
69© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_5

CHAPTER 5

Regression to MLP
in Keras
You have been working on regression while solving machine learning

applications. Linear regression and nonlinear regression are used to

predict numeric targets, while logistic regression and other classifiers are

used to predict non-numeric target variables. In this chapter, I will discuss

the evolution of multilayer perceptrons.

Specifically, you will compare the accuracy generated by different

models with and without using Keras.

 Log-Linear Model
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

https://doi.org/10.1007/978-1-4842-3516-4_5

70

You will be using the Iris data set as the source of data. So, load the

data set from Seaborn.

The Iris data set has five attributes. You will be using the first four

attributes to predict the species, whose class is defined in the fifth attribute

of the data set.

Using scikit-learn’s function, split the testing and training data sets.

##################################

scikit Learn for (Log) Linear Regression

##################################

Use the model.fit function to train the model with the training

data set.

As the model is trained, you can predict the output of the test set.

Chapter 5 regression to MLp in Keras

71

 Keras Neural Network for Linear Regression
Now, let’s build a Keras neural network model for linear regression.

Use the model.fit function to train the model with the training

data set.

As the model is trained, you can predict the output of the test set.

Print the accuracy obtained by both models.

Chapter 5 regression to MLp in Keras

72

If you run the code, you will see the following output:

Chapter 5 regression to MLp in Keras

73

 Logistic Regression
In this section, I will share an example for the logistic regression so you can

compare the code in scikit-learn with that in Keras (see Figure 5-1).

Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

You will be using the Iris data set as the source of data. So, load the

data set from scikit-learn.

Using scikit-learn’s function, split the testing and training data sets.

Figure 5-1. Logistic regression used for classification

Chapter 5 regression to MLp in Keras

74

 scikit-learn for Logistic Regression
Use the model.fit function to train the model with the training data set.

After the model is trained, you can predict the output of the test set.

##

 Keras Neural Network for Logistic Regression
One-hot encoding transforms features to a format that works better with

the classification and regression algorithms.

Chapter 5 regression to MLp in Keras

75

Use the model.fit function to train the model with the training data set.

Use the model.evaluate function to evaluate the performance of the

model.

Print the accuracy obtained by both models.

Accuracy for scikit-learn based model

The accuracy is 0.83.

Accuracy for keras model

The accuracy is 0.99.

Chapter 5 regression to MLp in Keras

76

If you run the code, you will see the following output:

To give the real-life example, I will discuss some code that uses the

Fashion MNIST data set, which is a data set of Zalando.com’s images

consisting of a training set of 60,000 examples and a test set of 10,000

examples. Each example is a 28×28 grayscale image associated with a label

from ten classes.

Chapter 5 regression to MLp in Keras

77

 Fashion MNIST Data: Logistic Regression
in Keras
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

As mentioned, you will be using the Fashion MNIST data set. Store the

data and the label in two different variables.

Normalize the data set, as shown here:

Chapter 5 regression to MLp in Keras

78

Define the model, as shown here:

Save the model in an .h5 file (so that you can use it later directly with

the load_model() function from keras.models) and print the accuracy of

the model in the test set, as shown here:

Chapter 5 regression to MLp in Keras

79

If you run the previous code, you will see the following output:

('train-images-idx3-ubyte.gz', <http.client.HTTPMessage object

at 0x00000171338E2B38>)

Layer (type) Output Shape Param #

===

dense_59 (Dense) (None, 256) 200960

dropout_10 (Dropout) (None, 256) 0

dense_60 (Dense) (None, 512) 131584

dense_61 (Dense) (None, 10) 5130

===

Total params: 337,674

Trainable params: 337,674

Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples

Epoch 1/2

60000/60000 [==============================] - loss: 0.5188 -

acc: 0.8127 - val_loss: 0.4133 - val_acc: 0.8454

Epoch 2/2

60000/60000 [==============================] - loss: 0.3976 -

acc: 0.8545 - val_loss: 0.4010 - val_acc: 0.8513

Test loss: 0.400989927697

Test accuracy: 0.8513

Chapter 5 regression to MLp in Keras

80

 MLPs on the Iris Data
A multilayer perceptron is a minimal neural network model. In this

section, I’ll show you the code.

 Write the Code
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Load the data set by reading a CSV file using Pandas.

Assign numeric values to the classes of the data set.

Convert the data frame to an array.

Chapter 5 regression to MLp in Keras

81

Split the data and the target and store them in two different variables.

Change the target format using Numpy.

 Build a Sequential Keras Model
Here you will build a multilayer perceptron model with one hidden layer.

• Input layer: The input layer contains four neurons,

representing the features of an iris (sepal length, etc.).

• Hidden layer: The hidden layer contains ten neurons,

and the activation uses ReLU.

• Output layer: The output layer contains three neurons,

representing the classes of the Iris softmax layer.

