CHAPTER 12

Face Detection and
Recognition

Face detection is the process of detecting a face in an image or video.

Face recognition is the process of detecting face in an image and then
using algorithms to identify who the face belongs to. Face recognition is
thus a form of person identification.

You first need to extract features from the image for training the
machine learning classifier to identify faces in the image. Not only are
these systems nonsubjective, but they are also automatic—no hand
labeling of facial features is required. You simply extract features from the
faces, train your classifier, and then use it to identify subsequent faces.

Since for face recognition you first need to detect a face from the
image, you can think of face recognition as a two-phase stage.

o Stage I: Detect the presence of faces in an image or
video stream using methods such as Haar cascades,
HOG + Linear SVM, deep learning, or any other
algorithm that can localize faces.

o Stage 2: Take each of the faces detected during the
localization phase and learn whom the face belongs
to—this is where you actually assign a name to a face.
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CHAPTER 12 FACE DETECTION AND RECOGNITION

Face Detection, Face Recognition, and Face
Analysis

There is a difference between face detection, face recognition, and face
analysis.

e Face detection: This is the technique of finding all the
human faces in an image.

o Facerecognition: This is the next step after face
detection. In face recognition, you identify which
face belongs to which person using an existing image
repository.

o Face analysis: A face is examined, and some inference
is taken out such as age, complexion, and so on.

OpenCV

OpenCV provides three methods for face recognition (see Figure 12-1):
o FEigenfaces
e Local binary pattern histograms (LBPHs)

o Fisherfaces
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Laplacianfaces

Figure 12-1. Applying OpenCV methods to faces

All three methods recognize a face by comparing the face with some
training set of known faces. For training, you supply the algorithm with
faces and label them with the person they belong to. When you use the
algorithm to recognize some unknown face, it uses the model trained on
the training set to make the recognition. Each of the three aforementioned
methods uses the training set a bit differently.

Laplacian faces can be another way to recognize face.

Eigenfaces

The eigenfaces algorithm uses principal component analysis to construct
a low-dimensional representation of face images, which you will use as
features for the corresponding face images (Figure 12-2).
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Figure 12-2. Applying Eigenvalue decomposition and extracting 11
eigenfaces with the largest magnitude

For this, you collect a data set of faces with multiple face images of
each person you want to recognize—it’s like having multiple training
examples of an image class you want to label in image classification. With
this data set of face images, presumed to be the same width and height
and ideally with their eyes and facial structures aligned at the same (x, y)
coordinates, you apply an eigenvalue decomposition of the data set,
keeping the eigenvectors with the largest corresponding eigenvalues.

Given these eigenvectors, a face can then be represented as a linear
combination of what Kirby and Sirovich called eigenfaces. The eigenfaces
algorithm looks at the whole data set.
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LBPH

You can analyze each image independently in LBPH. The LBPH method

is somewhat simpler, in the sense that you characterize each image in the
data set locally; when a new unknown image is provided, you perform the
same analysis on it and compare the result to each of the images in the
data set. The way that you analyze the images is by characterizing the local
patterns in each location in the image.

While the eigenfaces algorithm relies on PCA to construct a low-
dimensional representation of face images, the local binary pattern (LBP)
method relies on, as the name suggests, feature extraction.

First introduced by Ahonen et al. in the 2006 paper “Face Recognition
with Local Binary Patterns,” the method suggests dividing a face image into

a 7x7 grid of equally sized cells (Figure 12-3).

Figure 12-3. Applying LBPH for face recognition starts by dividing
the face image into a 7x7 grid of equally sized cells
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You then extract a local binary pattern histogram from each of the 49
cells. By dividing the image into cells, you introduce locality into the final
feature vector. Furthermore, cells in the center have more weight such that
they contribute more to the overall representation. Cells in the corners
carry less identifying facial information compared to the cells in the center
of the grid (which contain eyes, nose, and lip structures). Finally, you
concatenate this weighted LBP histogram from the 49 cells to form your
final feature vector.

