
127© Navin Kumar Manaswi 2018
N. K. Manaswi, Deep Learning with Applications Using Python,
https://doi.org/10.1007/978-1-4842-3516-4_10

CHAPTER 10

Speech to Text
and Vice Versa
In this chapter, you will learn about the importance of speech-to-text and

text-to-speech conversion. You will also learn about the functions and

components needed to do this type of conversion.

Specifically, I will cover the following:

• Why you would want to convert speech to text

• Speech as data

• Speech features that map speech to a matrix

• Spectrograms, which map speech to an image

• Building a classifier for speech recognition through

mel-frequency cepstral coefficient (MFCC) features

• Building a classifier for speech recognition through

spectrograms

• Open source approaches for speech recognition

• Popular cognitive service providers

• The future of speech of text

https://doi.org/10.1007/978-1-4842-3516-4_10

128

 Speech-to-Text Conversion
Speech-to-text conversion, in layman’s terms, means that an app recognizes

the words spoken by a person and converts the voice to written text. There

are lots of reasons you would want to use Speech-to-Text conversion.

• Blind or physically challenged people can control

different devices using only voice.

• You can keep records of meetings and other events by

converting the spoken conversation to text transcripts.

• You can convert the audio in video and audio files to

get subtitles of the words being spoken.

• You can translate words into another language by

speaking into a device in one language and converting

the text to speech in another language.

 Speech as Data
The first step of making any automated speech recognition system is to

get the features. In other words, you identify the components of the audio

wave that are useful for recognizing the linguistic content and delete all the

other useless features that are just background noises.

Each person’s speech is filtered by the shape of their vocal tract and

also by the tongue and teeth. What sound is coming out depends on this

shape. To identify the phoneme being produced accurately, you need

to determine this shape accurately. You could say that the shape of the

vocal tract manifests itself to form an envelope of the short-time power

spectrum. It’s the job of MFCCs to represent this envelope accurately.

Speech can also be represented as data by converting it to a

spectrogram (Figure 10-1).

Chapter 10 SpeeCh to text and ViCe VerSa

129

 Speech Features: Mapping Speech
to a Matrix
MFCCs are widely used in automated speech and speaker recognition.

The mel scale relates the perceived frequency, or pitch, of a pure tone to its

actual measured frequency.

You can convert an audio in frequency scale to the mel scale using the

following formula:

M f f() = +()1125 1 700ln /

To convert it back to frequency, use the following formula:

M m m- () = () -()1 700 1125 1exp /

Figure 10-1. Speech as data

Chapter 10 SpeeCh to text and ViCe VerSa

130

Here is the function to extract MFCC features in Python:

def mfcc (signal,samplerate=16000,winlen=0.025,winstep=0.01,

numcep=13, nfilt=26,nfft=512,lowfreq=0,highfreq=None,

preemph=0.97, ceplifter=22,appendEnergy=True)

These are the parameters used:

• signal: This is the signal for which you need to

calculate the MFCC features. It should be an array of

N*1 (read a WAV file).

• samplerate: This is the signal’s sample rate at which

you are working.

• winlen: This is the analysis window length in seconds.

By default it is 0.025 second.

• winstep: This is the successive window step. By default

it is 0.01 second.

• numcep: This is the number of ceptrum that the function

should return. By default it is 13.

• nfilt: This is the number of filters in the filter bank. By

default it is 26.

• nfft: This is the size of the fast Fourier transform (FFT).

By default it is 512.

• lowfreq: This is the lowest band edge, in hertz. By

default it is 0.

• highfreq: This is the highest band edge, in hertz. By

default it is the sample rate divided by 2.

Chapter 10 SpeeCh to text and ViCe VerSa

131

• preemph: This applies a preemphasis filter with preemph

as the coefficient. 0 means no filter. By default it is 0.97.

• ceplifter: This applies a lifter to the final cepstral

coefficients. 0 means no lifter. By default it is 22.

• appendEnergy: The zeroth cepstral coefficient is

replaced with the log of the total frame energy, if it is set

to true.

This function returns a Numpy array containing features. Each row

contains one feature vector.

 Spectrograms: Mapping Speech
to an Image
A spectrogram is photographic or electronic representation of a spectrum.

The idea is to convert an audio file into images and pass the images

into deep learning models such as a CNN and LSTM for analysis and

classification.

The spectrogram is computed as a sequence of FFTs of windowed data

segments. A common format is a graph with two geometric dimensions;

one axis represents time, and another axis represents frequency. A third

dimension uses the color or size of point to indicate the amplitude of a

particular frequency at a particular time. Spectrograms are usually created

in one of two ways. They can be approximated as a filter bank that results

from a series of band-pass filters. Or, in Python, there is a direct function

that maps audio to a spectrogram.

