�JSON Usage Scenarios
There are many use cases for JSON data within SQL Server. The following

sections will introduce some of these potential uses.

�n-Tier Applications with Rest APIs
Modern apps often have a lot of logic at the client side. The application

tier of the application often has to have complex code, or even multiple

sublayers, to broker a conversation between the client and the back-end

RDBMS. This is because you will have to use an object relational mapper

to execute the query against the database, write these results into data

transfer object, and then serialize the results in JSON format before they

can be sent to the client.

With JSON support in SQL Server, however, you can simply expose the

data from SQL Server to a REST API and return the data in JSON format,

meaning that the application tier can simply send the data as is to the

client. While there may be resistance to this approach from middle-tier

purists, it certainly allows architects to simplify the application design.

�De-Normalizing Data
Using a normalized data model is perfect when high-frequency updates

are made to data. In a normalized model, data is separated into multiple

tables, which are joined together using primary and foreign key

Chapter 6 Understanding JSON

196

constraints, with the intention of storing data only once. For example, if

customers have multiple addresses, then core details about a customer,

such as name and phone number, may be stored in a table called

Customers. Their addresses may then be stored in a separate table called

CustomerAddresses, which contains a foreign key (CustomerID), which

joins to the primary key of the Customers table. This means that the core

details about the customer are only stored once, as opposed to having to

repeat the details for every address.

Tip  While a detailed discussion of normalization is beyond the
scope of this book, a full discussion can be found in Expert Scripting
and Automation for SQL Server DBAs (Apress, 2016).

A traditional normalized model can cause issues in some instances,

however. For example, performance can decrease when data is split

across multiple tables and joined together in a SELECT statement, owing

to the matching of primary and foreign key values that is required. Also,

when data is updated across multiple tables, a transaction must be used,

to ensure a consistent update. This can lead to locking issues, in which

pessimistic isolation levels are in use, or IO performance issues, in which

optimistic isolation levels are used.

Tip A full discussion of transaction isolation levels can be found in
Pro SQL Server Administration (Apress, 2015).

To work around this issue, data architects will sometimes use NoSQL

structures to store details of entities such as customers, so that logical

entities can be stored as a single record. Coincidently, JSON is often

the format used for these records. This approach creates its own issues,

however, when the NoSQL data must be combined with data that is still

stored in a relational format.

Chapter 6 Understanding JSON

197

JSON can help resolve these kinds of modeling challenges, by allowing

the JSON record to be stored in a table in SQL Server, meaning that

updates can be made to a single table, while the table can still easily be

joined back to relational data.

�Config As Code
In DevOps environments, there is a requirement to have infrastructure as

code, platforms as code, and config as code. Essentially, an entire virtual

estate will be written in code, so that it is highly portable between data

centers or, more commonly, between data centers and the cloud. It is also

highly recoverable, in the event of a disaster, such as the loss of a data

center.

SQL Server management has been slow to be incorporated into the

DevOps space, because there is a lack of crossover skills between SQL

Server and desired state configuration tooling, such as Chef and Puppet.

The DBA world is slowly starting to get on board, however, and as part of

an SQL-Server-platform-as-code approach, a configuration management

database (CMDB) will often be used on a central management server, to

store the details of member servers (SQL Server VMs) within the estate.

A central management server (in this context) refers to an instance of SQL

Server that is used to help DBAs manage the rest of the SQL Server estate.

It will often be the master server in SQL Server Agent master/target job

configurations and may have other management features installed, such

as Management Data Warehouse, which is used as a central hub for SQL

Server monitoring.

When a platform-as-code approach is being used, however, a config-

as-code approach should be applied alongside. In the SQL Server world,

this involves being able to rebuild the CMDB from code, which is stored in

a source control provider, such as GitHub of TFS.

Chapter 6 Understanding JSON

198

Config as code for the SQL Server CMBD can easily be managed with a

circular process. The first step in this process is a Server Agent job, which

will periodically run and export the data from the tables into JSON files in

the operating system. These files will then be pushed to a source-control

repository and checked in.

When a desired state configuration management tool such as Chef or

Puppet builds a new central management server, it will look, in the source

control repository, to find the JSON files containing the configuration

data. It will create the config database and then repopulate the tables with

the data from the repo. This provides an easily configurable RPO (recover

point objective) for the config database, without the challenges that are

often associated with enterprise backup management tools and the lead

times often associated with recovering data from tape robots. It also means

that the core management utility for SQL Server can be easily moved to

the cloud or other data centers, helping to make the SQL Server estate

extremely portable.

Tip T he principle of desired state management tools, such as
Puppet and Chef, is that they run periodically on a server, with
a manifest that describes the desired state of the server. At the
Windows level, this may include code to disable the guest account
or ensure that user rights assignments are configured correctly.
At the SQL Server level, it may check that a specific login exists or
that xp_cmdshell is disabled. First, the tool will check to see if a
resource is already configured as expected. If not, it will correct the
configuration. This means that if an unauthorized change is made to
a server, it will be corrected the next time the manifest is applied.
The result is that Windows engineers and DBAs can also be sure of
the state of their servers.

Chapter 6 Understanding JSON

199

�Analyzing the Log Data
Devices such as sensors or RFID (radio frequency identification) can

generate very large amounts of data. This means that data architects will

often choose to store this data in NoSQL solutions. Often, JSON is used as

the file format for such logging.

When large logs are stored in JSON format, the SQL Server’s native

JSON support means that these logs can easily be read into SQL Server and

analyzed using T-SQL, without any complex parsing requirements. This

can reduce the time to market for reports against log data.

�Summary
JSON is a lightweight data-interchange format that is supported by many

REST APIs and web service end points. It is similar to XML, in that it is an

extensible, self-describing, hierarchical document format, but it differs in

the following ways:

•	 It cannot be validated against a schema.

•	 It does not have closing tags.

•	 It is shorter.

•	 It is easier to parse.

•	 It supports arrays.

JSON’s basic format is a series of name/value pairs, which are

separated by commas. JSON objects are always enclosed in braces, and

arrays are always enclosed in brackets. JSON objects can be nested inside

other JSON objects. When this is the case, a backslash should be used to

escape characters, such as double quotes and braces.

Chapter 6 Understanding JSON

200

JSON has many use cases in SQL Server, including the simplification

of REST APIs interacting with back-end databases. JSON is also a good

choice when NoSQL solutions must be integrated with SQL Server, such as

when device logs must be analyzed or NoSQL semi-structured data must

be stored alongside structured data. JSON is also very useful when DBAs or

platform engineers implement config as code solutions.

Chapter 6 Understanding JSON

	Chapter 6: Understanding JSON
	Understanding the JSON Format
	JSON vs. XML
	JSON Usage Scenarios
	n-Tier Applications with Rest APIs
	De-Normalizing Data
	Config As Code
	Analyzing the Log Data

	Summary