Fisherfaces

The Principal Component Analysis (PCA), which is the core of the
Eigenfaces method, finds a linear combination of features that maximizes
the total variance in data. While this is clearly a powerful way to represent
data, it doesn’t consider any classes and so a lot of discriminative
information may be lost when throwing components away. Imagine a
situation where the variance in your data is generated by an external
source, let it be the light. The components identified by a PCA do not
necessarily contain any discriminative information at all, so the projected
samples are smeared together and a classification becomes impossible.
The Linear Discriminant Analysis performs a class-specific
dimensionality reduction and was invented by the great statistician
Sir R. A. Fisher. The use of multiple measurements in taxonomic
problems. In order to find the combination of features that separates
best between classes the Linear Discriminant Analysis maximizes the
ratio of between-classes to within-classes scatter, instead of maximizing
the overall scatter. The idea is simple: same classes should cluster
tightly together, while different classes are as far away as possible from

each other in the lower-dimensional representation.
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Detecting a Face

The first feature that you need for performing face recognition is to detect
where in the current image a face is present. In Python you can use Haar
cascade filters of the OpenCV library to do this efficiently.

For the implementation shown here, I used Anaconda with Python 3.5,
OpenCV 3.1.0, and dlib 19.1.0. To use the following code, please make sure
that you have these (or newer) versions.

To do the face detection, a couple of initializations must be done, as

shown here:

fnce(‘.‘ascade = cvZ.CascadeClassifier('haarcascade frontalface default.xml')
The desired output width and height, can be modified according to the need:
OU“PU‘I SIZE dIDTH = 700

OU"‘PU“ SIZE ! “HEIGHT = 600

# Open the first wvebcam device

capture = cv2.VideoCapture(0)

# Create tvo cpencv named wvindovs for shoving the input, output images.
ch,namedW;ndow:"hasP—lmage + ©V2.WINDOW _AUTOSIZE)
cv2.namedWindow ("result-image”, cv2.WINDOW |_AUTOSIZE)

# Position the vi
cva. movehindoul ba m 5
cv2.moveWindow ("result-image

tart the vindov thread for the tvo vindovs ve are using

cv2 star tﬂlndﬂ\ﬂ'hr ead()

rectangleColor = (0, 100, 253)

The rest of the code will be an infinite loop that keeps getting the latest
image from the webcam, detects all faces in the image retrieved, draws
arectangle around the largest face detected, and then finally shows the
input, output images in a window (Figure 12-4).
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Figure 12-4. A sample output showing detected face

You can do this with the following code within an infinite loop:

# Retrieve the latest image from the vebcam

rc, fullSizeBaseImage = capture.read()

# Resize the image to 520x420

baseImage= cvl.resize (fullSizeBaseImage, (520, 420))

# Check if a key vas pressed and if it vas Q or q, then destroy all

# opencv vindovs and exit the application, stopping the infinite loop.
preasedRey = cv2.waitKey(2)

if (pressedRey == ord('Q')) | (pressedRey == oxd('g')):
cvZ.destroyRllWindows ()

exit (0)

# Result image is the image ve vill shov the user, wvhich is a

# combination of the original image captured from the vebcam with the
# overlayed rectangle destecting the largest face

resultImage = baseImage.copy()

# We vill be using gray colored image for face detection.

# So ve peed to convert the baseImage captured by vabcam to a gray-based image
gray_image = cv2.cvtColor (baseImage, cv2.COLOR BGR2GRAY)

# Nov use the haar cascade destector to find all faces in the

# image

faces = faceCascade.detectMultiScale (gray image, 1.3, 5)
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cvi.rectangle (resultImage, (x-1I
{x + w10, y + h+20), rectangle
51 ve W

largeResult = cvi.resize(resultImage,
(OUTPUT_SIZE WI OUTFUT_SIZE_HEIGHT))

#§ Finally, w ages on the screan
+ baseImage)

", largeResult)

cvd. 1|=sh|.}w{"
cv2.imshow("res

Tracking the Face

The previous code for face detection has some drawbacks.
¢ The code might be computationally expensive.

o Ifthe detected person is turning their head slightly, the
Haar cascade might not detect the face.

o It’s difficult to keep track of a face between frames.

A better approach for this is to do the detection of the face once and
then make use of the correlation tracker from the excellent dlib library to
just keep track of the faces from frame to frame.
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For this to work, you need to import another library and initialize

additional variables.

import dlib

Within the infinite for loop, you will now determine whether the dlib
correlation tracker is currently tracking a region in the image. If this is
not the case, you will use a similar code as before to find the largest face,
but instead of drawing the rectangle, you use the found coordinates to
initialize the correlation tracker.

