
341© Peter A. Carter 2018
P. A. Carter, SQL Server Advanced Data Types,
https://doi.org/10.1007/978-1-4842-3901-8_12

CHAPTER 12

Working with
Hierarchical Data
and HierarchyID
Modeling and working with data hierarchies have long been requirements

for SQL Server developers. Traditionally, hierarchical data has been

modeled using a self-join on a table, between two columns. One column

contains the ID of the hierarchical member, and the other, the ID of its

parent hierarchical member. Newer versions of SQL Server (2008 and

later versions) offer HierarchyID, however. HierarchyID is a data type

written in .NET and exposed in SQL Server. Using HierarchyID can offer

performance benefits and simplified code, compared to using a table

with a self-join. The data type exposes many methods that can be called

against the data, to allow developers to easily determine the ancestors and

descendants of a hierarchical member, as well as determine other useful

information, such as the level of a specific hierarchical member within the

hierarchy.

In this chapter, we will examine first the use cases for hierarchical data.

I will discuss how to model a traditional hierarchy, before explaining how

we can remodel it using HierarchyID. Finally, we will look at the methods

that are exposed against the HierarchyID data type.

https://doi.org/10.1007/978-1-4842-3901-8_12

342

Another classic use case for hierarchical data is a bill of materials

(BoM). A BoM defines a hierarchy of parts that are required to produce

a product. For example, Figure 12-2 illustrates a simple BoM for a home

computer. A computer manufacturer would have to maintain a hierarchy

of these parts for stock reporting.

�Hierarchical Data Use Cases
There are many data requirements that need a hierarchy to be maintained.

For example, consider an employee hierarchy, modeled from an organizational

chart (see Figure 12-1). A human resources department may have reporting

requirements, to determine how many staff directly or indirectly report to a

manager. It may also have to report on more complex requirements, such as

how much revenue has been generated by staff reporting to each group head.

Figure 12-1.  Sales department organization chart

Chapter 12 Working with Hierarchical Data and HierarchyID

343

Figure 12-2.  Bill of materials

Chapter 12 Working with Hierarchical Data and HierarchyID

344

In this chapter, we will be working with the example of a sales area

hierarchy. As illustrated in Figure 12-3, we will be modeling global sales

regions. The hierarchy is ragged, meaning that there can be a varying

number of levels in each branch of the hierarchy.

Figure 12-3.  Sales area hierarchy

Maintaining a sales area hierarchy is important to many companies,

as it allows them to report on many factors, from revenue taken in each

region to the number of salespeople in each region to average revenue

per salesperson and region, etc. In this example, as well as in standard

sales regions, there are areas of the hierarchy that are aggregation areas.

This means that no salespeople exist, and sales are not directly taken for

these regions. Instead, they are reporting levels, to allow lower levels of the

hierarchy to be rolled up. These aggregation areas are highlighted in blue.

�Modeling Traditional Hierarchies
Let’s look at how we might model a sales area hierarchy, using a traditional

approach. To do this, consider the data in Table 12-1.

Chapter 12 Working with Hierarchical Data and HierarchyID

345

In the preceding table, the SalesAreaID column would be the primary

key of the table, and the ParentSalesAreaID column would be a foreign

key, which references the SalesAreaID column, creating what is known as a

self-join.

Table 12-1.  Sales Area Hierarchy

SalesAreaID ParentSalesAreaID SalesArea
Name

CountOfSalesPeople SalesYTD

1 NULL Global Sales NULL NULL

2 1 Europe NULL NULL

3 1 America NULL NULL

4 2 UK 3 300,000

5 2 Western Europe NULL NULL

6 2 Eastern Europe NULL NULL

7 3 Canada 4 350,000

8 3 USA NULL NULL

9 3 LATAM NULL NULL

10 5 Germany 3 150,000

11 5 France 2 100,000

12 6 Hungary 1 50,000

13 6 Slovakia 2 80,000

14 8 Eastern 4 140,000

15 8 Western 3 280,000

16 9 Brazil 1 100,000

17 9 Argentina 2 70,000

18 14 New York 2 120,000

Chapter 12 Working with Hierarchical Data and HierarchyID

346

Note T he ParentSalesAreaID column is NULL for the GlobalSales
area, because it does not have a parent. This is known as the root of
the hierarchy.

The SalesAreaName column describes the sales area, while the

CountOfSalesPeople and SalesYTD columns detail how each sales area

is performing. We will use these columns to explore how to work with

hierarchical data. You will notice that the CountOfSalesPeople and

SalesYTD columns are populated with NULL values for aggregation areas.

This is because they are “virtual” areas, where no salespeople are based.

This table can be created by using the script in Listing 12-1.

