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CHAPTER 3

Multilayer Perceptron
Before you start learning about multilayered perceptron, you need to get a 

big-picture view of artificial neural networks. That’s what I’ll start with in 

this chapter.

 Artificial Neural Network
An artificial neural network (ANN) is a computational network (a system 

of nodes and the interconnection between nodes) inspired by biological 

neural networks, which are the complex networks of neurons in human 

brains (see Figure 3-1). The nodes created in the ANN are supposedly 

programmed to behave like actual neurons, and hence they are artificial 

neurons. Figure 3-1 shows the network of the nodes (artificial neurons) 

that make up the artificial neural network.
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The number of layers and the number of neurons/nodes per layer can 

be the main structural component of an artificial neural network. Initially, 

the weights (representing the interconnection) and bias are not good 

enough to make the decision (classification, etc.). It is like the brain of a 

baby who has no prior experience. A baby learns from experiences so as to 

be a good decision-maker (classifier). Experiences/data (labeled) helps the 

neural network of brains tune the (neural) weights and bias. The artificial 

neural network goes through the same process. The weights are tuned per 

iteration to create a good classifier. Since tuning and thereby getting the 

correct weights by hand for thousands of neurons is very time-consuming, 

you use algorithms to perform these duties.

That process of tuning the weights is called learning or training. This is 

the same as what humans do on a daily basis. We try to enable computers 

to perform like humans.

Let’s start exploring the simplest ANN model.

A typical neural network contains a large number of artificial neurons 

called units arranged in a series of different layers: input layer, hidden 

layer, and output layer (Figure 3-2).

Figure 3-1. Artificial neural network
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Neural networks are connected, which means each neuron in the 

hidden layer is fully connected to every neuron in the previous input 

layer and to its next output layer. A neural network learns by adjusting the 

weights and biases in each layer iteratively to get the optimal results.

 Single-Layer Perceptron
A single-layer perceptron is a simple linear binary classifier. It takes inputs 

and associated weights and combines them to produce output that is used 

for classification. It has no hidden layers. Logistic regression is the single- 

layer perceptron.

 Multilayer Perceptron
A multilayer perceptron (MLP) is a simple example of feedback artificial 

neural networks. An MLP consists of at least one hidden layer of nodes 

other than the input layer and the output layer. Each node of a layer other 

Figure 3-2. Neural network
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than the input layer is called a neuron that uses a nonlinear activation 

function such as sigmoid or ReLU. An MLP uses a supervised learning 

technique called backpropagation for training, while minimizing the loss 

function such as cross entropy. It uses an optimizer for tuning parameters 

(weight and bias). Its multiple layers and nonlinear activation distinguish 

an MLP from a linear perceptron.

A multilayer perceptron is a basic form of a deep neural network.

Before you learn about MLPs, let’s look at linear models and logistic 

models. You can appreciate the subtle difference between linear, logistic, 

and MLP models in terms of complexity.

Figure 3-3 shows a linear model with one input (X) and one output (Y).

Figure 3-3. Single-input vector

The single-input model has a vector X with weight W and bias b. The 

output, Y, is WX + b, which is the linear model.

Figure 3-4 shows multiple inputs (X1 and X2) and one output (Y).

Figure 3-4. Linear model
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This linear model has two input features: X1 and X2 with the 

corresponding weights to each input feature being W1, W2, and bias b. The 

output, Y, is W1X1 + W2X2 + b.

 Logistic Regression Model
Figure 3-5 shows the learning algorithm that you use when the output label 

Y is either 0 or 1 for a binary classification problem. Given an input feature 

vector X, you want the probability that Y = 1 given the input feature X. This 

is also called as a shallow neural network or a single-layer (no hidden layer; 

only and output layer) neural network. The output layer, Y, is σ (Z), where Z 

is WX + b and σ is a sigmoid function.

Figure 3-5. One input (X) and one output (Y)

Figure 3-6 shows the learning algorithm that you use when the output 

label Y is either 0 or 1 for a binary classification problem.