# If ve ara not tracking a face, then try to detect one using the above code itself.

if not trackingFace:

We vill be =
# So ve d b ag
gray = cv2.cvtColor (baseImage, cvZ.COLOR _BGR2ZGRAY)
he haar cascade detsctor to find all faces

ltiseale(gray, 1.3,5)

face,

cascade

x
Y
w
h

nwnmn
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# & t here because dlib tracker
#
¢
for( x, _y, ¥, _h) in faces:
if w * _h > maxirea:

x = int| x |

y = int(_y)

w = int(_w)

h = inc(_h)

XAT

#Initialize the tracker
tracker.start_track(baseImage,
dlib.rectangle (x-10, y-20, x+ws+lD, y+h+20))

# S=

# trach
trackingFace = 1

Now the final bit within the infinite loop is to check again if the
correlation tracker is actively tracking a face (i.e., did it just detect a
face with the previous code, trankingFace=1?). If the tracker is actively
tracking a face in the image, you will update the tracker. Depending on the
quality of the update (i.e., how confident the tracker is about whether it is
still tracking the same face), you either draw a rectangle around the region
indicated by the tracker or indicate you are not tracking a face anymore.

# Check if the tracker is actively tracking a face in the image
if trackingPace:

tracker and request information about the
ity of the tracking update

trackingQuality = tracker.update (bazeImage)

# If the tracking gquality is good encugh, determine the
# updatad p
# rectangle
If trackingQuality >= 8.0:

tracked position = tracker.get position()

osition of the tracked region and drav the

t_x = int(tracked_position.left())
t_y = int(tracked_position.top())

t_w = int({tracked position.width(})
t_h = int(tracked position.height())
cv2.rectangle (zesultImage, (t_x.t_y),
(t_x+t_w, t_y+t h),

rectanglecolor, Z2)

else:

# If the quality of the tracking update is not good enocugh
# for us (e.g. the fa bei
# screen) we stop the tracki
# next lcop ve vill find the largest face in the image
# again

trackingFace = 0
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As you can see in the code, you print a message to the console every
time you use the detector again. If you look at the output of the console
while running this application, you will notice that even if you move quite
a bit around on the screen, the tracker is quite good at following a face
once it is detected.

Face Recognition

A face recognition system identifies the name of person present in the
video frame by matching the face in each frame of video with the trained
images and returns (and writes in a CSV file) the label if the face in the
frame is successfully matched. You will now see how to create a face
recognition system step-by-step.

First you import all the required libraries. face_recognition is the
simple library built using dlib’s state-of-the-art face recognition also built
with deep learning.

import os

import re

import warnings

import scipy.misc
import cvl

import face_recognition
from PIL import Image
import argparse

import csv

Iimpo:t -1 ]

Argparse is a Python library that allows you to add your own
arguments to a file; it can then be used to input any image directory or a
file path at the time of execution.

pArser = argparse.ArgumentParser()
parsez.add argument("-i", "--images-
parser.add_argument(”
parser.add_argument(”
parsex.add_argument("-u"

[find smaller faces. [Opticnal]”)
args = wvars(parser.parse_args(})

il

nize faces on”)

£ile [Optionall™)

many times to upsample the image looking for faces. Higher numbers
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In the previous code, while running this Python file, you have to
specify the following: the training input image directory, video file which
we will use as data set, and an output CSV file to write the output at each

time frame.

#Check if ar values are valid
if args.get( ges_dir", None) is None and os.path.exists(args.get("images dir", None)):
print ("Please check the path to images folder®™)
exit()
if args.get("videc”, None) is None and os.path.isfile(args.get("videc”, None)):
print ("Please check the path to video®)
exit()
if args.get("output csv", None) is None:
print ("You haven't specified an output csv file. Neothing will be writtem.")
# By default upsaz;
upsample rate = args.get(“upsample rate®, None)
if upsample rate is None:
upsample_rate = 1

aple rate = 1

# Helper fu, n3
def image_files in_folder(folder):
return [os.path.join(folder, f) for f in os.lisvdir(folder) if re.match(r'.*\.(Jpglipegipng)’', £, flags=re.I}]

By using the previous function, all image files from the specified folder
can be read.

