CHAPTER 16

Threads and Timers

Recipe 16-1. How to Update a Progress Bar
from a Thread

Problem

If you use GUISs (graphical user interfaces) in Python much, you know that every now
and then you need to execute some long-running process. Of course, if you do that as
you would with a command-line program, then you'll be in for a surprise. In most cases,
you’ll end up blocking your GUT’s event loop and the user will see your program freeze.
This is true of all the Python GUI toolkits, including Tkinter, PyQt, or wxPython. What
can you do to get around such mishaps? Start the task in another thread or process,
of course! In this chapter, we'll look at how to do this with wxPython and Python’s
threading module.

In the wxPython world, there are three related “thread-safe” methods. If you do
not use one of these three when you go to update your user interface, then you may
experience weird issues. Sometimes your GUI will work just fine. Other times, it will
crash Python for no apparent reason, thus the need for the thread-safe methods:
wx.PostEvent, wx.CallAfter, and wx.CallLater. According to Robin Dunn (creator of
wxPython), wx.CallAfter uses wx.PostEvent to send an event to the application object.
The application will have an event handler bound to that event and will react according
to whatever the programmer has coded upon receipt of the event. It is my understanding
that wx.CallLater calls wx.CallAfter with a specified time limit so that you can tell it how
long to wait before sending the event.

Robin Dunn also pointed out that the Python Global Interpreter Lock (GIL) will
prevent more than one thread to be executing Python bytecodes at the same time, which
may limit how many CPU (central processing unit) cores are utilized by your program.

241
© Mike Driscoll 2018

M. Driscoll, wxPython Recipes, https://doi.org/10.1007/978-1-4842-3237-8_16

https://doi.org/10.1007/978-1-4842-3237-8_16

CHAPTER 16 THREADS AND TIMERS

On the flip side, he also said that “wxPython releases the GIL while making calls to wx
APIs so other threads can run at that time.” In other words, your mileage may vary when
using threads on multicore machines. I found this discussion to be interesting and
confusing.

Anyway, what this means in regard to the three wx-methods is that wx.CallLater is
the most abstract thread-safe method with wx.CallAfter next and wx.PostEvent being
the lowest level. In the following examples, you will see how to use wx.CallAfter and
wx.PostEvent to update your wxPython program.

Solution for wxPython 2.8.12 and Earlier

On the wxPython mailing list, you'll see the experts telling others to use wx.CallAfter
along with PubSub to communicate with their wxPython applications from another
thread. I've probably even told people to do that. So in the following example, that’s
exactly what we’re going to do. Note that this code is using the old version of PubSub so
it will only work with wxPython 2.8.12 or older.

wxPython 2.8.12

import time
import wx

from threading import Thread
from wx.lib.pubsub import Publisher

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.daemon = True
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):

242

def

CHAPTER 16 THREADS AND TIMERS

time.sleep(10)
wx.CallAfter(self.postTime, i)
time.sleep(5)
wx.CallAfter(Publisher().sendMessage, "update", "Thread finished!")

postTime(self, amt):

Send time to GUI

amtOfTime = (amt + 1) * 10
Publisher().sendMessage("update”, amtOfTime)

class MyForm(wx.Frame):

def

def

__init_ (self):
wx.Frame. init_ (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)
self.displayLbl = wx.StaticText(panel,

label="Amount of time since thread started goes here")
self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

create a pubsub receiver
Publisher().subscribe(self.updateDisplay, "update")

onButton(self, event):

Runs the thread

TestThread()
self.displaylLbl.SetLabel("Thread started!")

243

CHAPTER 16 THREADS AND TIMERS

btn = event.GetEventObject()
btn.Disable()

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg.data
if isinstance(t, int):
self.displaylLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

Run the program

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

We'll be using Python’s time module to fake our long-running process. However, feel free
to put something better in its place. In a real-life example, I use a thread to open Adobe
Reader and send a PDF to a printer. That might not seem like anything special, but when
I didn’t use a thread, the print button in my application would stay stuck down while

the document was sent to the printer and my GUT just hung until that was done. Even a
second or two is noticeable to the user!