Listing 12-1.  Creating a Traditional Hierarchical Table

USE WideWorldImporters

GO

CREATE TABLE Sales.SalesAreaTraditionalHierarchy

(

 SalesAreaID INT NOT NULL PRIMARY KEY,

 ParentSalesAreaID INT NULL

 �REFERENCES Sales.Sales

AreaTraditionalHierarch

y(SalesAreaID),

 SalesAreaName NVARCHAR(20) NOT NULL,

 CountOfSalesPeople INT NULL,

 SalesYTD MONEY NULL

) ;

INSERT INTO Sales.SalesAreaTraditionalHierarchy (

 SalesAreaID

 , ParentSalesAreaID

 , SalesAreaName

Chapter 12 Working with Hierarchical Data and HierarchyID

347

 , CountOfSalesPeople

 , SalesYTD

)

VALUES

(1, NULL, 'GlobalSales', NULL, NULL),

(2, 1, 'Europe', NULL, NULL),

(3, 1, 'America', NULL, NULL),

(4, 2, 'UK', 3, 300000),

(5, 2, 'Western Europe', NULL, NULL),

(6, 2, 'Eastern Europe', NULL, NULL),

(7, 3, 'Canada', 4, 350000),

(8, 3, 'USA', NULL, NULL),

(9, 3, 'LATAM', NULL, NULL),

(10, 5, 'Germany', 3, 150000),

(11, 5, 'France', 2, 100000),

(12, 6, 'Hungary', 1, 50000),

(13, 6, 'Slovakia', 2, 80000),

(14, 8, 'Eastern', 4, 140000),

(15, 8, 'Western', 3, 280000),

(16, 9, 'Brazil', 1, 100000),

(17, 9, 'Agentina', 2, 70000),

(18, 14, 'New York', 2, 120000) ;

Let’s imagine that we must answer a business question, using this

traditional hierarchy. For example, we may have to answer the question,

“What is the total of SalesYTD for the America region?” To determine this,

we would have to write a query that joins the table to itself and rolls up the

SalesYTD column for all subregions under the America region.

The best way of achieving this is to use a recursive CTE (common

table expression). A CTE is a temporary result set that is defined within the

context of a SELECT, UPDATE, INSERT, DELETE, or CREATE VIEW statement

and can only be referenced within that query. It is similar to using a

Chapter 12 Working with Hierarchical Data and HierarchyID

348

subquery as a derived table but has the benefit that it can be referenced

multiple times and also reference itself. When a CTE references itself, it

becomes recursive.

A CTE is declared using a WITH statement, which specifies the name of

the CTE, followed by the column list that will be returned by the CTE, in

parentheses. The AS keyword is then used, followed by the body of the CTE,

again within parentheses. This is shown, for our example, in Listing 12-2.

Tip T he queries in Listings 12-2 to 12-14 are not meant to be run
separately. Listing 12-15 brings them all together, into a useable script.

Listing 12-2.  CTE Structure

; WITH AreaHierarchy (SalesAreaID, SalesYTD, ParentSalesAreaID)

AS

(

 [Body of CTE]

)

The definition of a recursive CTE has two queries, joined with a UNION

ALL clause. The first query is known as the anchor query and defines the

initial result set. The second query is known as the recursive query and

references the CTE. The first level of recursion will join to the anchor

query, and subsequent levels of recursion will join to the level of recursion

immediately above them.

Therefore, in our example, the anchor query will have to return the

SalesAreaID of the America sales area. Because all queries joined with

UNION ALL must contain the same number of columns, our anchor query

must also return the ParentSalesAreaID and SalesYTD columns, even

though these values will be NULL.

Chapter 12 Working with Hierarchical Data and HierarchyID

349

The query in Listing 12-3 shows the required anchor query.

Listing 12-3.  Anchor Query

SELECT

 SalesAreaID

 , SalesYTD

 , ParentSalesAreaID

FROM Sales.SalesAreaTraditionalHierarchy RootLevel

WHERE SalesAreaName = 'America'

The recursive query will return the same column list as the anchor

query but will include a JOIN clause, which joins the ParentSalesAreaID

column in the recursive query to the SalesAreaID column of the CTE, as

demonstrated in Listing 12-4.

Listing 12-4.  Recursive Query

SELECT

 Area.SalesAreaID

 , Area.SalesYTD

 , Area.ParentSalesAreaID

FROM Sales.SalesAreaTraditionalHierarchy Area

INNER JOIN AreaHierarchy

 ON Area.ParentSalesAreaID = AreaHierarchy.SalesAreaID

Following the declaration of this CTE, we will be able to run a SELECT

statement, which rolls up the SalesYTD, to return the total of SalesYTD

for the whole of America. The script in Listing 12-5 brings all these

components together.

Chapter 12 Working with Hierarchical Data and HierarchyID

350

Listing 12-5.  Bringing It All Together

WITH AreaHierarchy (SalesAreaID, SalesYTD, ParentSalesAreaID)

AS

(

 SELECT

 SalesAreaID

 , SalesYTD

 , ParentSalesAreaID

 FROM Sales.SalesAreaTraditionalHierarchy RootLevel

 WHERE SalesAreaName = 'America'

 UNION ALL

 SELECT

 Area.SalesAreaID

 , Area.SalesYTD

 , Area.ParentSalesAreaID

 FROM Sales.SalesAreaTraditionalHierarchy Area

 INNER JOIN AreaHierarchy

 ON Area.ParentSalesAreaID = AreaHierarchy.SalesAreaID

)

SELECT SUM(SalesYTD)

FROM AreaHierarchy ;

�Modeling Hierarchies with HierarchyID
When modeling hierarchical data using HierarchyID, there is no need

to perform a self-join against a table. Therefore, instead of having a

column that references its parent area’s primary key, we will instead

have a HierarchyID column, which defines each area’s position within

the hierarchy. To explain this concept further, let’s consider the data in

Table 12-2.