Chapter 5 regression to MLp in Keras

82

Compile the model and choose an optimizer and loss function for

training and optimizing your data, as shown here:

Train the model using the model.fit function, as shown here:

Load and prepare the test data, as shown here:

Convert the string value to a numeric value, as shown here:

Convert the data frame to an array, as shown here:

Split x and y, in other words, the feature set and target set, as shown here:

Chapter 5 regression to MLp in Keras

83

Make a prediction on the trained model, as shown here:

Calculate the accuracy, as shown here:

Print the accuracy generated by the model, as shown here:

If you run the code, you will see the following output:

Epoch 1/100

120/120 [==============================] - 0s - loss: 2.7240 -

acc: 0.3667

Epoch 2/100

120/120 [==============================] - 0s - loss: 2.4166 -

acc: 0.3667

Epoch 3/100

120/120 [==============================] - 0s - loss: 2.1622 -

acc: 0.4083

Epoch 4/100

120/120 [==============================] - 0s - loss: 1.9456 -

acc: 0.6583

Chapter 5 regression to MLp in Keras

84

Epoch 98/100

120/120 [==============================] - 0s - loss: 0.5571 -

acc: 0.9250

Epoch 99/100

120/120 [==============================] - 0s - loss: 0.5554 -

acc: 0.9250

Epoch 100/100

120/120 [==============================] - 0s - loss: 0.5537 -

acc: 0.9250

 MLPs on MNIST Data (Digit Classification)
MNIST is the standard data set to predict handwritten digits. In this

section, you will see how you can apply the concept of multilayer

perceptrons and make a handwritten digit recognition system.

Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Sone important variables are defined.

Chapter 5 regression to MLp in Keras

85

Load the data set using the mnist.load_data() function.

The types of the training set and the test set are converted to float32.

The data sets are normalized; in other words, they are set to a Z-score.

Display the number of the training samples present in the data set and

also the number of test sets available.

Convert class vectors to binary class matrices.

Chapter 5 regression to MLp in Keras

86

Define the sequential model of the multilayer perceptron.

Use an optimizer.

The function to optimize is the cross entropy between the true label

and the output (softmax) of the model.

Use the model.fit function to train the model.

Using the model, evaluate the function to evaluate the performance of

the model.

Print the accuracy generated in the model.

Chapter 5 regression to MLp in Keras

87

If you run the code, you will get the following output:

60000 train samples

10000 test samples

Train on 60000 samples, validate on 10000 samples

Epoch 1/20

13s - loss: 0.2849 - acc: 0.9132 - val_loss: 0.1149 - val_acc:

0.9652

Epoch 2/20

11s - loss: 0.1299 - acc: 0.9611 - val_loss: 0.0880 - val_acc:

0.9741

Epoch 3/20

11s - loss: 0.0998 - acc: 0.9712 - val_loss: 0.1121 - val_acc:

0.9671

Epoch 4/20

Epoch 18/20

14s - loss: 0.0538 - acc: 0.9886 - val_loss: 0.1241 - val_acc:

0.9814

Epoch 19/20

12s - loss: 0.0522 - acc: 0.9888 - val_loss: 0.1154 - val_acc:

0.9829

Epoch 20/20

13s - loss: 0.0521 - acc: 0.9891 - val_loss: 0.1183 - val_acc:

0.9824

Test score: 0.118255248802

Test accuracy: 0.9824

Now, it is time to create a data set and use a multilayer perceptron.

Here you will create your own data set using the random function and run

the multilayer perceptron model on the generated data.

Chapter 5 regression to MLp in Keras

88

 MLPs on Randomly Generated Data
Create a new Python file and import the following packages. Make sure

you have Keras installed on your system.

Generate the data using the random function.

Create a sequential model.

Compile the model.

Use the model.fit function to train the model.

Chapter 5 regression to MLp in Keras

89

Evaluate the performance of the model using the model.evaluate

function.

If you run the code, you will get the following output:

Epoch 1/20

1000/1000 [==============================] - 0s - loss:

2.4432 - acc: 0.0970

Epoch 2/20

1000/1000 [==============================] - 0s - loss:

2.3927 - acc: 0.0850

Epoch 3/20

1000/1000 [==============================] - 0s - loss:

2.3361 - acc: 0.1190

Epoch 4/20

1000/1000 [==============================] - 0s - loss:

2.3354 - acc: 0.1000

Epoch 19/20

1000/1000 [==============================] - 0s - loss:

2.3034 - acc: 0.1160

Epoch 20/20

1000/1000 [==============================] - 0s - loss:

2.3055 - acc: 0.0980

100/100 [==============================] - 0s

In this chapter, I discussed how to build linear, logistic, and MLP

models in Keras in a systemic way.

Chapter 5 regression to MLp in Keras

	Chapter 5: Regression to MLP in Keras
	Log-Linear Model
	Keras Neural Network for Linear Regression
	Logistic Regression
	scikit-learn for Logistic Regression
	Keras Neural Network for Logistic Regression
	Fashion MNIST Data: Logistic Regression in Keras

	MLPs on the Iris Data
	Write the Code
	Build a Sequential Keras Model

	MLPs on MNIST Data (Digit Classification)
	MLPs on Randomly Generated Data