Anyway, let’s see how this works. In our thread class (reproduced in the code that
follows), we override the “run” method so it does what we want. This thread is started
when we instantiate it because we have self.start() in its __init__method. In the “run”
method, we loop over a range of 6, sleeping for ten seconds, in between iterations and
then update our user interface using wx.CallAfter and PubSub. When the loop finishes,

we send a final message to our application to let the user know what happened.

244

CHAPTER 16 THREADS AND TIMERS

class TestThread(Thread):
"""Test Worker Thread Class."""

def

def

def

__init_ (self):

"""Init Worker Thread Class."""
Thread. init (self)

self.daemon = True

self.start() # start the thread

run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(10)
wx.CallAfter(self.postTime, i)
time.sleep(5)
wx.CallAfter(Publisher().sendMessage, "update", "Thread finished!")

postTime(self, amt):

Send time to GUI

amtOfTime = (amt + 1) * 10
Publisher().sendMessage("update”, amtOfTime)

Notice that in our wxPython code, we start the thread using a button event handler.

We also disable the button so we don’t accidentally start additional threads. That would

be pretty confusing if we had a bunch of them going and the UI would randomly say

that it was done when it wasn’t. That is a good exercise for the reader though. You could

display the PID (process ID) of the thread so you'd know which was which . . . and you

might want to output this information to a scrolling text control so you can see the

activity of the various threads.

The last piece of interest here is probably the PubSub receiver and its event handler.

def updateDisplay(self, msg):

Receives data from thread and updates the display

245

CHAPTER 16 THREADS AND TIMERS

t = msg.data
if isinstance(t, int):

self.displaylLbl.SetLabel("Time since thread started: %s seconds" % t)
else:

self.displaylLbl.SetLabel("%s" % t)

self.btn.Enable()

See how we extract the message from the thread and use it to update our display? We
also use the type of data we receive to tell us what to show the user. Pretty cool, huh?

Solution for wxPython 3 and Newer

As you may recall from previous recipes, the PubSub module was changed in wxPython 2.9
so the code in the previous section won’t work with current versions of wxPython. So
let’s update the code a bit to make it work for wxPython 3.0 Classic and wxPython 4.

wxPython 3.0 and Newer

import time
import wx

from threading import Thread
from wx.lib.pubsub import pub

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(2)
wx.CallAfter(self.postTime, i)

246

CHAPTER 16 THREADS AND TIMERS

time.sleep(5)
wx.CallAfter(pub.sendMessage, "update", msg="Thread finished!")

def postTime(self, amt):

Send time to GUI
amtOfTime = (amt + 1) * 10
pub.sendMessage("update", msg=amtOfTime)

class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

self.displaylLbl = wx.StaticText(panel,
label="Amount of time since thread
started goes here")

self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

create a pubsub receiver
pub.subscribe(self.updateDisplay, "update")

def onButton(self, event):

Runs the thread

TestThread()
self.displayLbl.SetLabel("Thread started!")
btn = event.GetEventObject()

btn.Disable()

247

CHAPTER 16 THREADS AND TIMERS

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg
if isinstance(t, int):
self.displayLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

How It Works

Note that we just ended up importing pub and replacing all the references to Publisher()
with pub. We also had to change the sendMessage call slightly in that we need to call it
using keyword arguments that match the function that is called by the subscriber. They're
all minor changes but necessary to get them to work in newer versions of wxPython. Now
let’s go down a level and check out how to do it with wx.PostEvent instead.

wx.PostEvent and Threads

The following code is based on an example from the wxPython wiki. It’s a little bit more
complicated than the wx.CallAfter code we just looked at, but I'm confident that we can
figure it out.

