
157© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Types,
https://doi.org/10.1007/978-1-4842-3901-8_5

CHAPTER 5

XML Indexes
As discussed in Chapters 3 and 4, SQL Server allows you to store data in

tables, in a native XML format, using the XML data type. Like other large

object types, it can store up to a maximum of 2GB per tuple. Although

standard operators such as = and LIKE can be used against XML columns,

you also have the option of using XQuery expressions (discussed in this

chapter). They can be rather inefficient, however, unless you create XML

indexes.

XML indexes will outperform full-text indexes for most queries against

XML columns. SQL Server offers support for primary XML indexes and

three types of secondary XML indexes: PATH, VALUE, and PROPERTY. Each of

these indexes will be discussed in the following sections. First, however,

I will briefly discuss clustered indexes, as a clustered index must exist on

the table before you can create an XML index.

 Preparing the Environment
Because the WideWorldImporters database has no tables that contain

native XML columns, we will create an OrderSummary table, for

demonstrations within this chapter. The table will contain three columns:

an IDENTITY column (named ID), a CustomerID column, and an XML

column (called OrderSummary), which will contain a summary of all

orders that a customer has placed. The table can be created and populated

using the script in Listing 5-1.

https://doi.org/10.1007/978-1-4842-3901-8_5
https://doi.org/10.1007/978-1-4842-3901-8_3
https://doi.org/10.1007/978-1-4842-3901-8_4

158

Listing 5-1. Creating an OrderSummary Table

USE WideWorldImporters

GO

CREATE TABLE Sales.OrderSummary

(

 ID INT NOT NULL IDENTITY,

 CustomerID INT NOT NULL,

 OrderSummary XML

) ;

INSERT INTO Sales.OrderSummary (CustomerID, OrderSummary)

SELECT

 CustomerID,

 (

 SELECT

 CustomerName 'OrderHeader/CustomerName'

 , OrderDate 'OrderHeader/OrderDate'

 , OrderID 'OrderHeader/OrderID'

 , (

 SELECT

 LineItems2.StockItemID

'@ProductID'

 , StockItems.StockI

temName '@ProductName'

 , LineItems2.UnitPrice

'@Price'

 , Quantity '@Qty'

 FROM Sales.OrderLines LineItems2

 INNER JOIN Warehouse.StockItems

StockItems

Chapter 5 XML IndeXes

159

 ON LineItems2.StockItemID

= StockItems.StockItemID

 WHERE LineItems2.OrderID =

Base.OrderID

 FOR XML PATH('Product'), TYPE

) 'OrderDetails'

 FROM

 (

 SELECT DISTINCT

 Customers.CustomerName

 , SalesOrder.OrderDate

 , SalesOrder.OrderID

 FROM Sales.Orders SalesOrder

 INNER JOIN Sales.OrderLines LineItem

 ON SalesOrder.OrderID =

LineItem.OrderID

 INNER JOIN Sales.Customers Customers

 ON Customers.CustomerID =

SalesOrder.CustomerID

 WHERE customers.CustomerID = OuterCust.

CustomerID

) Base

 FOR XML PATH('Order'), ROOT ('SalesOrders'), TYPE

) AS OrderSummary

FROM Sales.Customers OuterCust ;

 Clustered Indexes
A clustered index causes the data pages of a table to be logically stored

in the order of the clustered index key. The clustered index key can be a

single column or a set of columns. This is often the table’s primary key, but

Chapter 5 XML IndeXes

160

this is not enforced, and there are some circumstances in which you would

want to use a different column. This will be discussed in more detail later

in this chapter.

 Tables Without a Clustered Index
When a table exists without a clustered index, it is known as a heap. A heap

consists of an IAM (index allocation map) page (or pages) and a series of

data pages that are not linked together or stored in order. The only way

SQL Server can determine the pages of the table is by reading the IAM

page(or pages). When a table is stored as a heap, every time the table is

accessed, SQL Server must read every single page in the table, even if you

only want to return one row. The diagram in Figure 5-1 illustrates how a

heap is structured.

