
199
© Radek Vystavěl 2017
R. Vystavěl, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3318-4_15

CHAPTER 15

Getting Started
with Conditions
Up to now, a program’s statements have always been executed from the beginning to

the end regardless of anything else, simply when their turn came. In this chapter, the

whole new world will start to unveil itself because you will learn about the conditional

execution of program statements. This means you will work with statements that may or

may not execute depending on whether some condition is fulfilled.

 Password Input
Your first program with conditions will evaluate a password. The user may or may not

be allowed to enter the system depending on whether they have entered the correct

password.

 Task
You will write a program that prompts the user to enter a password and then evaluates

whether the entered password is correct. For the sake of simplicity, the correct password

will be specified directly in the code (see Figure 15-1 and Figure 15-2).

https://doi.org/10.1007/978-1-4842-3318-4_15

200

 Analysis
Let’s look at this program in more detail.

 The Program

In this program, some activity is performed when both passwords (the entered one and

the stored one) agree, and a different activity is performed when they disagree. In this

case, you either allow or refuse the user with an appropriate message (see Figure 15-3).

Figure 15-1. Incorrect password

Figure 15-2. Correct password

Chapter 15 GettinG Started with ConditionS

201

 Program Branching

Generally, program branching means taking different paths depending on the fulfillment

of a condition (see Figure 15-4).

Figure 15-3. The program flow

Figure 15-4. Branching

Chapter 15 GettinG Started with ConditionS

202

 Syntax

For branching, C# uses the if-else construction shown here:

if (condition)

{

 Statements to perform when the condition holds

}

else

{

 Statements to perform otherwise

}

 Solution
Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter password: ");

 string enteredPassword = Console.ReadLine();

 // Password check

 if (enteredPassword == "friend")

 {

 Console.WriteLine("Password is OK, please enter");

 }

 else

 {

 Console.WriteLine("Incorrect password");

 }

 // Waiting for Enter

 Console.ReadLine();

}

Chapter 15 GettinG Started with ConditionS

203

 Discussion
To formulate the condition, I have used an equality test, which is entered using a couple

of equal signs. If the compared values are the same, the test evaluates to true, the

condition is considered fulfilled, and the statements in the if branch are executed. If the

compared values are different, the test evaluates to false, the condition is considered

not fulfilled, and the statements in the else branch are executed.

 Test

Now you can check how the program executes! Besides doing an ordinary program run,

you can also step through the code, as you learned in the previous chapter.

 Reversed Condition
So that you get more familiar with conditions, it is useful to see them from different

perspectives. Staying with the password issue, let’s view it in another way.

 Task
The task now is to solve the previous exercise alternatively, namely, with the condition

reversed. In other words, you will test for inequality instead of equality.

 Solution
Here is the code:

static void Main(string[] args)

{

 // Correct password

 string correctPassword = "friend";

 // Input

 Console.Write("Enter password: ");

 string enteredPassword = Console.ReadLine();

Chapter 15 GettinG Started with ConditionS

204

 // Password check

 if (enteredPassword != correctPassword)

 {

 Console.WriteLine("Incorrect password");

 }

 else

 {

 Console.WriteLine("Password is OK, please enter");

 }

 // Waiting for Enter

 Console.ReadLine();

}

 Discussion
In this exercise, I have used an inequality test, which is typed using an exclamation mark

followed by an equal sign. The test returns true when the compared values disagree.

 Length Check
While two pieces of text can only be compared to find out if they are the same or

different, two numbers can also be compared to figure out which one is longer (or

shorter). Let’s take a look.

 Task
In this section, you will study number comparisons in a program that evaluates whether

the entered text is at most four characters long (see Figures 15-5 and 15-6).

Chapter 15 GettinG Started with ConditionS

205

 Solution
Presumably, you should determine the number of characters of the entered text and

compare it to the number 4. You learned how to determine the number of characters

of text—using its Length property—in Chapter 7 (the program was “Texts as objects”).

Anyway, if you do not remember the name of the property, you can add a dot to the end

of a text variable and browse through the IntelliSense possibilities to see what might be

appropriate, as covered in the previous chapter.

Figure 15-5. Short text

Figure 15-6. Long text

Chapter 15 GettinG Started with ConditionS

https://doi.org/10.1007/978-1-4842-3318-4_7

206

Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter a word: ");

 string word = Console.ReadLine();

 // Determining length

 int wordLength = word.Length;

 // Checking length

 if (wordLength <= 4)

 {

 Console.WriteLine("Word is short (at most 4 characters)");

 }

 else

 {

 Console.WriteLine("Word is long (more than 4 characters)");

 }

 // Waiting for Enter

 Console.ReadLine();

}

 Note

I have used a less-than-or-equal-to operator in this solution, which looks like this: <=.

