
171© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_12

CHAPTER 12

Face Detection and
Recognition
Face detection is the process of detecting a face in an image or video.

Face recognition is the process of detecting face in an image and then

using algorithms to identify who the face belongs to. Face recognition is

thus a form of person identification.

You first need to extract features from the image for training the

machine learning classifier to identify faces in the image. Not only are

these systems nonsubjective, but they are also automatic—no hand

labeling of facial features is required. You simply extract features from the

faces, train your classifier, and then use it to identify subsequent faces.

Since for face recognition you first need to detect a face from the

image, you can think of face recognition as a two-phase stage.

•	 Stage 1: Detect the presence of faces in an image or

video stream using methods such as Haar cascades,

HOG + Linear SVM, deep learning, or any other

algorithm that can localize faces.

•	 Stage 2: Take each of the faces detected during the

localization phase and learn whom the face belongs

to—this is where you actually assign a name to a face.

https://doi.org/10.1007/978-1-4842-3516-4_12

172

�Face Detection, Face Recognition, and Face
Analysis
There is a difference between face detection, face recognition, and face

analysis.

•	 Face detection: This is the technique of finding all the

human faces in an image.

•	 Face recognition: This is the next step after face

detection. In face recognition, you identify which

face belongs to which person using an existing image

repository.

•	 Face analysis: A face is examined, and some inference

is taken out such as age, complexion, and so on.

�OpenCV
OpenCV provides three methods for face recognition (see Figure 12-1):

•	 Eigenfaces

•	 Local binary pattern histograms (LBPHs)

•	 Fisherfaces

Chapter 12 Face Detection and Recognition

173

All three methods recognize a face by comparing the face with some

training set of known faces. For training, you supply the algorithm with

faces and label them with the person they belong to. When you use the

algorithm to recognize some unknown face, it uses the model trained on

the training set to make the recognition. Each of the three aforementioned

methods uses the training set a bit differently.

Laplacian faces can be another way to recognize face.

�Eigenfaces
The eigenfaces algorithm uses principal component analysis to construct

a low-dimensional representation of face images, which you will use as

features for the corresponding face images (Figure 12-2).

Figure 12-1.  Applying OpenCV methods to faces

Chapter 12 Face Detection and Recognition

174

For this, you collect a data set of faces with multiple face images of

each person you want to recognize—it’s like having multiple training

examples of an image class you want to label in image classification. With

this data set of face images, presumed to be the same width and height

and ideally with their eyes and facial structures aligned at the same (x, y)

coordinates, you apply an eigenvalue decomposition of the data set,

keeping the eigenvectors with the largest corresponding eigenvalues.

Given these eigenvectors, a face can then be represented as a linear

combination of what Kirby and Sirovich called eigenfaces. The eigenfaces

algorithm looks at the whole data set.

Figure 12-2.  Applying Eigenvalue decomposition and extracting 11
eigenfaces with the largest magnitude

Chapter 12 Face Detection and Recognition

175

�LBPH
You can analyze each image independently in LBPH. The LBPH method

is somewhat simpler, in the sense that you characterize each image in the

data set locally; when a new unknown image is provided, you perform the

same analysis on it and compare the result to each of the images in the

data set. The way that you analyze the images is by characterizing the local

patterns in each location in the image.

While the eigenfaces algorithm relies on PCA to construct a low-

dimensional representation of face images, the local binary pattern (LBP)

method relies on, as the name suggests, feature extraction.

First introduced by Ahonen et al. in the 2006 paper “Face Recognition

with Local Binary Patterns,” the method suggests dividing a face image into

a 7×7 grid of equally sized cells (Figure 12-3).

Figure 12-3.  Applying LBPH for face recognition starts by dividing
the face image into a 7x7 grid of equally sized cells

Chapter 12 Face Detection and Recognition

http://en.wikipedia.org/wiki/Local_binary_patterns

176

You then extract a local binary pattern histogram from each of the 49

cells. By dividing the image into cells, you introduce locality into the final

feature vector. Furthermore, cells in the center have more weight such that

they contribute more to the overall representation. Cells in the corners

carry less identifying facial information compared to the cells in the center

of the grid (which contain eyes, nose, and lip structures). Finally, you

concatenate this weighted LBP histogram from the 49 cells to form your

final feature vector.

