
31
© Radek Vystavěl 2017
R. Vystavěl, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3318-4_3

CHAPTER 3

Dealing with Output
You already know all the main steps that you should take when developing a program in

the C# language. In addition, you have already seen the important statement Console.

WriteLine, which displays data on your user’s screen. In this chapter, you will extend

your knowledge of this statement. I will also show you other possibilities for the output.

�Producing Numeric Output
You already know how to display some text. In this section, you will learn how to display

a number.

�Task
You will write a program that displays the number 37 (see Figure 3-1).

Figure 3-1.  The program in action

https://doi.org/10.1007/978-1-4842-3318-4_3

32

�Solution
In Visual Studio, create new project called Numeric Output. The code is similar to the

previous program you wrote in Chapter 2, as shown here:

static void Main(string[] args)

{

 // Output of a number to the user

 Console.WriteLine(37);

 // Waiting for Enter

 Console.ReadLine();

}

Note  In this example, and all the following examples in the book, I show you just
the block of code after the line with the Main word. This is the block of code you
are in control of; in other words, it’s the block of code you change. The rest of the
Program.cs source code should remain intact the same way you left it in your
first program from the previous chapter.

To be sure you understand me, the whole source code looks like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Numeric_output

{

 class Program

 {

 static void Main(string[] args)

 {

 // Output of a number to the user

 Console.WriteLine(37);

Chapter 3 Dealing with Output

https://doi.org/10.1007/978-1-4842-3318-4_2

33

 // Waiting for Enter

 Console.ReadLine();

 }

 }

}

But, again, this is the last time you will see the whole source code. There is no need to

repeat the Visual Studio–generated code each time I show an example because you will

never change it. If you are ever in doubt, you can consult the complete sample projects

accompanying the book.

After typing in the code, launch the program using the F5 key. To terminate the

program, press Enter.

�Discussion
Unlike with text, you do not surround numbers with quotes.

Of course, you could surround “37” in quotes, but there is a profound difference

between the number 37 and the text “37”—you can calculate with numbers. That is why

you are learning now how to work with numbers correctly.

�Making Calculations
The next task is to make a simple calculation.

Chapter 3 Dealing with Output

34

�Task
You are going to display to the user what 1 plus 1 is (see Figure 3-2).

�Solution
Here is the code:

static void Main(string[] args)

{

 // Output of a calculation

 Console.WriteLine(1 + 1);

 // Waiting for Enter

 Console.ReadLine();

}

Type it in and launch the program!

�Note

In programming, this kind of calculation (generally, a combination of values) is called an

expression.

Figure 3-2.  1 plus 1

Chapter 3 Dealing with Output

35

�Making More Complex Calculations
Of course, you do not need a computer to add 1 to 1. But what about 1 plus 2 times 3? Do

you think this is ridiculously trivial again? Wait just a minute because even in this simple

case mistakes are easy to make!

�Task
You’ll create a program to add 1 plus 2 times 3.

�Solution
Here is the code:

static void Main(string[] args)

{

 // Multiplication has greater priority

 Console.WriteLine(1 + 2*3);

 // Forcing priority using parentheses

 Console.WriteLine((1 + 2)*3);

 // Waiting for Enter

 Console.ReadLine();

}

The launched program looks like Figure 3-3.

Figure 3-3.  Doing more complex calculations

Chapter 3 Dealing with Output

36

�Discussion
Note the following about this program:

•	 The purpose of this task was to show you that you always have to

know what exactly needs to be calculated. In this example, you have

to make up your mind about whether you want to do addition first or

multiplication first.

•	 In basic math rules, multiplication and division have higher priority

than addition or subtraction. It is the same in programming as in

mathematics. If you first want to add 1 to 2 and then multiply by 3,

you need to use parentheses around the 1 and 2.

•	 I have not used spaces around the multiplication symbol (asterisk),

but this has nothing to do with the calculation order. It just looks

better to me. In C#, spaces and line breaks do not matter. (Of course,

you should not break a word in the middle.)

•	 Finally, the example shows that the computer executes program

statements in the order they are written. This means from the top

down.

�Joining Text
You will now explore that the plus operator (+) can be used also with text, not just with

numbers. In other words, it adds text together.

Chapter 3 Dealing with Output

37

�Task
The task is to explore how to add text together (see Figure 3-4).

�Solution
Here is the code:

static void Main(string[] args)

{

 // Normal text

 Console.WriteLine("I have started to program");

 // Also normal text

 Console.WriteLine(" in C#.");

 // Joining two texts using plus sign

 Console.WriteLine("I have started to program" + " in C#.");

 // Waiting for Enter

 Console.ReadLine();

}

Note the space before the in preposition!

Figure 3-4.  Joining text

Chapter 3 Dealing with Output

38

�Outputting Special Characters
Sometimes you need to output a special character to the screen. Here are some examples:

•	 Output Enter to terminate a line.

•	 Output a quote mark. (Quotes in C# serve as text delimiters, so they

must be treated specially.)

•	 Output a Unicode character (of course, if your font knows how to draw it).