Chapter 10 SpeeCh to text and ViCe VerSa

132

 Building a Classifier for Speech Recognition
Through MFCC Features
To build a classifier for speech recognition, you need to have the python_

speech_features Python package installed.

You can use the command pip install python_speech_features to

install this package.

The mfcc function creates a feature matrix for an audio file. To build a

classifier that recognizes the voices of different people, you need to collect

speech data of them in WAV format. Then you convert all the audio files

into a matrix using the mfcc function. The code to extract the features from

the WAV file is shown here:

If you run the previous code, you will get output in the following form:

[[7.66608682 7.04137131 7.30715423 ..., 9.43362359 9.11932984

 9.93454603]

 [4.9474559 4.97057377 6.90352236 ..., 8.6771281 8.86454547

 9.7975147]

 [7.4795622 6.63821063 5.98854983 ..., 8.78622734 8.805521

 9.83712966]

 ...,

 [7.8886269 6.57456605 6.47895433 ..., 8.62870034 8.79965464

 9.67997298]

Chapter 10 SpeeCh to text and ViCe VerSa

133

 [5.73028657 4.87985847 6.64977329 ..., 8.64089442 8.62887745

 9.90470194]

 [8.8449656 6.67098127 7.09752316 ..., 8.84914694 8.97807983

 9.45123015]]

Here, each row represents one feature vector.

Collect as many voice recordings of a person as you can and append

the feature matrix of each audio file in this matrix.

This will act as your training data set.

Repeat the same steps with all the other classes.

Once the data set is prepared, you can fit this data into any deep

learning model (that is used for classification) to classify the voices of

different people.

Note to see the full code of a classifier using MFCC features, you
can visit www.navinmanaswi.com/SpeechRecognizer.

 Building a Classifier for Speech Recognition
Through a Spectrogram
Using the spectrogram approach converts all the audio files to images

(Figure 10-2), so all you have to do is convert all the sound files in the

training data into images and feed those images to a deep learning model

just like you do in a CNN.

Chapter 10 SpeeCh to text and ViCe VerSa

http://www.navinmanaswi.com/SpeechRecognizer

134

Here is the Python code to convert an audio file to a spectrogram:

Figure 10-2. Spectogram of speech sample

Chapter 10 SpeeCh to text and ViCe VerSa

135

 Open Source Approaches
There are open source packages available for Python that perform

speech- to- text and text-to-speech conversion.

The following are some open source speech-to-text conversion APIs:

• PocketSphinx

• Google Speech

• Google Cloud Speech

• Wit.ai

• Houndify

• IBM Speech to Text API

• Microsoft Bing Speech

Having used all of these, I can say that they work quite well; the

American accent is especially clear.

If you are interested in evaluating the accuracy of the conversion, you

need one metric: the word error rate (WER).

In the next section, I will discuss each API mentioned previously.

 Examples Using Each API
Let’s go through each API.

 Using PocketSphinx
PocketSphinx is an open source API used for speech-to-text conversions. It

is a lightweight speech recognition engine, specifically tuned for handheld

and mobile devices, though it works equally well on the desktop. Simply

use the command pip install PocketSphinx to install the package.

Chapter 10 SpeeCh to text and ViCe VerSa

136

import speech_recognition as sr

from os import path

AUDIO_FILE = "MyAudioFile.wav"

r = sr.Recognizer()

with sr.AudioFile(AUDIO_FILE) as source:

 audio = r.record(source)

try:

 print("Sphinx thinks you said " + r.recognize_sphinx(audio))

except sr.UnknownValueError:

 print("Sphinx could not understand audio")

except sr.RequestError as e:

 print("Sphinx error; {0}".format(e))

===

 Using the Google Speech API
Google provides its own Speech API that can be implemented in Python

code and can be used to create different applications.

recognize speech using Google Speech Recognition

try:

 print("Google Speech Recognition thinks you said " +

r.recognize_google(audio))

except sr.UnknownValueError:

 print("Google Speech Recognition could not understand audio")

except sr.RequestError as e:

 print("Could not request results from Google Speech

Recognition service;{0}".format(e))

Chapter 10 SpeeCh to text and ViCe VerSa

137

 Using the Google Cloud Speech API
You can also use the Google Cloud Speech API for the conversion. Create

an account on the Google Cloud and copy the credentials.

GOOGLE_CLOUD_SPEECH_CREDENTIALS = r"INSERT THE CONTENTS OF THE

GOOGLE CLOUD SPEECH JSON CREDENTIALS FILE HERE" try:

 print("Google Cloud Speech thinks you said " +

r.recognize_google_cloud(audio, credentials_json=GOOGLE_

CLOUD_SPEECH_CREDENTIALS))

except sr.UnknownValueError:

 print("Google Cloud Speech could not understand audio")

except sr.RequestError as e:

 print("Could not request results from Google Cloud Speech

service; {0}".format(e))

 Using the Wit.ai API
The Wit.ai API enables you to make a speech-to-text converter. You need to

create an account and then create a project. Copy your Wit.ai key and start

coding.