Chapter 12 Working with Hierarchical Data and HierarchyID

351

In Table 12-2, you will notice that the hierarchy is represented by

the format /[Node]/[Child Node]/[GrandchildNode]/, in which a row

containing just / is the root of the hierarchy. For example, we can see that

the value /1/2/1/ for Germany tells us that Germany is a child of /1/2/

Table 12-2.  Sales Area Hierarchy with HierarchyID

SalesAreaID SalesAreaHierarchy SalesAreaName CountOfSalesPeople SalesYTD

1 / GlobalSales NULL NULL

2 /1/ Europe NULL NULL

3 /2/ America NULL NULL

4 /1/1/ UK 3 300,000

5 /1/2/ Western Europe NULL NULL

6 /1/3/ Eastern Europe NULL NULL

7 /2/1/ Canada 4 350,000

8 /2/2/ USA NULL NULL

9 /2/3/ LATAM NULL NULL

10 /1/2/1/ Germany 3 150,000

11 /1/2/2/ France 2 100,000

12 /1/3/1/ Hungary 1 50,000

13 /1/3/2/ Slovakia 2 80,000

14 /2/2/1/ Eastern 4 140,000

15 /2/2/2/ Western 3 280,000

16 /2/3/1/ Brazil 1 100,000

17 /2/3/2/ Argentina 2 70,000

18 /2/2/1/1/ New York 2 120,000

Chapter 12 Working with Hierarchical Data and HierarchyID

352

(Western Europe), which in turn is a child of /1/ (Europe). /1/ is the child

of / (Global Sales), which is the root of the hierarchy.

We can create and populate this table by using the script in Listing 12-6.

Listing 12-6.  Create Table with HierarchyID

USE WideWorldImporters

GO

CREATE TABLE Sales.SalesAreaHierarchyID

(

SalesAreaID INT NOT

NULL PRIMARY KEY,

SalesAreaHierarchy HIERARCHYID NOT NULL,

SalesAreaName NVARCHAR(20) NOT NULL,

CountOfSalesPeople INT NULL,

SalesYTD MONEY NULL

) ;

INSERT INTO Sales.SalesAreaHierarchyID (

 SalesAreaID

 , SalesAreaHierarchy

 , SalesAreaName

 , CountOfSalesPeople

 , SalesYTD

)

VALUES

(1, '/', 'GlobalSales', NULL, NULL),

(2, '/1/', 'Europe', NULL, NULL),

(3, '/2/', 'America', NULL, NULL),

(4, '/1/1/', 'UK', 3, 300000),

(5, '/1/2/', 'Western Europe', NULL, NULL),

(6, '/1/3/', 'Eastern Europe', NULL, NULL),

Chapter 12 Working with Hierarchical Data and HierarchyID

353

(7, '/2/1/', 'Canada', 4, 350000),

(8, '/2/2/', 'USA', NULL, NULL),

(9, '/2/3/', 'LATAM', NULL, NULL),

(10, '/1/2/1/', 'Germany', 3, 150000),

(11, '/1/2/2/', 'France', 2, 100000),

(12, '/1/3/1/', 'Hungary', 1, 50000),

(13, '/1/3/2/', 'Slovakia', 2, 80000),

(14, '/2/2/1/', 'Eastern', 4, 140000),

(15, '/2/2/2/', 'Western', 3, 280000),

(16, '/2/3/1/', 'Brazil', 1, 100000),

(17, '/2/3/2/', 'Agentina', 2, 70000),

(18, '/2/2/1/1/', 'New York', 2, 120000) ;

Even though we have inserted human-readable strings into the

SalesAreaHierarchyID column, SQL Server converts these strings and

stores them as hexadecimal values. This makes the column extremely

compact and efficient. The size of the HierarchyID column and that of

the INT column used for the ParentSalesAreaID column in the traditional

hierarchy can be compared using the query in Listing 12-7.

Listing 12-7.  Comparing the Size of a Traditional Hierarchy to

HierarchyID

USE WideWorldImporters

GO

SELECT

 �SUM(DATALENGTH(salesareahierarchy)) AS SizeOf

HierarchyID

 �, SUM(DATALENGTH(parentsalesareaid)) AS SizeOf

Traditional

FROM Sales.SalesAreaHierarchyID SalesAreaHierarchy

Chapter 12 Working with Hierarchical Data and HierarchyID

354

INNER JOIN sales.SalesAreaTraditionalHierarchy SalesAreaTraditional

 �ON SalesAreaHierarchy.SalesAreaID = SalesArea

Traditional.SalesAreaID ;

The results of this query are shown in Figure 12-4. You can see that the

HierarchyID column is less than half the size of the INT column used for

the ParentSalesAreaID.

