
149
© Radek Vystavěl 2017
R. Vystavěl, C# Programming for Absolute Beginners, https://doi.org/10.1007/978-1-4842-3318-4_12

CHAPTER 12

Understanding Different
Kinds of Numbers
In this chapter, you will study several more advanced topics concerning numbers and

calculations, such as more numeric types, memory consumption, and overflow. If you do

not need this much detail at this time, you can safely skip this chapter or just skim it.

 More Numeric Types
You already know that there is a distinction between whole numbers and decimal

numbers in computing. You use the int type for whole numbers, and you use the double

type for decimal numbers.

But there are other numeric data types in C#. Although many of them exist mainly for

historical reasons and you will probably never use them, it is good to know about them

at least.

https://doi.org/10.1007/978-1-4842-3318-4_12

150

 Task
You will write a program that displays an overview of all the C# numeric data types. For

each type, its range of possible values will be printed (see Figure 12-1).

 Solution
Here is the code:

static void Main(string[] args)

{

 // Immediately outputs

 Console.WriteLine("Signed whole numbers");

 Console.WriteLine("--------------------");

 Console.WriteLine("sbyte: " + sbyte.MinValue + " to " +

sbyte.MaxValue);

 Console.WriteLine("short: " + short.MinValue + " to " +

short.MaxValue);

Figure 12-1. Printing all numeric data types

Chapter 12 Understanding different Kinds of nUmbers

151

 Console.WriteLine("int: " + int.MinValue + " to " + int.MaxValue);

 Console.WriteLine("long: " + long.MinValue + " to " + long.MaxValue);

 Console.WriteLine();

 Console.WriteLine("Unsigned whole numbers");

 Console.WriteLine("----------------------");

 Console.WriteLine("byte: " + byte.MinValue + " to " + byte.MaxValue);

 Console.WriteLine("ushort: " + ushort.MinValue + " to " + ushort.

MaxValue);

 Console.WriteLine("unit: " + uint.MinValue + " to " + uint.MaxValue);

 Console.WriteLine("ulong: " + ulong.MinValue + " to " + ulong.

MaxValue);

 Console.WriteLine();

 Console.WriteLine("Basic decimal numbers");

 Console.WriteLine("---------------------");

 Console.WriteLine("float: " + float.MinValue + " to " + float.MaxValue);

 Console.WriteLine("double: " + double.MinValue + " to " + double.

MaxValue);

 Console.WriteLine();

 Console.WriteLine("Exact decimal numbers");

 Console.WriteLine("---------------------");

 Console.WriteLine("decimal: " + decimal.MinValue + " to " + decimal.

MaxValue);

 // Waiting for Enter

 Console.ReadLine();

}

Chapter 12 Understanding different Kinds of nUmbers

152

 Note

To display the ranges, I have used the MinValue and MaxValue properties of all the

numeric data types.

 Discussion
The following sections discuss this program.

 Unsigned Numbers

The results printed by the program show that some data types do not allow the storage of

negative numbers! However, these unsigned numbers are rarely used, with the exception

of the byte type, which you use when reading binary data from a file, a database, or a

web service.

Contrary to their signed counterparts, unsigned numbers usually begin with a u,

meaning “unsigned.” Similarly, the signed type sbyte starts with an s, meaning the

“signed” variant of the much more important byte.

 Decimal Numbers

Decimal type ranges are displayed in scientific notation (also called exponential

notation). For example, the greatest float number is displayed as 3.4E+38, which means

3.4 times 10 to the 38th power. This is a really big number, isn’t it?

Decimal types differ also in their precision. While the float type stores a decimal

value with approximately 7 significant digits, the double type offers a precision of about

15 significant digits, and the decimal type offers 28 digits.

Chapter 12 Understanding different Kinds of nUmbers

153

 Special Type decimal

The decimal data type is somewhat special. Because of the following reasons, it is

preferably used when working with currency:

• It stores cent values exactly. For example, the amount of 12.80 will be

stored precisely as 12.80 rather than something like 12.7999999999,

which might happen using other types.

• Because of a large number of significant digits, the decimal data type

allows you to represent large amounts of money and still keep the

cent precision.

However, both of these reasons are not as convincing as they might seem. If you

perform rounding correctly, you can store cents exactly with the double type. And

frankly speaking, you usually need to solve other problems than that of whether double

15 digits are enough for money!

Moreover, many things are easier with the double type, which is why I use preferably

double for decimals in this book.