import time
import wx

from threading import Thread

248

CHAPTER 16 THREADS AND TIMERS

Define notification event for thread completion
EVT_RESULT ID = wx.NewId()

def EVT RESULT(win, func):
"""Define Result Event.
win.Connect(-1, -1, EVT RESULT ID, func)

class ResultEvent(wx.PyEvent):
"""Simple event to carry arbitrary result data.
def init (self, data):
"""Init Result Event."""
wx.PyEvent. init (self)
self.SetEventType(EVT _RESULT ID)
self.data = data

class TestThread(Thread):
"""Test Worker Thread Class.™"""

def _init (self, wxObject):
"""Init Worker Thread Class."""
Thread. init (self)
self.wxObject = wxObject
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(6):
time.sleep(10)
amtOfTime = (i + 1) * 10
wx.PostEvent(self.wxObject, ResultEvent(amtOfTime))
time.sleep(5)
wx.PostEvent(self.wxObject, ResultEvent("Thread finished!"))

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

249

CHAPTER 16 THREADS AND TIMERS

Add a panel so it looks the correct on all platforms

panel = wx.Panel(self, wx.ID ANY)

self.displayLbl = wx.StaticText(panel, label="Amount of time since
thread started goes here")

self.btn = btn = wx.Button(panel, label="Start Thread")

btn.Bind(wx.EVT BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.displayLbl, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

Set up event handler for any worker thread results
EVT_RESULT(self, self.updateDisplay)

def onButton(self, event):

Runs the thread

TestThread(self)
self.displaylLbl.SetLabel("Thread started!")
btn = event.GetEventObject()

btn.Disable()

def updateDisplay(self, msg):

Receives data from thread and updates the display
t = msg.data
if isinstance(t, int):
self.displaylLbl.SetLabel("Time since thread started: %s
seconds" % t)
else:
self.displaylLbl.SetLabel("%s" % t)
self.btn.Enable()

250

CHAPTER 16 THREADS AND TIMERS

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyForm().Show()
app.MainLoop()

Let’s break this down a bit. For me, the most confusing stuff is the first three pieces.

Define notification event for thread completion
EVT_RESULT ID = wx.NewId()

def EVT RESULT(win, func):
"""Define Result Event.
win.Connect(-1, -1, EVT_RESULT ID, func)

class ResultEvent(wx.PyEvent):
"""Simple event to carry arbitrary result data.
def init (self, data):
"""Init Result Event."""
wx.PyEvent. init_ (self)
self.SetEventType(EVT _RESULT ID)
self.data = data

The EVT_RESULT_ID is the key here. It links the thread to the wx.PyEvent and that
weird “EVT_RESULT” function. In the wxPython code, we bind an event handler to the
EVT_RESULT function. This allows us to use wx.PostEvent in the thread to send an
event to our custom event class, ResultEvent. What does this do? It sends the data on to
the wxPython program by emitting that custom EVT_RESULT that we bound to. I hope
that all makes sense.

Once you've got that figured out in your head, read on. Are you ready? Good! You'll
notice that our TestThread class is pretty much the same as before except that we're
using wx.PostEvent to send our messages to the GUI instead of PubSub. The application
programming interface (API) in our GUI's display updater is unchanged. We still just use
the message’s data property to extract the data we want. That’s all there is to it!

Ideally, you now know how to use basic threading techniques in your wxPython
programs. There are several other threading methods too which we didn’t have a chance
to cover here, such as using wx.Yield or Queues. Fortunately, the wxPython wiki covers
these topics pretty well, so be sure to check out the links below if you're interested in
those methods.

251

CHAPTER 16 THREADS AND TIMERS

Recipe 16-2. How to Update a Progress Bar
from a Thread

Problem

A fairly common task is the need to update a progress bar every so often. In this recipe,
we will create a frame with a button. When the button is pushed, it will launch a dialog
that contains our progress bar and it will start a thread. The thread is a dummy thread in
that it doesn’t do anything in particular except send an update back to the dialog once a
second for 20 seconds. Then the dialog is destroyed.