Figure 5-1. Heap structure

Chapter 5 XML IndeXes

161

When data is stored on a heap, SQL Server must maintain a unique

identifier for each row. It does this by creating a RID (row identifier). Even

if a table has nonclustered indexes, it is still stored as a heap, unless there

is a clustered index. When nonclustered indexes are created on a heap, the

RID is used as a pointer, so that nonclustered indexes can link back to the

correct row in the base table. Nonclustered indexes store the RID with a

format of FileID: Page ID: Slot Number.

 Tables with a Clustered Index
When you create a clustered index on a table, a B-Tree (balanced tree)

structure is created. This allows for more efficient search operations to be

performed, by creating a tiered set of pointers to the data, as illustrated

in Figure 5-2. The page at the top level of this hierarchy is called the root

node. The bottom level of the structure is called the leaf level, and with

a clustered index, the leaf level consists of the actual data pages of the

table. There can be one or more intermediate levels of B-Tree structures,

depending on the size of the table.

Figure 5-2. Clustered index structure

Chapter 5 XML IndeXes

162

The diagram in Figure 5-2 shows that while the leaf level is the data

itself, the levels above contain pointers to the pages below them in the

tree. This allows for SQL Server to perform a seek operation. This is a

very efficient method of returning a small number of rows. It works by

navigating its way down the B-Tree, using the pointers to find the row(s)

it requires. We can see that, if required, SQL Server can still scan all pages

of the table, in order to retrieve the required rows. This is known as a

Clustered Index Scan. Alternatively, SQL Server may decide to combine

these two methods, to perform a range scan. Here, SQL Server will seek

the first value of the required range and then scan the leaf level, until

it encounters the first value that is not required. SQL Server can do

this because the table is ordered by the index key, meaning that it can

guarantee that there will be no other matching values later in the table.

 Clustering the Primary Key
The primary key of a table is often the natural choice for the clustered

index. In fact, by default, unless you specify otherwise, or unless a

clustered index already exists on the table, creating a primary key

will automatically generate a clustered index on that key. There are

circumstances in which the primary key is not the correct choice for the

clustered index. An example of this that I have witnessed is a third-party

application that required the primary key of the table to be a GUID.

A GUID (globally unique identifier) is used to guarantee uniqueness across

the entire network.

This introduces two major problems if the clustered index were to be

built on the primary key. The first is size. A GUID is 16 bytes long. When a

table has nonclustered indexes, the clustered index key is stored in every

nonclustered index. For unique nonclustered indexes, it is stored for every

row at the leaf level, and for non-unique nonclustered indexes, it is also

stored at every row in the root and intermediate levels of the index as well.

Chapter 5 XML IndeXes

163

When you multiply 16 bytes by millions of rows, this will drastically

increase the size of the indexes, making them less efficient.

The second issue is that when a GUID is generated, it is a random

value. Because the data in your table is stored in the order of the clustered

index key, for good performance, you need the values of this key to

be generated in sequential order. Generating random values for your

clustered index key will result in the index becoming more and more

fragmented every time you insert a new row. Fragmentation will be

discussed later in this chapter.

There is a workaround for the second issue, however. SQL Server has a

function called NEWSEQUENTIALID() that will always generate a GUID value

higher than previous values generated on the server. Therefore, if you

use this function in the Default constraint of your primary key, you can

enforce sequential inserts.

Caution after the server has been restarted, NEWSEQUENTIALID()
can start with a lower value. this may lead to fragmentation.

If the primary key must be a GUID, or another wide column, such

as National Insurance Number, or a set of columns forming a natural

key, such as Customer ID, Order Date, and Product ID, it is highly

recommended that you create an additional column in your table. This

column could be an INT or BIGINT, depending on the number of rows you

expect the table to have, and could use either the IDENTITY property or

a SEQUENCE to create a narrow, sequential key that can be used for your

clustered index. I recommend ensuring a narrow key, as it will be included

in all nonclustered indexes on the table. It will also use less memory when

joining tables.

Chapter 5 XML IndeXes

164

Caution If you intend to use XML indexes, the clustered index must
be created on the primary key.

 Performance Considerations for Clustered Indexes
Because an IAM page lists the extents of a heap table in the order in which

they are stored in the data file, as opposed to the order of the index key, a

table scan of a heap may prove to be slightly faster than a clustered index

scan, unless the clustered index has 0% fragmentation, which is rare.