The following function tests the input frame with the known training
images:

def test image (image_to_check, known_names, known face encodings, number of times to_upsample=1):
Test if any face is recognized in unknown image by checking known images
:paramimage to_check: Numpy array of the image
:paramknown_names: List containing known labels
tparamknown_face encedings: List containing training image labels
:paramnumber of times to upsample: How many times to upsample the image looking for
faces. Higher numbers find smaller faces.
sreturn: A list of labels of known names

H

# unknovn image = face recognition.load image file({image to check)
unknown_image = image to_check
# Scale dovn image to make it run faster
if unknown_image.shape[l] > 1600:
scale_facter = 1600 / unknown_image.shape([l1]
with warnings.catch_warnings():
warnings.simplefilter("ignore”)
unknown_image = scipy.misc.imresize (unknown image, scale factor)
face_locations = face_recognition.face_locations(unknown_image, number_of_times_to_upsample)
unknown_encedings = face recognition.face encodings(unknown image, face locations)
result = []
for unknown encoding in unknown encodings:
result = face_recognition.compare_faces(known_face_encodings, unknown_encoding)
fpesult encoding = []
for nemelIndex, is_match in enumerate(result):
if is match:
result_encoding.append (known_names [nameIndex])

return result encoding
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Now you define the function to extract the label for matched, known
images.

def map file pattern to_label (labels with pattern, labels list}:

Map file name pattern to full label
iparamlabels with_pattern: dict : { "file name pattern”: "full label” }
:paramlabels list: list : list of labels of file names got from test image()
:return: list of full labels
reault_list = [)
for key, label in labels with pattern.items():
for img labels in labels liast:
if str(key).lower() in str(img_labels).lower():
if str(label) mot in result list:
result list.append(str(label))

# continue

# resuls list = [le
return result_list

1 for key, label in labels vith pattern if str(key).lover() in labels

Read the input video to extract test frames.

cap = ovi.VideoCapture (args[“videc™])

#get the training images
training_encodings
training_labels = []
for file in image files_in_folder(args['images dir']):
basename = os.path.splitext (os.path.basenane(file)) [7]
ing = face recogmition.load image file(file)
encodings = face recogniticn.face encodings(img)

if len(encodings) > 1:
print ["WARNING: More than one face found in {}. Only considering the first face.”.format{file))

if len(enmcodings) == 0:
print ("WARNL Heo faces found im (). Ignering file.".format(file))
if len{encodings
training labels.append (pasename
traiming encedings.append(encodings[0])

caviile = None

cavwriter = None

if args.get("cutput_csv”, Nome) is not Hone:
cavfile = openlargs.get(“cutput csv"), 'w')

csvwriter = csv.writer(csvfile, del Eik har="]" i .QUOTE_MINIMAL)

ret, {irstPrame = cap.read()
frameRate = cap.get({cvi.CAP PRCP FPS)

Now define the labels of your training sets. Then match the extracted
frame from the given input video to get the desired results.
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# Labels vi
label pattern {

"shah": "Shahrukh Ehan",
“amir®: "Amir Khan"

}

# match =a labelad

while ret:
curr frame = cap.get(l)

ret, frame = cap.read()

result = test_image(frame, training labels, training encodings, upsample rate)
labels = map file pattern_to_label (label pattern, result)
curr_time = curr_frame / frameRate
print("Time: {} faces: {}".format(curr time, labels))
if csvwriter:
csvwriter.writerow([curr_time, labels])
cv2.imshow('frame’, frame)

key = cv2.waitKey(l) & OxFF
if key = ord('g'):
break
if caviile:
cavfile.close ()
cap.release()
cv2.destroyAllWindows ()

Deep Learning—Based Face Recognition

Import the necessary packages.

import cvi # working with, moinly resizing, images

import numpy as np # dealing with orrays

import os # dealing with directories

from random import shuffle # mixing up or currently ordered data that might Lead our network astray in troining.

from tqdm import tqdm

from scipy import misc

import tflearn

from tflearn.layers.conv import conv_2d, max_pool_2d

from tflearn.layers.core import input_data, dropout, fully_ connected
from tflearn.layers.estimator import regression

import tensorflow as tf

import glob
import matplotlib.pyplot as plt

import dlib

Initialize the variables.