Solution

Let’s start by looking at how we can accomplish this task using wxPython 2.8.12.1 which
is still a popular version of wxPython even though it’s pretty old.

import time
import wx

from threading import Thread
from wx.lib.pubsub import Publisher

class TestThread(Thread):
"""Test Worker Thread Class."""

def init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.daemon = True
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):

252

CHAPTER 16 THREADS AND TIMERS

time.sleep(0.25)
wx.CallAfter(Publisher().sendMessage, "update"”, "")

class MyProgressDialog(wx.Dialog):

def

def

__init_ (self):

Constructor"""

wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub listener
Publisher().subscribe(self.updateProgress, "update")

updateProgress(self, msg):

Update the progress bar

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

class MyFrame(wx.Frame):

def

__init_ (self):
wx.Frame. init (self, None, title="Progress Bar Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.btn = btn = wx.Button(panel, label="Start Thread")
btn.Bind(wx.EVT_BUTTON, self.onButton)

253

CHAPTER 16 THREADS AND TIMERS

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onButton(self, event):

Runs the thread
btn = event.GetEventObject()
btn.Disable()

TestThread()

dlg = MyProgressDialog()
d1lg.ShowModal()
dlg.Destroy()

btn.Enable()

Run the program

if name_ ==" main_":
app = wx.App(False)
frame = MyFrame()
frame. Show()

app.MainLoop()

Let’s spend a few minutes breaking this down. We'll start at the bottom. The
MyFrame class is what gets run first. When you run this script you should see something
like the screen in Figure 16-1.

254

CHAPTER 16 THREADS AND TIMERS

r -

) @) Tutorial
Start Thread

Figure 16-1. Progress bar frame

As you can see, all this code does is create a simple frame with a button on it. If you
press the button, the following dialog will be created and a new thread will start
(see Figure 16-2):

@® Progress
|

Figure 16-2. A progress bar dialog

255

CHAPTER 16 THREADS AND TIMERS

Let’s look at the portion of the code that makes the dialog.

class MyProgressDialog(wx.Dialog):

def _init (self):

Constructor
wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub listener
Publisher().subscribe(self.updateProgress, "update")

def updateProgress(self, msg):

Update the progress bar

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

This code just creates a dialog with a wx.Gauge widget. The gauge is the actual
widget behind the progress bar. Anyway, we create a PubSub listener at the very end of
the dialog’s __init__. This listener accepts messages that will fire off the updateProgress
method. We will see the messages get sent in the thread class. In the updateProgress
method, we increment the counter and update the wx.Gauge by setting its value. We also
check to see if the count is greater than or equal to 20, which is the range of the gauge. If
it is, then we close the dialog by calling its EndModal() method. To actually Destroy() the
dialog completely, you will want to check out the frame’s onButton() method.

256

CHAPTER 16 ~ THREADS AND TIMERS
Now we're ready to look at the threading code.

class TestThread(Thread):
"""Test Worker Thread Class.™"""

def _init (self):
"""Init Worker Thread Class."""
Thread. init (self)
self.start() # start the thread

def run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):
time.sleep(1)
wx.CallAfter(Publisher().sendMessage, "update", "")

Here we created a thread and immediately started it. The thread loops over a range
of 20 and uses the time module to sleep for a second in each iteration. After each sleep, it
sends a message to the dialog to tell it to update the progress bar.

Updating the Code for wxPython 3.0.2.0 and Newer

The code in the previous section was written using PubSub’s old API which has been
tossed out the window with the advent of wxPython 2.9. So if you try to run the previous
code in 2.9 or newer, you will likely run into issues. Thus for completeness, following

is a version of the code that uses the new PubSub API and also works with wxPython
Phoenix:

import time
import wx

from threading import Thread
from wx.lib.pubsub import pub

class TestThread(Thread):
"""Test Worker Thread Class."""

