
143
© Geoff Hulten 2018
G. Hulten, Building Intelligent Systems, https://doi.org/10.1007/978-1-4842-3432-7_13

CHAPTER 13

Where Intelligence Lives
When building an Intelligent System you’ll need to decide where the intelligence should

live. That is, where you will bring the model, the runtime, and the context together to

produce predictions—and then how you will get those predictions back to the intelligent

experience.

The runtime could be located in the user’s device, in which case you’ll need to figure

out how to update models across your user base.

The runtime could be in a service you run, in which case you’ll have to figure out

how to get the context (or features) from the user’s device to the service cheaply enough,

and with low enough latency, to make the end-to-end experience effective.

This chapter discusses how to decide where your intelligence should live. It starts

by discussing the considerations for deciding where intelligence should live, including

latency and cost, and why these matter for various types of intelligent experiences. It

then discusses common patterns for positioning intelligence across clients and services,

including the pros and cons of each option.

 Considerations for Positioning Intelligence
Some key considerations when deciding where intelligence should live are these:

• Latency in updating the intelligence.

• Latency in executing the intelligence.

• The cost of operating the intelligence.

• What happens when users go offline.

In general, you will have to make trade-offs between these properties. This section

discusses each of them in turn.

https://doi.org/10.1007/978-1-4842-3432-7_13

144

 Latency in Updating
One consideration when deciding where to position intelligence is the latency you will

incur when you try to update the intelligence. New intelligence cannot benefit users until

it gets to their runtime and replaces the old intelligence.

The latency in updating intelligence can be very short when the runtime is on the

same computer as the intelligence creation environment; the latency can be very long

when the runtime is on a client computer, and the client computer does not connect to

the Internet very often (and so it can only get new intelligence once in a while).

Latency in transporting intelligence to a runtime is important when:

• The quality of intelligence is evolving quickly.

• The problem you are trying to solve is changing quickly.

• There is risk of costly mistakes.

We’ll discuss these situations where latency in updating can cause problems in more

detail, including examples of how they can impact intelligent experiences.

 Quality Is Evolving Quickly

Latency in updating intelligence matters when the quality of the intelligence is evolving

quickly.

When a problem is new, it is easy to make progress. There will be all sorts of

techniques to explore. There will be new data arriving every day, new users using the

product in ways you didn’t anticipate. There will be excitement—energy. The quality of

intelligence might improve rapidly.

For example, imagine it’s day one—you’ve just shipped your smart shoe. This shoe is

designed to adjust how tight it is based on what its wearer is doing. Sitting around doing

nothing? The shoe automatically relaxes, loosening the laces so the wearer can be more

comfortable. But if the user starts running? Jumping? The shoe automatically tightens

the laces, so their wearer will get better support and be less likely to get an injury.

So you’ve had a huge launch. You have tens of thousands of smart shoes in the

market. You are getting telemetry for how users are moving, when they are overriding

the shoe to make their laces tighter, and when they are overriding the shoe to make their

laces looser. You are going to want to take all this data and produce new intelligence.

Chapter 13 Where IntellIgenCe lIves

145

If you produce the new intelligence, test it, and determine it isn’t much better than

the intelligence you shipped with—you’re fine! No need to worry about latency in

updating intelligence, because you don’t have any benefit to gain.

But if the new intelligence is better—a lot better—you are going to be desperate to

get it pushed out to all the shoes on the market. Because you have users wearing those

shoes. They’ll be talking to their friends. Reviewers will be writing articles. You are going

to want to update that intelligence quickly!

When intelligence is improving quickly, latency in deployment will get in the way

of taking advantage of the intelligence. This is particularly important in problems that

are very big (with many, many contexts) or problems that are very hard to solve (where

quality will be improving for a long time to come).

 Problem Changing Quickly

Latency in updating intelligence matters when the problem is changing quickly, because

it is open-ended or changing over time.

In some domains new contexts appear slowly, over the course of weeks or months.

For example, new roads take time to build; tastes in music evolve slowly; new toaster

products don’t come onto the market every day. In these cases having days or weeks of

latency in deploying new intelligence might not matter.

On the other hand, in some domains new contexts appear rapidly, hundreds or

thousands of times per day. For example, new spam attacks happen every second;

hundreds of new news articles are written per day; hurricanes make landfall;

stock markets crash. In these cases, it might be important to be able to deploy new

intelligence fast.