from skimage import io

tf.reset_default_graph()

TRAIN_DIR ='resize_a/train’

TEST_DIR ='resize_a/test’

IMG_SIZE = 200

boxScale=1

LR = le-3

MODEL_NAME = ‘quickest.model’.format(LR, ‘2conv-basic')
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The label img() function is used to create the label array, and the
detect faces() function detects the face portion in the image.

def label_img(img):
word = img.split('(')[-2]
word_label = word[®8]
if word_label == "R': return [1,8]

elif word_label == "A': return [0,1]
def detect_faces(image):

# Create a face detector
face_detector = dlib.get_frontal_face_detector()

# Run detector and get bounding boxes of the faces on image.
detected_faces = face_detector(image, 1)
face_frames = [(x.left(), x.top(),

x.right(), x.bottom()) for x in detected_faces]

return face_frames

The create_train_data() function is used for preprocessing the
training data.

def create_train_data():
training_data = []
for img in tgdm(os.listdir(TRAIN DIR)):
label = label_img(img)
path = os.path.join(TRAIN_DIR,img)
img= misc.imread(path)
img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
detected_faces = detect_faces(img)
for n, face_rect in enumerate(detected_faces):
img = Image.fromarray(img).crop(face_rect)
img = np.array(img)
img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))
# If any face is found, draw a rectangle around the
# largest face present in the picture

training_data.append([np.array(img),np.array(label)])
shuffle(training_data)
np.save( 'train_data.npy', training_data)
return training_data
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The process_test_data() function is used to preprocess the testing data.

def process_test_data():
testing_data = []
for img in tqdm{os.listdir(TEST_DIR)):

path = os.path.join(TEST_DIR,img)

imgnum = img.split('.")[-2]

img_num=get_num(imgnum)

img= misc.imread(path)

img = cv2.imread(path,cv2.IMREAD_GRAYSCALE)

img = cv2.resize(img, (IMG_SIZE,IMG_SIZE))

detected_faces = detect_faces(img)

for n, face_rect in enumerate(detected_faces):
img = Image.fromarray(img).crop(face_rect)
img = np.array(img)

img = cv2.resize(img, (IMG_SIZE,IMG SIZE))

# If any face is found, draw @ rectangle around the
# Llargest face present in the picture

testing_data.append([np.array(img), img_num])

Then you create the model and fit the training data in the model.

train_datas create_train_data()

train =

train_data[:-2]

test = train_data[-2:]

X = np.array([i[@] for i in train]).reshape(-1,200,200,1)

¥ = [i[1] for i in train]

test x = np.array([i[@] for i in test]).reshape(-1,2086,200,1)
test_y = [i[1] for i in test]

convnet

convnet
convnet

comnet
comnet

comnet
convnet

convnet
convnet

convnet
convnet

= input_data(shape=[None, 200, 200, 1], name="input')

= conv_2d(convnet, 4, 5, activations'relu‘)
= max_pool_2d{convnet, 5)

= conv_2d(convnet, 5, 5, activations'relu’)
= max_pool_2d{convnet, 5)

= conv_2d(convnet, 8, 5, activation='relu')
= max_pool_2d(convnet, S5)

= fully_connected{convnet, 8, activation="relu’)
= dropout(convnet, @.2)

= fully connected(convnet, 2, activation='softmax’)
= regression(convnet, optimizers'adam', learning ratesLR, loss='categorical crossentropy’, names='targets')

model. fit({ input®: X}, {'targets': Y}, n_epoch=l, validation_set=({'input': test_x}, {'targets’: test_y}),
snapshot_steps508, show_metriceTrue, run_id=MODEL_NAME)
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Finally, you prepare the test data and predict the output.

test_data = process_test_data()
fig=plt.figure()

for num,data in enumerate(test_data[:12]):

img_num = data[1]

img_data = data[@]

y = fig.add_subplot(3,4,num+1)

orig = img_data

data = img_data.reshape(IMG_SIZE,IMG SIZE,1)
#model_out = model.predict([data])[e]

model_out = model.predict([data])[e]

if np.argmax(model out) == @: str_label='Ronaldo’
elif np.argmax(model_out) == 1: str_label="amitabh"

y.imshow(orig, cmap="gray")

plt.title(str_label)

y.axes.get_xaxis().set_visible(False)

y.axes.get_yaxis().set_visible(False)
plt.show()

Transfer Learning

Transfer learning makes use of the knowledge gained while solving one
problem and applying it to a different but related problem.

