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CHAPTER 12

Face Detection and 
Recognition
Face detection is the process of detecting a face in an image or video.

Face recognition is the process of detecting face in an image and then 

using algorithms to identify who the face belongs to. Face recognition is 

thus a form of person identification.

You first need to extract features from the image for training the 

machine learning classifier to identify faces in the image. Not only are 

these systems nonsubjective, but they are also automatic—no hand 

labeling of facial features is required. You simply extract features from the 

faces, train your classifier, and then use it to identify subsequent faces.

Since for face recognition you first need to detect a face from the 

image, you can think of face recognition as a two-phase stage.

•	 Stage 1: Detect the presence of faces in an image or 

video stream using methods such as Haar cascades, 

HOG + Linear SVM, deep learning, or any other 

algorithm that can localize faces.

•	 Stage 2: Take each of the faces detected during the 

localization phase and learn whom the face belongs 

to—this is where you actually assign a name to a face.

https://doi.org/10.1007/978-1-4842-3516-4_12
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�Face Detection, Face Recognition, and Face 
Analysis
There is a difference between face detection, face recognition, and face 

analysis.

•	 Face detection: This is the technique of finding all the 

human faces in an image.

•	 Face recognition: This is the next step after face 

detection. In face recognition, you identify which 

face belongs to which person using an existing image 

repository.

•	 Face analysis: A face is examined, and some inference 

is taken out such as age, complexion, and so on.

�OpenCV
OpenCV provides three methods for face recognition (see Figure 12-1):

•	 Eigenfaces

•	 Local binary pattern histograms (LBPHs)

•	 Fisherfaces
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All three methods recognize a face by comparing the face with some 

training set of known faces. For training, you supply the algorithm with 

faces and label them with the person they belong to. When you use the 

algorithm to recognize some unknown face, it uses the model trained on 

the training set to make the recognition. Each of the three aforementioned 

methods uses the training set a bit differently.

Laplacian faces can be another way to recognize face.

�Eigenfaces
The eigenfaces algorithm uses principal component analysis to construct 

a low-dimensional representation of face images, which you will use as 

features for the corresponding face images (Figure 12-2).

Figure 12-1.  Applying OpenCV methods to faces
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For this, you collect a data set of faces with multiple face images of 

each person you want to recognize—it’s like having multiple training 

examples of an image class you want to label in image classification. With 

this data set of face images, presumed to be the same width and height  

and ideally with their eyes and facial structures aligned at the same (x, y)  

coordinates, you apply an eigenvalue decomposition of the data set, 

keeping the eigenvectors with the largest corresponding eigenvalues.

Given these eigenvectors, a face can then be represented as a linear 

combination of what Kirby and Sirovich called eigenfaces. The eigenfaces 

algorithm looks at the whole data set.

Figure 12-2.  Applying Eigenvalue decomposition and extracting 11 
eigenfaces with the largest magnitude
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�LBPH
You can analyze each image independently in LBPH. The LBPH method 

is somewhat simpler, in the sense that you characterize each image in the 

data set locally; when a new unknown image is provided, you perform the 

same analysis on it and compare the result to each of the images in the 

data set. The way that you analyze the images is by characterizing the local 

patterns in each location in the image.

While the eigenfaces algorithm relies on PCA to construct a low-

dimensional representation of face images, the local binary pattern (LBP) 

method relies on, as the name suggests, feature extraction.

First introduced by Ahonen et al. in the 2006 paper “Face Recognition 

with Local Binary Patterns,” the method suggests dividing a face image into 

a 7×7 grid of equally sized cells (Figure 12-3).

Figure 12-3.  Applying LBPH for face recognition starts by dividing 
the face image into a 7x7 grid of equally sized cells
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You then extract a local binary pattern histogram from each of the 49 

cells. By dividing the image into cells, you introduce locality into the final 

feature vector. Furthermore, cells in the center have more weight such that 

they contribute more to the overall representation. Cells in the corners 

carry less identifying facial information compared to the cells in the center 

of the grid (which contain eyes, nose, and lip structures). Finally, you 

concatenate this weighted LBP histogram from the 49 cells to form your 

final feature vector.

�Fisherfaces
The Principal Component Analysis (PCA), which is the core of the 

Eigenfaces method, finds a linear combination of features that maximizes 

the total variance in data. While this is clearly a powerful way to represent 

data, it doesn’t consider any classes and so a lot of discriminative 

information may be lost when throwing components away. Imagine a 

situation where the variance in your data is generated by an external 

source, let it be the light. The components identified by a PCA do not 

necessarily contain any discriminative information at all, so the projected 

samples are smeared together and a classification becomes impossible.

The Linear Discriminant Analysis performs a class-specific 

dimensionality reduction and was invented by the great statistician  

Sir R. A. Fisher. The use of multiple measurements in taxonomic 

problems. In order to find the combination of features that separates 

best between classes the Linear Discriminant Analysis maximizes the 

ratio of between-classes to within-classes scatter, instead of maximizing 

the overall scatter. The idea is simple: same classes should cluster 

tightly together, while different classes are as far away as possible from 

each other in the lower-dimensional representation.
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�Detecting a Face
The first feature that you need for performing face recognition is to detect 

where in the current image a face is present. In Python you can use Haar 

cascade filters of the OpenCV library to do this efficiently.