Figure 12-4.  Results of size comparison

Note I n Chapter 1, you learned that it is important to use the
correct data type, and if I had chosen to use a SMALLINT for the
ParentSalesAreaID column, the two columns would be about the
same size. This is, however, a minor example, provided for the
purpose of explaining HierarchyID, but if you are implementing
hierarchies on a large scale, this example is a fair representation.

If we run a normal SELECT statement against the SalesAreaHierarchyID

table, we can see the hexadecimal values in their raw form. For example,

consider the query in Listing 12-8.

Chapter 12 Working with Hierarchical Data and HierarchyID

https://doi.org/10.1007/978-1-4842-3901-8_1

355

Listing 12-8.  SELECT Statement Against HierarchyID Column

USE WideWorldImporters

GO

SELECT

 SalesAreaName

 , SalesAreaHierarchy

FROM Sales.SalesAreaHierarchyID ;

The results of this query are displayed in Figure 12-5. You will notice

that the contents of the SalesAreaHierarchy column are returned as

hexadecimal values, instead of human-readable strings. In order to view

the human-readable strings that we entered, we must use the ToString()

method, which is discussed in the “Working with HierarchyID Methods”

section of this chapter.

Chapter 12 Working with Hierarchical Data and HierarchyID

356

Figure 12-5.  Results of SELECT statement against HierarchyID
column

�HierarchyID Methods
A number of methods are exposed against the HierarchyID data type,

allowing developers to quickly write efficient code when working with

hierarchies. Table 12-3 details these methods.

Chapter 12 Working with Hierarchical Data and HierarchyID

357

Table 12-3.  Methods Exposed Against the HierarchyID Data Type

Method Description

GetAncestor Returns the ancestor of a hierarchy node. Accepts a

parameter that defines how many levels up the hierarchy

the ancestor should be returned from. For example,

GetAncestor(1) will return the node’s parent, while

GetAncestor(2) will return the node’s grandparent.

GetDescendant Returns a child node ID for a given node in the hierarchy.

The GetDescendant() method is generally used in the

creation of two nodes. Therefore, the method accepts two

parameters, both of type HierarchyID. The generated

node will sit between the two nodes specified.

GetLevel Returns the hierarchical level of the node

GetRoot A static method that returns the root level of a hierarchy

IsDescendantOf The IsDescendantOf() method accepts a single

parameter, of type HierarchyID, and returns 1 if a given

node is a descendant of the node passed as a parameter.

Parse Parses the string representation of a node, which is

passed as a parameter, to ensure it is valid. If valid, it

returns the hexadecimal representation. If invalid, it will

throw an error.

Read Reads the binary representation of SqlHierarchyId

from the BinaryReader and sets the SqlHierarchyId

object to that value. The Read() method can only be

called from SQLCLR. It cannot be called from T-SQL. When

using T-SQL, you should use CAST or CONVERT instead.

(continued)

Chapter 12 Working with Hierarchical Data and HierarchyID

358

Tip  HierarchyID methods are case-sensitive. For example, calling
tostring() will throw an error; calling ToString() will succeed.

�Working with HierarchyID Methods
The following sections describe how to use the methods exposed against

the HierarchyID data type.

�Using ToString()

If you run a SELECT statement against a column with the HierarchyID data

type, the value returned will be a hexadecimal representation of the node.

To see a textual representation of the node, you must use the ToString()

method. For example, consider the query in Listing 12-9.

Table 12-3.  (continued)

Method Description

GetReparentedValue Used to move a node to a new parent. Accepts two

parameters, the first being the original parent and the

second being the new parent

ToString Returns a string-formatted representation of a node within

the hierarchy

Write Writes out a binary representation of SqlHierarchyId

to the BinaryWriter. For use with SQLCLR only. When using

T-SQL, use CAST or CONVERT instead.

Chapter 12 Working with Hierarchical Data and HierarchyID

359

Listing 12-9.  Using ToString()

USE WideWorldImporters

GO

SELECT

 SalesAreaName

 , SalesAreaHierarchy

 �, SalesAreaHierarchy.ToString() AS SalesArea

HierarchyString

FROM Sales.SalesAreaHierarchyID ;

The results of this query are displayed in Figure 12-6. You will see that

the column becomes human-readable, once the ToString() method is

called against it.

Chapter 12 Working with Hierarchical Data and HierarchyID

360

�Using Parse()

The Parse() method is called implicitly when a string representation of

a node is inserted into a HierarchyID column. Essentially, the Parse()

method performs the reverse function of the ToString() method. It

attempts to convert a string formatted representation to the HierarchyID

representation. If it fails, an error is thrown. For example, consider the

script in Listing 12-10.

Figure 12-6.  Results of using ToString()

Chapter 12 Working with Hierarchical Data and HierarchyID

361

Listing 12-10.  Using the Parse() Method

--Returns Hexidecimal Representation Of Node

SELECT HierarchyID::Parse('/1/1/2/2/') ;

--Throws An Error Because Trailing / Is Missing

SELECT HierarchyID::Parse('/1/1/2/2') ;

The Results tab displayed by running this script can be seen in

Figure 12-7. While the first query displays the expected result, the second

query returns no results.