There are two important aspects to how problems change:

 1. How quickly do new contexts appear?

 2. How quickly do existing contexts disappear?

Erosion will happen slowly in domains where new contexts are added, but old

contexts remain relevant for a reasonably long time. For example, when a new road is

constructed your intelligence might not know what to do with it, but your intelligence

will still work fine on all the existing roads it does know about.

Chapter 13 Where IntellIgenCe lIves

146

Erosion will happen quickly in domains where new contexts displace old ones, and

the intelligence you had yesterday is no longer useful today. For example, when a new

song comes onto the top of the charts, an old song leaves. When a spammer starts their

new attack, they stop their old one.

When a problem changes frequently in ways that erode the quality of existing

intelligence, latency in updating intelligence can be a critical factor in the success of an

Intelligent System.

 Risk of Costly Mistakes

Latency in updating intelligence matters when the Intelligent System can make costly

mistakes that need to be corrected quickly.

Intelligence makes all kinds of mistakes. Some of these mistakes aren’t too bad,

particularly when the intelligent experience helps users deal with them. But some

mistakes can be real problems.

Consider the smart-shoe example, where laces automatically loosen or tighten

based on what the wearer is doing. Imagine that some small percent of users fidget in a

particular way that makes the shoe clamp down on their feet, painfully.

Or imagine that a small percentage of users play right field on a baseball team.

Ninety- nine percent of the time they are standing there, looking at the clouds go by—and

then one percent of time they are sprinting wildly to try to catch a fly ball. Maybe the

smart- shoes can’t keep up. Maybe right fielders are running out of their shoes, slipping,

and getting hurt.

When your Intelligent System’s mistakes have high cost, and these costs can’t be

mitigated with a good user experience, latency can be very painful. Imagine users

calling, complaining, crying about the damage you’ve caused them, day after day, while

you wait for new intelligence to propagate. It can make you feel bad. It can also put your

business at risk.

 Latency in Execution
Another consideration for deciding where intelligence should live is the latency in

executing the intelligence at runtime.

To execute intelligence, the system must gather the context, convert the context

to features, transport the features to where the intelligence is located (or sometimes

the whole context gets transported and feature extraction happens later), wait for the

Chapter 13 Where IntellIgenCe lIves

147

intelligence to execute, wait for the result of the intelligence execution to get back to the

experience, and then update the experience. Each of these steps can introduce latency in

executing the intelligence.

The latency in execution can be short when the intelligent runtime lives on the same

computer as the intelligent experience; it can be long when the intelligent runtime and

intelligent experience live on different computers.

Latency in intelligence execution can be a problem when:

• Users will have to wait for the latency.

• The right answer changes quickly and drastically.

Latency and its effects on users can be difficult to predict. Sometimes users don’t

care about a little bit of latency. Sometimes a little latency drives them crazy and totally

ruins an experience. Try to design experiences where latency trade-offs can be changed

easily (during orchestration) so various options can be tested with real users.

 Latency in Intelligent Experience

Latency in execution matters when users notice it, particularly when they have to wait

for the latency before they can continue. This can occur when:

• The intelligence call is an important part of rendering the
experience. Imagine an application that requires multiple

intelligence calls before it can properly render. Maybe the application

needs to figure out if the content is potentially harmful or offensive

for the user before rendering it. If there is nothing for the user to do

while waiting for the intelligence call, then latency in intelligence

execution could be a problem.

• The intelligence call is interactive. Imagine an application where

the user is interacting directly with the intelligence. Maybe they

throw a switch, and they expect the light to turn on instantly. If

the switch needs to check with the intelligence before changing

the light, and the intelligence call takes hundreds or thousands of

milliseconds— users might stub their toes.

On the other hand, intelligent experiences that are intrinsically asynchronous,

such as deciding whether to display a prompt to a user, are less sensitive to latency in

execution.

Chapter 13 Where IntellIgenCe lIves

148

 The Right Answer Changes Drastically

Latency in executing intelligence matters when the right answer changes rapidly and

drastically.

Imagine creating an intelligence to fly a drone. The drone is heading to an objective;

the correct answer is to fly straight at the objective. No problem. And then someone steps

in front of the drone. Or imagine the drone flying on a beautiful, blue, sunny day and

then a huge gust of wind comes out of nowhere. In these situations, the right control for

the drone changes, and changes quickly.

When the right course of action for an Intelligent System changes rapidly and

drastically, latency in executing intelligence can lead to serious failures.

 Cost of Operation
Another consideration when deciding where intelligence should live is the cost of

operating the Intelligent System.