For the implementation shown here, I used Anaconda with Python 3.5, 

OpenCV 3.1.0, and dlib 19.1.0. To use the following code, please make sure 

that you have these (or newer) versions.

To do the face detection, a couple of initializations must be done, as 

shown here:

 

The rest of the code will be an infinite loop that keeps getting the latest 

image from the webcam, detects all faces in the image retrieved, draws 

a rectangle around the largest face detected, and then finally shows the 

input, output images in a window (Figure 12-4).
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You can do this with the following code within an infinite loop:

 

Figure 12-4.  A sample output showing detected face

Chapter 12  Face Detection and Recognition



179

 

 

�Tracking the Face
The previous code for face detection has some drawbacks.

•	 The code might be computationally expensive.

•	 If the detected person is turning their head slightly, the 

Haar cascade might not detect the face.

•	 It’s difficult to keep track of a face between frames.

A better approach for this is to do the detection of the face once and 

then make use of the correlation tracker from the excellent dlib library to 

just keep track of the faces from frame to frame.
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For this to work, you need to import another library and initialize 

additional variables.

 

Within the infinite for loop, you will now determine whether the dlib 

correlation tracker is currently tracking a region in the image. If this is 

not the case, you will use a similar code as before to find the largest face, 

but instead of drawing the rectangle, you use the found coordinates to 

initialize the correlation tracker.
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Now the final bit within the infinite loop is to check again if the 

correlation tracker is actively tracking a face (i.e., did it just detect a 

face with the previous code, trankingFace=1?). If the tracker is actively 

tracking a face in the image, you will update the tracker. Depending on the 

quality of the update (i.e., how confident the tracker is about whether it is 

still tracking the same face), you either draw a rectangle around the region 

indicated by the tracker or indicate you are not tracking a face anymore.
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As you can see in the code, you print a message to the console every 

time you use the detector again. If you look at the output of the console 

while running this application, you will notice that even if you move quite 

a bit around on the screen, the tracker is quite good at following a face 

once it is detected.

�Face Recognition
A face recognition system identifies the name of person present in the 

video frame by matching the face in each frame of video with the trained 

images and returns (and writes in a CSV file) the label if the face in the 

frame is successfully matched. You will now see how to create a face 

recognition system step-by-step.

First you import all the required libraries. face_recognition is the 

simple library built using dlib’s state-of-the-art face recognition also built 

with deep learning.

 

Argparse is a Python library that allows you to add your own 

arguments to a file; it can then be used to input any image directory or a 

file path at the time of execution.
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In the previous code, while running this Python file, you have to 

specify the following: the training input image directory, video file which 

we will use as data set, and an output CSV file to write the output at each 

time frame.

 

 

By using the previous function, all image files from the specified folder 

can be read.

The following function tests the input frame with the known training 

images:
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Now you define the function to extract the label for matched, known 

images.

 

Read the input video to extract test frames.

 

Now define the labels of your training sets. Then match the extracted 

frame from the given input video to get the desired results.
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�Deep Learning–Based Face Recognition
Import the necessary packages.

 

Initialize the variables.
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The label_img() function is used to create the label array, and the 

detect_faces() function detects the face portion in the image.

 

The create_train_data() function is used for preprocessing the 

training data.
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The process_test_data() function is used to preprocess the testing data.

 

Then you create the model and fit the training data in the model.
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Finally, you prepare the test data and predict the output.

 

�Transfer Learning
Transfer learning makes use of the knowledge gained while solving one 

problem and applying it to a different but related problem.

Here you will see how you can use a pretrained deep neural network 

called the Inception v3 model for classifying images.

The Inception model is quite capable of extracting useful information 

from an image.

�Why Transfer Learning?
It’s well known that convolutional networks require significant amounts of 

data and resources to train.

It has become the norm for researchers and practitioners alike to use 

transfer learning and fine-tuning (that is, transferring the network weights 

trained on a previous project such as ImageNet to a new task).
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You can take two approaches.

•	 Transfer learning: You can take a CNN that has 

been pretrained on ImageNet, remove the last fully 

connected layer, and then treat the rest of the CNN as a 

feature extractor for the new data set. Once you extract 

the features for all images, you train a classifier for the 

new data set.

•	 Fine-tuning: You can replace and retrain the classifier 

on top of the CNN and also fine-tune the weights of the 

pretrained network via backpropagation.

�Transfer Learning Example
In this example, first you will try to classify images by directly loading the 

Inception v3 model.

Import all the required libraries.

 

Now define the storage directory for the model and then download the 

Inception v3 model.
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Load the pretrained model and define the function to classify any 

given image.

 

Now that the model is defined, let’s check it for some images. 

 

This gives a 91.11 percent correct result, but now if you check for some 

person, this is what you get:
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It’s 48.50 percent tennis ball!