�Fisherfaces
The Principal Component Analysis (PCA), which is the core of the

Eigenfaces method, finds a linear combination of features that maximizes

the total variance in data. While this is clearly a powerful way to represent

data, it doesn’t consider any classes and so a lot of discriminative

information may be lost when throwing components away. Imagine a

situation where the variance in your data is generated by an external

source, let it be the light. The components identified by a PCA do not

necessarily contain any discriminative information at all, so the projected

samples are smeared together and a classification becomes impossible.

The Linear Discriminant Analysis performs a class-specific

dimensionality reduction and was invented by the great statistician

Sir R. A. Fisher. The use of multiple measurements in taxonomic

problems. In order to find the combination of features that separates

best between classes the Linear Discriminant Analysis maximizes the

ratio of between-classes to within-classes scatter, instead of maximizing

the overall scatter. The idea is simple: same classes should cluster

tightly together, while different classes are as far away as possible from

each other in the lower-dimensional representation.

Chapter 12 Face Detection and Recognition

177

�Detecting a Face
The first feature that you need for performing face recognition is to detect

where in the current image a face is present. In Python you can use Haar

cascade filters of the OpenCV library to do this efficiently.

For the implementation shown here, I used Anaconda with Python 3.5,

OpenCV 3.1.0, and dlib 19.1.0. To use the following code, please make sure

that you have these (or newer) versions.

To do the face detection, a couple of initializations must be done, as

shown here:

The rest of the code will be an infinite loop that keeps getting the latest

image from the webcam, detects all faces in the image retrieved, draws

a rectangle around the largest face detected, and then finally shows the

input, output images in a window (Figure 12-4).

Chapter 12 Face Detection and Recognition

178

You can do this with the following code within an infinite loop:

Figure 12-4.  A sample output showing detected face

Chapter 12 Face Detection and Recognition

179

�Tracking the Face
The previous code for face detection has some drawbacks.

•	 The code might be computationally expensive.

•	 If the detected person is turning their head slightly, the

Haar cascade might not detect the face.

•	 It’s difficult to keep track of a face between frames.

A better approach for this is to do the detection of the face once and

then make use of the correlation tracker from the excellent dlib library to

just keep track of the faces from frame to frame.

Chapter 12 Face Detection and Recognition

180

For this to work, you need to import another library and initialize

additional variables.

Within the infinite for loop, you will now determine whether the dlib

correlation tracker is currently tracking a region in the image. If this is

not the case, you will use a similar code as before to find the largest face,

but instead of drawing the rectangle, you use the found coordinates to

initialize the correlation tracker.

Chapter 12 Face Detection and Recognition

181

Now the final bit within the infinite loop is to check again if the

correlation tracker is actively tracking a face (i.e., did it just detect a

face with the previous code, trankingFace=1?). If the tracker is actively

tracking a face in the image, you will update the tracker. Depending on the

quality of the update (i.e., how confident the tracker is about whether it is

still tracking the same face), you either draw a rectangle around the region

indicated by the tracker or indicate you are not tracking a face anymore.

Chapter 12 Face Detection and Recognition

182

As you can see in the code, you print a message to the console every

time you use the detector again. If you look at the output of the console

while running this application, you will notice that even if you move quite

a bit around on the screen, the tracker is quite good at following a face

once it is detected.

�Face Recognition
A face recognition system identifies the name of person present in the

video frame by matching the face in each frame of video with the trained

images and returns (and writes in a CSV file) the label if the face in the

frame is successfully matched. You will now see how to create a face

recognition system step-by-step.

First you import all the required libraries. face_recognition is the

simple library built using dlib’s state-of-the-art face recognition also built

with deep learning.

Argparse is a Python library that allows you to add your own

arguments to a file; it can then be used to input any image directory or a

file path at the time of execution.

Chapter 12 Face Detection and Recognition

http://dlib.net/

183

In the previous code, while running this Python file, you have to

specify the following: the training input image directory, video file which

we will use as data set, and an output CSV file to write the output at each

time frame.

