
45© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_3

CHAPTER 3

Multilayer Perceptron
Before you start learning about multilayered perceptron, you need to get a

big-picture view of artificial neural networks. That’s what I’ll start with in

this chapter.

 Artificial Neural Network
An artificial neural network (ANN) is a computational network (a system

of nodes and the interconnection between nodes) inspired by biological

neural networks, which are the complex networks of neurons in human

brains (see Figure 3-1). The nodes created in the ANN are supposedly

programmed to behave like actual neurons, and hence they are artificial

neurons. Figure 3-1 shows the network of the nodes (artificial neurons)

that make up the artificial neural network.

https://doi.org/10.1007/978-1-4842-3516-4_3

46

The number of layers and the number of neurons/nodes per layer can

be the main structural component of an artificial neural network. Initially,

the weights (representing the interconnection) and bias are not good

enough to make the decision (classification, etc.). It is like the brain of a

baby who has no prior experience. A baby learns from experiences so as to

be a good decision-maker (classifier). Experiences/data (labeled) helps the

neural network of brains tune the (neural) weights and bias. The artificial

neural network goes through the same process. The weights are tuned per

iteration to create a good classifier. Since tuning and thereby getting the

correct weights by hand for thousands of neurons is very time-consuming,

you use algorithms to perform these duties.

That process of tuning the weights is called learning or training. This is

the same as what humans do on a daily basis. We try to enable computers

to perform like humans.

Let’s start exploring the simplest ANN model.

A typical neural network contains a large number of artificial neurons

called units arranged in a series of different layers: input layer, hidden

layer, and output layer (Figure 3-2).

Figure 3-1. Artificial neural network

Chapter 3 Multilayer perCeptron

47

Neural networks are connected, which means each neuron in the

hidden layer is fully connected to every neuron in the previous input

layer and to its next output layer. A neural network learns by adjusting the

weights and biases in each layer iteratively to get the optimal results.

 Single-Layer Perceptron
A single-layer perceptron is a simple linear binary classifier. It takes inputs

and associated weights and combines them to produce output that is used

for classification. It has no hidden layers. Logistic regression is the single-

layer perceptron.

 Multilayer Perceptron
A multilayer perceptron (MLP) is a simple example of feedback artificial

neural networks. An MLP consists of at least one hidden layer of nodes

other than the input layer and the output layer. Each node of a layer other

Figure 3-2. Neural network

Chapter 3 Multilayer perCeptron

48

than the input layer is called a neuron that uses a nonlinear activation

function such as sigmoid or ReLU. An MLP uses a supervised learning

technique called backpropagation for training, while minimizing the loss

function such as cross entropy. It uses an optimizer for tuning parameters

(weight and bias). Its multiple layers and nonlinear activation distinguish

an MLP from a linear perceptron.

A multilayer perceptron is a basic form of a deep neural network.

Before you learn about MLPs, let’s look at linear models and logistic

models. You can appreciate the subtle difference between linear, logistic,

and MLP models in terms of complexity.

Figure 3-3 shows a linear model with one input (X) and one output (Y).

Figure 3-3. Single-input vector

The single-input model has a vector X with weight W and bias b. The

output, Y, is WX + b, which is the linear model.

Figure 3-4 shows multiple inputs (X1 and X2) and one output (Y).

Figure 3-4. Linear model

Chapter 3 Multilayer perCeptron

49

This linear model has two input features: X1 and X2 with the

corresponding weights to each input feature being W1, W2, and bias b. The

output, Y, is W1X1 + W2X2 + b.

 Logistic Regression Model
Figure 3-5 shows the learning algorithm that you use when the output label

Y is either 0 or 1 for a binary classification problem. Given an input feature

vector X, you want the probability that Y = 1 given the input feature X. This

is also called as a shallow neural network or a single-layer (no hidden layer;

only and output layer) neural network. The output layer, Y, is σ (Z), where Z

is WX + b and σ is a sigmoid function.

Figure 3-5. One input (X) and one output (Y)

Figure 3-6 shows the learning algorithm that you use when the output

label Y is either 0 or 1 for a binary classification problem.

Figure 3-6. Multiple inputs (X1 and X1) and one output (Y)

Chapter 3 Multilayer perCeptron

50

Given input feature vectors X1 and X2, you want the probability that

Y = 1 given the input features. This is also called a perceptron. The output

layer, Y, is σ (Z), where Z is WX + b.

X

X

W W

W W

X

X

b

b

W X W X1

2

1 2

3 4

1

2

1

2

1 1 2é

ë
ê

ù

û
ú®

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú®

* + *
s

22 1

3 1 4 2 2

+
* + * +

é

ë
ê

ù

û
ú

æ

è
ç

ö

ø
÷

b

W X W X b

Figure 3-7 shows a two-layer neural network, with a hidden layer and

an output layer. Consider that you have two input feature vectors X1 and X2

connecting to two neurons, X1’ and X2’. The parameters (weights) associated

from the input layer to the hidden layer are w1, w2, w3, w4, b1, b2.