One last note: calculations with the decimal type are much slower (in fact, hundreds

of times slower) than the same calculations with the double type. This does not matter if

you crunch just a few numbers, but the difference can be significant in large data sets.

 Memory Consumption
If you know something about bits and bytes, it may have occurred to you that the type

ranges differ because of the memory space that is available to the corresponding types.

This is exactly right, and you will learn more about it in this section.

Chapter 12 Understanding different Kinds of nUmbers

154

 Task
In this section, you will write a program that tells you how many bytes of memory each

type uses (see Figure 12-2).

Figure 12-2. Displaying the number of bytes each type uses

Chapter 12 Understanding different Kinds of nUmbers

155

 Solution
Here is the code:

static void Main(string[] args)

{

 // Outputs

 Console.WriteLine("Whole numbers");

 Console.WriteLine("-------------");

 Console.WriteLine("byte: " + sizeof(byte));

 Console.WriteLine("sbyte: " + sizeof(sbyte));

 Console.WriteLine();

 Console.WriteLine("short: " + sizeof(short));

 Console.WriteLine("ushort: " + sizeof(ushort));

 Console.WriteLine();

 Console.WriteLine("int: " + sizeof(int));

 Console.WriteLine("uint: " + sizeof(uint));

 Console.WriteLine();

 Console.WriteLine("long: " + sizeof(long));

 Console.WriteLine("ulong: " + sizeof(ulong));

 Console.WriteLine();

 Console.WriteLine("Decimal numbers");

 Console.WriteLine("---------------");

 Console.WriteLine("float: " + sizeof(float));

 Console.WriteLine("double: " + sizeof(double));

 Console.WriteLine("decimal: " + sizeof(decimal));

 Console.WriteLine();

 // Waiting for Enter

 Console.ReadLine();

}

Chapter 12 Understanding different Kinds of nUmbers

156

 Connections
It is possible to connect the results of the current and previous programs. For example,

let’s discuss the important int type. It uses 4 bytes, or 32 bits of memory. This means 2 to

the 32nd power of possible values, which is more than 4 billion. int is a signed type, so

you have 2 billion for positive numbers and 2 billion for negative numbers. Its unsigned

counterpart uint has all 4 billion values for positive numbers (and, of course, zero).

 Discussion
You may feel confused about the variety of numeric data types. To help you understand

them, here is a summary of when you should use each one:

• int: For regular work with values that are intrinsically integers (for

example, counts of something).

• double: For regular work with values that may be decimal (for

example, measured values) or values you do math with. Money

amounts are also mostly OK.

• byte: For work with binary data.

• long: For big integer values such as file sizes, payment identifications

(for example, ten digits may be required), or multiplication results of

regular (whole) values.

• decimal: A common choice for money amounts.

The other types are not used that often.

 Overflow
When program calculates a value that does not “fit” into an appropriate type’s range,

what happens is called overflow. The behavior of your program can be very strange, as

shown in Figure 12-3.

Chapter 12 Understanding different Kinds of nUmbers

157

Overflow can occur especially when multiplying because multiplying results in large

numbers.

 Task
In this section, you will write a program that tries to calculate a million times a million.

 Solution
Here is the code:

static void Main(string[] args)

{

 // Multiplying million by million

 int million = 1000000;

 int result = million * million;

 long resultInLong = million * million;

 // Outputs

 Console.WriteLine("Million times million: " + result);

 Console.WriteLine("also in long: " + resultInLong);

 // Waiting for Enter

 Console.ReadLine();

}

Figure 12-3. Overflow

Chapter 12 Understanding different Kinds of nUmbers

158

 Discussion
What the program does is totally unexpected. You need to be aware of this kind of

anomaly.

What is actually happening? The program multiplies a million by a million. The

result is too big to fit into the positive or negative two-billion range of the 32-bit signed

int type. So, the computer simply throws away the upper bits, resulting in complete

nonsense.

Please note that you get the same nonsense even when you store the result in a long-

typed variable. That nonsense, which throws away the bits greater than 32, arises during

calculation. According to C# rules, int times int is simply int regardless of where you

store the result.

 Dealing with Overflow
The previous program displayed an incorrect result. Now you will see what can be done

about it.

 Task
Here are two possibilities of how to handle overflow problems:

• If you do not expect a big value and it appears anyway, the program

should at least crash or let you know about the problem. Displaying

a nonsense value is the worst alternative. Users trust their computers

and can make wrong decisions based upon believing incorrect

results.

• If you have an idea that int might be insufficient, you can make the

calculation correctly with the following solution.