By using the previous function, all image files from the specified folder

can be read.

The following function tests the input frame with the known training

images:

Chapter 12 Face Detection and Recognition

184

Now you define the function to extract the label for matched, known

images.

Read the input video to extract test frames.

Now define the labels of your training sets. Then match the extracted

frame from the given input video to get the desired results.

Chapter 12 Face Detection and Recognition

185

�Deep Learning–Based Face Recognition
Import the necessary packages.

Initialize the variables.

Chapter 12 Face Detection and Recognition

186

The label_img() function is used to create the label array, and the

detect_faces() function detects the face portion in the image.

The create_train_data() function is used for preprocessing the

training data.

Chapter 12 Face Detection and Recognition

187

The process_test_data() function is used to preprocess the testing data.

Then you create the model and fit the training data in the model.

Chapter 12 Face Detection and Recognition

188

Finally, you prepare the test data and predict the output.

�Transfer Learning
Transfer learning makes use of the knowledge gained while solving one

problem and applying it to a different but related problem.

Here you will see how you can use a pretrained deep neural network

called the Inception v3 model for classifying images.

The Inception model is quite capable of extracting useful information

from an image.

�Why Transfer Learning?
It’s well known that convolutional networks require significant amounts of

data and resources to train.

It has become the norm for researchers and practitioners alike to use

transfer learning and fine-tuning (that is, transferring the network weights

trained on a previous project such as ImageNet to a new task).

Chapter 12 Face Detection and Recognition

189

You can take two approaches.

•	 Transfer learning: You can take a CNN that has

been pretrained on ImageNet, remove the last fully

connected layer, and then treat the rest of the CNN as a

feature extractor for the new data set. Once you extract

the features for all images, you train a classifier for the

new data set.

•	 Fine-tuning: You can replace and retrain the classifier

on top of the CNN and also fine-tune the weights of the

pretrained network via backpropagation.

�Transfer Learning Example
In this example, first you will try to classify images by directly loading the

Inception v3 model.

Import all the required libraries.

Now define the storage directory for the model and then download the

Inception v3 model.

Chapter 12 Face Detection and Recognition

190

Load the pretrained model and define the function to classify any

given image.

Now that the model is defined, let’s check it for some images.

This gives a 91.11 percent correct result, but now if you check for some

person, this is what you get:

Chapter 12 Face Detection and Recognition

191

It’s 48.50 percent tennis ball!

Unfortunately, the Inception model seemed unable to classify images

of people. The reason for this was the data set used for training the

Inception model, which had some confusing text labels for classes.

You can instead reuse the pretrained Inception model and merely replace

the layer that does the final classification. This is called transfer learning.

First you input and process an image with the Inception model. Just

prior to the final classification layer of the Inception model, you save the

so-called transfer values to a cache file.

The reason for using a cache file is that it takes a long time to process

an image with the Inception model. When all the images in the new data

set have been processed through the Inception model and the resulting

transfer values are saved to a cache file, then you can use those transfer

values as the input to another neural network. You will then train the

second neural network using the classes from the new data set, so the

network learns how to classify images based on the transfer values from

the Inception model.

In this way, the Inception model is used to extract useful information

from the images, and another neural network is then used for the actual

classification.

�Calculate the Transfer Value
Import the transfer_value_cache function from the Inception file.

Chapter 12 Face Detection and Recognition

192

As of now, the transfer values are stored in the cache file. Now you will

create a new neural network.

Define the networks.