Figure 12-7.  Using Parse() Results tab

Chapter 12 Working with Hierarchical Data and HierarchyID

362

�Using GetRoot()

The GetRoot() method will return the root node of a hierarchy, as

demonstrated in Listing 12-11.

Listing 12-11.  Using GetRoot()

USE WideWorldImporters

GO

SELECT

 SalesAreaName

 �, SalesAreaHierarchy.ToString()

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy = HierarchyID::GetRoot() ;

The results of this query can be viewed in Figure 12-9.

Figure 12-8.  Error thrown by .NET framework

Checking the Messages tab, displayed in Figure 12-8, will detail the

error thrown by the .NET framework.

Chapter 12 Working with Hierarchical Data and HierarchyID

363

�Using GetLevel()

The GetLevel() method allows you to determine at what level of the

hierarchy a particular node resides. For example, the query in Listing 12-12

will return all nodes that reside on the bottom level of the hierarchy. In our

case, this is just New York.

The subquery will determine the maximum level within the hierarchy,

and the outer query will return all sales areas that are at that level.

Listing 12-12.  Using GetLevel()

USE WideWorldImporters

GO

SELECT

 SalesAreaName

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.GetLevel() =

 (

 SELECT

 MAX(SalesAreaHierarchy.GetLevel())

 FROM Sales.SalesAreaHierarchyID

) ;

Figure 12-9.  Results of using GetRoot()

Chapter 12 Working with Hierarchical Data and HierarchyID

364

The results of this query can be found in Figure 12-10.

�Read() and Write()

Because this chapter focuses on how to use HierarchyID within your

T-SQL code and the Read() and Write() methods are only applicable

to using SQLCLR (the technology that allows for managed objects to be

created inside SQL Server), a full description of the Read() and Write()

methods is beyond the scope of this book.

�Using GetDescendant()

Of course, a developer could insert a new node into the hierarchy, between

existing nodes, but the GetDescendant() method helps a developer do

this pragmatically. The method accepts two parameters, both of which can

be NULL and represent existing children. The method will then generate a

node value, using the following rules:

•	 If the parent is NULL, then a NULL value will be returned.

•	 If the parent is not NULL, and both parameters are NULL,

the first child of the parent will be returned.

Figure 12-10.  Results of using GetLevel()

Chapter 12 Working with Hierarchical Data and HierarchyID

365

•	 If the parent and first parameter are not NULL, but the

second parameter is NULL, a child of parent greater than

the first parameter will be returned.

•	 If the parent and second parameter are not NULL but the

first parameter is NULL, a child of parent smaller than

the second parameter will be returned.

•	 If parent and both parameters are not NULL, a child of

parent between the two parameters will be returned.

•	 If the first parameter is not NULL and not a child of the

parent, an error is thrown.

•	 If the second parameter is not NULL and not a child of

the parent, an error is thrown.

•	 If the first parameter is greater than or equal to the

second parameter, an error is thrown.

For example, imagine that we want to create with the parent of America

a new sales area called Spain. We want the node value to be between

Canada and USA. We could achieve this with the query in Listing 12-13.

Tip O bviously, Spain should be included under Western Europe, not
under America. Don’t worry, this is a deliberate error, which we will
resolve in the “Using GetReparentedValue” section of this chapter.

Listing 12-13.  Generating a New Hierarchy Node

USE WideWorldImporters

GO

SELECT NewNode.ToString()

FROM

Chapter 12 Working with Hierarchical Data and HierarchyID

366

(

SELECT

 SalesAreaHierarchy.GetDescendant(0x6AC0,0x6B40) AS

NewNode

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaName = 'America'

) NewNode ;

The results produced by this query are illustrated in Figure 12-11.

You will see that the lowest level contains a period (1.1). This is because

Canada has a value of 1 and USA has a value of 2. Therefore, to generate a

node value between the two, an integer cannot be used. This guarantees

that a new node can always be inserted between two existing nodes.

Figure 12-11.  Results of using GetDescendant()

To programmatically add the Spain sales area to the hierarchy,

we could use the query in Listing 12-14.

Chapter 12 Working with Hierarchical Data and HierarchyID

367

Listing 12-14.  Insert a New Node into the Hierarchy

USE WideWorldImporters

GO

INSERT INTO Sales.SalesAreaHierarchyID

 (

 SalesAreaID

 , SalesAreaHierarchy

 , SalesAreaName

 , CountOfSalesPeople

 , SalesYTD

)

SELECT

 �(SELECT MAX(SalesAreaID) + 1 FROM Sales.SalesArea

HierarchyID)

 �, SalesAreaHierarchy.GetDescendant

(0x6AC0,0x6B40)

 , 'Spain'

 , 2

 , 200000

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaName = 'America' ;

�Using GetReparentedValue()

As you probably noticed in the “Using GetDescendant()” section, the

Spain sales area was incorrectly created under the America aggregation

area, as opposed to the Western Europe aggregation area. We can resolve

this issue by using the GetReparentedValue() method.

