
219
© Radek Vystavěl 2017
R. Vystavěl, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3318-4_16

CHAPTER 16

Practical Conditions
In the previous chapter, you learned about the conditional execution of a program’s

statements. In this chapter, you will deepen your knowledge of this topic. I will show you

how to use conditions and branching on several simple tasks that you will encounter

sooner or later in your programming career.

�Appending Extension
Sometimes you want to ask the user about a file name, but you do not know whether the

user will enter it with or without an extension.

�Task
You will write a program that appends the .png extension to the entered file name unless

the extension is already part of the input (see Figures 16-1 and 16-2).

Figure 16-1.  Appending the .png extension

https://doi.org/10.1007/978-1-4842-3318-4_16

220

�Solution
Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter image name: ");

 string fileName = Console.ReadLine();

 // Appending extension (ONLY IN CASE OF NEED)

 if (!fileName.ToLower().EndsWith(".png"))

 {

 fileName += ".png";

 }

 // Output

 Console.WriteLine("We are going to use name: " + fileName);

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion
Let’s discuss this program a bit.

Figure 16-2.  Not appending the .png extension

Chapter 16 Practical Conditions

221

�Extension Detection

The most interesting point of the current exercise is finding out whether the entered file

name ends with a particular extension.

•	 First, you convert the file name to lowercase so you do not have to

distinguish between .png and .PNG.

•	 You use the method EndsWith to find whether the text ends or does

not end with something specific. In this case, the method call returns

true if the text ends with .png. Otherwise, it returns false.

•	 You negate the result returned by the EndsWith method using the

! operator. The exclamation mark changes true to false, and vice

versa. This means you actually ask “Does the text not end with .png?”

instead of “Does it end with .png?”

�Entering a Condition

Note that you do not always have to enter a comparison when specifying a condition.

You do not always have to use “less than,” for example. It is enough if the condition

evaluates to a Boolean value, such as true or false.

If the condition evaluates to true, it is considered fulfilled, and the statements in the

if branch are executed.

If the condition evaluates to false, it is considered not fulfilled, and the statements in

the else branch are executed (or nothing is executed in the case of a missing else branch).

�Missing else Branch

The example program has a missing else branch. If the entered name ends with .png,

the EndsWith method will find it and will return true. If you get false, the condition is

considered not fulfilled, so the statement appending the extension will not be executed,

and the entered name will remain unchanged.

�Chaining

Note the chaining of the ToLower and EndsWith methods. The output of the lowercase

conversion is not stored in any variable. Instead, it serves as input for the next method in

the chain, in other words, EndsWith.

Chapter 16 Practical Conditions

222

�Head and Tail
Let’s do some more exercises concerning conditions.

�Task
You will write a program that throws a coin once (see Figure 16-3).

�Solution
The core of the solution is to generate a random number—zero or one—and convert it to

heads or tails subsequently.

Here is the code:

static void Main(string[] args)

{

 // Random number generator

 Random randomNumbers = new Random();

 // Random number 0/1 and its transformation

 int randomNumber = randomNumbers.Next(0, 1 + 1);

 if (randomNumber == 0)

 {

 Console.WriteLine("Head tossed");

 }

 else

 {

Figure 16-3.  Throwing a coin

Chapter 16 Practical Conditions

223

 Console.WriteLine("Tail tossed");

 }

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion

I just want to remind you that the Next method requires the upper bound of a random

number range to be specified already augmented by 1. That is why you wrote 1+1 in the

previous program. Of course, you could also have written 2 directly, but 1+1 seems to me

more logical, stating 1 as the upper bound and adding the (strangely) required 1.

�Deadline Check
“Never trust the user,” as the old saying goes. This means you as a programmer always

have to check user-entered data in production software.

You need to check the user data usually not because of malicious use because 99.9

percent of your users do not have any intention to abuse your software. Users simply

make mistakes. That is why you should check their input and prompt them to correct it.

So, now you will learn how to implement some input checking.

�Task
You will write a program that prompts the user to enter an order deadline and presents a

warning if the user enters a date in the past (see Figure 16-4).

Figure 16-4.  Checking a date

Chapter 16 Practical Conditions

224

�Solution
Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter order deadline: ");

 string input = Console.ReadLine();

 DateTime enteredDeadline = Convert.ToDateTime(input);

 // Checking entered value

 DateTime today = DateTime.Today;

 if (enteredDeadline < today)

 {

 Console.WriteLine("Error! You have entered date in the past.");

 }

 else

 {

 Console.WriteLine("Deadline accepted.");

 }

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion

Note the following:

•	 To convert a date entered in text form into the DateTime object, you

use the Convert.ToDateTime method call.

•	 Conversion fails if a nonexistent date is entered. You can handle this

using try-catch.

•	 Similar to number conversions, Convert.ToDateTime can accept

a second parameter specifying the language to be used for the

conversion.

Chapter 16 Practical Conditions

225

�Invoice Date Check
Let’s do one more exercise for checking user-entered data.

�Task
Value-added tax (VAT) regulations in my country require that the date an invoice is

issued cannot precede the date of payment, and at the same time, it cannot be later than

15 days after the payment.

The current task is to perform both checks (see Figure 16-5, Figure 16-6, and

Figure 16-7).