Distributing and executing intelligence takes CPU, RAM, and network bandwidth.

These cost money. Some key factors that can drive the cost of an Intelligent System

include:

• The cost of distributing intelligence.

• The cost of executing intelligence.

 The Cost of Distributing Intelligence

Distributing intelligence costs both the service and the user money, usually in the form

of bandwidth charges. Each new piece of intelligence needs to be hosted (for example

on a web service), and the runtime must periodically check for new intelligence, and

then download any it finds. This cost is proportional to the number of runtimes the

intelligence must go to (the number of clients or services hosting it), the size of the

intelligence updates, and the frequency of the updates. For Internet-scale Intelligent

Systems, the cost of distributing intelligence can be very large.

It’s also important to consider costs for users. If the primary use case is for users

on broadband, distributing models might not be a concern—it might not cost them

much. But when users are on mobile devices, or in places where network usage is more

carefully metered and billed, the bandwidth for intelligence distribution may become an

important consideration.

Chapter 13 Where IntellIgenCe lIves

149

 The Cost of Executing Intelligence

Executing intelligence can also have a bandwidth cost when the intelligence is located

in a service and clients must send the context (or features) to the service and get the

response. Depending on the size of the context and the frequency of calls, it may cost

more to send context to the service than to send intelligence to the client. Keep in

mind that telemetry and monitoring will also need to collect some context and feature

information from clients; there is opportunity to combine the work and reduce cost.

Executing intelligence also takes CPU cycles and RAM. Putting the intelligence

runtime in the client has the advantage that users pay these costs. But some types of

intelligence can be very expensive to execute, and some clients (like mobile ones) have

resource constraints that make heavyweight intelligence runtimes impractical. In these

cases, using intelligence runtimes in the service (maybe with customized hardware, like

GPUs or FPGAs) can enable much more effective intelligences.

When considering the cost of operation, strive for an implementation that:

 1. Is sensitive to the user and does not ask them to pay costs that

matter to them (including bandwidth, but also power in a mobile

device, and so on).

 2. Does let users pay the parts of the cost they won’t notice (so you

don’t have to buy lots of servers).

 3. Balances all the costs of running the Intelligent System and scales

well as the number of users and quality of intelligence grow.

 Offline Operation
Another consideration when deciding where intelligence should live is whether the

Intelligent System needs to function when it is offline (and unable to contact any

services).

It isn’t always important for an Intelligent System to work when it is offline. For

example, a traffic prediction system doesn’t need to work when its user is in an airplane

over the Pacific Ocean. But sometimes Intelligent Systems do need to work offline—for

example, when the intelligence runs in a restricted environment (like a military vehicle)

or in a life-critical system.

Chapter 13 Where IntellIgenCe lIves

150

When it is important to function offline, some version of the intelligence must live in

the client. This can be the full intelligence, or it can be more like a backup—a reduced

version of the overall intelligence to keep users going while the service comes back

online.

 Places to Put Intelligence
This section explores some of the options for positing intelligence in more detail. It

introduces some common patterns, including:

• Static intelligence in the product

• Client-side intelligence

• Server-centric intelligence

• Back-end (cached) intelligence

• Hybrid intelligence

This section discusses each of these approaches and explores how well they address

the four considerations for where intelligence should live: latency in updating, latency in

execution, cost of operation, and offline operation.

 Static Intelligence in the Product
It’s possible to deliver intelligence without any of this Intelligent System stuff. Simply

gather a bunch of training data, produce a model, bundle it with your software, and ship it.

This is very similar to shipping a traditional program. You build it, test it as best you

can—in the lab, or with customers in focus groups and beta tests—tune it until you like

it, and send it out into the world.

The advantages of this is that it is cheaper to engineer the system. It might be good

enough for many problems. It can work in situations without the ability to close the loop

between users and intelligence creation. And there is still the possibility for feedback

(via reviews and customer support calls), and to update the intelligence through

traditional software updates.

The disadvantage is that intelligence updates will be more difficult, making this

approach poorly suited to open-ended, time-changing, or hard problems.

Chapter 13 Where IntellIgenCe lIves

151

latency in Updating Intelligence: poor

Latency in Execution: Excellent

Cost of Operation: Cheap

Offline Operation: Yes

Disadvantage Summary: Difficult to update intelligence. Risk of

unmeasurable intelligence errors. No data to improve intelligence.

 Client-Side Intelligence
Client-side intelligence executes completely on the client. That is, the intelligence

runtime lives fully on the client, which periodically downloads new intelligence.

