
31© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_2

CHAPTER 2

Understanding and
Working with Keras
Keras is a compact and easy-to-learn high-level Python library for deep

learning that can run on top of TensorFlow (or Theano or CNTK). It

allows developers to focus on the main concepts of deep learning, such

as creating layers for neural networks, while taking care of the nitty-gritty

details of tensors, their shapes, and their mathematical details. TensorFlow

(or Theano or CNTK) has to be the back end for Keras. You can use Keras

for deep learning applications without interacting with the relatively

complex TensorFlow (or Theano or CNTK). There are two major kinds

of framework: the sequential API and the functional API. The sequential

API is based on the idea of a sequence of layers; this is the most common

usage of Keras and the easiest part of Keras. The sequential model can be

considered as a linear stack of layers.

In short, you create a sequential model where you can easily add

layers, and each layer can have convolution, max pooling, activation, drop-

out, and batch normalization. Let’s go through major steps to develop

deep learning models in Keras.

https://doi.org/10.1007/978-1-4842-3516-4_2

32

�Major Steps to Deep Learning Models
The four core parts of deep learning models in Keras are as follows:

	 1.	 Define the model. Here you create a sequential

model and add layers. Each layer can contain one

or more convolution, pooling, batch normalization,

and activation function.

	 2.	 Compile the model. Here you apply the loss

function and optimizer before calling the compile()

function on the model.

	 3.	 Fit the model with training data. Here you train the

model on the test data by calling the fit() function

on the model.

	 4.	 Make predictions. Here you use the model to

generate predictions on new data by calling

functions such as evaluate() and predict().

There are eight steps to the deep learning process in Keras:

	 1.	 Load the data.

	 2.	 Preprocess the data.

	 3.	 Define the model.

	 4.	 Compile the model.

	 5.	 Fit the model.

	 6.	 Evaluate the model.

	 7.	 Make the predictions.

	 8.	 Save the model.

Chapter 2 Understanding and Working with Keras

33

�Load Data
Here is how you load data:

�Preprocess the Data
Here is how you preprocess data:

Chapter 2 Understanding and Working with Keras

34

�Define the Model
Sequential models in Keras are defined as a sequence of layers. You

create a sequential model and then add layers. You need to ensure the

input layer has the right number of inputs. Assume that you have 3,072

input variables; then you need to create the first hidden layer with 512

nodes/neurons. In the second hidden layer, you have 120 nodes/neurons.

Finally, you have ten nodes in the output layer. For example, an image

maps onto ten nodes that shows the probability of being label1 (airplane),

label2 (automobile), label3 (cat), …, label10 (truck). The node of highest

probability is the predicted class/label.

One image has three channels (RGB), and in each channel, the

image has 32×32 = 1024 pixels. So, each image has 3×1024 = 3072 pixels

(features/X/inputs).

With the help of 3,072 features, you need to predict the probability of

label1 (Digit 0), label2 (Digit 1), and so on. This means the model predicts

ten outputs (Digits 0–9) where each output represents the probability of

the corresponding label. The last activation function (sigmoid, as shown

earlier) gives 0 for nine outputs and 1 for only one output. That label is the

predicted class for the image (Figure 2-1).

For example, 3,072 features ➤ 512 nodes ➤ 120 nodes ➤ 10 nodes.

Chapter 2 Understanding and Working with Keras

35

The next question is, how do you know the number of layers to use and

their types? No one has the exact answer. What’s best for evaluation metrics is

that you decide the optimum number of layers and the parameters and steps

in each layer. A heuristics approach is also used. The best network structure

is found through a process of trial-and-error experimentation. Generally, you

need a network large enough to capture the structure of the problem.

Figure 2-1.  Defining the model

Chapter 2 Understanding and Working with Keras

36

In this example, you will use a fully connected network structure with

three layers. A dense class defines fully connected layers.

In this case, you initialize the network weights to a small random

number generated from a uniform distribution (uniform) in this

case between 0 and 0.05 because that is the default uniform weight

initialization in Keras. Another traditional alternative would be normal for

small random numbers generated from a Gaussian distribution. You use or

snap to a hard classification of either class with a default threshold of 0.5.

You can piece it all together by adding each layer.

�Compile the Model
Having defined the model in terms of layers, you need to declare the loss

function, the optimizer, and the evaluation metrics. When the model is

proposed, the initial weight and bias values are assumed to be 0 or 1, a

random normally distributed number, or any other convenient numbers.

But the initial values are not the best values for the model. This means the

initial values of weight and bias are not able to explain the target/label in

terms of predictors (Xs). So, you want to get the optimal value for the model.

