
267© Bikramaditya Singhal, Gautam Dhameja, Priyansu Sekhar Panda 2018
B. Singhal et al., Beginning Blockchain, https://doi.org/10.1007/978-1-4842-3444-0_5

CHAPTER 5

Blockchain
Application
Development
In the previous chapters we went into theoretical details about what

blockchain is and how the Bitcoin and Ethereum blockchains work. We

also looked at the different cryptographic and mathematical algorithms,

theorems, and proofs that go into making the blockchain technology.

In this chapter, we will start with how blockchain applications are

different than the conventional applications, and then we will dive into

how to build applications on blockchains. We will also look at setting up

the necessary infrastructure needed to start developing decentralized

applications.

 Decentralized Applications
The popularity of blockchain technology is mostly driven by the fact that

it can potentially solve various real-world problems because it provides

more transparency and security (tamper-proof) than conventional

technologies. There are a lot of blockchain use cases identified by several

startups and community members aimed at solving these problems.

https://doi.org/10.1007/978-1-4842-3444-0_5

268

To implement these use cases, we create applications that work on top

of blockchains. In general, applications that interact with blockchains

are referred to as “decentralized applications” or, in short, just DApps or

dApps.

To understand DApps better, let’s first revisit what a blockchain is.

A blockchain or a distributed ledger is basically a special kind of database

where the data is not stored at a centralized server, but it is copied at all

the participating nodes in the network. Also, the data on blockchains is

cryptographically signed, which proves the identity of the entity who wrote

that data on the blockchain. To make use of this database to store and

retrieve data, we create applications that are called DApps because these

applications do not rely on a centralized database but on a blockchain-

based decentralized data store. There is no single point of failure or control

for these applications.

Let’s take an example of a DApp. Let’s take a scenario of supply chain

where several vendors and logistics partners are involved in the supply

chain process of manufactured goods. To use blockchain technology for

this supply chain use case, here’s what we would do:

• We would need to set up blockchain nodes at each

of these vendors so that they can participate in the

consensus process on the data shared.

• We would need an interface so that all the participants

and users can store, retrieve, verify, and evaluate

data on the blockchain. This interface would be used

by the manufacturer to enter the information about

the goods manufactured; by the logistics partner to

enter information about the transfer of goods; by the

warehousing vendor to verify if the goods manufactured

and the goods transferred are in sync, etc., etc. This

interface would be our supply chain DApp.

Chapter 5 BloCkChain appliCation Development

269

Another example of a DApp would be a voting system based on

blockchains. Using blockchain for voting, we would be able to make

the whole process much more transparent and secure because each

vote would be cryptographically signed. We would need to create an

application that could get a list of candidates for whom voters could vote,

and this application would also provide a simple interface to submit and

record the votes.

 Blockchain Application Development
Before we jump into code, let’s first understand some basic concepts

around blockchain application development. Generally, we are used

to concepts like objects, classes, functions, etc. when we develop

conventional software applications. However, when it comes to blockchain

applications, we need to understand a few more concepts like transactions,

accounts and addresses, tokens and wallets, inputs, and outputs and

balances. The handshake and request/response mechanism between a

decentralized application and a blockchain are driven by these concepts.

First, when developing an application based on blockchain, we

need to identify how the application data would map to the blockchain

data model. For example, when developing a DApp on the Ethereum

blockchain, we need to understand how the application state can be

represented in terms of Solidity data structures and how the application’s

behavior can be expressed in terms of Ethereum smart contracts. As we

know that all data on a blockchain is cryptographically signed by private

keys of the users, we need to identify which entities in our application

would have identities or addresses represented on the blockchain. In

conventional applications this is generally not the case, because the data

is not always signed. For blockchain application we need to define who

would be the signers and what data they would sign. For example, in

a voting DApp in which every voter cryptographically signs their vote,

Chapter 5 BloCkChain appliCation Development

270

this is easy to identify. However, imagine a scenario where we need to

migrate an existing conventional distributed systems application, having

its data stored across multiple SQL tables and databases, to a DApp based

on Ethereum blockchain. In this case we need to identify which entities

in which table would have their identities and which entities would be

attached to other identities.

In the next few sections, we will explore Bitcoin and Ethereum

application programming using simple code snippets to send some

transactions. The purpose of this exercise is to become familiar with the

blockchain APIs and common programming practices. For simplicity, we

will be using public test networks for these blockchains and we will write

code in JavaScript. The reason for selecting JavaScript is, at the time of this

writing, we have stable JavaScript libraries available for both blockchains

and it will be easier to understand the similarities and differences in the

approaches we take while writing code. The code snippets are explained

in detail after every logical step and can be understood even if the reader is

not familiar with JavaScript programming.

 Libraries and Tools
Recall from Chapter 2, that there are a lot of cryptographic algorithms

and mathematics used in blockchain technology. Before we send our

transactions to blockchains from an application, we need to prepare

them. The transaction preparation includes defining accounts and

addresses, adding required parameters and values to the transaction

objects, and signing using private keys, among a few other things. When

developing applications, it’s better to use verified and tested libraries for

transaction preparation instead of writing code from scratch. Some of the

stable libraries for both Bitcoin and Ethereum are available open source,

which can be used to prepare and sign transactions and to send them to

the blockchain nodes/network. For the purpose of our code exercises,

we will be using the bitcoinjs JavaScript library for interacting with the

Chapter 5 BloCkChain appliCation Development

https://doi.org/10.1007/978-1-4842-3444-0_2

271

Bitcoin blockchain and the web3.js JavaScript library for interacting with

the Ethereum blockchain. Both these libraries are available as node.js

packages and can be downloaded and integrated using the npm

commands.

Important Note the code exercises in this chapter are based on
node.js applications. this is to make sure that the code we write as
part of this exercise has a container in which it can run and interact
with the other prepackaged libraries (node modules) mentioned. it is
nice to have some knowledge about node.js application development,
and the reader is encouraged to follow a getting started tutorial on
node.js and npm.

Figure 5-1 shows how a DApp interacts with a blockchain.

Figure 5-1. Blockchain application interaction

Chapter 5 BloCkChain appliCation Development

272

 Interacting with the Bitcoin Blockchain
In this section we will send a transaction to the Bitcoin public test network

from one address to another. Consider this a “Hello World” application

for the Bitcoin blockchain. As mentioned before, we will be using the

bitcoinjs JavaScript library for preparing and signing transactions. And

for simplicity, instead of hosting a local Bitcoin node, we will use a public

Bitcoin test network node hosted by a third-party provider block-explorer.

Note that you can use any provider for your application and you can also

host a local node. All you need to do is to point your application code to

connect to your preferred node.

Recall from previous chapters that the Bitcoin blockchain is primarily

for enabling peer to peer payments. A Bitcoin transaction is mostly just

a transfer of Bitcoins from one address to another. Here’s how we do this

programmatically.

The following (Figure 5-2) shows how this code interacts with the

Bitcoin blockchain. Note: The figure is just a rough sketch and does not

show the Block Explorer service architecture in detail.

Figure 5-2. Application interacting with the Bitcoin blockchain using
the Block Explorer API

Chapter 5 BloCkChain appliCation Development

273

The following subheadings of this section are steps to follow, in that

order, to send a transaction to the Bitcoin test network using JavaScript.

 Setup and Initialize the bitcoinjs Library
in a node.js Application
Before we call the library-specific code for Bitcoin transactions, we will

install and initialize the bitcoinjs library.

After initializing a node.js applicaion using the npm init command,

let’s create an entry point for our application, index.js, and custom

JavaScript module to call the bitcoinjs library functions btc.js. Import btc.js

in the index.js. Now, we are ready to follow the next steps.

First, let’s install the node module for bitcoinjs:

npm install --save bitcoinjs-lib

Then, in our Bitcoin module btc.js, we will initialize the bitcoinjs

library using the require keyword:

var btc = require('bitcoinjs-lib');

Now we can use this btc variable to call library functions on the

bitcoinjs library. Also, as part of the initialization process, we are

initializing a couple of more variables:

• The network to target : We are using the Bitcoin test

network.

var network = btc.networks.testnet;

• The public node API endpoint to get and post

transactions : We are using the Block Explorer API for

Bitcoin test network. Note that you can replace this API

endpoint with your preferred one.

var blockExplorerTestnetApiEndpoint =

'https://testnet.blockexplorer.com/api/';

Chapter 5 BloCkChain appliCation Development

274

At this point, we are all set up to create a Bitcoin transaction using a

node.js application.