The download usually includes new models, new thresholds for how to interpret the

models’ outputs (if the intelligence is encapsulated in an API—and it should be), and

(sometimes) new feature extraction code.

Client-side intelligence usually allows relatively more resources to be applied to

executing intelligence. One reason for this is that the intelligence can consume idle

resources on the client at relatively little cost (except maybe for power on a mobile

device). Another reason is that the latency of the runtime is not added to any service call

latency, so there is relatively more time to process before impacting the experience in

ways the user can perceive.

The main challenge for client-side intelligence is deciding when and how to push

new intelligence to clients. For example, if the intelligence is ten megabytes, and there

are a hundred thousand clients, that’s about a terabyte of bandwidth per intelligence

update. Further, models don’t tend to compress well, or work well with incremental

updates, so this cost usually needs to be paid in full.

Another potential complexity of client-side intelligence is dealing with different

versions of the intelligence. Some users will be offline, and won’t get every intelligence

update you’d like to send them. Some users might opt-out of updates (maybe using

firewalls) because they don’t like things downloading to their machines. These situations

will make interpreting user problems more difficult.

Chapter 13 Where IntellIgenCe lIves

152

Another disadvantage of client-side models is that they put your intelligence in the

hands of whoever wants to take a look at it: maybe a competitor, maybe someone who

wants to abuse your service, or your users—like a spammer. Once someone has your

model they can run tests against it. They can automate those tests. They can figure out

what type of inputs gets the model to say one answer, and what type of inputs gets it to

say another. They can find the modifications to their context (e-mail, web page, product,

and so on) that trick your model into making exactly the type of mistake they want it to

make.

latency in Updating Intelligence: variable

latency in execution: excellent

Cost of Operation: Based on update rate.

Offline Operation: Yes

Disadvantage Summary: Pushing complex intelligence to clients

can be costly. Hard to keep every client in-sync with updates.

Client resources may be constrained. Exposes the intelligence to

the world.

 Server-Centric Intelligence
Server-centric intelligence runs in real-time in the service. That is, the client gets

the context (or features) and sends them to the server, and the server executes the

intelligence on the features and returns the result to the client.

Using server-centric intelligence allows models to be updated quickly, and in

a controlled fashion, by pushing new models to the server (or servers) running the

intelligence. It also makes telemetry and monitoring easier because much of the data to

log will already be in the service as part of the intelligence calls.

But server-centric intelligence needs to be scaled as the user base scales. For

example, if there are a hundred intelligence request per second, the service must be able

to execute the intelligence very quickly, and probably in parallel.

Chapter 13 Where IntellIgenCe lIves

153

latency in Updating Intelligence: good

latency in execution: variable, but includes Internet round-trip.

Cost of Operation: service infrastructure and bandwidth can have significant cost;
may cost users in bandwidth.

Offline Operation: no

Disadvantage Summary: Latency in intelligence calls. Service

infrastructure and bandwidth costs. User bandwidth costs. Cost of

running servers that can execute intelligence in real time.

 Back-End (Cached) Intelligence
Back-end intelligence involves running the intelligence off-line, caching the results,

and delivering these cached results where they are needed. Cached intelligence can be

effective when analyzing a finite number of things, like all the e-books in a library, all

the songs a service can recommend, or all the zip codes where an intelligent sprinkler

is sold. But back-end intelligence can also be used when there aren’t a finite number of

things, but contexts change slowly.

For example, a sprinkler is sold into a new zip code. The service has never

considered that zip code before, so it returns some default guess at the optimal watering

time. But then the back-end kicks off, examines all the info it can find about the zip code

to produce a good watering plan and adds this watering plan to its cache. The next time

a sprinkler is sold in that zip code, the service knows exactly how to water there (and

maybe the system even updates the watering plan for that poor first guy who kicked off

the whole process).

Back-end Intelligent Systems can afford to spend more resources and time on each

intelligence decision than the other options. For example, imagine a super complex

watering-plan model that runs for an hour on a high-end server to decide how to water

in each zip code. It analyzes satellite images, traffic patterns, the migration of birds and

frogs in the regions—whatever it takes. Such a model might take months to run on an

embedded computer in a sprinkler—impractical. It can’t run on a server that needs to

respond to hundreds of calls per second—no way. But it can run in back-end ‘every so

often’ and the results of its analysis can be cached.