Figure 3-6. Multiple inputs (X1 and X1) and one output (Y)
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Given input feature vectors X1 and X2, you want the probability that 

Y = 1 given the input features. This is also called a perceptron. The output 

layer, Y, is σ (Z), where Z is WX + b.
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Figure 3-7 shows a two-layer neural network, with a hidden layer and 

an output layer. Consider that you have two input feature vectors X1 and X2 

connecting to two neurons, X1’ and X2’. The parameters (weights) associated 

from the input layer to the hidden layer are w1, w2, w3, w4, b1, b2.

Figure 3-7. Two-layer neural network
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X1’ and X2’ compute the linear combination (Figure 3-8).
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(2×1)(2×2)(2×1)(2×1) is the dimension of the input and hidden layers.

Figure 3-8. Computation in the neural network

The linear input X1’ and X2’ passes through the activation unit a1 and 

a2 in the hidden layer.

a1 is σ (X1’) and a2 is σ(X2’), so you can also write the equation as follows:
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The value forward propagates from the hidden layer to the output 

layer. Inputs a1 and a2 and parameters w5, w6, and b3 pass through the 

output layer a’ (Figure 3-9).

Figure 3-9. Forward propagation
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3  creates a linear combination of (w5*a1 + 

w6*a2) + b3, which will pass through a nonlinear sigmoid function to the 

final output layer, Y.

y = ( )s a’

Let’s say the initial model structure in one dimension is Y = w*X + b, 

where the parameters w and b are weights and bias.
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Consider the loss function L(w, b) = 0.9 for the initial value of the 

parameters w = 1 and b = 1. You get this output: y = 1*X+1 & L(w ,b) = 0.9.

The objective is to minimize the loss by adjusting the parameters w 

and b. The errors will be backpropagated from the output layer to the 

hidden layer to the input layer to adjust the parameter through a learning 

rate and optimizer. Finally, we want to build a model (regressor) that can 

explain Y in terms of X.

To start the process of build a model, we initialize weight and bias. For 

convenience, w = 1, b = 1 (Initial value), (optimizer) stochastic gradient 

descent with learning rate (α = 0.01).

Here is step 1: Y = 1 * X + 1.

 

1.20               0.35

The parameters are adjusted to w = 1.20 and b = 0.35.

Here is step 2: Y1 = 1.20*X + 0.35.

 

1.24               0.31

The parameters are adjusted to w = 1.24 and b = 0.31.

Here is step 3: Y1 = 1.24*X + 0.31.

 

1.25               0.30
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After some iterations, the weight and bias become stable. As you see, 

the initial changes are high while tuning. After some iterations, the change 

is not significant.

L(w, b) gets minimized for w = 1.26 and b = 0.29; hence, the final model 

becomes the following:

Y = 1.26 * X + 0.29

Similarly, in two dimensions, you can consider the parameters, weight 

matrix and bias vector.
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You iterate and backpropagate the error to adjust w and b.
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X  is the initial model. Weight matrix (2x2) 

and bias matrix(2x1) are tuned in each iteration. So, we can see change in 

weight and bias matrices

Here is step 1:
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Here is step 2:
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Here is step 3:
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You can notice change in weight matrix(2x2) and bias matrix(2x1) in 
the iteration.
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The final model after w and b are adjusted is as follows:
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In this chapter, you learned how weight and bias are tuned in each 

iteration while keeping the aim of minimization of loss functions. That is 

done with the help of optimizers such as stochastic gradient descent.

In this chapter, we have understood ANN and MLP as the basic deep 

learning model. Here, we can see MLP as the natural progression from 

linear and logistic regression. We have seen how weight and bias are 

tuned in every iteration which happens in backpropagation. Without 

going into details of backpropagation, we have seen the action/result of 

backpropagation. In next two chapters, we can learn how to build MLP 

models in TensorFlow and in keras.
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