Consider the script in Listing 12-15. First, we declare two variables,

with the type HierarchyID. These will be passed as parameters into the

GetReparentedValue() method. The @America variable is populated

Chapter 12 Working with Hierarchical Data and HierarchyID

368

with the sales area hierarchy node pertaining to the original parent sales

area, and the @WesternEurope variable is populated with the sales area

hierarchy node pertaining to the target parent sales area.

Listing 12-15.  Use GetReparentedValue()

USE WideWorldImporters

GO

DECLARE @America HIERARCHYID =

(

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = 'America'

) ;

DECLARE @WesternEurope HIERARCHYID =

(

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = 'Western Europe'

) ;

SELECT Area.ToString()

FROM

(

SELECT SalesAreaHierarchy.GetReparentedValue(@America,

@WesternEurope) AS Area

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy = 0x6B16

) NewNodePath ;

Chapter 12 Working with Hierarchical Data and HierarchyID

369

The results of this script can be seen in Figure 12-12. You will notice

that the leaf node value has remained the same, while the path (parent

nodes) have been changed, so that the node sits under the Western Europe

aggregation area.

We could update the ancestry of the Spain sales area, in the Sales.

SalesAreaHierarchyID table, by using the script in Listing 12-16.

Listing 12-16.  Updating the Ancestry of the Spain Sales Area

USE WideWorldImporters

GO

DECLARE @America HIERARCHYID =

(

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = 'America'

) ;

DECLARE @WesternEurope HIERARCHYID =

(

 SELECT SalesAreaHierarchy

Figure 12-12.  Results of using GetReparentedValue()

Chapter 12 Working with Hierarchical Data and HierarchyID

370

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = 'Western Europe'

) ;

UPDATE Sales.SalesAreaHierarchyID

SET SalesAreaHierarchy =

(

SELECT SalesAreaHierarchy.GetReparentedValue(@America,

@WesternEurope)

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy = 0x6B16

)

WHERE SalesAreaHierarchy = 0x6B16 ;

�Using GetAncestor()

The GetAncestor() method can be used to return the ancestor node

of a given hierarchical node at the number of levels based on an input

parameter to the method. For example, consider the query in

Listing 12-17. This query will return the grandparent of Spain, the parent

of Spain, and Spain itself, by passing different parameters into the

GetAncestor() method.

Caution  For this query to work as expected, you first must have
run the previous examples in the chapter. Specifically, the insert
and update queries in the “Using GetDescendant()” and “Using
GetReparentedValue()” sections, as well as Listing 12-2, which
creates and populates the table.

Chapter 12 Working with Hierarchical Data and HierarchyID

371

Listing 12-17.  Using GetAncestor()

USE WideWorldImporters

GO

SELECT

 CurrentNode.SalesAreaName AS SalesArea

 , ParentNode.SalesAreaName AS ParentSalesArea

 �, GrandParentNode.SalesAreaName AS GrandParentSalesArea

FROM Sales.SalesAreaHierarchyID Base

INNER JOIN Sales.SalesAreaHierarchyID CurrentNode

 �ON CurrentNode.SalesAreaHierarchy = Base.

SalesAreaHierarchy.GetAncestor(0)

INNER JOIN Sales.SalesAreaHierarchyID ParentNode

 �ON ParentNode.SalesAreaHierarchy = Base.

SalesAreaHierarchy.GetAncestor(1)

INNER JOIN Sales.SalesAreaHierarchyID GrandParentNode

 �ON GrandParentNode.SalesAreaHierarchy = Base.

SalesAreaHierarchy.GetAncestor(2)

WHERE Base.SalesAreaName = 'Spain' ;

�Using IsDescendantOf()

The IsDescendantOf() method evaluates if a node within the hierarchy

is a descendant (at any level) of a node that is passed to it as a parameter.

It is this method that we can use to rewrite the query in Listing 12-5, which

rolled up the SalesYTD for all sales areas under the America aggregation

area, using a traditional hierarchy.

You will remember, that when using a traditional hierarchy, we had

to implement a recursive CTE, which rolled up the SalesYTD column, for

all hierarchical levels, which are descendants of America. When using

a HierarchyID column to maintain the hierarchy, however, our code is

greatly simplified, as demonstrated in Listing 12-18.

Chapter 12 Working with Hierarchical Data and HierarchyID

372

Listing 12-18.  Using IsDescendantOf()

USE WideWorldImporters

GO

SELECT

 SUM(SalesYTD) AS TotalSalesYTD

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(0x68) = 1 ;

Instead of a recursive CTE, the functionally equivalent code is a simple

query with a WHERE clause that filters hierarchical nodes, based on whether

they are descendants of the America aggregation area. Listing 12-19 shows

a more complex example. Here, we are parameterizing the sales area and

calculating not only the total SalesYTD but also the TotalSalesPeople and

the regions AverageSalesPerSalesPerson.

Listing 12-19.  Parameterizing IsDescendantOf() Queries

USE WideWorldImporters

GO

DECLARE @Region NVARCHAR(20) = 'America' ;

DECLARE @RegionHierarchy HIERARCHYID =

 (

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = @Region

) ;

SELECT

 SUM(SalesYTD) AS TotalSalesYTD

 , SUM(CountOfSalesPeople) AS TotalSalesPeople

Chapter 12 Working with Hierarchical Data and HierarchyID

373

 �, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS

AverageSalesPerSalesPerson

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1 ;

You can clearly see how the Region parameter could be passed into a

stored procedure, so that this code could be accessed by an application.