 Create Keypairs for the Sender and Receiver
The first thing that we will need are the keypairs for the sender and

the receivers. These are like user accounts identifying the users on the

blockchain. So, let’s first create two keypairs for Alice and Bob.

var getKeys = function () {

 var aliceKeys = btc.ECPair.makeRandom({

 network: network

 });

 var bobKeys = btc.ECPair.makeRandom({

 network: network

 });

 var alicePublic = aliceKeys.getAddress();

 var alicePrivate = aliceKeys.toWIF();

 var bobPublic = bobKeys.getAddress();

 var bobPrivate = bobKeys.toWIF();

 console.log(alicePublic, alicePrivate, bobPublic,

bobPrivate);

};

What we did in the previous code snippet is, we used the ECPair class

of the bitcoinjs library and called the makeRandom method on it to create

random keypairs for the test network; note the parameter passed for

network type.

Now that we have created a couple of keypairs, let’s use them to send

Bitcoins from one to the other. In almost all the cryptography examples,

Alice and Bob have been the favorite characters, as seen in the preceding

keypair variables. However, every time we see a cryptography example,

generally Alice is the one who encrypts/signs something and sends to Bob.

Chapter 5 BloCkChain appliCation Development

275

For that reason, we feel Bob is under a lot of debt from Alice, so in our case

we will help Bob repay some of that debt. We will do this example Bitcoin

transaction from Bob to Alice.

 Get Test Bitcoins in the Sender’s Wallet
We have identified that Bob is going to be acting as the sender in this

example Bitcoin transaction. Before he sends any Bitcoins to Alice, he

needs to own them. As we know that this example transaction is targeting

the Bitcoin test network, there is no real money involved but we still need

some test Bitcoins in Bob’s wallet. A simple way to get test network Bitcoins

is to ask on the Internet. There are a lot of websites on the Internet that

host a simple web form to take the Bitcoin testnet addresses and then

send test net Bitcoins to those. These services are called Bitcoin testnet

faucets, and if you search online for that term you will get a lot of those in

the search results. We are not listing or recommending any specific testnet

faucet because they are generally not permanent. As soon as a faucet

service provider has exhausted their test coins, or they don’t want to host

the service anymore, they shut it down. But then new ones keep coming up

all the time. A list of some of these faucet services is also available on the

Bitcoin wiki testnet page.

Another way of getting test net Bitcoins is to host a local Bitcoin node

pointing to the test net and mine some. The block mining on the Bitcoin

test network is not as difficult as that on the main network. This approach

could well be the next level approach when you are building a production

Bitcoin application and you need to test it frequently. Instead of asking for

test coins every time you want to test your application, you can just mine

them yourself.

For the purposes of this simple example, we will just get some

Bitcoins from a testnet faucet. In the previous code snippet, the value in

the bobPublic variable is Bob’s Bitcoin testnet address. When we ran this

snippet, it generated “msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2” as Bob’s

Chapter 5 BloCkChain appliCation Development

276

address. It is also Bob’s base 58 encoded public key. We will submit this

value in one of the testnet faucet web forms and in return we will receive

a transaction ID. If we look up that transaction ID on any of the Bitcoin

testnet explorers, we will see that some other address has sent some test

Bitcoins to Bob’s address we submitted in the form.

 Get the Sender’s Unspent Outputs
Now that we know that we have some test Bitcoins in Bob’s wallet, we can

spend them and give them to Alice through a Bitcoin transaction. Let’s

recall from Chapter 3 how the Bitcoin transactions are made of inputs and

outputs. You can spend your unspent outputs by adding them as inputs

to the transactions where you want to spend them. To do that, first you

need to query the network about the sender’s unspent outputs. Here’s how

we will do that for Bob’s Bitcoin testnet address using the block explorer

API. To get the unspent outputs, we will send an HTTP request to the UTXO

endpoint with Bob’s address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2".

var getOutputs = function () {

 var url = blockExplorerTestnetApiEndpoint + 'addr/' +

msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2 + '/utxo';

 return new Promise(function (resolve, reject) {

 request.get(url, function (err, res, body) {

 if (err) {

 reject(err);

 }

 resolve(body);

 });

 });

};

Chapter 5 BloCkChain appliCation Development

https://doi.org/10.1007/978-1-4842-3444-0_3

277

In the previous code snippet, we have used the node.js request

module to send http requests using a node.js application. Feel free to use

your favorite http library/module. This snippet is a JavaScript function

that returns a promise that resolves into the response body from the API

method. Here’s how the response looks:

[

 {

 address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

 txid: 'db2e5966c5139c6e937203d567403867643482bbd9a6624

752bbc583ca259958',

 vout: 0,

 scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad

c51dc02d6888ac',

 amount: 0.99992,

 satoshis: 99992000,

 height: 1258815,

 confirmations: 1011

 },

 {

 address: 'msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2',

 txid: '5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7

453e3afeb4934e6d1d928e',

 vout: 1,

 scriptPubKey: '76a914806094191cbd4fcd8b4169a70588ad

c51dc02d6888ac',

 amount: 0.99998,

 satoshis: 99998000,

 height: 1258814,

 confirmations: 1012

 }

]

Chapter 5 BloCkChain appliCation Development

278

The response body returned by the call is a JSON array with two

objects. Each of these objects represents an unspent output for Bob. Each

output has txid, which is the transaction ID where this output is listed, the

amount associated with output, and the vout, which means the sequence

or index number of the output in that transaction. There is some other

information in the JSON objects too, but that will not be used in the

transaction preparation process.

If we take the first object in the array, it basically says that the

Bitcoin testnet address "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2"

has `99992000` unspent satoshis coming from the transaction

`db2e5966c5139c6e937203d567403867643482bbd9a6624752bbc583c

a259958` at the index `0`. Similarly, the second object represents

`99998000` unspent satoshis coming from the transaction

`5b88d5fc4675bb86b0a3a7fc5a36df9c425c3880a7453e3afeb4934

e6d1d928e` at the index `1`.

Don’t forget that "msDkUzzd69idLLGCkDFDjVRz44jHcV3pW2" is Bob’s

Bitcoin testnet, which we created in step 2 earlier. Now we know that Bob

has this many satoshis, which he can spend in a new transaction.

 Prepare Bitcoin Transaction
The next step is to prepare a Bitcoin transaction in which Bob can send the

test coins to Alice. Preparing the transaction is basically defining its inputs,

outputs, and amount.

As we know from the previous step that Bob has two unspent outputs

under his Bitcoin testnet address, let’s spend the first element of the

outputs array. Let’s add this as an input to our transaction.

var utxo = JSON.parse(body.toString());

var transaction = new btc.TransactionBuilder(network);

transaction.addInput(utxo[0].txid, utxo[0].vout);

Chapter 5 BloCkChain appliCation Development

279

In the prceding code snippet, first we have parsed the response we

received from the previous API call to get Bob’s unspent outputs.

Then we have created a transaction builder object for the Bitcoin test

network using the bitcoinjs library.

In the last line, we have defined a transaction input. Note that this input

is referring to the element at 0 index of the utxo array, which we received

in the API call from the previous step. We have passed the transaction ID

(txid) and vout from the unspent to the transaction.addInput method as

input parameters.

Basically, we are defining what we want to spend and where we got it

from.

Next, we add the transaction outputs. This is where we say how we

want to spend what we added in the input. In the line following, we

have added a transaction output by calling the addOutput method on

the transaction builder object and passed in the target address and the

amount. Bob wants to send 99990000 satoshis to Alice. Notice that we have

used Alice’s Bitcoin testnet address as the function’s first parameter.

transaction.addOutput(alicePublic, 99990000);

While we have used only one input and one output in this example

transaction, a transaction can have multiple inputs and outputs. An

important thing to note is that the total amount in inputs should not be

less than the total amount in outputs. Most of the time, the amount in

inputs is slightly more than the amount in outputs, and the difference is

the transaction fee offered to the miners to include this transaction when

they mine the next block.

In this transaction, we have 2,000 satoshis as the transaction fee,

which is the difference between input amount (99992000) and the output

amount (99990000). Note that we don’t have to create any outputs for the

transaction fee; the difference between the input and output total amounts

is automatically taken as the transaction fee.