#recognize speech using Wit.ai

WIT_AI_KEY = "INSERT WIT.AI API KEY HERE" # Wit.ai keys are

32-character uppercase alphanumeric strings

try:

 print("Wit.ai thinks you said " + r.recognize_wit(audio,

key=WIT_AI_KEY))

except sr.UnknownValueError:

 print("Wit.ai could not understand audio")

except sr.RequestError as e:

 print("Could not request results from Wit.ai service; {0}".

format(e))

Chapter 10 SpeeCh to text and ViCe VerSa

138

 Using the Houndify API
Similar to the previous APIs, you need to create an account at Houndify

and get your client ID and key. This allows you to build an app that

responds to sound.

recognize speech using Houndify

HOUNDIFY_CLIENT_ID = "INSERT HOUNDIFY CLIENT ID HERE"

Houndify client IDs are Base64-encoded strings

HOUNDIFY_CLIENT_KEY = "INSERT HOUNDIFY CLIENT KEY HERE"

Houndify client keys are Base64-encoded strings

try:

 print("Houndify thinks you said " + r.recognize_

houndify(audio, client_id=HOUNDIFY_CLIENT_ID, client_

key=HOUNDIFY_CLIENT_KEY))

except sr.UnknownValueError:

 print("Houndify could not understand audio")

except sr.RequestError as e:

 print("Could not request results from Houndify service;

{0}".format(e))

 Using the IBM Speech to Text API
The IBM Speech to Text API enables you to add IBM’s speech recognition

capabilities to your applications. Log in to the IBM cloud and start your

project to get an IBM username and password.

IBM Speech to Text

recognize speech using IBM Speech to Text

IBM_USERNAME = "INSERT IBM SPEECH TO TEXT USERNAME HERE" # IBM

Speech to Text usernames are strings of the form XXXXXXXX-XXXX-

XXXX-XXXX-XXXXXXXXXXXX

Chapter 10 SpeeCh to text and ViCe VerSa

139

IBM_PASSWORD = "INSERT IBM SPEECH TO TEXT PASSWORD HERE" # IBM

Speech to Text passwords are mixed-case alphanumeric strings

try:

 print("IBM Speech to Text thinks you said " + r.recognize_

ibm(audio, username=IBM_USERNAME, password=IBM_PASSWORD))

except sr.UnknownValueError:

 print("IBM Speech to Text could not understand audio")

except sr.RequestError as e:

 print("Could not request results from IBM Speech to Text

service; {0}".format(e))

 Using the Bing Voice Recognition API
This API recognizes audio coming from a microphone in real time. Create

an account on Bing.com and get a Bing Voice Recognition API key.

recognize speech using Microsoft Bing Voice Recognition

BING_KEY = "INSERT BING API KEY HERE" # Microsoft Bing Voice

Recognition API key is 32-character lowercase hexadecimal

strings

try:

 print("Microsoft Bing Voice Recognition thinks you said " +

r.recognize_bing(audio, key=BING_KEY))

except sr.UnknownValueError:

 print("Microsoft Bing Voice Recognition could not

understand audio")

except sr.RequestError as e:

 print("Could not request results from Microsoft Bing Voice

Recognition service; {0}".format(e))

Once you have converted the speech into text, you cannot expect

100 percent accuracy. To measure the accuracy, you can use the WER.

Chapter 10 SpeeCh to text and ViCe VerSa

140

 Text-to-Speech Conversion
This section of the chapter focuses on converting written text to an audio file.

 Using pyttsx
Using a Python package called pyttsx, you can convert text to audio.

Do a pip install pyttsx. If you are using python 3.6 then do

pip3 install pyttsx3.

import pyttsx

engine = pyttsx.init()

engine.say("Your Message")

engine.runAndWait()

 Using SAPI
You can also use SAPI to do text-to-speech conversion in Python.

from win32com.client import constants, Dispatch

Msg = "Hi this is a test"

speaker = Dispatch("SAPI.SpVoice") #Create SAPI SpVoice Object

speaker.Speak(Msg) #Process TTS

del speaker

 Using SpeechLib
You can take the input from a text file and convert it to audio using

SpeechLib, as shown here:

from comtypes.client import CreateObject

engine = CreateObject("SAPI.SpVoice")

Chapter 10 SpeeCh to text and ViCe VerSa

141

stream = CreateObject("SAPI.SpFileStream")

from comtypes.gen import SpeechLib

infile = "SHIVA.txt"

outfile = "SHIVA-audio.wav"

stream.Open(outfile, SpeechLib.SSFMCreateForWrite)

engine.AudioOutputStream = stream

f = open(infile, 'r')

theText = f.read()

f.close()

engine.speak(theText)

stream.Close()

Many times, you have to edit the audio so that you can remove a voice

from the audio file. The next section shows you how.