Inserts into a clustered index may be faster than inserts into a heap,

when the clustered index key is ever-increasing. This is especially true

when there are multiple inserts happening in parallel, because a heap will

experience more contention on system pages (GAM/SGAM/PFS) when

the database engine is looking for spaces to place the new data. If the

clustered index key is not ever-increasing, however, then inserts will lead

to page splits and fragmentation. The knock-on effect is that inserts would

be slower than they would be into a heap. A large insert into a heap may

also be faster, if you take out a table lock and take advantage of minimally

logged inserts. This is because of reduced IO to the transaction log.

Updates that cause a row to relocate, due to a change in size, will be

faster when performed against a clustered index, as opposed to a heap.

This is, for the same reason as mentioned above for insert operations,

where there will be more contention against the system pages. When

updated, rows may change in size, for reasons such as updating a VARCHAR

column with a longer string. If the update to the row can be made in

place (without relocating the row), there is likely to be little difference in

performance. Deletes may also be slightly faster into a clustered index

than into a heap, but the difference will be less noticeable than for update

operations.

Chapter 5 XML IndeXes

165

 Creating a Clustered Index
With SSMS (SQL Server Management Studio), we can create a clustered

index on the ID column of the OrderSummary table, by expanding

Databases ➤ WideWorldImporters ➤ Tables ➤ Sales.OrderSummary in

Object Explorer, right-clicking the Indexes node, and selecting New index

➤ Clustered index. This will cause the New Index dialog box to be invoked,

as shown in Figure 5-3.

Figure 5-3. New Index dialog box

Caution If you plan to follow later demonstrations in this chapter,
do not execute the steps illustrated in Figures 5-3 and 5-4. also,
avoid executing the script in Listing 5-2. If you do create the index,
you will have to drop it before running further examples.

Chapter 5 XML IndeXes

166

On the General page of the dialog box, give the index a descriptive

name, then use the Add button, to select the column(s) that the index will

be built on, as shown in Figure 5-4.

Alternatively, this clustered index could be created using the script in

Listing 5-2.

Listing 5-2. Creating a Clustered Index

USE WideWorldImporters

GO

CREATE CLUSTERED INDEX [ClusteredIndex-OrderSummary-ID] ON

Sales.OrderSummary (ID) ;

GO

Figure 5-4. Add columns dialog box

Chapter 5 XML IndeXes

167

Note advanced options for creating clustered indexes are beyond
the scope of this book, but further information can be found in Pro
SQL Server Administration (apress, 2015), available at www.apress.
com/gb/book/9781484207116.

Because our XML indexes require the clustered index to be built on a

primary key, instead of executing the preceding script, we should instead

run the script in Listing 5-3. This script will create a primary key on the ID

column and then a clustered index on the primary key.

Listing 5-3. Creating a Primary Key and Clustered Index

USE WideWorldImporters

GO

ALTER TABLE Sales.OrderSummary ADD CONSTRAINT

 PK_OrderSummary PRIMARY KEY CLUSTERED (ID) ;

 Primary XML Indexes
A primary XML index is actually a multicolumn clustered index on an

internal system table called the Node table. This table stores a shredded

representation on the XML objects within an XML column, along with the

clustered index key of the base table. This means that a table must have a

clustered index before a primary XML index can be created. Additionally,

the clustered index must be created on the primary key and must consist of

32 columns or less.

The system table stores enough information that the scalar or XML

subtrees required by a query can be reconstructed from the index itself.

This information includes the node ID and name, the tag name and URI,

a tokenized version of the node’s data type, the first position of the node

Chapter 5 XML IndeXes

http://www.apress.com/gb/book/9781484207116
http://www.apress.com/gb/book/9781484207116

168

value in the document, pointers to the long node value and binary value,

the nullability of the node, and the value of the base table’s clustered index

key for the corresponding row.

Primary XML indexes can provide a performance improvement when

a query must shred scalar values from an XML document (or documents)

or return a subset of nodes from an XML document (or documents).

 Creating Primary XML Indexes
To create a primary XML index using SSMS, drill through Databases ➤

WideWorldImporters ➤ Tables ➤ Sales.OrderSummary in Object Explore.