257

CHAPTER 16 THREADS AND TIMERS

def _init (self):

def

"""Init Worker Thread Class."""
Thread. init (self)

self.daemon = True

self.start() # start the thread

run(self):
"""Run Worker Thread."""
This is the code executing in the new thread.
for i in range(20):
time.sleep(0.25)
wx.CallAfter(pub.sendMessage, "update", msg="")

class MyProgressDialog(wx.Dialog):

258

def

def

__init_ (self):
"""Constructor

wx.Dialog. init (self, None, title="Progress")
self.count = 0

self.progress = wx.Gauge(self, range=20)
sizer = wx.BoxSizer(wx.VERTICAL)

sizer.Add(self.progress, 0, wx.EXPAND)
self.SetSizer(sizer)

create a pubsub receiver
pub.subscribe(self.updateProgress, "update")

updateProgress(self, msg):

self.count += 1

if self.count >= 20:
self.EndModal(0)

self.progress.SetValue(self.count)

CHAPTER 16 THREADS AND TIMERS

class MyForm(wx.Frame):

def init (self):
wx.Frame. init (self, None, wx.ID ANY, "Tutorial")

Add a panel so it looks the correct on all platforms
panel = wx.Panel(self, wx.ID ANY)

self.btn = btn = wx.Button(panel, label="Start Thread")
btn.Bind(wx.EVT_BUTTON, self.onButton)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onButton(self, event):

Runs the thread
btn = event.GetEventObject()
btn.Disable()

TestThread()

dlg = MyProgressDialog()
d1lg.ShowModal()
dlg.Destroy()

btn.Enable()

Run the program

if _name_ == " main_":
app = wx.App(False)
frame = MyForm().Show()

app.MainLoop()

Note that now you import the pub module rather than the Publisher module. Also
note that you have to use keyword arguments. See the PubSub documentation for
additional information.

259

CHAPTER 16 THREADS AND TIMERS

At this point, you should know how to create your own progress dialog and update it
from a thread. You can use a variation of this code to create a file downloader. If you do that,
you would need to check the size of the file you are downloading and download it in chunks
so you can create the wx.Gauge with the appropriate range and update it as each chunk is
downloaded. I hope this give you some ideas for how to use this widget in your own projects.

Recipe 16-3. A wx.Timer Tutorial
Problem

The wx.Timer allows the developer to execute code at specific intervals. In this chapter,
I will cover several different ways to create timers. A timer object actually starts its own
event loop that it controls without interfering the wxPython’s main loop.

& ©) Timer Tutorial 1
Start

Figure 16-3. A simple timer example

260

CHAPTER 16 THREADS AND TIMERS

Solution

My first example is super simple. It has only one button that starts and stops a timer. Let’s

take a look at the code.

import time

import wx

class MyForm(wx.Frame):

def

def

def

__init_ (self):
wx.Frame. init (self, None, title="Timer Tutorial 1",
size=(500,500))

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.update, self.timer)

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onToggle)

onToggle(self, event):

btnLabel = self.toggleBtn.GetLabel()

if btnLabel == "Start":
print("starting timer...")
self.timer.Start(1000)
self.toggleBtn.SetLabel("Stop")

else:
print("timer stopped!")
self.timer.Stop()
self.toggleBtn.SetLabel("Start")

update(self, event):

print("\nupdated: ", time.ctime())

Run the program

if _name ==

app

__main_ ":
= wx.App(True)

frame = MyForm().Show()
app.MainLoop()

261

CHAPTER 16 THREADS AND TIMERS

How It Works

As you can see, I only import two modules: wx and time. I use the time module to post
the time that the wx.Timer event fires on. The two main things to pay attention to here
are how to bind the timer to an event and the event handler itself. For this example to
work, you have to bind the frame to the timer event. I tried binding the timer (i.e., self.
timer.Bind), but that didn’t work. So the logical thing to do was ask Robin Dunn what
was going on. He said that if the parent of the timer is the frame, then the frame is the
only object that will receive the timer’s events unless you derive wx.Timer and override
its Notify method. Makes sense to me.

Regardless, let’s look at my event handler. In it I grab the button’s label and then use
a conditional if statement to decide if I want to start or stop the timer as well as what
to label the button. In this way, I can have just one function that toggles the button and
the timer’s state. The part to take note of are the methods Start and Stop. They are what
control the timer.