Here you will see how you can use a pretrained deep neural network
called the Inception v3 model for classifying images.

The Inception model is quite capable of extracting useful information

from an image.

Why Transfer Learning?

It’s well known that convolutional networks require significant amounts of
data and resources to train.

It has become the norm for researchers and practitioners alike to use
transfer learning and fine-tuning (that is, transferring the network weights
trained on a previous project such as ImageNet to a new task).
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You can take two approaches.

o Transfer learning: You can take a CNN that has
been pretrained on ImageNet, remove the last fully
connected layer, and then treat the rest of the CNN as a
feature extractor for the new data set. Once you extract
the features for all images, you train a classifier for the
new data set.

o Fine-tuning: You can replace and retrain the classifier
on top of the CNN and also fine-tune the weights of the
pretrained network via backpropagation.

Transfer Learning Example

In this example, first you will try to classify images by directly loading the
Inception v3 model.
Import all the required libraries.
fmatplotlib inline
import matplotlib.pyplet as plt
import tensorflow as tf

import numpy as np
import os

unctions and classes for loading and using the Inception model

import inception

Now define the storage directory for the model and then download the
Inception v3 model.

inception.data_dir = 'D:/'

inception.maybe download()
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Load the pretrained model and define the function to classify any

given image.

model = inception.Inception()

def classify(image_path):
# Display the image.
p = Image.open(image_path)
p.show()

# Use the Inception model to classify the image.

pred = model.classify(image path=image_path)

p-10 predictions.

# Print the scores and names for the t

model.print_scores (pred=pred, k=10, only first name=True)

Now that the model is defined, let’s check it for some images.

=

This gives a 91.11 percent correct result, but now if you check for some

person, this is what you get:

190



CHAPTER 12 FACE DETECTION AND RECOGNITION

It’s 48.50 percent tennis ball!

Unfortunately, the Inception model seemed unable to classify images
of people. The reason for this was the data set used for training the
Inception model, which had some confusing text labels for classes.

You can instead reuse the pretrained Inception model and merely replace
the layer that does the final classification. This is called transfer learning.

First you input and process an image with the Inception model. Just
prior to the final classification layer of the Inception model, you save the
so-called transfer values to a cache file.

The reason for using a cache file is that it takes a long time to process
an image with the Inception model. When all the images in the new data
set have been processed through the Inception model and the resulting
transfer values are saved to a cache file, then you can use those transfer
values as the input to another neural network. You will then train the
second neural network using the classes from the new data set, so the
network learns how to classify images based on the transfer values from
the Inception model.

In this way, the Inception model is used to extract useful information
from the images, and another neural network is then used for the actual
classification.

Calculate the Transfer Value

Import the transfer_value_ cache function from the Inception file.

from inception import transfer_values_cache

file path cache _train = os.path.join(cifarll.daca_pach,
file_path_cache_test = os.path.jcin{cifarl0d.data_path, 'incepti

# vhi
images scaled = images train

tranafer_values_train = cransfer_values_cache cache_path=file_path_cache_train,
izmages=images_scaled,
medel=model

Processing Inception transfer-values for training-images ...
- Frocessing image: 1021 / 50000
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print ("Processing Inception transfer-values for test-images ...")

els to ba batvean 0 and 255,

# ot e
transfer_values_test =

images=images_scaled,
model=model

As of now, the transfer values are stored in the cache file. Now you will
create a new neural network.
Define the networks.