Chapter 5 BloCkChain appliCation Development

280

Also, note that we cannot spend partial unspent outputs. If an unspent

output has x amount of Bitcoins associated with it then we must spend

all of the x Bitcoins when adding this unspent output as an input in a

transaction. So, in case Bob doesn’t want to give all the 99,990,000 satoshis

associated with his unspent output to Alice, then we need to give it back to

Bob by adding another output to the transaction with an amount equal to

the difference of total unspent amount and the amount Bob wants to give

to Alice.

 Sign Transaction Inputs
Now, that we have defined the inputs and outputs in the transaction, we

need to sign the inputs using Bob’s keys. The following line of code calls

the sign function on the transaction builder object to cryptographically

sign the transaction using Bob’s private key, but it takes the whole key pair

object as an input parameter.

transaction.sign(0, bobKeys);

Note that the transaction.sign function takes the index of the input

and the full key pair as input parameters. In this transaction, because we

have only one input, the index we have passed is 0.

At this stage, our transaction is prepared and signed.

 Create Transaction Hex
Now we will create a hex string from the transaction object.

var transactionHex = transaction.build().toHex();

The output of this line of code is the following string, which represents

our prepared transaction; this step is needed because the send transaction

API accepts the raw transaction as a string.

Chapter 5 BloCkChain appliCation Development

281

 Broadcast Transaction to the Network
Finally, we use the hex string value we generated in the last step and send

it to the block explorer public testnet node using the API,

var txPushUrl = blockExplorerTestnetApiEndpoint + 'tx/send';

request.post({

 url: txPushUrl,

 json: {

 rawtx: transactionHex

 }

 }, function (err, res, body) {

 if (err) console.log(err);

 console.log(res);

 console.log(body);

 });

If the transaction is accepted by the block explorer public node, we will

receive a transaction ID as the response of this API call,

{

 txid: "db2e5966c5139c6e937203d567403867643482bbd

9a6624752bbc583ca259958"

}

Now that we have the transaction ID of our transaction, we can look it

up on any of the online testnet explorers to see if and when it gets mined

and how many confirmations it has.

Putting it all together, here’s the complete code for sending a Bitcoin

testnet transaction using JavaScript. The input parameters are the Bitcoin

testnet keypairs we created in step 1.

Chapter 5 BloCkChain appliCation Development

282

var createTransaction = function (aliceKeys, bobKeys) {

 getOutputs(bobKeys.getAddress()).then(function (res) {

 var utxo = JSON.parse(res.toString());

 var transaction = new btc.TransactionBuilder(network);

 transaction.addInput(utxo[0].txid, utxo[0].vout);

 transaction.addOutput(alicekeys.getAddress(),

99990000);

 transaction.sign(0, bobKeys);

 var transactionHex = transaction.build().toHex();

 var txPushUrl = blockExplorerTestnetApiEndpoint +

'tx/send';

 request.post({

 url: txPushUrl,

 json: {

 rawtx: transactionHex

 }

 }, function (err, res, body) {

 if (err) console.log(err);

 console.log(res);

 console.log(body);

 });

 });

};

In this section we learned how we can programmatically send a

transaction to the Bitcoin test network. Similarly, we can send transactions

to the Bitcoin main network by using the main network as the target in the

library functions and in the API endpoints. We also used the query APIs

to get unspent outputs of a Bitcoin address. These functions can be used

to create a simple Bitcoin wallet application to query and manage Bitcoin

addresses and transactions.

Chapter 5 BloCkChain appliCation Development

283

 Interacting Programmatically with
Ethereum—Sending Transactions
The Ethereum blockchain has much more to offer in terms of blockchain

application development as compared with the Bitcoin blockchain.

The ability to execute logic on the blockchain using smart contracts

is the key feature of Ethereum blockchain that allows developers to

create decentralized applications. In this section we will learn how to

programmatically interact with the Ethereum blockchain using JavaScript.

We will look at the main aspects of Ethereum application programming

from simple transactions to creating and calling smart contracts.

As we did for interacting with the Bitcoin blockchain in the previous

section, we will be using a JavaScript library and test network for

interacting with Ethereum as well. We will use the web3 JavaScript library

for Ethereum. This library wraps a lot of Ethereum JSON RPC APIs and

provides easy to use functions to create Ethereum DApps using JavaScript.

At the time of this writing, we are using a version greater than and

compatible with version 1.0.0-beta.28 of the web3 JavaScript library.

For the test network, we will be using the Ropsten test network for

Ethereum blockchain.

For simplicity, we will again use a public-hosted test network node for

Ethereum so that we don’t have to host a local node while running these

code snippets. However, all snippets should work with a locally hosted

node as well. We are using the Ethereum APIs provided by the Infura

service. Infura is a service that provides public-hosted Ethereum nodes so

that developers can easily test their Ethereum apps. There is a small and

free registration step needed before we can use the Infura API, so we will

go to https://infura.io and do a registration. We will get an API key after

registration. Using this API key, we can now call the Infura API.

Chapter 5 BloCkChain appliCation Development

https://infura.io/

284

The following (Figure 5-3) shows how this code interacts with the

Ethereum blockchain. Note: The figure is just a rough sketch and does not

show the Infura service architecture in detail.

The following subsections of this section are steps to follow, in that

order, to send a transaction to the Ethereum Ropsten test network using

JavaScript.

 Set Up Library and Connection
First, we install the web3 library in our node.js application. Note the

specific version of library mentioned in the installation command. This

is because version 1.0.0 of the library has some more APIs and functions

available and they reduce dependency on other external packages.

npm install web3@1.0.0-beta.28

Then, we initialize the library in our nodejs Ethereum module using

the require keyword,

var Web3 = require('web3');

Figure 5-3. Application interacting with Ethereum blockchain using
Infura API service

Chapter 5 BloCkChain appliCation Development

285

Now, we have a reference of the web3 library, but we need to

instantiate it before we can use it. The following line of code creates a

new instance of the Web3 object and it sets the Infura-hosted Ethereum

Ropsten test network node as the provider for this Web3 instance.

var web3 = new Web3(new Web3.providers.HttpProvider('https://

ropsten.infura.io/<your Infura API key>'));

 Set Up Ethereum Accounts
Now that we are all set up, let’s send a transaction to the Ethereum

blockchain. In this transaction, we will send some Ether from one account

to another. Recall from Chapter 4 that Ethereum does not use the UTXO

model but it uses an account and balances model.

Basically, the Ethereum blockchain manages state and assets in terms

of accounts and balances just like banks do. There are no inputs and

outputs here. You can simply send Ether from one account to another and

Ethereum will make sure that the states are updated for these accounts on

all nodes.

To send a transaction to Ethereum that transfers Ether from one

account to others, we will first need a couple of Ethereum accounts. Let’s

start with creating two accounts for Alice and Bob.

The following code snippet calls the account creation function of web3

library and creates two accounts.

var createAccounts = function () {

 var aliceKeys = web3.eth.accounts.create();

 console.log(aliceKeys);

 var bobKeys = web3.eth.accounts.create();

 console.log(bobKeys);

};

Chapter 5 BloCkChain appliCation Development

https://doi.org/10.1007/978-1-4842-3444-0_4

286

And here’s the output that we get in the console window after running

the previous snippet.

{

 address: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

 privateKey: '0x9fb71152b32cb90982f95e2b1bf2a5b6b2a5385

5eacf59d132a2b7f043cfddf5',

 signTransaction: [Function: signTransaction],

 sign: [Function: sign],

 encrypt: [Function: encrypt]

}

{

 address: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 privateKey: '0xc6676b7262dab1a3a28a781c77110b63ab8cd5

eae2a5a828ba3b1ad28e9f5a9b',

 signTransaction: [Function: signTransaction],

 sign: [Function: sign],

 encrypt: [Function: encrypt]

}

As you can see, along with the addresses and private keys, the output for

each account creation function call also includes a few functions. For now,

we will focus on the address and private key of the returned objects. The

address is the Keccak-256 hash of the ECDSA public key of the generated

private key. This address and private key combination represents an account

on the Ethereum blockchain. You can send Ether to the address and you can

spend that Ether using the private key of the corresponding address.