In one of my real-life applications, I have a timer execute every so often to check
my e-mail. I discovered that if I shut my program down without stopping the timer, the
program would basically become a zombie process. Thus, you need to make sure that
you stop all your timers when your program is closed or destroyed.

Before we get to my next example, let’s take a look at refactoring this one. Robin
Dunn had some suggestions that I implemented in the following code. Can you tell
what’s different?

import wx
import time

class MyForm(wx.Frame):
def init (self):

wx.Frame. init (self, None, title="Timer Tutorial 1",
size=(500,500))

panel = wx.Panel(self, wx.ID ANY)

262

CHAPTER 16 THREADS AND TIMERS

self.timer = wx.Timer(self)
self.Bind(wx.EVT _TIMER, self.update, self.timer)

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start")
self.toggleBtn.Bind(wx.EVT _BUTTON, self.onToggle)

def onToggle(self, event):

if self.timer.IsRunning():
self.timer.Stop()
self.toggleBtn.SetLabel("Start")
print("timer stopped!")

else:
print("starting timer...")
self.timer.Start(1000)
self.toggleBtn.SetLabel("Stop")

def update(self, event):

print("\nupdated: ", time.ctime())

Run the program

if name_ ==" main_":
app = wx.App(True)
frame = MyForm().Show()
app.MainLoop()

As you can see, I've changed the event handler to check if the timer is running or not
rather than looking at the button’s label. This saves us one line, but it’s a little cleaner
and shows how to accomplish the same thing in a slightly different way.

263

CHAPTER 16 THREADS AND TIMERS

Using Multiple Timers

£5) @® Timer Tutorial 2
Start Timer 1

Start Timer 2

Figure 16-4. A simple timer example

There are many times where you will need to have multiple timers running at the same
time. For example, you might need to check for updates from one or more web APIs.
Here’s a simple example that shows how to create a couple of timers.

import wx
import time

TIMER ID1
TIMER ID2

2000
2001

class MyForm(wx.Frame):

def init (self):
wx.Frame. init_ (self, None, title="Timer Tutorial 2")

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self, id=TIMER ID1)
self.Bind(wx.EVT TIMER, self.update, self.timer)
self.timer2 = wx.Timer(self, id=TIMER ID2)
self.Bind(wx.EVT_TIMER, self.update, self.timer2)

264

CHAPTER 16 THREADS AND TIMERS

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start Timer 1")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onStartTimerOne)
self.toggleBtn2 = wx.Button(panel, wx.ID ANY, "Start Timer 2")
self.toggleBtn2.Bind(wx.EVT BUTTON, self.onStartTimerOne)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.toggleBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(self.toggleBtn2, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

def onStartTimerOne(self, event):
buttonObj = event.GetEventObject()
btnLabel = buttonObj.GetLabel()
timerNum = int(btnLabel[-1:])
print(timerNum)

if btnlLabel == "Start Timer %s" % timerNum:
if timerNum ==
print("starting timer 1...")
self.timer.Start(1000)
else:
print("starting timer 2...")
self.timer2.Start(3000)
buttonObj.SetLabel("Stop Timer %s" % timerNum)
else:
if timerNum ==
self.timer.Stop()
print("timer 1 stopped!")
else:
self.timer2.Stop()
print("timer 2 stopped!")
buttonObj.SetLabel("Start Timer %s" % timerNum)

def update(self, event):
timerId = event.GetId()
if timerId == TIMER ID1:
print("\ntimer 1 updated:

', time.ctime())

265

CHAPTER 16 THREADS AND TIMERS

else:
print("\ntimer 2 updated:

, time.ctime())

Run the program
if _name_ =="

__main_":
app = wx.App()

frame = MyForm().Show()
app.MainLoop()

To be honest, this second example is mostly the same as the first one. The main
difference is that I have two buttons and two timer instances. I decided to be geeky and
have both buttons bind to the same event handler. This is probably one of my better
tricks. To find out which button called the event, you can use the event’s GetEventObject
method. Then you can get the label off the button. If you're a real nerd, you'll notice that
I could combine lines 30 and 31 into the following one-liner:

btnLabel = event.GetEventObject().GetLabel()

I split that into two lines to make it easier to follow though. Next, I used some string
slicing to grab the button’s label number so I would know which timer to stop or start.
Then my program enters my nested if statements where it checks the button label and
then the timer number. Now you know how to start and stop multiple timers too.