Chapter 12 Understanding different Kinds of nUmbers

159

 Solution
The new project source code follows:

static void Main(string[] args)

{

 // 0. Preparation

 int million = 1000000;

 // 1. Crash at least, we do not

 // definitely want a nonsense

 Console.WriteLine("1. calculation");

 try

 {

 long result = million * million;

 Console.WriteLine("Million times million:" + result);

 }

 catch (Exception)

 {

 Console.WriteLine("I cannot calculate this.");

 }

 // 2. Correct calculation of a big value

 Console.WriteLine("2. calculation");

 long millionInLong = million;

 long correctResult = millionInLong * millionInLong;

 Console.WriteLine("Million times million: " + correctResult.

ToString("N0"));

 // 3. Alternative calculation of a big valule

 Console.WriteLine("3. calculation");

 long correctResultAlternatively = (long)million * (long)million;

 Console.WriteLine("Million times million: " +

correctResultAlternatively.ToString("N0"));

 // Waiting for Enter

 Console.ReadLine();

}

Chapter 12 Understanding different Kinds of nUmbers

160

 Note

However, this code does not solve everything. When you immediately launch the

program, the first calculation is still going to be wrong. People sometimes take try-

catch as a kind of panacea, but it is definitely not. You need something else, as discussed

next.

 Settings in Visual Studio
You need to set up your project in Visual Studio so that it reports overflow out of the

program instead of sweeping it under the rug.

From the Visual Studio menu, choose Project and then <Project name> Properties

(see Figure 12-4).

Figure 12-4. Opening the properties

Chapter 12 Understanding different Kinds of nUmbers

161

Choose the Build tab next, scroll vertically (and maybe also horizontally) so that

you can see the Advanced button (it is really hidden!), and then click that button (see

Figure 12-5).

Figure 12-5. Build tab

Chapter 12 Understanding different Kinds of nUmbers

162

In the dialog that appears, select the “Check for arithmetic overflow/underflow”

check box and confirm by clicking the OK button (see Figure 12-6).

Your project is finally ready to run now.

 Results
Now the program behaves according to expectations, as shown in Figure 12-7.

Figure 12-6. “Check for arithmetic overflow/underflow” check box

Figure 12-7. Multiplying a million by a million

Chapter 12 Understanding different Kinds of nUmbers

163

 First Alternative

The first calculation correctly reports a problem. Omitting try-catch would cause a

runtime error, but at least it does not display an incorrect result.

 Other Alternatives

A correct calculation converts the million into a long type before the calculation starts.

Here are two ways to perform this conversion:

• Assigning the million to a variable of type long

• Using an explicit type cast with (long)million

If you do not require precise integer arithmetic, you might also calculate in the

double type. Unless you solve some very exotic math, double does not have a chance to

overflow.

 Summary
In this chapter, you studied advanced number calculations. You got to know all the

numeric data types that are available in C#. The types differ in whether they allow

integers or decimals, and they differ also in the ranges of allowed values. Types for

decimals mutually differ also in the precision with which the number is stored.

At the beginner level, knowledge of int and double is enough; you can always work

using them only. When you become more experienced, you might also use the following:

• The long type for big integers such as file sizes, ten-digit payment

numbers, or multiplication results of moderately sized numbers

• The decimal type for working with currency

• The byte type for working with binary data

You also studied the question of overflow. When a calculated value is too big to fit

into the range of a particular data type, nonsense results. The default behavior of Visual

Studio is to continue as normally. However, now you know how to change the settings to

cause a runtime error at least, because continuing with the incorrect result is the worst

alternative.

Chapter 12 Understanding different Kinds of nUmbers

164

The best alternative is to avoid the overflow completely by choosing a data type with

an appropriate range. However, keep in mind that changing the type of variable used

to store the result may not be enough. For example, int multiplied by int is always int

with a maximum value of about 2 billion, regardless of where you store it. It may be

suitable to convert the number into a long type before the calculation.

Chapter 12 Understanding different Kinds of nUmbers

	Chapter 12: Understanding Different Kinds of Numbers
	 More Numeric Types
	 Task
	 Solution
	 Note

	 Discussion
	 Unsigned Numbers
	 Decimal Numbers
	 Special Type decimal

	 Memory Consumption
	 Task
	 Solution
	 Connections
	 Discussion

	 Overflow
	 Task
	 Solution
	 Discussion

	 Dealing with Overflow
	 Task
	 Solution
	 Note

	 Settings in Visual Studio
	 Results
	 First Alternative
	 Other Alternatives

	 Summary