 Get Test Ether in Sender’s Account
Now, to create an Ethereum transaction which transfers Ether from one

account to another, we first need some Ether in one of the accounts. Recall

from the Bitcoin programming section that we used testnet faucets to get

Chapter 5 BloCkChain appliCation Development

287

some test Bitcoins on the address we generated. We will do the same for

Ethereum also. Remember that we are targeting the Ropsten test network

for Ethereum, so we will search for a Ropsten faucet on the Internet.

For this example, we submitted Alice’s address that we generated in the

previous code snippet to an Ethereum Ropsten test network faucet and we

received three ethers on that address.

After receiving Ether on Alice’s address, let’s check the balance of this

address to confirm if we really have the Ether or not. Though we can check

the balance of this address using any of the Ethereum explorers online,

let’s do it using code. The following code snippet calls the getBalance

function passing Alice’s address as input parameter.

var getBalance = function () {

 web3.eth.getBalance('0xAff9d328E8181aE831Bc426347949

EB7946A88DA').then(console.log);

};

And we get the following output as the balance of Alice’s address. That’s

a huge number but that’s actually the value of the balance in wei. Wei is the

smallest unit of Ether. One Ether equals 10^18 wei. So, the following value

equals three Ether, which is what we received from the test network faucet.

3000000000000000000

 Prepare Ethereum Transaction
Now that we have some test Ether with Alice, let’s create an Ethereum

transaction to send some of this Ether to Bob. Recall that there are no

inputs and outputs and UTXO queries to be done in the case of Ethereum

because it uses an account and balances-based system. So, all that we

need to do in the transaction is to specify the “from” address (the sender’s

address), the “to” address (the recipient address), and the amount of Ether

to be sent, among a few other things.

Chapter 5 BloCkChain appliCation Development

288

Also, recall that in the case of a Bitcoin transaction we did not have

to specify the transaction fee; however, in the case of an Ethereum

transaction we need to specify two related fields. One is gas limit and the

other is gas Price. Recall from Chapter 4 that gas is the unit of transaction

fee we need to pay to the Ethereum network to get our transactions

confirmed and added to blocks. gas Price is the amount of Ether (in gwei)

we want to pay per unit of gas. The maximum fee that we allow to be used

for a transaction is the product of gas and gas Price.

So, for this example transaction, we define a JSON object with the

following fields. Here, “from” has Alice’s address and “to” has Bob’s

address, and value is one Ether in wei. The gas Price we choose is 20 gwei

and the maximum amount of gas we want to pay for this transaction is

42,000.

Also, note that we have left the data field empty. We will come back to

this later in the smart contract section.

{

 from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

 gasPrice: "20000000000",

 gas: "42000",

 to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 value: "1000000000000000000",

 data: ""

}

 Sign Transaction
Now that we have created a transaction object with the required fields

and values, we need to sign it using the private key of the account that is

sending the Ether. In this case, the sender is Alice, so we will use Alice’s

private key to sign the transaction. This is to cryptographically prove that it

is actually Alice who is spending the Ether in her account.

Chapter 5 BloCkChain appliCation Development

https://doi.org/10.1007/978-1-4842-3444-0_4

289

var signTransaction = function () {

 var tx = {

 from: "0xAff9d328E8181aE831Bc426347949EB7946A88DA",

 gasPrice: "20000000000",

 gas: "42000",

 to: '0x22013fff98c2909bbFCcdABb411D3715fDB341eA',

 value: "1000000000000000000",

 data: ""

 };

 web3.eth.accounts.signTransaction(tx, '0x9fb71152b32cb

90982f95e2b1bf2a5b6b2a53855eacf59d132a2b7f043cfddf5')

 .then(function(signedTx){

 console.log(signedTx.rawTransaction);

 });

};

The preceding code snippet calls the signTransaction function with

the transaction object we created in the step before and Alice’s private key

that we got when we generated Alice’s account. Following is the output we

get when we run the prceding code snippet.

{

 messageHash: '0x91b345a38dc728dc06a43c49b92a6ac1e0e6d

614c432a6dd37d809290a25aa6b',

 v: '0x2a',

 r: '0x14c20901a060834972a539d7b8ad1f23161

c2144a2b66fbf567e37e963d64537',

 s: '0x3d2a0a818633a11832a5c48708a198af909

eaf4884a7856c9ac9ed216d9b029c',

Chapter 5 BloCkChain appliCation Development

290

 rawTransaction: '0xf86c018504a817c80082a4109422013fff98c

2909bbfccdabb411d3715fdb341ea880de0b6b3a76400

00802aa014c20901a060834972a539d7b8ad1f23161c2144a2b66fbf5

67e37e963d64537a03d2a0a818633a11832a5c48708a198af909ea

f4884a7856c9ac9ed216d9b029c'

}

In the output of the signTransaction function we receive a

JSON object with a few properties. The important value for us is the

rawTransaction value. This is the hex string representation of the signed

transaction. This is very similar to how we created a hex string of the

Bitcoin transaction in the Bitcoin section.

 Send Transaction to the Ethereum Network
The final step is to just send this signed raw transaction to the public-

hosted Ethereum test network node, which we have set as the provider of

our web3 object.

The following code calls the sendSignedTransaction function to send

the raw transaction to the Ethereum test network. The input parameter is

the value of the rawTransaction string that we got in the previous step as

part of signing the transaction.

web3.eth.sendSignedTransaction(signedTx.rawTransaction).

then(console.log);

Notice the use of “then” in the prceding code snippet. This is

interesting because the web3 library provides different levels of finality

when working with Ethereum transactions, because an Ethereum

transaction goes through several states after being submitted. In this

function, call of sending a transaction to the network, then, is hit when the

transaction receipt is created, and the transaction is complete.

Chapter 5 BloCkChain appliCation Development

291

After a few seconds, when the JavaScript promise resolves, the

following is what we get as an output.

{

 blockHash: '0x26f1e1374d11d4524f692cdf1ce3aa6e085dcc1810

84642293429eda3954d30e',

 blockNumber: 2514764,

 contractAddress: null,

 cumulativeGasUsed: 125030,

 from: '0xaff9d328e8181ae831bc426347949eb7946a88da',

 gasUsed: 21000,

 logs: [],

 logsBloom: '0x000

000

000

000

000

000

000

000

000

0000000000000',

 status: '0x1',

 to: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

 transactionHash: '0xd3f45394ac038c44c4fe6e0cdb7021fdbd

672eb1abaa93eb6a1828df5edb6253',

 transactionIndex: 3

}

The output has a lot of information, as we can see. The most important

part is the transactionHash, which is the ID of the transaction on the

network. It also gives us the blockHash, which is the ID of the block

in which this transaction was included. Along with this, we also get

information about how much gas was used for this transaction, among

Chapter 5 BloCkChain appliCation Development

292

other details. If the gas used is less than the maximum gas we specified

during transaction creation, the remaining gas is sent back to the sender’s

address.

In this section, we sent a simple transaction to the Ethereum

blockchain using JavaScript. But this is just the beginning of Ethereum

application programming. In the next section, we will also look at how to

create and call smart contracts programmatically.

 Interacting Programmatically with
Ethereum—Creating a Smart Contract
In this section, we will continue our Ethereum programming exercise, and

we will create a simple smart contract on the Ethereum blockchain using

the same web3 JavaScript library and the Infura service API.

Because, no computer programming beginners’ tutorial is complete

without a “Hello World” program, the smart contract we are going to create

will be a simple smart contract returning the string “Hello World” when called.

The contract creation process will be a special kind of transaction sent

to the Ethereum blockchain, and these types of transactions are called

“contract creation transactions.” These transactions do not mention a

“to” address and the owner of the smart contract is the “from” address

mentioned in the transaction.

 Prerequisites
In this code exercise to create a smart contract, we will continue with the

assumption that the web3 JavaScript library is installed and instantiated in

a node.js app and we have registered for the Infura service, just like we did

in the previous section.

Following are the steps to create a smart contract on Ethereum using

JavaScript.

Chapter 5 BloCkChain appliCation Development

293

 Program the Smart Contract
Recall from Chapter 4 that the Ethereum smart contracts are written in

Solidity programming language. While the web3 JavaScript library will

help us deploy our contract on the Ethereum blockchain, we will still have

to write and compile our smart contract in Solidity before we send it to the

Ethereum network using web3. So, let’s first create a sample contract using

Solidity.