# Wrap the transfer-values as a Pretty Tensor object.

x_pretty = pt.wrap(x)

with pt.defaults_ scope(activation_fn=tf.nn.relu):
y_pred, loss = x pretty.\

fully connected(size=1024, name='layer fcl').\
softmax classifier(num classes=num classes, labels=y true)

Here is the optimization method:

glcbal step = tf.Variable (initial walue=0,
name='glocbal step', trainable=False)
optimizer = tf.train.AdamCptimizer (learning_rate=le-4).minimize(loss, glcbal_ step)

Here is the classification accuracy:

y_pred cls = tf.argmax(y_pred, dimension=1)
correct_prediction = tf.equal(y_pred cls, y true cls)
accuracy = tf.reduce mean(tf.cast(correct prediction, tf.float32))

Here is the TensorFlow run:

session = tf.Session()
session.run(tf.global_variables initializer())
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Here is the helper function to perform batch training:

def random batch():
# Number of images (transfer-values) in the training-set.
num_images = len(transfer values train)

# Create a random index.

idx = np.random.cheice (num images,
size=train batch size,
replace=False)

# Use the random index to select random x and y-values.

# We use the transfer-values instead of images as x-values.
x_batch = transfer values train[idx]

y_batch = labels train[idx]

return x_batch, y batch

For optimizing, here is the code:

def optimize (num iterations =|:
# Number of images (transfer-values) in the training-set.

start_time = time.time()

for i in range(num iterations):
# Get a batch of training examples.
# x _batch nov holds a batch of images (transfer-values) and
# y_true batch are the true labels for those images.
x_batch, y true_batch = random batch()

k

# Put the batch into a dict vith the proper names
# for placeholder wvariables in the TensorFlov graph.
feed dict train = {x: x batch,

y_true: y_true batch)

# Run the optimizer using this batch of training data.

# TensorFlov assigns the variables in feed dict train

# to the placeholder variables and then runs the coptimizer.
# We also vant to retrieve the glcbal step counter.

i

glecbal, _ = session.run([glcbal_step, optimizer],

feed dict=feed dict_train)

£# Print status to screen every 100 iterations (and last).
if (i_global % 100 == 0} or (i == pum iterations - 1):
# Calculate the accuracy on the training-batch.

batch_acc = session.run(accuracy,
feed dict=feed dict_train)
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# Print status.
msg = “Global Step: {0:>6}, Training Batch Accuracy: {1:>6.1%)"
print (msg.format (1i_glocbal, batch_acc))

# Ending time.
end time = time.time()

# Difference betveen start and end-times.
time _dif = end time - start_time

# Print the time-usage.
print ("Time usage: " + str(timedelta(seconds=int(round(time dif)))))

# Use the random index to select random x and y-values.

# We use the transfer-values instead of images as x-values.
x_batch transfer values_train[idx]

labels_train[idx]

return x_batch, y_batch

For plotting the confusion matrix, here is the code:

from sklearn.metrics import confusion matrix

def plot_confusion matrix(cls_pred):
# This is called from print test accuracy() belov.

# cls pred is an array of the predicted class-number for
# all images in the test-set.

4§ Get the confusion matrix using sklearn.
cm = confusion matrix(y true=cls test,
y_pred=cls pred)

class for test-set.
dicted class.

#
4 Pre
# Print the confusion matrix as text.
for i in range (num classes):
# Append the class-name to each line.
class_name = "({}) {}".format(i, class_names[i])
print(em[i, :], class_name)

# Print the class-numbers for easy reference.

class numbers = [" ({0})".format(i) for i in range (num classes))
print("".join(class_numbers))
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Here is the helper function for calculating the classifications:

# Split the data-set in batches of this size to limit RAM usage.
batch size = 256

def predict_cls(transfer values, labels, cls_true):
# Number of images.
num images = len(transfer_values)

# Allocate an array for the predicted classes vhich
# vill be calculated in batches and filled into this array.
cls_pred = np.zeros(shape=num images, dtype=np.int)

# Nov calculate the predicted classes for the batches.
# We vill just iterate through all the batches.
# There might be a more clever and Pythonic vay of doing this.

# The starting index for the next batch is denoted i.
1=0
while i < num images:
# The ending index for the next batch is denoted j.
3 = min(i + batch size, num images)

# Create a feed-dict vith the images and labels
# betveen index i and j.
feed dict = {x: transfer values[i:j],

y true: labels(i:j]}

# Calculate the predicted class using TensorFlov.

cls pred[i:j] = session.run(y _pred cls, feed dict=feed dict)

# Set the start-index for the next batch to the
# end-index of the current batch.
L=

# Create a boolean array vhether each image is correctly classified.

correct = (cls_true = cls_pred)

return correct, cls pred

def classification_accuracy(correct):
# When averaging a boolean array, False means 0 and True means 1.
# So ve are calculating: m*:be: of True / len(correct) which is
# the same as the classification accuracy.