 Audio Cutting Code
Make a CSV file of audio that contains the comma-separated values of the

details of the audio and perform the following using Python:

import wave

import sys

import os

import csv

origAudio = wave.open('Howard.wav', 'r') #change path

frameRate = origAudio.getframerate()

nChannels = origAudio.getnchannels()

sampWidth = origAudio.getsampwidth()

nFrames = origAudio.getnframes()

filename = 'result1.csv' #change path

Chapter 10 SpeeCh to text and ViCe VerSa

142

exampleFile = open(filename)

exampleReader = csv.reader(exampleFile)

exampleData = list(exampleReader)

count = 0

for data in exampleData:

 #for selections in data:

 print('Selections ', data[4], data[5])

 count += 1

 if data[4] == 'startTime' and data[5] == 'endTime':

 print('Start time')

 else:

 start = float(data[4])

 end = float(data[5])

 origAudio.setpos(start*frameRate)

 chunkData = origAudio.readframes(int((end-

start)*frameRate))

 outputFilePath = 'C:/Users/Navin/outputFile{0}.wav'.

format(count) # change path

 chunkAudio = wave.open(outputFilePath, 'w')

 chunkAudio.setnchannels(nChannels)

 chunkAudio.setsampwidth(sampWidth)

 chunkAudio.setframerate(frameRate)

 chunkAudio.writeframes(chunkData)

 chunkAudio.close()

 Cognitive Service Providers
Let’s look at some cognitive service providers that help with speech

processing.

Chapter 10 SpeeCh to text and ViCe VerSa

143

 Microsoft Azure
Microsoft Azure provides the following:

• Custom Speech Service: This overcomes speech

recognition barriers such as speaking style, vocabulary,

and background noise.

• Translator Speech API: This enables real-time speech

translation.

• Speaker Identification API: This can identify the

speakers based on a speech sample of each speaker in

the given audio data.

• Bing Speech API: This converts audio to text,

understands intent, and converts text back to speech

for natural responsiveness.

 Amazon Cognitive Services
Amazon Cognitive Services provides Amazon Polly, a service that

turns text into speech. Amazon Polly lets you create applications that

talk, enabling you to build entirely new categories of speech-enabled

products.

• 47 voices and 24 languages can be used, and an Indian

English option is provided.

• Tones such as whispering, anger, and so on, can be

added to particular parts of the speech using Amazon

effects.

Chapter 10 SpeeCh to text and ViCe VerSa

144

• You can instruct the system how to pronounce a

particular phrase or word in a different way. For

example, “W3C” is pronounced as World Wide Web

Consortium, but you can change that to pronounce

just the acronym. You can also provide the input text in

SSML format.

 IBM Watson Services
There are two services from IBM Watson.

• Speech to text: U.S. English, Spanish, and Japanese

• Text to speech: U.S. English, U.K. English, Spanish,

French, Italian, and German

 The Future of Speech Analytics
Speech recognition technology has been making a great progress. Every

year, it is about 10 to 15 percent more accurate than the previous year. In

the future, it will provide the most interactive interface for computers yet.

There are many applications that you will soon be witnessing in the

marketplace, including interactive books, robotic control, and self-driving

car interfaces. Speech data offers some exciting new possibilities because

it is the future of the industry. Speech intelligence enables people to

message, take or give orders, raise complaints and to do any work where

they used to type manually. It offers a great customer experience and

perhaps that is why all customer-facing departments and businesses tend

to use speech applications very heavily. I can see a great future for speech

application developers.

Chapter 10 SpeeCh to text and ViCe VerSa

	Chapter 10: Speech to Text and Vice Versa
	Speech-to-Text Conversion
	Speech as Data
	Speech Features: Mapping Speech to a Matrix
	Spectrograms: Mapping Speech to an Image
	Building a Classifier for Speech Recognition Through MFCC Features
	Building a Classifier for Speech Recognition Through a Spectrogram
	Open Source Approaches
	Examples Using Each API
	Using PocketSphinx
	Using the Google Speech API
	Using the Google Cloud Speech API
	Using the Wit.ai API
	Using the Houndify API
	Using the IBM Speech to Text API
	Using the Bing Voice Recognition API

	Text-to-Speech Conversion
	Using pyttsx
	Using SAPI
	Using SpeechLib
	Audio Cutting Code

	Cognitive Service Providers
	Microsoft Azure
	Amazon Cognitive Services
	IBM Watson Services

	The Future of Speech Analytics