Figure 16-5.  Date too early

Figure 16-6.  Date too late

Chapter 16 Practical Conditions

226

�Solution
Here is the solution:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Payment date: ");

 string inputPayment = Console.ReadLine();

 DateTime paymentDate = Convert.ToDateTime(inputPayment);

 Console.Write("Invoice date: ");

 string inputInvoice = Console.ReadLine();

 DateTime invoiceDate = Convert.ToDateTime(inputInvoice);

 // Checking

 bool ok = true;

 if (invoiceDate < paymentDate)

 {

 Console.WriteLine("Invoice date cannot precede payment date.");

 ok = false;

 }

 if (invoiceDate > paymentDate.AddDays(15))

 {

 �Console.WriteLine("Invoice cannot be issued later than 15 days

after payment.");

 ok = false;

 }

Figure 16-7.  Dates accepted

Chapter 16 Practical Conditions

227

 if (ok)

 {

 Console.WriteLine("Dates accepted.");

 }

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion

You are using a helper variable called ok in this solution. The variable monitors whether

everything is OK. At first, you set it to true. If any of the performed checks fail, you toggle

the value to false. If the variable stays true after both checks, you know everything is

OK, and a confirming message is displayed to the user.

�Spanish Day of Week
Now you will learn how to split the code’s execution into multiple branches.

�Task
You will write a program that displays the Spanish version of the day of week (lunes,

martes, miércoles, and so on) for a date entered by the user (see Figure 16-8).

Figure 16-8.  Displaying days in Spanish

Chapter 16 Practical Conditions

228

�Solution
You can find the day of the week using the DayOfWeek property of the DateTime object.

The conversion to Spanish can be made using a series of conditions.

Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter a date: ");

 string input = Console.ReadLine();

 DateTime enteredDate = Convert.ToDateTime(input);

 // Finding day of week (in enumeration)

 DayOfWeek dayOfWeek = enteredDate.DayOfWeek;

 // Spanish texts

 string spanish = "";

 if (dayOfWeek == DayOfWeek.Monday)

 spanish = "Lunes";

 if (dayOfWeek == DayOfWeek.Tuesday)

 spanish = "Martes";

 if (dayOfWeek == DayOfWeek.Wednesday)

 spanish = "Miercoles";

 if (dayOfWeek == DayOfWeek.Thursday)

 spanish = "Jueves";

 if (dayOfWeek == DayOfWeek.Friday)

 spanish = "Viernes";

 if (dayOfWeek == DayOfWeek.Saturday)

 spanish = "Sábado";

 if (dayOfWeek == DayOfWeek.Sunday)

 spanish = "Domingo";

 // Output

 Console.WriteLine(spanish);

 if (enteredDate == new DateTime(1945, 5, 8))

 Console.WriteLine("The happiest day of the 20th century.");

Chapter 16 Practical Conditions

229

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion

Note the following:

•	 You have omitted braces surrounding individual if branches. You

can do that because there is only a single statement in every branch.

I normally do not do this, but in this case of many simple ifs, it

seemed to me that it would make the code neater.

•	 Individual days of the week are members of the DayOfWeek

enumeration. Visual Studio offers you the enumeration as soon as

you hit the spacebar on your keyboard after entering two equal signs

(see Figure 16-9). Use what Visual Studio offers!

Figure 16-9.  Using DayOfWeek enumeration

Chapter 16 Practical Conditions

230

�Switch Statement
For certain cases of multiple branching, there also exists a switch statement in C#. Now

you will learn how to work with it.

�Task
You will solve the last task using a switch statement.

�Solution
Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter a date: ");

 string input = Console.ReadLine();

 DateTime enteredDate = Convert.ToDateTime(input);

 // Finding day of week (in enumeration)

 DayOfWeek dayOfWeek = enteredDate.DayOfWeek;

 // Spanish texts

 string spanish = "";

 switch (dayOfWeek)

 {

 case DayOfWeek.Monday:

 spanish = "Lunes";

 break;

 case DayOfWeek.Tuesday:

 spanish = "Martes";

 break;

 case DayOfWeek.Wednesday:

 spanish = "Miercoles";

 break;

 case DayOfWeek.Thursday:

Chapter 16 Practical Conditions

231

 spanish = "Jueves";

 break;

 case DayOfWeek.Friday:

 spanish = "Viernes";

 break;

 case DayOfWeek.Saturday:

 spanish = "Sábado";

 break;

 case DayOfWeek.Sunday:

 spanish = "Domingo";

 break;

 }

 // Output

 Console.WriteLine(spanish);

 if (enteredDate == new DateTime(1945, 5, 8))

 Console.WriteLine("The happiest day of the 20th century.");

 // Waiting for Enter

 Console.ReadLine();

}

�Discussion

You can use the switch statement as an if-series replacement if the repeated branching

is always based on the same value. This is the dayOfWeek variable’s value in this case.

As to the syntax, the switch keyword is followed (in parentheses) by a variable

(or expression) whose value determines which branch the execution will take. The

individual branches start with the case keyword followed by a specific value of the

control variable and a colon. You should terminate each branch with the break keyword.

Chapter 16 Practical Conditions

232

�Summary
In this chapter, you wrote programs with conditional execution for a variety of practical

tasks. Specifically, you learned the following:

•	 To enter conditions without any of relational operators such as <, ==,

and so on. The condition simply has to evaluate to the bool type. It is

considered fulfilled when it evaluates to true.

•	 To negate the condition using the ! operator.

•	 To transform random numbers into another kind of data, such as a

heads/tails pair.

•	 To perform various checks of the user input, especially for dates.

•	 To branch your program into several alternative execution paths,

either by using a series of if statements or by using switch

statement.

Chapter 16 Practical Conditions

	Chapter 16: Practical Conditions
	 Appending Extension
	 Task
	 Solution
	 Discussion
	 Extension Detection
	 Entering a Condition
	 Missing else Branch
	 Chaining

	 Head and Tail
	 Task
	 Solution
	 Discussion

	 Deadline Check
	 Task
	 Solution
	 Discussion

	 Invoice Date Check
	 Task
	 Solution
	 Discussion

	 Spanish Day of Week
	 Task
	 Solution
	 Discussion

	 Switch Statement
	 Task
	 Solution
	 Discussion

	 Summary