# Return the classification accuracy
# and the number of correct classifications.
return correct.mean(), correct.sum()

def predict cls_test():
return predict cls(transfer values = transfer values test,
labels = labels test,
cls_true = cla_test)
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def print_test accuracy(show_example errors=Palse,
show_confusion matrix=False):

# For all the images in

# calculate the

cted

the test-set,

classes and vheth

correct, cls_pre;i = predict cls_test()

Classifi

cati aceuracy and the numbsr of corract
cation accuracy and the number of correct

er they are correct

acc, num correct = classification_accuracy(correct)

# Number of images being classified.

num_images = len(correct)

# Print the accuracy.

mag = "Accuracy on Test-Set: {0:.1%} ({1}
print (mag.format (acc, num correct, num images))

# Plot some examples of mis-classif

if show_example errors:
print ("Example errors:”)
plot_example errors(cls_pred=cls pred, correct=correct)

# Plot

if show confusion matrix:
print("Confusion Matrix:")
plot_confusion matrix(cls_pred=cls_pred)

Now let’s run it.

£

the confusion matrix, if desired.

from datetime import timedelta

optimize(num_iterations=1000)

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:
Step:

13100,
13200,
13300,
13400,
13500,
13600,
13700,
13800,
13900,
14000,

Time usage: 0:00:36

print test accuracy(show example errors=True,

Training
Training
Training
Training
Training
Training
Training
Training
Training
Training

show_confusion matrix=True)
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Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
Batch
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Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:
Accuracy:

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
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Accuracy on Test-Set: 83.2% (277 / 333)
Example errors:

Confusion Matrix:

[108 3 5] (0) Aamir Khan

[0 83 22] (1) Salman Khan

[4 22 86] (2) Shahrukh Khan

(0) (1) (2)

APIs

Many easy-to-use APIs are also available for the tasks of face detection and
face recognition.

Here are some examples of face detection APIs:
e PixLab
e Trueface.ai
o Kairos
e Microsoft Computer Vision
Here are some examples of face recognition APIs:
o Face++
o LambdaLabs
¢ KeyLemon

o PixLab

If you want face detection, face recognition, and face analysis from one
provider, currently there are three major giants that are leading here.

e Amazon’s Amazon Recognition API
e Microsoft Azure’s Face API

o IBM Watson’s Visual Recognition API
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Amazon’s Amazon Recognition API can do four types of recognition.

e Object and scene detection: Recognition identifies
various interesting objects such as vehicles, pets, or
furniture, and it provides a confidence score.

e Facial analysis: You can locate faces within images
and analyze face attributes, such as whether the face is
smiling or the eyes are open, with certain confidence
scores.

o Face comparison: Amazon’s Amazon Recognition API
lets you measure the likelihood that faces in two images
are of the same person. Unfortunately, the similarity
measure of two faces of the same person depends
on the age at the time of the photos. Also, a localized
increase in the illumination of a face alters the results
of the face comparison.

e Facial recognition: The APl identifies the person in a
given image using a private repository. It is fast and
accurate.

Microsoft Azure’s Face API will return a confidence score for how likely
itis that the two faces belong to one person. Microsoft also has other APIs
such as the following:

e Computer Vision API: This feature returns information
about visual content found in an image. It can use
tagging, descriptions, and domain-specific models to
identify content and label it with confidence.

o Content Moderation API: This detects potentially
offensive or unwanted images, text in various
languages, and video content.
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Emotion API: This analyzes faces to detect a range of
feelings and personalize your app’s responses.

Video API: This produces stable video output, detects
motion, creates intelligent thumbnails, and detects and
tracks faces.

Video Indexer: This finds insights in video such as
entities of speech, sentiment polarity of speech, and
audio timeline.

Custom Vision Service: This tags a new image based on
the built-in models or the models built through training
data sets provided by you.

IBM Watson'’s Visual Recognition API can do some specific detection

such as the following:

It can determine the age of the person.
It can determine the gender of the person.

It can determine the location of the bounding box
around a face.

It can return information about a celebrity who is
detected in the image. (This is not returned when a
celebrity is not detected.)
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