Let us now add a SalesAreaName to the SELECT list, and group by this

column, as demonstrated in Listing 12-20.

Listing 12-20.  Adding a GROUP BY

USE WideWorldImporters

GO

DECLARE @Region NVARCHAR(20) = 'America' ;

DECLARE @RegionHierarchy HIERARCHYID =

 (

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = @Region

) ;

SELECT

 SUM(SalesYTD) AS TotalSalesYTD

 , SUM(CountOfSalesPeople) AS TotalSalesPeople

 �, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS

AverageSalesPerSalesPerson

 , SalesAreaName

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1

GROUP BY SalesAreaName ;

Chapter 12 Working with Hierarchical Data and HierarchyID

374

The results of this query are illustrated in Figure 12-13.

Figure 12-13.  Results of using IsDescendantOf() with GROUP BY

The interesting behavior exposed by the results of this query is that

America is included. This is because HierarchyID regards America as

a descendant of itself. This does not create an issue for us, because the

aggregations are not pre-calculated. However, in some instances, you may

have to exclude America from the result set. This can easily be achieved by

adding an additional filter to the WHERE clause, as demonstrated in

Listing 12-21.

Listing 12-21.  Filtering the Current Node from Descendants

USE WideWorldImporters

GO

DECLARE @Region NVARCHAR(20) = 'America' ;

DECLARE @RegionHierarchy HIERARCHYID =

 (

Chapter 12 Working with Hierarchical Data and HierarchyID

375

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

 WHERE SalesAreaName = @Region

) ;

SELECT

 SUM(SalesYTD) AS TotalSalesYTD

 , SUM(CountOfSalesPeople) AS TotalSalesPeople

 �, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS

AverageSalesPerSalesPerson

 , SalesAreaName

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1

 AND SalesAreaHierarchy <> @RegionHierarchy

GROUP BY SalesAreaName ;

This query filters the result set to exclude the sales area, the

hierarchical node of which is equal to the hierarchical node that is being

passed to the IsDescendantOf() method. This technique allows us to use

the WITH ROLLUP clause on the GROUP BY, in conjunction with wrapping

SalesAreaName in an ISNULL() function, to produce a subtotal row for the

whole of America. This is demonstrated in Listing 12-22.

Listing 12-22.  Producing a Total Row for America

USE WideWorldImporters

GO

DECLARE @Region NVARCHAR(20) = 'America' ;

DECLARE @RegionHierarchy HIERARCHYID =

 (

 SELECT SalesAreaHierarchy

 FROM Sales.SalesAreaHierarchyID

Chapter 12 Working with Hierarchical Data and HierarchyID

376

 WHERE SalesAreaName = @Region

) ;

SELECT

 SUM(SalesYTD) AS TotalSalesYTD

 , SUM(CountOfSalesPeople) AS TotalSalesPeople

 �, SUM(SalesYTD) / SUM(CountOfSalesPeople) AS

AverageSalesPerSalesPerson

 , ISNULL(SalesAreaName, @Region)

FROM Sales.SalesAreaHierarchyID

WHERE SalesAreaHierarchy.IsDescendantOf(@RegionHierarchy) = 1

 AND SalesAreaHierarchy <> @RegionHierarchy

GROUP BY SalesAreaName WITH ROLLUP ;

The results of this query can be seen in Figure 12-14.

Figure 12-14.  Results of adding a total row

Chapter 12 Working with Hierarchical Data and HierarchyID

377

�Indexing HierarchyID Columns
There are no “special” index types that support HierarchyID, as there are

for XML or geospatial data types. Instead, the performance of HierarchyID

columns can be improved by using traditional clustered and nonclustered

indexes. When creating indexes to support HierarchyID, there are two

strategies that can be employed, depending on the nature of the queries

that will use the indexes.

By default, creating an index on a HierarchyID column will create a

depth-first index. This means that descendants will be stored close to their

parents. In our example, New York would be stored close to Eastern, which

in turn would be stored close to USA, and so on. The script in Listing 12-23

demonstrates how to create a clustered index on the SalesAreaHierarchy

column, which uses a depth-first approach.

Caution T he script first drops the primary key on the SalesAreaID
column, which implicitly drops the clustered index on this column.
The primary key name, in this case, is system-generated, however.
Therefore, to run this script, you must change the name of the
constraint, to reflect your own system.

Listing 12-23.  Creating a Depth-First Clustered Index

USE WideWorldImporters

GO

ALTER TABLE Sales.SalesAreaHierarchyID

 DROP CONSTRAINT PK__SalesAre__DB0A1ED5D7B258FB ;

GO

CREATE CLUSTERED INDEX SalesAreaHierarchyDepthFirst

 ON Sales.SalesAreaHierarchyID(SalesAreaHierarchy) ;

GO

Chapter 12 Working with Hierarchical Data and HierarchyID

378

We can see how SQL Server has organized this data,

by running the query in Listing 12-24. This query uses the undocumented

sys.physlocformatter() function to return the exact location of each

record, in the format FileID:PageID:SlotID.