Here is the optimization method:

Here is the classification accuracy:

Here is the TensorFlow run:

Chapter 12 Face Detection and Recognition

193

Here is the helper function to perform batch training:

For optimizing, here is the code:

Chapter 12 Face Detection and Recognition

194

For plotting the confusion matrix, here is the code:

Chapter 12 Face Detection and Recognition

195

Here is the helper function for calculating the classifications:

Chapter 12 Face Detection and Recognition

196

Now let’s run it.

from datetime import timedelta

optimize(num_iterations=1000)

Global Step: 13100, Training Batch Accuracy: 100.0%

Global Step: 13200, Training Batch Accuracy: 100.0%

Global Step: 13300, Training Batch Accuracy: 100.0%

Global Step: 13400, Training Batch Accuracy: 100.0%

Global Step: 13500, Training Batch Accuracy: 100.0%

Global Step: 13600, Training Batch Accuracy: 100.0%

Global Step: 13700, Training Batch Accuracy: 100.0%

Global Step: 13800, Training Batch Accuracy: 100.0%

Global Step: 13900, Training Batch Accuracy: 100.0%

Global Step: 14000, Training Batch Accuracy: 100.0%

Time usage: 0:00:36

print_test_accuracy(show_example_errors=True,

show_confusion_matrix=True)

Chapter 12 Face Detection and Recognition

197

Accuracy on Test-Set: 83.2% (277 / 333)

Example errors:

Confusion Matrix:

[108 3 5] (0) Aamir Khan

[0 83 22] (1) Salman Khan

[4 22 86] (2) Shahrukh Khan

 (0) (1) (2)

�APIs
Many easy-to-use APIs are also available for the tasks of face detection and

face recognition.

Here are some examples of face detection APIs:

•	 PixLab

•	 Trueface.ai

•	 Kairos

•	 Microsoft Computer Vision

Here are some examples of face recognition APIs:

•	 Face++

•	 LambdaLabs

•	 KeyLemon

•	 PixLab

If you want face detection, face recognition, and face analysis from one

provider, currently there are three major giants that are leading here.

•	 Amazon’s Amazon Recognition API

•	 Microsoft Azure’s Face API

•	 IBM Watson’s Visual Recognition API

Chapter 12 Face Detection and Recognition

198

Amazon’s Amazon Recognition API can do four types of recognition.

•	 Object and scene detection: Recognition identifies

various interesting objects such as vehicles, pets, or

furniture, and it provides a confidence score.

•	 Facial analysis: You can locate faces within images

and analyze face attributes, such as whether the face is

smiling or the eyes are open, with certain confidence

scores.

•	 Face comparison: Amazon’s Amazon Recognition API

lets you measure the likelihood that faces in two images

are of the same person. Unfortunately, the similarity

measure of two faces of the same person depends

on the age at the time of the photos. Also, a localized

increase in the illumination of a face alters the results

of the face comparison.

•	 Facial recognition: The API identifies the person in a

given image using a private repository. It is fast and

accurate.

Microsoft Azure’s Face API will return a confidence score for how likely

it is that the two faces belong to one person. Microsoft also has other APIs

such as the following:

•	 Computer Vision API: This feature returns information

about visual content found in an image. It can use

tagging, descriptions, and domain-specific models to

identify content and label it with confidence.

•	 Content Moderation API: This detects potentially

offensive or unwanted images, text in various

languages, and video content.

Chapter 12 Face Detection and Recognition

199

•	 Emotion API: This analyzes faces to detect a range of

feelings and personalize your app’s responses.

•	 Video API: This produces stable video output, detects

motion, creates intelligent thumbnails, and detects and

tracks faces.

•	 Video Indexer: This finds insights in video such as

entities of speech, sentiment polarity of speech, and

audio timeline.

•	 Custom Vision Service: This tags a new image based on

the built-in models or the models built through training

data sets provided by you.

IBM Watson’s Visual Recognition API can do some specific detection

such as the following:

•	 It can determine the age of the person.

•	 It can determine the gender of the person.

•	 It can determine the location of the bounding box

around a face.

•	 It can return information about a celebrity who is

detected in the image. (This is not returned when a

celebrity is not detected.)

Chapter 12 Face Detection and Recognition

	Chapter 12: Face Detection and Recognition
	Face Detection, Face Recognition, and Face Analysis
	OpenCV
	Eigenfaces
	LBPH
	Fisherfaces

	Detecting a Face
	Tracking the Face
	Face Recognition
	Deep Learning–Based Face Recognition
	Transfer Learning
	Why Transfer Learning?
	Transfer Learning Example
	Calculate the Transfer Value

	APIs