There are a variety of tools available to code in Solidity. Most of the

major IDEs and code editors have Solidity plugins for editing and compiling

smart contracts. There is also a web-based Solidity editor called Remix. It’s

available for free to use at https://remix.ethereum.org/. Remix provides

a very simple interface to code and compile smart contracts within your

browser. In this exercise we will be using Remix to code and test our smart

contract and then we will send the same contract to the Ethereum network

using the web3 JavaScript library and the Infura API service.

The following code snippet is written in the Solidity programming

language and it is a simple smart contract that returns the string “Hello

World” from its function Hello. It also has a constructor that sets the value

of the message returned.

pragma solidity ^0.4.0;

contract HelloWorld {

 string message;

 function HelloWorld(){

 message = "Hello World!";

 }

 function Hello() constant returns (string) {

 return message;

 }

}

Chapter 5 BloCkChain appliCation Development

https://doi.org/10.1007/978-1-4842-3444-0_4
https://remix.ethereum.org/

294

Let’s head to Remix and paste this code in the editor window. The

following images (Figures 5-4 and 5-5) show how our sample smart

contract looks in the Remix editor and what the output looks like when

we clickeded the Create button on the right-side menu, under the Run

tab. Also, note that by default, the Remix editor targets a JavaScript VM

environment for smart contract compilation and it uses a test account with

some ETH balance, for testing purposes. When we click the Create button,

this contract is created using the selected account in the JavaScript VM

environment.

Figure 5-4. Editing smart contracts in Remix IDE

Chapter 5 BloCkChain appliCation Development

295

Following is the output generated by the create operation, and it shows

us that the contract has been created because it has a contract address.

The “from” value is the account address that was used to create the

contract. It also shows us the hash of the contract creation transaction.

status 0x1 Transaction mined and execution succeed

contractAddress 0x692a70d2e424a56d2c6c27aa97d1a86395877b3a

from 0xca35b7d915458ef540ade6068dfe2f44e8fa733c

to HelloWorld.(constructor)

gas 3000000 gas

transaction cost 205547 gas

execution cost 109539 gas

hash 0x9f3c21c21f263084b9f031966858a5d8e0648ed19c77d4d2291

875b01d89a141

Figure 5-5. Smart contract creation output in Remix IDE

Chapter 5 BloCkChain appliCation Development

296

input 0x6060604052341561000f57600080fd5b6040805190810160405

280600c81526020017f48656c6c6f20576f726c642100000000000000000

000000000000000000000008152506000908051906020019061005a92919

0610060565b50610105565b8280546001816001161561010002031660029

00490600052602060002090601f016020900481019282601f106100a1578

05160ff19168380011785556100cf565b828001600101855582156100cf5

79182015b828111156100ce5782518255916020019190600101906100b35

65b5b5090506100dc91906100e0565b5090565b61010291905b808211156

100fe5760008160009055506001016100e6565b5090565b90565b6101bc8

06101146000396000f300606060405260043610610041576000357c01000

000900463f

fffffff168063bcdfe0d514610046575b600080fd5b34156100515760008

0fd5b6100596100d4565b604051808060200182810382528381815181526

0200191508051906020019080838360005b8381101561009957808201518

184015260208101905061007e565b50505050905090810190601f1680156

100c65780820380516001836020036101000a031916815260200191505b5

09250505060405180910390f35b6100dc61017c565b60008054600181600

116156101000203166002900480601f01602080910402602001604051908

101604052809291908181526020018280546001816001161561010002031

66002900480156101725780601f106101475761010080835404028352916

0200191610172565b820191906000526020600020905b815481529060010

19060200180831161015557829003601f168201915b50505050509050905

65b6020604051908101604052806000815250905600a165627a7a7230582

0d6796e48540eced3646ea52c632364666e64094479451066317789a712

aef4da0029

 decoded input {}

 decoded output -

 logs []

 value 0 wei

Chapter 5 BloCkChain appliCation Development

297

At this point, we have a simple “Hello World” smart contract ready,

and now the next step is to deploy it programmatically to the Ethereum

blockchain.

 Compile Contract and Get Details
Let’s first get some details about our smart contract from Remix, which will

be needed to deploy the contract to the Ethereum network using the web3

library. Click on the Compile tab in the right-side menu and then click the

Details button. This pops up a new child window with details of the smart

contract. What’s important for us are the ABI and the BYTECODE sections

on the details popup window.

Let’s copy the details in the ABI section using the copy value to

clipboard button available next to the ABI header. Following is the value of

the ABI data for our smart contract.

[

 {

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [

 {

 "name": "",

 "type": "string"

 }

],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 },

Chapter 5 BloCkChain appliCation Development

298

 {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }

]

This is a JSON array and if we closely look at it, we see that it has JSON

objects for each function in our contract including its constructor. These

JSON objects have details about a function and its input and output. This

array describes the smart contract interface.

When we call this smart contract after it is deployed to the network,

we will need this information to find out what functions the contract is

exposing and what do we need to pass as an input to the function we wish

to call.

Now let’s get the data in the BYTECODE section of the details popup.

Following is the data we copied for our contract.