Unfortunately, the Inception model seemed unable to classify images 

of people. The reason for this was the data set used for training the 

Inception model, which had some confusing text labels for classes.

You can instead reuse the pretrained Inception model and merely replace 

the layer that does the final classification. This is called transfer learning.

First you input and process an image with the Inception model. Just 

prior to the final classification layer of the Inception model, you save the 

so-called transfer values to a cache file.

The reason for using a cache file is that it takes a long time to process 

an image with the Inception model. When all the images in the new data 

set have been processed through the Inception model and the resulting 

transfer values are saved to a cache file, then you can use those transfer 

values as the input to another neural network. You will then train the 

second neural network using the classes from the new data set, so the 

network learns how to classify images based on the transfer values from 

the Inception model.

In this way, the Inception model is used to extract useful information 

from the images, and another neural network is then used for the actual 

classification.

�Calculate the Transfer Value
Import the transfer_value_cache function from the Inception file.
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As of now, the transfer values are stored in the cache file. Now you will 

create a new neural network.

Define the networks.

 

Here is the optimization method:

 

Here is the classification accuracy:

 

Here is the TensorFlow run:
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Here is the helper function to perform batch training:

 

For optimizing, here is the code:

 

Chapter 12  Face Detection and Recognition



194

 

For plotting the confusion matrix, here is the code:
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Here is the helper function for calculating the classifications:
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Now let’s run it.

from datetime import timedelta

optimize(num_iterations=1000)

Global Step:  13100, Training Batch Accuracy: 100.0%

Global Step:  13200, Training Batch Accuracy: 100.0%

Global Step:  13300, Training Batch Accuracy: 100.0%

Global Step:  13400, Training Batch Accuracy: 100.0%

Global Step:  13500, Training Batch Accuracy: 100.0%

Global Step:  13600, Training Batch Accuracy: 100.0%

Global Step:  13700, Training Batch Accuracy: 100.0%

Global Step:  13800, Training Batch Accuracy: 100.0%

Global Step:  13900, Training Batch Accuracy: 100.0%

Global Step:  14000, Training Batch Accuracy: 100.0%

Time usage: 0:00:36

print_test_accuracy(show_example_errors=True,

show_confusion_matrix=True)
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Accuracy on Test-Set: 83.2% (277 / 333)

Example errors:

Confusion Matrix:

[108 3 5] (0) Aamir Khan

[0 83 22] (1) Salman Khan

[4 22 86] (2) Shahrukh Khan

 (0) (1) (2)

�APIs
Many easy-to-use APIs are also available for the tasks of face detection and 

face recognition.

Here are some examples of face detection APIs:

•	 PixLab

•	 Trueface.ai

•	 Kairos

•	 Microsoft Computer Vision

Here are some examples of face recognition APIs:

•	 Face++

•	 LambdaLabs

•	 KeyLemon

•	 PixLab

If you want face detection, face recognition, and face analysis from one 

provider, currently there are three major giants that are leading here.

•	 Amazon’s Amazon Recognition API

•	 Microsoft Azure’s Face API

•	 IBM Watson’s Visual Recognition API
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Amazon’s Amazon Recognition API can do four types of recognition.

•	 Object and scene detection: Recognition identifies 

various interesting objects such as vehicles, pets, or 

furniture, and it provides a confidence score.

•	 Facial analysis: You can locate faces within images 

and analyze face attributes, such as whether the face is 

smiling or the eyes are open, with certain confidence 

scores.

•	 Face comparison: Amazon’s Amazon Recognition API 

lets you measure the likelihood that faces in two images 

are of the same person. Unfortunately, the similarity 

measure of two faces of the same person depends 

on the age at the time of the photos. Also, a localized 

increase in the illumination of a face alters the results 

of the face comparison.

•	 Facial recognition: The API identifies the person in a 

given image using a private repository. It is fast and 

accurate.

Microsoft Azure’s Face API will return a confidence score for how likely 

it is that the two faces belong to one person. Microsoft also has other APIs 

such as the following:

•	 Computer Vision API: This feature returns information 

about visual content found in an image. It can use 

tagging, descriptions, and domain-specific models to 

identify content and label it with confidence.

•	 Content Moderation API: This detects potentially 

offensive or unwanted images, text in various 

languages, and video content.
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•	 Emotion API: This analyzes faces to detect a range of 

feelings and personalize your app’s responses.

•	 Video API: This produces stable video output, detects 

motion, creates intelligent thumbnails, and detects and 

tracks faces.

•	 Video Indexer: This finds insights in video such as 

entities of speech, sentiment polarity of speech, and 

audio timeline.

•	 Custom Vision Service: This tags a new image based on 

the built-in models or the models built through training 

data sets provided by you.

IBM Watson’s Visual Recognition API can do some specific detection 

such as the following:

•	 It can determine the age of the person.

•	 It can determine the gender of the person.

•	 It can determine the location of the bounding box 

around a face.

•	 It can return information about a celebrity who is 

detected in the image. (This is not returned when a 

celebrity is not detected.)
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