 Positive Numbers
In this section, you will get some more practice with number comparisons.

 Task
You will write a program that evaluates whether the number entered by the user is

positive or not (see Figures 15-7 and 15-8).

Chapter 15 GettinG Started with ConditionS

207

 Solution
Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter a number: ");

 string input = Console.ReadLine();

 int number = Convert.ToInt32(input);

 // Evaluation

 if (number > 0)

Figure 15-7. It’s positive.

Figure 15-8. It’s not positive.

Chapter 15 GettinG Started with ConditionS

208

 {

 Console.WriteLine("The number is positive");

 }

 else

 {

 Console.WriteLine("The number is NOT positive");

 }

 // Waiting for Enter

 Console.ReadLine();

}

 Discussion

I have used a greater-than operator to compare the entered number to zero.

What do you think the program does when the user enters zero? It checks the

condition 0 > 0 and finds it is not fulfilled. Therefore, it displays that the number is not

positive. This is the reason for the rather unusual message wording (“… NOT positive”),

as shown in Figure 15-9. I have not used “…is negative”.

Figure 15-9. Results for zero

Chapter 15 GettinG Started with ConditionS

209

 Odd and Even Numbers
Let’s proceed to another number comparison.

 Task
Your task now is to write a program that evaluates whether the number entered by the

user is odd or even (see Figure 15-10 and Figure 15-11).

Figure 15-10. Determining even

Figure 15-11. Determining odd

Chapter 15 GettinG Started with ConditionS

210

 Solution
The core of the solution is to determine the remainder of dividing the entered number by

2. If the remainder is zero, the number is even. If there is some remainder, the number is

odd.

Here is the code:

static void Main(string[] args)

{

 // Input

 Console.Write("Enter a number: ");

 string input = Console.ReadLine();

 int number = Convert.ToInt32(input);

 // Remainder calculation

 int remainderAfterDivisionByTwo = number % 2;

 // Evaluation

 if (remainderAfterDivisionByTwo == 0)

 {

 Console.WriteLine("The number is even");

 }

 else

 {

 Console.WriteLine("The number is odd");

 }

 // Waiting for Enter

 Console.ReadLine();

}

 Case Indifference
You already know that two pieces of text can be compared to see if they are equal

or unequal. This comparison is case-sensitive. In other words, hobbit and Hobbit

are considered different words. Frequently, however, you need case-insensitive

comparisons, which I will show you now.

Chapter 15 GettinG Started with ConditionS

211

 Task
In this program, the user will enter two names, and you will evaluate whether they are

the same or different, disregarding the difference between lowercase and uppercase

(see Figures 15-12 and 15-13).

Figure 15-12. The same names

Figure 15-13. Different names

Chapter 15 GettinG Started with ConditionS

212

 Solution
The core of the solution is to convert both pieces of text to lowercase prior to doing the

comparison. You can use the ToLower method call for that purpose.

Here is the code:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Enter a name: ");

 string name1 = Console.ReadLine();

 Console.Write("Enter another name: ");

 string name2 = Console.ReadLine();

 // Converting to small letters

 string name1inSmall = name1.ToLower();

 string name2inSmall = name2.ToLower();

 // Evaluating

 if (name1inSmall == name2inSmall)

 {

 Console.WriteLine("You have entered the same names");

 }

 else

 {

 Console.WriteLine("You have entered different names");

 }

 // Waiting for Enter

 Console.ReadLine();

}

 Without Braces
C# allows you to omit the braces surrounding the if and else branches if the branch

contains just a single statement. Generally, I do not recommend this practice because it

can be misleading. I will show this to you now just so that you are aware of it.

Chapter 15 GettinG Started with ConditionS

213

 Task
You will solve the previous exercise again, this time without braces.

 Solution
Here is the code:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Enter a name: ");

 string name1 = Console.ReadLine();

 Console.Write("Enter another name: ");

 string name2 = Console.ReadLine();

 // Converting to small letters

 string name1inSmall = name1.ToLower();

 string name2inSmall = name2.ToLower();

 // Evaluating

 // BRANCHES NOT DELIMITED BY BRACES (CURLY BRACKETS)

 if (name1inSmall == name2inSmall)

 Console.WriteLine("You have entered the same names");

 else

 Console.WriteLine("You have entered different names");

 // Waiting for Enter

 Console.ReadLine();

}

 Greater of Two Numbers
A frequent task of a programmer is to find which of two numbers is greater (or smaller,

analogously).

Chapter 15 GettinG Started with ConditionS

214

 Task
Your task now is to write a program that asks the user for two numbers and then says

which of the two numbers is greater (see Figure 15-14).