�Task
Now you will write a program that shows how to work with special characters.

�Solution
To work with special characters, you use escape sequences. In C#, an escape sequence

starts with a backslash.

static void Main(string[] args)

{

 // Multiline output

 Console.WriteLine("First line\r\nSecond line");

 // I prefer specifying "Enter" in more human form

 Console.WriteLine("First line" + Environment.NewLine + "Second line");

 // Text containing a quote

 Console.WriteLine("The letter started so sweet: \"My Darling\"");

 // Unicode characters, in this case Greek beta

 Console.WriteLine("If the font knows, here is Greek beta: \u03B2");

Chapter 3 Dealing with Output

39

 // Backslashes themselves need to be doubled

 �Console.WriteLine("Path to desktop on my computer: " + "C:\\Users\\

vystavel\\Desktop");

 // Waiting for Enter

 Console.ReadLine();

}

The result should look like Figure 3-5.

�Discussion
Note the following about this program:

•	 In C#, a backslash in text introduces a so-called escape sequence.

But what if you want to output a backslash? Then you need to double

it. This is often the case when dealing with file paths in the Windows

operating system.

•	 Console applications will recognize even the simple \n as a line

terminator (meaning Enter). However, in many other C# programs,

you need “the whole Enter,” which is signified with \r\n. That is why

you used it in this program. You also used Environment.NewLine,

which is definitely the best alternative since it is nicely human

readable.

Figure 3-5.  Working with special characters

Chapter 3 Dealing with Output

40

�Using Preformatted Text
Sometimes you might want to display multiline text in one go (see Figure 3-6).

�Task
You will create a program to display multiline text.

�Solution
You prepend the opening quote mark of the text with the at (@) sign, as shown here:

static void Main(string[] args)

{

 // Bob Dylan...

 Console.WriteLine(@"

Yes, and how many times

can a man turn his head

and pretend

that he just doesn't see?

");

 // Waiting for Enter

 Console.ReadLine();

}

Figure 3-6.  Multiline text

Chapter 3 Dealing with Output

41

�Note

The at (@) sign also switches off escape sequences. That is why you might find it useful

when dealing with file paths in Windows (mentioned earlier); in that case, you do not

have to double each backslash.

�Adding 1 and 1
In the next task, you will return to the problem of adding 1 to 1. Are you wondering why I

am returning to such a trivial task? Well, even doing something as simple as adding 1 to 1

can go wrong. Let’s see.

�Task
The task is to explore different ways of putting two numbers together (see Figure 3-7).

Figure 3-7.  Putting numbers together

Chapter 3 Dealing with Output

42

�Solution
Here is the code:

 static void Main(string[] args)

 {

 // Pay special attention when mixing texts with numbers!

 Console.WriteLine(

@"Senior math test

==================

One and one is:");

 Console.WriteLine("a) " + 1 + 1);

 Console.WriteLine("b) " + (1 + 1));

 Console.WriteLine("c) " + "mostly fun");

 // Waiting for Enter

 Console.ReadLine();

 }

�Discussion
When you mix numbers with text, the result might appear different from what you

expect!

Let’s consider the first answer (a). The computer calculates the whole expression

from left to right. First, it takes the text a) and a number (the first 1). It joins them

together to be a) 1. Then, it takes this new text and the final number (the second 1) and

again joins them together to obtain the text a) 11.

The second answer (b) is different. The parentheses make the computer perform the

addition of the numbers first, joining the text on the left only afterward.

Sometimes it may be more transparent to precalculate the intermediate results and

store them in variables. This is what you are going to study in the next chapter. Of course,

variables have many more uses than this, as you are going to see.

Chapter 3 Dealing with Output

43

�Summary
In this chapter, you explored several possibilities that the Console.WriteLine statement

gives you for different kinds of output. Specifically, you have learned the following:

•	 In addition to text, you can work with numbers in your programs.

Unlike with text, you do not surround numbers with quotes.

•	 You can combine several values into expressions. For this purpose,

you use operators such as +, -, and *. With numbers, they do ordinary

arithmetic. The plus operator works also with text, in which case it

joins two pieces of text into a single one.

•	 In calculations, you always have to be careful about the order in

which the result is evaluated. Multiplication and division have

precedence over addition and subtraction. To force a different

evaluation order, use parentheses.

•	 Special characters such as quotes or newlines are output using

escape sequences starting with backslash.

•	 You can conveniently output preformatted multiline text by

prepending it with an at (@) sign.

Chapter 3 Dealing with Output

	Chapter 3: Dealing with Output
	 Producing Numeric Output
	 Task
	 Solution
	 Discussion

	 Making Calculations
	 Task
	 Solution
	 Note

	 Making More Complex Calculations
	 Task
	 Solution
	 Discussion

	 Joining Text
	 Task
	 Solution

	 Outputting Special Characters
	 Task
	 Solution
	 Discussion

	 Using Preformatted Text
	 Task
	 Solution
	 Note

	 Adding 1 and 1
	 Task
	 Solution
	 Discussion

	 Summary