Once again, Robin Dunn came up with a better way to do this second example, so
let’s see what he came up with.

import wx
import time

class MyForm(wx.Frame):

def _init (self):
wx.Frame. init (self, None, title="Timer Tutorial 2")

panel = wx.Panel(self, wx.ID ANY)

self.timer = wx.Timer(self, wx.ID ANY)
self.Bind(wx.EVT_TIMER, self.update, self.timer)
self.timer2 = wx.Timer(self, wx.ID ANY)
self.Bind(wx.EVT _TIMER, self.update, self.timer2)

266

CHAPTER 16 THREADS AND TIMERS

self.toggleBtn = wx.Button(panel, wx.ID ANY, "Start Timer 1")
self.toggleBtn.Bind(wx.EVT_BUTTON, self.onStartTimer)
self.toggleBtn2 = wx.Button(panel, wx.ID ANY, "Start Timer 2")
self.toggleBtn2.Bind(wx.EVT BUTTON, self.onStartTimer)

sizer = wx.BoxSizer(wx.VERTICAL)
sizer.Add(self.toggleBtn, 0, wx.ALL|wx.CENTER, 5)
sizer.Add(self.toggleBtn2, 0, wx.ALL|wx.CENTER, 5)
panel.SetSizer(sizer)

Each value in the following dict is formatted as follows:

(timerNum, timerObj, secs between timer events)

self.objDict = {self.toggleBtn: (1, self.timer, 1000),
self.toggleBtn2: (2, self.timer2, 3000)}

def onStartTimer(self, event):

btn = event.GetEventObject()

timerNum, timer, secs = self.objDict[btn]

if timer.IsRunning():
timer.Stop()
btn.SetLabel("Start Timer %s" % timerNum)
print("timer %s stopped!" % timerNum)

else:
print("starting timer %s..." % timerNum)
timer.Start(secs)
btn.SetLabel("Stop Timer %s" % timerNum)

def update(self, event):
timerId = event.GetId()
if timerId == self.timer.GetId():
print("\ntimer 1 updated: ", time.ctime())
else:
print ("\ntimer 2 updated:

, time.ctime())

Run the program

if _name_ == " main_":
app = wx.App()
frame = MyForm().Show()

app.MainLoop()

267

CHAPTER 16 THREADS AND TIMERS

In the __init__Tadded a dictionary that is keyed on the button objects. The values
of the dictionary are the timer number, the timer object, and the number of seconds
(technically milliseconds) between timer events. Next, [updated the button event
handler to grab the button object from the event’s GetEventObject method and then
extract the respective values using said object for the dict’s key. Then I can use the same
trick I used in the refactored example I detailed previously, namely, the checking of
whether or not the timer is running.

At this point you should have a pretty good handle on how you might use a wx.Timer
in your own code base. It’s a very easy way to fire an event at a specific time interval and
it works pretty reliably. I have used timer objects in many projects. One good example
was when I needed to check for updates in an e-mail alert program I had written. [used
a timer to check my e-mail every so often to see if I had received anything new and to
alert me if I did.

268

	Chapter 16: Threads and Timers
	 Recipe 16-1. How to Update a Progress Bar from a Thread
	 Problem
	 Solution for wxPython 2.8.12 and Earlier
	 How It Works
	 Solution for wxPython 3 and Newer
	 How It Works

	 wx.PostEvent and Threads
	 Recipe 16-2. How to Update a Progress Bar from a Thread
	 Problem
	 Solution

	 Updating the Code for wxPython 3.0.2.0 and Newer
	 Recipe 16-3. A wx.Timer Tutorial
	 Problem
	 Solution
	 How It Works

	 Using Multiple Timers