Then select New Index ➤ Primary XML Index from the context menu of

indexes. This will cause the General page of the New Index dialog box to be

displayed. This is shown in Figure 5-5.

Figure 5-5. New Index dialog box (Primary XML)

Chapter 5 XML IndeXes

169

Here, we will give the index a descriptive name and then use the Add

button, to add the required XML column, as shown in Figure 5-6.

Figure 5-6. Add column dialog box (Primary XML)

From the Options tab of the New Index dialog box (Figure 5-7), we can

set the options detailed in Table 5-1.

Chapter 5 XML IndeXes

170

Figure 5-7. New Index dialog box—Options page (Primary XML)

Table 5-1. Primary XML Index Options

Option Description

allow row Locks specifies if row locks can be acquired when accessing

the index

allow page Locks specifies if page locks can be acquired when accessing

the index

Maxdop has no effect for building primary XML indexes, as this

operation is always single threaded

sort in tempdB If specified, sort in tempdB will cause the intermediate result

set to be stored in tempdB, as opposed to the user database.

this could mean that the index is built faster.

(continued)

Chapter 5 XML IndeXes

171

Option Description

Fill Factor specifies a percentage of free space that will be left on each

index page at the lowest level of the index. the default is

0 (100% full), meaning that only enough space for a single

row will be left. specifying a percentage lower than 100,

for example, specifying 70, will leave 30% free space and

can reduce page splits, if there are likely to be frequent row

inserts.

pad Index applies a fill factor (see preceding) to the intermediate levels

of a B-tree

Table 5-1. (continued)

Alternatively, to create the index via T-SQL, you could use the script in

Listing 5-4.

Listing 5-4. Creating a Primary XML Index

USE WideWorldImporters

GO

CREATE PRIMARY XML INDEX [PrimaryXmlIndex-OrderSummary-

OrderSummary]

 ON Sales.OrderSummary ([OrderSummary]) ;

GO

 Secondary XML Indexes
Secondary XML indexes can only be created on XML columns that already

have a primary XML index. Behind the scenes, secondary XML indexes are

actually nonclustered indexes on the internal Node table. Secondary XML

indexes can improve query performance for queries that use specific types

of XQuery processing.

Chapter 5 XML IndeXes

172

A PATH secondary XML index is built on the Node ID and VALUE

columns of the Node table. This type of index offers performance

improvements to queries that use path expressions, such as the exists()

XQuery method. A VALUE secondary XML index is the reverse of this and

is built on the VALUE and Node ID columns. This type of index will offer

performance improvements to queries that search for values, without

knowing the name of the XML element or attribute that contains the value

being searched for.

Finally, a PROPERTY secondary XML index is built on the clustered

index key of the base table, the Node ID, and the VALUE columns of the

Node table. This type of index performs very well if the query is trying to

retrieve nodes from multiple tuples of the column.

 Creating Secondary XML Indexes
To create a secondary XML index in SSMS, drill through Databases ➤

WideWorldImporters ➤ Tables ➤ OrderSummary in Object Explorer. Next,

select New Index ➤ Secondary XML Index from the context menu of the

Indexes node. This will cause the New Index dialog box to be displayed, as

illustrated in Figure 5-8.

Chapter 5 XML IndeXes

173

On the General tab of the New Index dialog box, we have first given the

index a descriptive name. Next, we select the appropriate primary XML

index from the Primary XML Index drop-down list. Finally, we select the

type of secondary XML index that we wish to create, from the Secondary

XML Index Type drop-down box. In this case, we have chosen to create a

PATH index.

Figure 5-9 illustrates the Options tab of the New Index dialog box. For

details of each option, please refer to Table 5-1.

Figure 5-8. New Index dialog box (Secondary XML)

Chapter 5 XML IndeXes

174

Alternatively, to create this index with T-SQL, you could use the script

in Listing 5-5.