{

 "linkReferences": {},

 "object": "6060604052341561000f57600080fd5b6040805190810

160405280600c81526020017f48656c6c6f20576f726c64210000000

00000000000000000000000000000000081525060009080519060200

19061005a929190610060565b50610105565b8280546001816001161

56101000203166002900490600052602060002090601f01602090048

1019282601f106100a157805160ff19168380011785556100cf565b8

28001600101855582156100cf579182015b828111156100ce5782518

255916020019190600101906100b3565b5b5090506100dc91906100e

0565b5090565b61010291905b808211156100fe57600081600090555

06001016100e6565b5090565b90565b6101bc806101146000396000f

300606060405260043610610041576000357c0100000000000000000

000000000000000000000000000000000000000900463ffffffff168

Chapter 5 BloCkChain appliCation Development

299

063bcdfe0d514610046575b600080fd5b341561005157600080fd5b6

100596100d4565b60405180806020018281038252838181518152602

00191508051906020019080838360005b83811015610099578082015

18184015260208101905061007e565b50505050905090810190601f1

680156100c65780820380516001836020036101000a0319168152602

00191505b509250505060405180910390f35b6100dc61017c565b600

08054600181600116156101000203166002900480601f01602080910

40260200160405190810160405280929190818152602001828054600

181600116156101000203166002900480156101725780601f1061014

757610100808354040283529160200191610172565b8201919060005

26020600020905b81548152906001019060200180831161015557829

003601f168201915b5050505050905090565b6020604051908101604

052806000815250905600a165627a7a72305820877a5da4f7e05c4ad

9b45dd10fb6c133a523541ed06db6dd31d59b35d51768a30029",

"opcodes": "PUSH1 0x60 PUSH1 0x40 MSTORE CALLVALUE

ISZERO PUSH2 0xF JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST

PUSH1 0x40 DUP1 MLOAD SWAP1 DUP2 ADD PUSH1 0x40 MSTORE

DUP1 PUSH1 0xC DUP2 MSTORE PUSH1 0x20 ADD PUSH32

0x48656C6C6F20576F726C64210000000000000000000000000000000000

000000 DUP2 MSTORE POP PUSH1 0x0 SWAP1 DUP1 MLOAD SWAP1 PUSH1

0x20 ADD SWAP1 PUSH2 0x5A SWAP3 SWAP2 SWAP1 PUSH2 0x60 JUMP

JUMPDEST POP PUSH2 0x105 JUMP JUMPDEST DUP3 DUP1 SLOAD PUSH1

0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1

0x2 SWAP1 DIV SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0

KECCAK256 SWAP1 PUSH1 0x1F ADD PUSH1 0x20 SWAP1 DIV DUP2 ADD

SWAP3 DUP3 PUSH1 0x1F LT PUSH2 0xA1 JUMPI DUP1 MLOAD PUSH1 0xFF

NOT AND DUP4 DUP1 ADD OR DUP6 SSTORE PUSH2 0xCF JUMP JUMPDEST

DUP3 DUP1 ADD PUSH1 0x1 ADD DUP6 SSTORE DUP3 ISZERO PUSH2

0xCF JUMPI SWAP2 DUP3 ADD JUMPDEST DUP3 DUP2 GT ISZERO PUSH2

0xCE JUMPI DUP3 MLOAD DUP3 SSTORE SWAP2 PUSH1 0x20 ADD SWAP2

SWAP1 PUSH1 0x1 ADD SWAP1 PUSH2 0xB3 JUMP JUMPDEST JUMPDEST

Chapter 5 BloCkChain appliCation Development

300

POP SWAP1 POP PUSH2 0xDC SWAP2 SWAP1 PUSH2 0xE0 JUMP JUMPDEST

POP SWAP1 JUMP JUMPDEST PUSH2 0x102 SWAP2 SWAP1 JUMPDEST DUP1

DUP3 GT ISZERO PUSH2 0xFE JUMPI PUSH1 0x0 DUP2 PUSH1 0x0 SWAP1

SSTORE POP PUSH1 0x1 ADD PUSH2 0xE6 JUMP JUMPDEST POP SWAP1

JUMP JUMPDEST SWAP1 JUMP JUMPDEST PUSH2 0x1BC DUP1 PUSH2

0x114 PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN STOP PUSH1 0x60

PUSH1 0x40 MSTORE PUSH1 0x4 CALLDATASIZE LT PUSH2 0x41 JUMPI

PUSH1 0x0 CALLDATALOAD PUSH29 0x1000000000000000000000000000

00000000000000000000000000000 SWAP1 DIV PUSH4 0xFFFFFFFF AND

DUP1 PUSH4 0xBCDFE0D5 EQ PUSH2 0x46 JUMPI JUMPDEST PUSH1 0x0

DUP1 REVERT JUMPDEST CALLVALUE ISZERO PUSH2 0x51 JUMPI PUSH1

0x0 DUP1 REVERT JUMPDEST PUSH2 0x59 PUSH2 0xD4 JUMP JUMPDEST

PUSH1 0x40 MLOAD DUP1 DUP1 PUSH1 0x20 ADD DUP3 DUP2 SUB DUP3

MSTORE DUP4 DUP2 DUP2 MLOAD DUP2 MSTORE PUSH1 0x20 ADD SWAP2

POP DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 DUP1 DUP4 DUP4 PUSH1

0x0 JUMPDEST DUP4 DUP2 LT ISZERO PUSH2 0x99 JUMPI DUP1 DUP3

ADD MLOAD DUP2 DUP5 ADD MSTORE PUSH1 0x20 DUP2 ADD SWAP1 POP

PUSH2 0x7E JUMP JUMPDEST POP POP POP POP SWAP1 POP SWAP1 DUP2

ADD SWAP1 PUSH1 0x1F AND DUP1 ISZERO PUSH2 0xC6 JUMPI DUP1

DUP3 SUB DUP1 MLOAD PUSH1 0x1 DUP4 PUSH1 0x20 SUB PUSH2 0x100

EXP SUB NOT AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP JUMPDEST

POP SWAP3 POP POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1

RETURN JUMPDEST PUSH2 0xDC PUSH2 0x17C JUMP JUMPDEST PUSH1 0x0

DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1 AND ISZERO PUSH2 0x100

MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1 PUSH1 0x1F ADD PUSH1

0x20 DUP1 SWAP2 DIV MUL PUSH1 0x20 ADD PUSH1 0x40 MLOAD SWAP1

DUP2 ADD PUSH1 0x40 MSTORE DUP1 SWAP3 SWAP2 SWAP1 DUP2 DUP2

MSTORE PUSH1 0x20 ADD DUP3 DUP1 SLOAD PUSH1 0x1 DUP2 PUSH1 0x1

AND ISZERO PUSH2 0x100 MUL SUB AND PUSH1 0x2 SWAP1 DIV DUP1

ISZERO PUSH2 0x172 JUMPI DUP1 PUSH1 0x1F LT PUSH2 0x147 JUMPI

Chapter 5 BloCkChain appliCation Development

301

PUSH2 0x100 DUP1 DUP4 SLOAD DIV MUL DUP4 MSTORE SWAP2 PUSH1

0x20 ADD SWAP2 PUSH2 0x172 JUMP JUMPDEST DUP3 ADD SWAP2 SWAP1

PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 SWAP1 JUMPDEST

DUP2 SLOAD DUP2 MSTORE SWAP1 PUSH1 0x1 ADD SWAP1 PUSH1 0x20

ADD DUP1 DUP4 GT PUSH2 0x155 JUMPI DUP3 SWAP1 SUB PUSH1 0x1F

AND DUP3 ADD SWAP2 JUMPDEST POP POP POP POP POP SWAP1 POP

SWAP1 JUMP JUMPDEST PUSH1 0x20 PUSH1 0x40 MLOAD SWAP1 DUP2

ADD PUSH1 0x40 MSTORE DUP1 PUSH1 0x0 DUP2 MSTORE POP SWAP1

JUMP STOP LOG1 PUSH6 0x627A7A723058 KECCAK256 DUP8 PUSH27

0x5DA4F7E05C4AD9B45DD10FB6C133A523541ED0

6DB6DD31D59B35D5 OR PUSH9 0xA30029000000000000 ",

 "sourceMap": "24:199:0:-;;;75:62;;;;;;;;106:24;;;;;;;;;;;;

;;;;;;:7;:24;;;;;;;;;;;;:::i;:::-;;24:199;;;;;;;;;;;;;;;;;

;;

;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;:::o;:::-;;;;;;;;;;;;;;;;

;;;;;;;;;;;:::o;:::-;;;;;;;"

}

As we can see, the data in the BYTECODE section is a JSON object.

This is basically the output of the compilation of the smart contract. Remix

compiled our smart contract using the Solidity compiler and as a result

we got the solidity byte code. Now closely examine this JSON and look at

the “object” property and its value. This is a hex string that contains the

byte code for our smart contract, and we will be sending it in the contract

creation transaction in the data field—the same data field that we left blank

in the previous example Ethereum transaction between Alice and Bob.

Now we have all the details for our smart contract and we are ready to

send it to the Ethereum network.

Chapter 5 BloCkChain appliCation Development

302

 Deploy Contract to Ethereum Network
Now that we have our smart contract and its details, we need to prepare a

transaction that can deploy this contract to the Ethereum blockchain. This

transaction preparation will be very similar to the transaction we prepared

in the previous section, but it will have a few more properties that are

needed to create contracts.

First, we need to create an object of the web3.eth.Contract class,

which can represent our contract. The following code snippet creates an

instance for the said class with a JSON array as an input parameter. This

is the same JSON array that we copied from the ABI section of the Remix

popup window, showing the details about our smart contract.

var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }]);

Chapter 5 BloCkChain appliCation Development

303

Now we need to send this contract to the Ethereum network using the

Contract.deploy method of the web3 library. The following code snippet

shows how to do this.

helloworldContract

.deploy({

 data: '0x6060604052341561000f57600080fd5b604080519081

0160405280600c81526020017f48656c6c6f20576f726c6421000

00000000000000000000000000000000000008152506000908051

906020019061005a929190610060565b50610105565b828054600

18160011615610100020316600290049060005260206000209060

1f016020900481019282601f106100a157805160ff19168380011

785556100cf565b828001600101855582156100cf579182015b82

8111156100ce5782518255916020019190600101906100b3565b5

b5090506100dc91906100e0565b5090565b61010291905b808211

156100fe5760008160009055506001016100e6565b5090565b905

65b6101bc806101146000396000f3006060604052600436106100

41576000357c01000000000000000000000000000000000000000

00000000000000000900463ffffffff168063bcdfe0d514610046

575b600080fd5b341561005157600080fd5b6100596100d4565b6

04051808060200182810382528381815181526020019150805190

6020019080838360005b838110156100995780820151818401526

0208101905061007e565b50505050905090810190601f16801561

00c65780820380516001836020036101000a03191681526020019

1505b509250505060405180910390f35b6100dc61017c565b6000

8054600181600116156101000203166002900480601f016020809

10402602001604051908101604052809291908181526020018280

54600181600116156101000203166002900480156101725780601

f1061014757610100808354040283529160200191610172565b82

0191906000526020600020905b815481529060010190602001808

Chapter 5 BloCkChain appliCation Development

304

31161015557829003601f168201915b5050505050905090565b60

20604051908101604052806000815250905600a165627a7a72305

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31

d59b35d51768a30029'

 })

 .send({

 from: '0xAff9d328E8181aE831Bc426347949EB7946A88DA',

 gas: 4700000,

 gasPrice: '20000000000000'

 },

 function(error, transactionHash){

 console.log(error);

 console.log(transactionHash);

 })

 .then(function(contract){

 console.log(contract);

 });

Note that the value of the field data inside the deploy function

parameter object is the same value we received in the object field of the

BYTECODE details in the previous step. Also notice that the string “0x”

is added to this value in the beginning. So, the data passed in the deploy

function is ‘0x’ + byte code of the contract.