 Solution
Here is the code:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Enter first number: ");

 string input1 = Console.ReadLine();

 int number1 = Convert.ToInt32(input1);

 Console.Write("Enter second number: ");

 string input2 = Console.ReadLine();

 int number2 = Convert.ToInt32(input2);

 // Evaluating

 int greater;

 if (number1 > number2)

 {

 greater = number1;

 }

Figure 15-14. Determining which number is greater

Chapter 15 GettinG Started with ConditionS

215

 else

 {

 greater = number2;

 }

 // Output

 Console.WriteLine("Greater of entered numbers is: " + greater);

 // Waiting for Enter

 Console.ReadLine();

}

 Without the else Branch
In previous exercises, you always had two branches—the if branch and the else

branch. In other words, you were always in an either-or situation. It is important to note,

however, that the else branch can be omitted if you want. This means if a condition is

fulfilled, you do something, and if it is not fulfilled, you simply do nothing. Take a look!

 Task
In the previous exercise, you set the greater variable either to the first value or to the

second value.

Now you will solve the same task in a different way. First you will set the greater

variable directly to the first value, and then if the second one is greater, you will change

the final result.

 Solution
Here is the code:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Enter first number: ");

 string input1 = Console.ReadLine();

Chapter 15 GettinG Started with ConditionS

216

 int number1 = Convert.ToInt32(input1);

 Console.Write("Enter second number: ");

 string input2 = Console.ReadLine();

 int number2 = Convert.ToInt32(input2);

 // Evaluating

 int greater = number1;

 if (number2 > greater)

 {

 greater = number2;

 }

 // Output

 Console.WriteLine("Greater of entered numbers is: " + greater);

 // Waiting for Enter

 Console.ReadLine();

}

 Using a Built-in Function
Frequently in this book, I show you things from different angles. I strongly believe this

promotes your understanding. For the current problem of finding the greater value of

two, I will show you a third way to solve it. The task is so frequent, in fact, that there is a

convenient built-in function for it.

 Task
You will solve the previous exercise using the built-in function Math.Max.

Chapter 15 GettinG Started with ConditionS

217

 Solution
Here is the code:

static void Main(string[] args)

{

 // Inputs

 Console.Write("Enter first number: ");

 string input1 = Console.ReadLine();

 int number1 = Convert.ToInt32(input1);

 Console.Write("Enter second number: ");

 string input2 = Console.ReadLine();

 int number2 = Convert.ToInt32(input2);

 // Evaluating

 int greater = Math.Max(number1, number2);

 // Output

 Console.WriteLine("Greater of entered numbers is: " + greater);

 // Waiting for Enter

 Console.ReadLine();

}

 Summary
In this chapter, you started studying the conditional execution of program statements,

which means that the execution or nonexecution of one or more statements can be

conditioned by some test. You saw the following examples of tests:

• Testing the equality of two pieces of text or two numbers with the ==

operator

• Testing the inequality of two pieces of text or two numbers with the

!= operator

• Testing whether a number is greater (or less) than another number

with the > (or <) operator

Chapter 15 GettinG Started with ConditionS

218

The last test can be extended to “greater than or equal to” (or “less than or equal to”)

with the >= (or <=) operator.

To use conditional execution in your code, you learned about the if-else construct.

This consists of a condition and two branches. If the condition is evaluated to be true

(fulfilled), the statements in the if branch are executed. If the condition is evaluated to

be false (not fulfilled), the statements in the else branch are executed.

You learned that if a branch consists of a single statement, C# syntax allows you

to omit the braces surrounding the branch, though I discourage you from doing that

because people frequently forget to include the braces later when they extend a branch

to several statements.

More important, you learned that the else branch can be omitted if you want. This

means there is no alternative action—nothing is done when the condition is not fulfilled.

As a bonus, you learned about the useful built-in function Math.Max. (You can

probably guess that there is a similar function called Math.Min.)

Chapter 15 GettinG Started with ConditionS

	Chapter 15: Getting Started with Conditions
	 Password Input
	 Task
	 Analysis
	 The Program
	 Program Branching
	 Syntax

	 Solution
	 Discussion
	 Test

	 Reversed Condition
	 Task
	 Solution
	 Discussion

	 Length Check
	 Task
	 Solution
	 Note

	 Positive Numbers
	 Task
	 Solution
	 Discussion

	 Odd and Even Numbers
	 Task
	 Solution

	 Case Indifference
	 Task
	 Solution

	 Without Braces
	 Task
	 Solution

	 Greater of Two Numbers
	 Task
	 Solution

	 Without the else Branch
	 Task
	 Solution

	 Using a Built-in Function
	 Task
	 Solution

	 Summary