Listing 12-24.  View Location of Rows

USE WideWorldImporters

GO

SELECT

 SalesAreaName

 , sys.fn_PhysLocFormatter(%%physloc%%) AS PhysicalLocation

FROM Sales.SalesAreaHierarchyID ;

This query returns the results shown in Figure 12-15. You can see that

each node is stored under its parent. This is even true for Spain, despite us

adding it after the other regions, which means its original location would

have been the final used slot in the page.

Chapter 12 Working with Hierarchical Data and HierarchyID

379

Figure 12-15.  Results of viewing row locations

Tip T he row’s physical location is likely to be different when you
run the query yourself.

Chapter 12 Working with Hierarchical Data and HierarchyID

380

The other possible indexing strategy is a breadth-first technique.

Here, sibling nodes will be stored close to each other, instead of storing

descendants close to each other. To implement a breadth-first indexing

strategy, we must add to our table an additional column that stores the

hierarchical level of each node. This column can be created and populated

by using the script in Listing 12-25.

Listing 12-25.  Adding a Level Column to Support Breadth-First

Indexing

USE WideWorldImporters

GO

ALTER TABLE Sales.SalesAreaHierarchyID ADD

 SalesAreaLevel INT NULL ;

GO

UPDATE Sales.SalesAreaHierarchyID

SET SalesAreaLevel = SalesAreaHierarchy.GetLevel() ;

Using the script in Listing 12-26, we can now create a clustered index,

which is first order by the hierarchical level of the node and then by the

HierarchyID column. This will cause siblings to be stored close to one

another.

Note T he script first drops the existing clustered index, because a
table can only support a single clustered index.

Chapter 12 Working with Hierarchical Data and HierarchyID

381

Listing 12-26.  Creating a Breadth-First Index

USE WideWorldImporters

GO

DROP INDEX SalesAreaHierarchyDepthFirst ON Sales.

SalesAreaHierarchyID ;

GO

CREATE CLUSTERED INDEX SalesAreaHierarchyBredthFirst

 �ON Sales.SalesAreaHierarchyID(SalesAreaLevel,

SalesAreaHierarchy) ;

Listing 12-27 demonstrates how we can use the same technique as in

Listing 12-24, to view the actual location of each node within the hierarchy.

This time, as well as returning the sales area name, we will also return the

SalesAreaLevel for easy analysis.

Listing 12-27.  View Rows Location with a Breadth-First Strategy

USE WideWorldImporters

GO

SELECT

 SalesAreaName

 , SalesAreaLevel

 , sys.fn_PhysLocFormatter(%%physloc%%) AS PhysicalLocation

FROM Sales.SalesAreaHierarchyID ;

The results of this query can be found in Figure 12-16. You will notice

that the order of rows has changed and that UK, Western Europe, Eastern

Europe, Canada, USA, and LATAM are now next to one another, as they are

all at Level 2 of the hierarchy.

Chapter 12 Working with Hierarchical Data and HierarchyID

382

�Summary
HierarchyID is created as a .NET class and implemented as a data

type in SQL Server. Using HierarchyID over a traditional approach to

modeling hierarchies in SQL Server has the benefits both of reducing

code complexity and improving performance. The HierarchyID data type

exposes several methods that can be used by developers to easily navigate

Figure 12-16.  Results of viewing row locations in a breadth-first
hierarchy

Chapter 12 Working with Hierarchical Data and HierarchyID

383

a hierarchy, insert new hierarchical nodes, or update existing nodes so that

they sit under a new parent.

The two most commonly used methods, in my experience, are the

ToString() method, which allows a developer to format a hierarchical

node as a human-readable string representation, and IsDescendantOf(),

which performs an evaluation of hierarchical node lineage and returns 1

when a node is a descendant of an input parameter and 0 if it is not.

The Read() and Write() methods offer data type conversion

functionality to SQLCLR, but these are not implemented in T-SQL, as the

CAST and CONVERT functions can easily be used instead.

When indexing HierarchyID columns, either a depth-first strategy or a

breadth-first strategy can be applied. Depth-first is the default option and

stores child nodes close to their parents. A breadth-first strategy requires

an additional column in the table, which stores the node’s level with the

hierarchy. This allows a multicolumn index to store sibling nodes close to

one another. The indexing option that you choose should reflect the nature

of the queries run against the HierarchyID column.

Chapter 12 Working with Hierarchical Data and HierarchyID

	Chapter 12: Working with Hierarchical Data and HierarchyID
	Hierarchical Data Use Cases
	Modeling Traditional Hierarchies
	Modeling Hierarchies with HierarchyID
	HierarchyID Methods
	Working with HierarchyID Methods
	Using ToString()
	Using Parse()
	Using GetRoot()
	Using GetLevel()
	Read() and Write()
	Using GetDescendant()
	Using GetReparentedValue()
	Using GetAncestor()
	Using IsDescendantOf()

	Indexing HierarchyID Columns
	Summary