The journey from initial values to optimal values needs a motivation, which

will minimize the cost function/loss function. The journey needs a path

(change in each iteration), which is suggested by the optimizer. The journey

also needs an evaluation measurement, or evaluation metrics.

Popular loss functions are binary cross entropy, categorical cross

entropy, mean_squared_logarithmic_error and hinge loss. Popular

optimizers are stochastic gradient descent (SGD), RMSProp, adam,

adagrad, and adadelta. Popular evaluation metrics are accuracy, recall,

and F1 score.

Chapter 2 Understanding and Working with Keras

37

In short, this step is aimed at tuning the weights and biases based on

loss functions through iterations based on the optimizer evaluated by

metrics such as accuracy.

�Fit the Model
Having defined and compiled the model, you need to make predications

by executing the model on some data. Here you need to specify the

epochs; these are the number of iterations for the training process to run

through the data set and the batch size, which is the number of instances

that are evaluated before a weight update. For this problem, the program

will run for a small number of epochs (10), and in each epoch, it will

complete 50(=50,000/1,000) iterations where the batch size is 1,000 and the

training data set has 50,000 instances/images. Again, there is no hard rule

to select the batch size. But it should not be very small, and it should be

much less than the size of the training data set to consume less memory.

Chapter 2 Understanding and Working with Keras

38

�Evaluate Model
Having trained the neural networks on the training data sets, you need

to evaluate the performance of the network. Note that this will only give

you an idea of how well you have modeled the data set (e.g., the train

accuracy), but you won’t know how well the algorithm might perform

on new data. This is for simplicity, but ideally, you could separate your

data into train and test data sets for the training and evaluation of your

model. You can evaluate your model on your training data set using the

evaluation() function on your model and pass it the same input and

output used to train the model. This will generate a prediction for each

input and output pair and collect scores, including the average loss and

any metrics you have configured, such as accuracy.

�Prediction
Once you have built and evaluated the model, you need to predict for

unknown data.

Chapter 2 Understanding and Working with Keras

39

�Save and Reload the Model
Here is the final step:

�Optional: Summarize the Model
Now let’s see how to summarize the model.

Chapter 2 Understanding and Working with Keras

40

�Additional Steps to Improve Keras Models
Here are some more steps to improve your models:

	 1.	 Sometimes, the model building process does not

complete because of a vanishing or exploding

gradient. If this is the case, you should do the

following:

	 2.	 Model the output shape.

�#Shape of the n-dim array (output of the model

at the current position)

 model.output_shape

	 3.	 Model the summary representation.

model.summary()

	 4.	 Model the configuration.

model.get_config()

	 5.	 List all the weight tensors in the model.

model.get_weights()

Here I am sharing the complete code for the Keras model. Can you

attempt to explain it?

Chapter 2 Understanding and Working with Keras

41

Chapter 2 Understanding and Working with Keras

42

�Keras with TensorFlow
Keras provides high-level neural networks by leveraging a powerful and

lucid deep learning library on top of TensorFlow/Theano. Keras is a great

addition to TensorFlow as its layers and models are compatible with pure-

TensorFlow tensors. Moreover, it can be used alongside other TensorFlow

libraries.

Here are the steps involved in using Keras for TensorFlow:

	 1.	 Start by creating a TensorFlow session and

registering it with Keras. This means Keras will

use the session you registered to initialize all the

variables that it creates internally.

import TensorFlow as tf

sess = tf.Session()

from keras import backend as K

K.set_session(sess)

	 2.	 Keras modules such as the model, layers, and

activation are used to build models. The Keras

engine automatically converts these modules into

the TensorFlow-equivalent script.

	 3.	 Other than TensorFlow, Theano and CNTK can be

used as back ends to Keras.

	 4.	 A TensorFlow back end has the convention of

making the input shape (to the first layer of your

network) in depth, height, width order, where depth

can mean the number of channels.

Chapter 2 Understanding and Working with Keras

43

	 5.	 You need to configure the keras.json file correctly

so that it uses the TensorFlow back end. It should

look something like this:

{

 "backend": "theano",

 "epsilon": 1e-07,

 "image_data_format": "channels_first",

 "floatx": "float32"

}

In next chapters, you will learn how to leverage Keras for working on

CNN, RNN, LSTM, and other deep learning activities.

Chapter 2 Understanding and Working with Keras

	Chapter 2: Understanding and Working with Keras
	Major Steps to Deep Learning Models
	Load Data
	Preprocess the Data
	Define the Model
	Compile the Model
	Fit the Model
	Evaluate Model
	Prediction
	Save and Reload the Model
	Optional: Summarize the Model

	Additional Steps to Improve Keras Models
	Keras with TensorFlow