Chapter 13 Where IntellIgenCe lIves

154

Intelligence caches can live in services; parts of them can be distributed to clients too.

One disadvantage of back-end intelligence is that it can be more expensive to change

models, because all of the previous cached results might need to be recomputed.

Another disadvantage is that it only works when the context of the intelligence call

can be used to “look up” the relevant intelligence. This works when the context describes

an entity, such as a web page, a place, or a movie. It doesn’t work when the context

describes less-concrete things, like a user-generated block of text, a series of outputs

from a sensor-array, or a video clip.

latency in Updating Intelligence: variable

latency in execution: variable

Cost of Operation: Based on usage volume

Offline Operation: partial

Disadvantage Summary: Not effective when contexts change

quickly, or when the right answer for a context changes quickly.

Can be expensive to change models and rebuild the intelligence

caches. Restricts intelligence to things that can be looked up.

 Hybrid Intelligence
In practice it can be useful to set up hybrid intelligences that combine several of these

approaches.

For example, a system might use a back-end intelligence to deeply analyze popular

items, and a client-side intelligence to evaluate everything else.

Or a system might use a client-side intelligence in most cases, but double-check with

the service when a decision has serious consequences.

Hybrid intelligences can mask the weaknesses of their various components.

But hybrid intelligences can be more complex to build and to orchestrate. Consider,

if the system gives an incorrect answer, what part of the intelligence did the mistake

come from? The client-side model? The intelligence that was cached in the service?

Some subtle interaction between the two?

Chapter 13 Where IntellIgenCe lIves

155

Sometimes it’s even hard to know for sure what state all of those components were in

at the time of the mistake.

Nevertheless, most large Intelligent Systems use some form of hybrid approach

when determining where their intelligence should live.

 Summary
Choosing where your intelligence will live is an important part of creating a successful

Intelligent System. The location of intelligence can affect:

• The latency in updating the intelligence: This is a function of

how far the intelligence needs to move to get from the creation

environment to the runtime and how often the runtime is online to

take an update.

• The latency in executing the intelligence: This is a function of

moving the context and the features from the intelligent experience

to the intelligence runtime and moving the answer back.

• The cost of operating the Intelligent System: This is a function

of how much bandwidth you need to pay for to move intelligence,

context, and features and how much CPU you need to pay for to

execute intelligence.

• The ability of the system to work offline: This is a function of how

much of the intelligence can function on the client when it can’t

communicate with your service components.

There are many options for balancing these properties. Here are some common

patterns:

• Static intelligence: This puts the intelligence fully in the client

without connecting it to a service at all.

• Client-side intelligence: This puts the intelligence fully in the client,

but connects it to a service for intelligence updates and telemetry.

• Server-centric intelligence: This puts the intelligence fully in a

service and requires a service call every time intelligence needs to be

executed on a context.

Chapter 13 Where IntellIgenCe lIves

156

• Back-end (cached) intelligence: This executes intelligence offline

on common contexts and delivers answers via caching.

• Hybrid intelligence: This is the reality for most large-scale Intelligent

Systems and combines multiple of the other approaches to achieve

the system’s objectives.

 For Thought…
After reading this chapter, you should:

• Know all the places intelligence can live, from client to the service

back-end, and the pros and cons of each.

• Understand the implications of intelligence placement and be able to

design an implementation that is best for your system.

You should be able to answer questions like these:

• Imagine a system with a 1MB intelligence model, and 10KB of context

for each intelligence call. If the model needs to be updated daily, at

what number of users/intelligence call volume does it make sense to

put the intelligence in a service instead of in the client?

• If your application needs to work on an airplane over the Pacific

Ocean (with no Internet), what are the options for intelligence

placement?

• What if your app needs to function on an airplane, but the primary

use case is at a user’s home? What are some options to enable the

system to shine in both settings?

Chapter 13 Where IntellIgenCe lIves

	Chapter 13: Where Intelligence Lives
	Considerations for Positioning Intelligence
	Latency in Updating
	Quality Is Evolving Quickly
	Problem Changing Quickly
	Risk of Costly Mistakes

	Latency in Execution
	Latency in Intelligent Experience
	The Right Answer Changes Drastically

	Cost of Operation
	The Cost of Distributing Intelligence
	The Cost of Executing Intelligence

	Offline Operation

	Places to Put Intelligence
	Static Intelligence in the Product
	Client-Side Intelligence
	Server-Centric Intelligence
	Back-End (Cached) Intelligence
	Hybrid Intelligence

	Summary
	For Thought…