Listing 5-5. Creating a Secondary XML Index

USE WideWorldImporters

GO

CREATE XML INDEX [SecondaryXmlIndex-OrderSummary-Path]

 ON Sales.OrderSummary (OrderSummary)

USING XML INDEX [PrimaryXmlIndex-OrderSummary-OrderSummary] FOR

PATH ;

GO

Figure 5-9. New Index dialog box—Options tab (Secondary XML Index)

Chapter 5 XML IndeXes

175

 Performance Considerations for XML Indexes
In order to discuss the performance of XML indexes, let’s write a query that

is well-suited to the PATH secondary XML index that we have created on

the OrderSummary table. The query in Listing 5-6 runs a query against the

OrderSummary table and returns all rows indicating customers who have

ordered the Chocolate echidnas 250g product, which has a StockItemID of

223. The first part of the script removes unchanged pages from the buffer

cache and drops the plan cache, making it a fair test. The middle part of

the script turns on time statistics, so we can accurately tell how long the

query took to run.

Tip performance will vary, based on the specification of your
server and how many resources are being consumed by concurrent
processes. You should always check performance within your own
environment.

Listing 5-6. Return Rows Where Customers Have Ordered

StockItemID 23

--Clear buffer cache and plan cache

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

--Turn on IO statistics to appear with results

SET STATISTICS TIME ON

GO

--Run query

SELECT *

Chapter 5 XML IndeXes

176

FROM Sales.OrderSummary

WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/

Product/.[@ProductID = 223]') = 1 ;

The statistics shown in Figure 5-10 show that the query took 1.95

seconds to complete.

Figure 5-10. Query results with PATH index

Now let’s use the script in Listing 5-7 to drop the PATH index and run

the query again. This time, only the primary XML index is available for use.

Listing 5-7. Run Query Without PATH Index

DROP INDEX [SecondaryXmlIndex-OrderSummary-Path] ON Sales.

OrderSummary ;

GO

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

Chapter 5 XML IndeXes

177

SET STATISTICS TIME ON

GO

SELECT *

FROM Sales.OrderSummary

WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/

Product/.[@ProductID = 223]') = 1 ;

This time, as we can see from the statistics in Figure 5-11, the query

took more than 2.7 seconds to complete.

Figure 5-11. Query results without PATH index

Finally, let’s use the script in Listing 5-8 to drop the primary XML

Index, and run the query again, with no XML index support.

Chapter 5 XML IndeXes

178

Listing 5-8. Drop Primary XML Index and Rerun Query

DROP INDEX [PrimaryXmlIndex-OrderSummary-OrderSummary] ON

Sales.OrderSummary ;

GO

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

SET STATISTICS TIME ON

GO

SELECT *

FROM Sales.OrderSummary

WHERE OrderSummary.exist('/SalesOrders/Order/OrderDetails/

Product/.[@ProductID = 223]') = 1 ;

You will notice from the statistics in Figure 5-12 that the query

execution time has now risen to more than 4 seconds. While our table

only has fewer than 700 rows and results you see will vary, depending on

the performance of your machine, this example shows why creating XML

indexes is so important.

Chapter 5 XML IndeXes

179

 Summary
Specialized XML indexes can be created on XML columns, to improve

the performance of queries that rely on interrogating XML data. There are

four types of XML Index: Primary, Secondary PATH, Secondary VALUE, and

Secondary PROPERTY.

A primary XML index cannot be created on an XML column, unless the

table has a clustered primary key (a clustered index built on a primary key

column). A secondary XML cannot be created unless a primary XML index

already exists on the XML column. XML indexes can be created before a

table is populated with data, however.

Queries that interrogate XML columns can be quite inefficient and

perform poorly, unless the correct XML indexes are created to support

them. XML indexes will always be more efficient on XML columns than

full-text indexes will be. As demonstrated in this chapter, XML query

performance is significantly impaired if XML indexes are not created

appropriately.

Figure 5-12. Results of query with no XML indexes

Chapter 5 XML IndeXes

	Chapter 5: XML Indexes
	Preparing the Environment
	Clustered Indexes
	Tables Without a Clustered Index
	Tables with a Clustered Index
	Clustering the Primary Key
	Performance Considerations for Clustered Indexes
	Creating a Clustered Index

	Primary XML Indexes
	Creating Primary XML Indexes

	Secondary XML Indexes
	Creating Secondary XML Indexes

	Performance Considerations for XML Indexes
	Summary

