CHAPTER 7

CNN in TensorFlow

This chapter will demonstrate how to use TensorFlow to build a CNN
model. A CNN model can help you build an image classifier that can
predict/classify the images. In general, you create some layers in the model
architecture with initial values of weight and bias. Then you tune weight
and bias with the help of a training data set. There is another approach
that involves using a pretrained model such as InceptionV3 to classify
the images. You can use this transfer learning approach where you add
some layers (whose parameter s are trained) on top of layers of pretrained
models (with parameter values intact) to make very powerful classifiers.
In this chapter, I will use TensorFlow to show how to develop a
convolution network for various computer vision applications. It is easier
to express a CNN architecture as a graph of data flows.

Why TensorFlow for CNN Models?

In TensorFlow, images can be represented as three-dimensional arrays

or tensors of shape (height, width and channels). TensorFlow provides
the flexibility to quickly iterate, allows you to train models faster, and
enables you to run more experiments. When taking TensorFlow models to
production, you can run them on large-scale GPUs and TPUs.

© Navin Kumar Manaswi 2018 97
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_7

https://doi.org/10.1007/978-1-4842-3516-4_7

CHAPTER 7 CNN IN TENSORFLOW

TensorFlow Code for Building an Image
Classifier for MNIST Data

In this section, I'll take you through an example to understand how to
implement a CNN in TensorFlow.

The following code imports MNIST data sets with 28x28 grayscale
images of digits from the TensorFlow contrib package and loads all the
required libraries. Here, the aim is to build the classifier to predict the digit
given in the image.

from tensorflow.contrib.learn.python.learn.datasets.mnist
import read data_sets

from tensorflow.python.framework import ops

import tensorflow as tf

import numpy as np

You then start a graph session.

Start a graph session
sess = tf.Session()

You load the MNIST data and create the train and test sets.

Load data
from keras.datasets import mnist
(X_train, y train), (X test, y test) = mnist.load data()

You then normalize the train and test set features.

Z- score or Gaussian Normalization
X_train = X _train - np.mean(X_train) / X train.std()
X test = X test - np.mean(X_test) / X test.std()

As this is a multiclass classification problem, it is always better to use
the one-hot encoding of the output class values.

98

CHAPTER 7 CNN IN TENSORFLOW

Convert labels into one-hot encoded vectors
num_class = 10

train_labels = tf.one _hot(y train, num class)
test labels = tf.one_hot(y test, num class)

Let’s set the model parameters now as these images are grayscale.
Hence, the depth of image (channel) is 1.

Set model parameters

batch size = 784

samples =500

learning rate = 0.03

img width = X _train[o0].shape[0]

img_height = X_train[0].shape[1]

target size = max(train_labels) + 1

num _channels = 1 # greyscale = 1 channel

epoch = 200

no_channels = 1

convl features = 30

filt1 features = 5

conv2_features = 15

filt2 features = 3

max_pool sizel = 2 # NxN window for 1st max pool layer
max_pool size2

2 # NxN window for 2nd max pool layer
fully connected sizel = 150

99

CHAPTER 7 CNN IN TENSORFLOW

Let’s declare the placeholders for the model. The input data features,
target variable, and batch sizes can be changed for the training and
evaluation sets.

Declare model placeholders

x_input_shape = (batch_size, img width, img height, num_channels)
x_input = tf.placeholder(tf.float32, shape=x_input shape)

y _target = tf.placeholder(tf.int32, shape=(batch size))

eval input shape = (samples, img width, img height, num channels)
eval input = tf.placeholder(tf.float32, shape=eval input_shape)
eval target = tf.placeholder(tf.int32, shape=(samples))

Let’s declare the model variables’ weight and bias values for input and
hidden layer’s neurons.

Declare model variables

W1 = tf.Variable(tf.random normal([filt1 features,
filt1 features, no channels, convl features]))

b1 = tf.Variable(tf.ones([convl features]))

W2 = tf.Variable(tf.random normal([filt2 features,
filt2 features, convi features, conv2 features]))
b2 = tf.Variable(tf.ones([conv2 features]))

Let’s declare the model variables for fully connected layers and define
the weights and bias for these last 2 layers.

Declare model variables for fully connected layers

resulting width = img width // (max_pool sizel * max_pool size2)
resulting height = img height // (max_pool sizel * max_pool size2)
fulll input_size = resulting width * resulting height * conv2_

features

W3 = tf.Variable(tf.truncated normal([fulli input size,

fully connected sizel], stddev=0.1, dtype=tf.float32))

100

CHAPTER 7 CNN IN TENSORFLOW

b3 = tf.Variable(tf.truncated normal([fully connected sizei],
stddev=0.1, dtype=tf.float32))

W out = tf.Variable(tf.truncated normal([fully connected sizeil,
target size], stddev=0.1, dtype=tf.float32))

b out = tf.Variable(tf.truncated normal([target size],
stddev=0.1, dtype=tf.float32))

Let’s create a helper function to define the convolutional and max
pooling layers.