Inside the send function after the deploy, we have added the “from”

address, which will be the owner of the contract and the transaction fee

details of gas limit and gas Price. Finally, when the call is complete, the

contract object is returned. This contract object will have the contract

details along with the address of the contract, which can be used to call the

function on the contract.

Another way of sending the contract to the network would be to wrap

the contract inside a transaction and send it directly. The following code

snippet creates a transaction object with data as the contract bytecode,

Chapter 5 BloCkChain appliCation Development

305

signs it using the private key of the address in the “from” field, and then

sends it to the Ethereum blockchain.

Note that we have not assigned a “to” address in this transaction

object, as the address of the contract is unknown before the contract is

deployed.

var tx = {

 from: "0x22013fff98c2909bbFCcdABb411D3715fDB341eA",

 gasPrice: "20000000000",

 gas: "4900000",

 data: "0x6060604052341561000f57600080fd5b604080519081

0160405280600c81526020017f48656c6c6f20576f726c6421000

00000000000000000000000000000000000008152506000908051

906020019061005a929190610060565b50610105565b828054600

18160011615610100020316600290049060005260206000209060

1f016020900481019282601f106100a157805160ff19168380011

785556100cf565b828001600101855582156100cf579182015b82

8111156100ce5782518255916020019190600101906100b3565b5

b5090506100dc91906100e0565b5090565b61010291905b808211

156100fe5760008160009055506001016100e6565b5090565b905

65b6101bc806101146000396000f3006060604052600436106100

41576000357c01000000000000000000000000000000000000000

00000000000000000900463ffffffff168063bcdfe0d514610046

575b600080fd5b341561005157600080fd5b6100596100d4565b6

04051808060200182810382528381815181526020019150805190

6020019080838360005b838110156100995780820151818401526

0208101905061007e565b50505050905090810190601f16801561

00c65780820380516001836020036101000a03191681526020019

1505b509250505060405180910390f35b6100dc61017c565b6000

8054600181600116156101000203166002900480601f016020809

10402602001604051908101604052809291908181526020018280

54600181600116156101000203166002900480156101725780601

Chapter 5 BloCkChain appliCation Development

306

f1061014757610100808354040283529160200191610172565b82

0191906000526020600020905b815481529060010190602001808

31161015557829003601f168201915b5050505050905090565b60

20604051908101604052806000815250905600a165627a7a72305

820877a5da4f7e05c4ad9b45dd10fb6c133a523541ed06db6dd31

d59b35d51768a30029"

 };

 web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

 .then(function (signedTx) {

 web3.eth.sendSignedTransaction(signedTx.rawTransaction)

 .then(console.log);

 });

When we execute this code snippet, we get the following output, which

is the receipt of this transaction.

{

 blockHash: '0xaba93b4561fc35e062a1ad72460e0b677603331bbee

3379ce6c74fa5cf505d82',

 blockNumber: 2539889,

 contractAddress: '0xd5a2d13723A34522EF79bE0f1E7806E86a45

78E9',

 cumulativeGasUsed: 205547,

 from: '0x22013fff98c2909bbfccdabb411d3715fdb341ea',

 gasUsed: 205547,

 logs: [],

 logsBloom: '0x000

000

000

000

000

Chapter 5 BloCkChain appliCation Development

307

000

000

000

000

0000000000000',

 status: '0x1',

 to: null,

 transactionHash: '0xc333cbc5fc93b52871689aab22c48b910cb19

2b4875bea69212363030d36565a',

 transactionIndex: 0

}

Notice the properties of the transaction receipt object. It has a

value assigned to the contractAddress property, while the value of

the “to” property is null. This means that this was a contract creation

transaction that was successfully mined on the network and the

contract created as part of this transaction is deployed at the address

`0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9`.

We have successfully created an Ethereum smart contract

programmatically.

 Interacting Programmatically with
Ethereum—Executing Smart Contract
Functions
Now that we have deployed our smart contract to the Ethereum network,

we can call its member functions. Following are the steps to call an

Ethereum smart contract programmatically.

Chapter 5 BloCkChain appliCation Development

308

 Get Reference to the Smart Contract
To execute a function of the smart contract, first we need to create an

instance of the web3.eth.Contract class with the ABI and address of our

deployed contract. The following code snippet shows how to do that.

var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

In the prceding code snippet, we have created an instance of the

web3.eth.Contract class by passing the ABI of the contract we created in

the previous section, and we have also passed the address of the contract

that we received after deploying the contract.

This object can now be used to call functions on our contract.

Chapter 5 BloCkChain appliCation Development

309

 Execute Smart Contract Function
Recall that we have only one public function in our contract. This method

is named Hello and it returns the string "Hello World!" when executed.

To execute this method, we will call it using the contract.methods

class in the web3 library. The follwing code snippet shows this.

helloworldContract.methods.Hello().send({

 from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

 }).then(console.log);

In the prceding code snippet, we have added a value to the “from”

address in the send function, and this address will be used to send the

transaction that will in turn execute the function Hello on our smart contract.

The full code for calling a smart contract is in the follwing code snippet.

var callContract = function () {

 var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

Chapter 5 BloCkChain appliCation Development

310

 helloworldContract.methods.Hello().send({

 from: '0xF68b93AE6120aF1e2311b30055976d62D7dBf531'

 }).then(console.log);

};

Another way of executing this contract function will be by sending a

raw transaction by signing it. It is similar to how we sent a raw Ethereum

transaction to send Ether and to create a contract in the previous sections.

In this case all we need to do is provide the contract address in the “to”

field of the transaction object and the encoded ABI value of the function

call in the data field.

The following code snippet first creates a contract object and then

gets the encoded ABI value of the smart contract function to be called. It

then creates a transaction object based on these values and then signs and

sends it to the network. Note that we have used the encodeABI function on

the contract function to get the data payload value for the transaction. This

is the input for the smart contract.

var callContract = function () {

 var helloworldContract = new web3.eth.Contract([{

 "constant": true,

 "inputs": [],

 "name": "Hello",

 "outputs": [{

 "name": "",

 "type": "string"

 }],

 "payable": false,

 "stateMutability": "view",

 "type": "function"

 }, {

 "inputs": [],

 "payable": false,

Chapter 5 BloCkChain appliCation Development

311

 "stateMutability": "nonpayable",

 "type": "constructor"

 }], '0xd5a2d13723A34522EF79bE0f1E7806E86a4578E9');

 var payload = helloworldContract.methods.Hello().

encodeABI();

 var tx = {

 from: "0xF68b93AE6120aF1e2311b30055976d62D7dBf531",

 gasPrice: "20000000000",

 gas: "4700000",

 data: payload

 };

 web3.eth.accounts.signTransaction(tx, '0xc6676b7262dab1a3

a28a781c77110b63ab8cd5eae2a5a828ba3b1ad28e9f5a9b')

 .then(function (signedTx) {

 web3.eth.sendSignedTransaction(signedTx.raw

Transaction)

 .then(console.log);

 });

};

Important Note When using a public-hosted node for ethereum,
we should use the raw transaction method for creating and executing
smart contracts because the web3.eth.Contract submodule of the
library uses either an unlocked or default account associated with the
provider ethereum node, but this is not supported by the public nodes
(at the time of this writing).

Chapter 5 BloCkChain appliCation Development

312

 Blockchain Concepts Revisited
In the previous sections we programmatically sent transactions to both

Bitcoin and Ethereum blockchains using JavaScript. Here are some of

the common concepts that we can now revisit, looking at the process of

handcrafting transactions using code.