Figure 3-7. Two-layer neural network

Chapter 3 Multilayer perCeptron

51

X1’ and X2’ compute the linear combination (Figure 3-8).

X

X

w w

w w

X

X

b

b

1

2

1 2

3 4

1

2

1

2

’

’

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

(2×1)(2×2)(2×1)(2×1) is the dimension of the input and hidden layers.

Figure 3-8. Computation in the neural network

The linear input X1’ and X2’ passes through the activation unit a1 and

a2 in the hidden layer.

a1 is σ (X1’) and a2 is σ(X2’), so you can also write the equation as follows:

a

a

X

X

1

2

1

2

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ús
’

’

Chapter 3 Multilayer perCeptron

52

The value forward propagates from the hidden layer to the output

layer. Inputs a1 and a2 and parameters w5, w6, and b3 pass through the

output layer a’ (Figure 3-9).

Figure 3-9. Forward propagation

a’=[]é
ë
ê

ù

û
ú +[]w w

a

a
b5 6

1

2
3 creates a linear combination of (w5*a1 +

w6*a2) + b3, which will pass through a nonlinear sigmoid function to the

final output layer, Y.

y = ()s a’

Let’s say the initial model structure in one dimension is Y = w*X + b,

where the parameters w and b are weights and bias.

Chapter 3 Multilayer perCeptron

53

Consider the loss function L(w, b) = 0.9 for the initial value of the

parameters w = 1 and b = 1. You get this output: y = 1*X+1 & L(w ,b) = 0.9.

The objective is to minimize the loss by adjusting the parameters w

and b. The errors will be backpropagated from the output layer to the

hidden layer to the input layer to adjust the parameter through a learning

rate and optimizer. Finally, we want to build a model (regressor) that can

explain Y in terms of X.

To start the process of build a model, we initialize weight and bias. For

convenience, w = 1, b = 1 (Initial value), (optimizer) stochastic gradient

descent with learning rate (α = 0.01).

Here is step 1: Y = 1 * X + 1.

1.20 0.35

The parameters are adjusted to w = 1.20 and b = 0.35.

Here is step 2: Y1 = 1.20*X + 0.35.

1.24 0.31

The parameters are adjusted to w = 1.24 and b = 0.31.

Here is step 3: Y1 = 1.24*X + 0.31.

1.25 0.30

Chapter 3 Multilayer perCeptron

54

After some iterations, the weight and bias become stable. As you see,

the initial changes are high while tuning. After some iterations, the change

is not significant.

L(w, b) gets minimized for w = 1.26 and b = 0.29; hence, the final model

becomes the following:

Y = 1.26 * X + 0.29

Similarly, in two dimensions, you can consider the parameters, weight

matrix and bias vector.

Let’s assume that initial weight matrix and bias vector as W =
é

ë
ê

ù

û
ú

1 1

1 1

and B =
é

ë
ê
ù

û
ú
1

1
.

You iterate and backpropagate the error to adjust w and b.

Y W= =
é

ë
ê

ù

û
ú *[]+ é

ë
ê
ù

û
ú

1 1

1 1

1

1
X is the initial model. Weight matrix (2x2)

and bias matrix(2x1) are tuned in each iteration. So, we can see change in

weight and bias matrices

Here is step 1:

W B= , =
0 7 0 8

0 6 1 2

2 4

3 2

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Chapter 3 Multilayer perCeptron

55

Here is step 2:

0 7 0 8

0 6 1 2

2 4

3 2

. .

. .

.

.

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

W B= , =
0 6 0 7

0 4 1 3

2 8

3 8

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Here is step 3:

0 6 0 7

0 4 1 3

2 8

3 8

. .

. .

.

.

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú

You can notice change in weight matrix(2x2) and bias matrix(2x1) in
the iteration.

W B= , =
0 5 0 6

0 3 1 3

2 9

4 0

. .

. .

.

.

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú

Chapter 3 Multilayer perCeptron

56

The final model after w and b are adjusted is as follows:

Y =
é

ë
ê

ù

û
ú *[]+ é

ë
ê

ù

û
ú

0 4 0 5

0 2 1 3

3 0

4 0

. .

. .

.

.
X

In this chapter, you learned how weight and bias are tuned in each

iteration while keeping the aim of minimization of loss functions. That is

done with the help of optimizers such as stochastic gradient descent.

In this chapter, we have understood ANN and MLP as the basic deep

learning model. Here, we can see MLP as the natural progression from

linear and logistic regression. We have seen how weight and bias are

tuned in every iteration which happens in backpropagation. Without

going into details of backpropagation, we have seen the action/result of

backpropagation. In next two chapters, we can learn how to build MLP

models in TensorFlow and in keras.

Chapter 3 Multilayer perCeptron

	Chapter 3: Multilayer Perceptron
	Artificial Neural Network
	Single-Layer Perceptron
	Multilayer Perceptron
	Logistic Regression Model