Define helper functions for the convolution and maxpool layers:
def conv_layer(x, W, b):
conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],
padding="SAME")
conv_with b = tf.nn.bias add(conv, b)
conv_out = tf.nn.relu(conv_with b)
return conv_out
def maxpool layer(conv, k=2):
return tf.nn.max_pool(conv, ksize=[1, k, k, 1],
strides=[1, k, k, 1], padding="SAME")

A neural network model is defined with two hidden layers and two
fully connected layers. A rectified linear unit is used as the activation
function for the hidden layers and the final output layers.

Initialize Model Operations

def my conv_net(input data):
First Conv-RelU-MaxPool Layer
conv_outl = conv_layer(input data, Wi, b1)
maxpool outl = maxpool layer(conv outl)

101

CHAPTER 7 CNN IN TENSORFLOW

Second Conv-RelLU-MaxPool Layer
conv_out2 = conv_layer(maxpool out1l, W2, b2)
maxpool out2 = maxpool layer(conv_out2)

Transform Output into a 1xN layer for next fully
connected layer

final conv_shape = maxpool out2.get shape().as list()
final shape = final conv_shape[1] * final conv_shape[2] *
final conv_shape[3]

flat output = tf.reshape(maxpool out2, [final conv_shape[0],
final shape])

First Fully Connected Layer

fully connected1l = tf.nn.relu(tf.add(tf.matmul(flat output,
W3), b3))

Second Fully Connected Layer

final model output = tf.add(tf.matmul(fully connectedi,

W out), b out)

return(final_model output)

model output = my conv_net(x_input)
test model output = my conv net(eval input)

You will use a softmax cross entropy function (tends to work better for
multiclass classification) to define the loss that operates on logits.

Declare Loss Function (softmax cross entropy)
loss = tf.reduce mean(tf.nn.sparse softmax cross entropy with_
logits(logits=model output, labels=y target))

Let’s define the train and test sets’ prediction function.

Create a prediction function
prediction = tf.nn.softmax(model output)
test prediction = tf.nn.softmax(test model output)

102

CHAPTER 7 CNN IN TENSORFLOW

To determine the model accuracy on each batch, let’s define the
accuracy function.

Create accuracy function

def get accuracy(logits, targets):
batch _predictions = np.argmax(logits, axis=1)
num_correct = np.sum(np.equal(batch predictions, targets))
return(100. * num_correct/batch_predictions.shape[0])

Let’s declare the training step and define the optimizer function.

Create an optimizer
my optimizer = tf.train.AdamOptimizer(learning rate, 0.9)
train_step = my_optimizer.minimize(loss)

Let’s initialize all the model variables declared earlier.

Initialize Variables
varInit = tf.global variables initializer()
sess.run(varInit)

Let’s start training the model and loop randomly through the batches
of data. You want to evaluate the model on the train and test set batches
and record the loss and accuracy.

Start training loop

train loss = []

train_acc = []

test acc = []

for i in range(epoch):
random_index = np.random.choice(len(X train), size=batch size)
random x = X_train[random_index]

random x = np.expand dims(random x, 3)

random y = train labels[random_index]

train dict = {x_input: random x, y target: random y}

103

CHAPTER 7 CNN IN TENSORFLOW

sess.run(train step, feed dict=train dict)

temp train loss, temp train preds = sess.run([loss,
prediction], feed dict=train dict)

temp_train_acc = get accuracy(temp train preds, random y)

eval index = np.random.choice(len(X_ test),
size=evaluation size)

eval x = X test[eval index]

eval x

np.expand_dims(eval_x, 3)

eval y = test labels[eval index]

test dict = {eval input: eval x, eval target: eval y}
test preds = sess.run(test prediction, feed dict=test dict)
temp_test acc = get accuracy(test preds, eval y)

The results of the model are recorded in the following format and
printed in the output:

Record and print results
train_loss.append(temp train loss)
train_acc.append(temp_train acc)

test _acc.append(temp test acc)

print('Epoch # {}. Train Loss: {:.2f}. Train Acc : {:.2f} .
temp test acc : {:.2f}'.format(i+1,temp train loss,

temp train acc,temp test acc))

Using a High-Level API for Building CNN
Models

TFLearn, TensorLayer, tflayers, TF-Slim, tf.contrib.learn, Pretty Tensor,
keras, and Sonnet are high-level TensorFlow APIs. If you use any of these
high-level APIs, you can build CNN models in a few lines of code. So, you
can explore any of these APIs for working smartly.

104

	Chapter 7: CNN in TensorFlow
	Why TensorFlow for CNN Models?
	TensorFlow Code for Building an Image Classifier for MNIST Data
	Using a High-Level API for Building CNN Models