• Transactions: Looking at the code we wrote and the

output we got for sending transactions to Ethereum and

Bitcoin, we can now say that blockchain transactions

are the operations initiated from an account owner,

which, if completed successfully, update the state of the

blockchain. For example, in our transactions between

Alice and Bob, we saw that the ownership of a certain

amount of Bitcoins and Ether changed from Alice to

Bob and vice versa, and this change of ownership was

recorded in the blockchain, hence bringing it into a

new state. In the case of Ethereum, transactions go

further into contract creation and execution and these

transactions also update the state of the blockchain.

We created a transaction that in turn deployed a smart

contract on the Ethereum blockchain. The state of the

blockchain was updated because now we have a new

contract account created in the blockchain.

• Inputs, Outputs, Accounts and Balances: We also

saw how Bitcoin and Ethereum are different from each

other in terms of managing the state. While Bitcoin

uses the UTXO model, Ethereum uses the accounts

and balances model. However, the underlying idea is

both the blockchains record the ownership of assets,

and transactions are used to change ownership of these

assets.

Chapter 5 BloCkChain appliCation Development

313

• Transaction Fee: For every transaction we do on

public blockchain networks, we must pay a transaction

fee for our transactions to be confirmed by the miners.

In Bitcoin this is automatically calculated, while in

Ethereum we should mention the maximum fee we are

willing to pay in terms of gas Price and gas limit.

• Signing: In both cases, we also saw that after creating a

transaction object with the required values, we signed it

using the sender’s public key. Cryptographic signing is a

way of proving ownership of the assets. If the signature

is incorrect, then the transaction becomes invalid.

• Transaction broadcasting: After creating and signing

the transactions, we sent them to the blockchain nodes.

While we sent our example transactions to publicly

hosted Bitcoin and Ethereum test network nodes, we

are free to send our transactions to multiple nodes if we

don’t trust all of them to process our transactions. This

is called transaction broadcasting.

To summarize, when interacting with blockchains, if we intend to

update the state of the blockchain, we submit signed transactions; and to

get these transactions confirmed, we need to pay some fee to the network.

 Public vs. Private Blockchains
Based on access control, blockchains can be classified as public and

private. Public blockchains are also called permissionless blockchain and

private blockchains are also called permissioned blockchains. The primary

difference between the two is access control. Public or permissionless

blockchains do not restrict addition of new nodes to the network and

anyone can join the network. Private blockchains have a limited number

Chapter 5 BloCkChain appliCation Development

314

of nodes in the network and not everyone can join the network. Examples

of public blockchains are Bitcoin and Ethereum main nets. An example of

a private blockchain can be a network of a few Ethereum nodes connected

to each other but not connected to the main net. These nodes would be

collectively called a private blockchain.

Private blockchains are generally used by enterprises to exchange

data among themselves and their partners and/or among their

suborganizations.

When we develop applications for blockchains, the type of blockchain,

public or private, makes a difference because the rules of interaction with

the blockchain may or may not be the same. This is called blockchain

governance. The public blockchains have a predefined set of rules and

the private ones can have a different set of rules per blockchain. A private

blockchain for a supply chain may have different governance rules, while

a private blockchain for protocol governance may have different rules. For

example, the token, gas Price, transaction fee, endpoints, etc. may or may

not be the same in the aforementioned private Ethereum ledger and the

Ethereum main net. This can impact our applications too.

In our code samples, we primarily focused on the public test networks

of Bitcoin and Ethereum. While the basic concepts of interacting with

private deployments of these blockchains will still be the same, there will be

differences in how we configure our code to point to the private networks.

 Decentralized Application Architecture
In general, the decentralized applications are meant to directly interact

with the blockchain nodes without the need for any centralized

components coming into picture. However, in practical scenarios, with

legacy systems integrations and limited functionality and scaling of the

current blockchain networks, sometimes we must make choices between

full decentralization and scalability while designing our DApps.

Chapter 5 BloCkChain appliCation Development

315

 Public Nodes vs. Self-Hosted Nodes
Blockchains are decentralized networks of nodes. All nodes have the same

copy of data and they agree on the state of data always. When we develop

applications for blockchains, we can make our application talk to any of

the nodes of the target network. There can be mainly two set-ups for this:

• Application and node both run locally: The

application and the node both run on the local

machine. This means we will need our application

users to run a local blockchain node and point the

application to connect with it. This model would be a

purely decentralized model of running an application.

An example of this model is the Ethereum-based Mist

browser, which uses a local geth node.

 Figure 5-6 shows this setup.

• Public node: The application talks to a public node

hosted by a third party. This way our users don’t have

to host a local node. There are several advantages and

disadvantages of this approach. While the users don’t

have to pay for power and storage for running a local

Figure 5-6. DApp connets to local node

Chapter 5 BloCkChain appliCation Development

316

node, they need to trust a third party to broadcast their

transactions to the blockchain. The Ethereum browser

plugin metamask uses this model and connects with

public hosted Ethereum nodes.

 Figure 5-7 shows this setup.

 Decentralized Applications and Servers
Apart from the previously mentioned scenarios, there can be other setups

too, depending upon specific use cases and requirements. There are a lot

of scenarios when a server is needed between an app and the blockchain.

For example: When you need to maintain a cache of the blockchain state

for faster queries; when the app needs to send notifications (emails, push,

SMS, etc.) to the users based on state updates on the blockchain; and when

multiple ledgers are involved, and you need to run a back-end logic to

transform data between the ledgers. Imagine the infrastructure being used

by some of the big cryptocurrency exchanges where we get all the services

like two-factor authentication, notifications, and payment gateways,

among other things, and none of these services are available directly in any

of the blockchains. In a broader sense, blockchains simply make sure of

keeping the data layer tamper resistant and auditable.

Figure 5-7. DApp connets to public node

Chapter 5 BloCkChain appliCation Development

317

 Summary
In this chapter we learned about decentralized application development

along with some code exercises about interacting programmatically with

the Bitcoin and Ethereum blockchains. We also looked at some of the

DApp architecture models and how they differ based on the use cases.

In the next chapter we will set up a private Ethereum network and then

we will develop a full-fledged DApp interacting with this private network,

which will also use smart contracts for business logic.

 References
web3.js Documentation

http://web3js.readthedocs.io/en/1.0/index.html.

Solidity Documentation
https://solidity.readthedocs.org/.

bitcoinjs Source Code Repository
https://github.com/bitcoinjs/bitcoinjs-lib.

Infura Documentation
https://infura.io/docs.

Block Explorer API Documentation
https://blockexplorer.com/api-ref.

Designing the Architecture for your Ethereum Application
https://blog.zeppelin.solutions/designing-the-architecture-

for-your-ethereum-application-9cec086f8317.

Chapter 5 BloCkChain appliCation Development

http://web3js.readthedocs.io/en/1.0/index.html
https://solidity.readthedocs.org/
https://github.com/bitcoinjs/bitcoinjs-lib
https://infura.io/docs
https://blockexplorer.com/api-ref
https://blog.zeppelin.solutions/designing-the-architecture-for-your-ethereum-application-9cec086f8317
https://blog.zeppelin.solutions/designing-the-architecture-for-your-ethereum-application-9cec086f8317

	Chapter 5: Blockchain Application Development
	Decentralized Applications
	Blockchain Application Development
	Libraries and Tools

	Interacting with the Bitcoin Blockchain
	Setup and Initialize the bitcoinjs Library in a node.js Application
	Create Keypairs for the Sender and Receiver
	Get Test Bitcoins in the Sender’s Wallet
	Get the Sender’s Unspent Outputs
	Prepare Bitcoin Transaction
	Sign Transaction Inputs
	Create Transaction Hex
	Broadcast Transaction to the Network

	Interacting Programmatically with Ethereum—Sending Transactions
	Set Up Library and Connection
	Set Up Ethereum Accounts
	Get Test Ether in Sender’s Account
	Prepare Ethereum Transaction
	Sign Transaction
	Send Transaction to the Ethereum Network

	Interacting Programmatically with Ethereum—Creating a Smart Contract
	Prerequisites
	Program the Smart Contract
	Compile Contract and Get Details
	Deploy Contract to Ethereum Network

	Interacting Programmatically with Ethereum—Executing Smart Contract Functions
	Get Reference to the Smart Contract
	Execute Smart Contract Function

	Blockchain Concepts Revisited
	Public vs. Private Blockchains
	Decentralized Application Architecture
	Public Nodes vs. Self-Hosted Nodes
	Decentralized Applications and Servers

	Summary
	References

