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CHAPTER 8

Customer Segmentation and 
Effective Cross Selling

Money makes the world go round and in the current ecosystem of data intensive business practices, it is safe 
to claim that data also makes the world go round. A very important skill set for data scientists is to match the 
technical aspects of analytics with its business value, i.e., its monetary value. This can be done in a variety of 
ways and is very much dependent on the type of business and the data available. In the earlier chapters, we 
covered problems that can be framed as business problems (leveraging the CRISP-DM model) and linked to 
revenue generation. In this chapter we will directly focus on two very important problems that can directly 
have a positive impact on the revenue streams of businesses and establishments particularly from the retail 
domain. This chapter is also unique in the way that we address a different paradigm of Machine Learning 
algorithm altogether, focusing more on tasks pertaining to pattern recognition and unsupervised learning.

In this chapter, first we digress from our usual technical focus and try to gather some business and 
domain knowledge. This knowledge is quite important, as often this is the stumbling block for many data 
scientists in scenarios where a perfectly developed Machine Learning solution is not productionalized due 
to a lack of focus in the actual value obtained from the solution based on business demands. A firm grasp on 
the underlying business (and monetary) motivation helps the data scientists with defining the value aspect 
of their solutions and hence ensuring that they are deployed and contribute to generation of realizable value 
for their employers.

For achieving this objective, we will start with a retail transactions based dataset sourced from UCI 
Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets/online+retail) and we will 
use this dataset to target two fairly simple but important problems. The detailed code, notebooks, and 
datasets used in this chapter are available in the respective directory for Chapter 8 in the GitHub repository 
at https://github.com/dipanjanS/practical-machine-learning-with-python.

•	 Customer segmentation: Customer segmentation is the problem of uncovering 
information about a firm’s customer base, based on their interactions with the 
business. In most cases this interaction is in terms of their purchase behavior and 
patterns. We explore some of the ways in which this can be used.

•	 Market basket analysis: Market basket analysis is a method to gain insights 
into granular behavior of customers. This is helpful in devising strategies which 
uncovers deeper understanding of purchase decisions taken by the customers. This 
is interesting as a lot of times even the customer will be unaware of such biases or 
trends in their purchasing behavior.

https://doi.org/10.1007/978-1-4842-3207-1_8
http://archive.ics.uci.edu/ml/datasets/online+retail
http://dx.doi.org/10.1007/978-1-4842-3207-1_8
https://github.com/dipanjanS/practical-machine-learning-with-python
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 Online Retail Transactions Dataset
The online retail transactions dataset is available from the UCI Machine Learning Repository. We already 
used some datasets from this repository in our earlier chapters and this should underline the importance 
of this repository to the users. The dataset we will be using for our analysis is quite simple. Based on 
its description on the UCI web site, it contains all the transactions occurring between 01/12/2010 and 
09/12/2011 for a UK-based and registered non-store online retail. From the web site, we also learn that the 
company sells unique all-occasion gift items and a lot of customers of the organization are wholesalers.

The last piece of information is particularly important as gives us an opportunity to explore purchase 
behaviors of large-scale customers instead of normal retail customers only. The dataset does not have any 
information that will help us distinguish between a wholesale purchase and a retail purchase. Before we get 
started, make sure you load the following dependencies.

import pandas as pd
import datetime
import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

%matplotlib inline

 ■ Note  We encourage you to check out the uCi machine learning repository and the page for this particular 
dataset at http://archive.ics.uci.edu/ml/datasets/online+retail. on the web site, you can find some 
research papers that use the same dataset. We believe the papers along with the analysis performed in this 
chapter will make an interesting read for all our readers.

 Exploratory Data Analysis
We have always maintained that irrespective of the actual use case or the algorithm, we intend to implement 
the standard analysis workflow, which should always start with exploratory data analysis (EDA). So following 
the tradition, we will start with EDA on our dataset.

The first thing you should notice about the dataset is its format. Unlike most of the datasets that we have 
handled in this book the dataset is not in a CSV format and instead comes as an Excel file. In some other 
languages (or even frameworks) it could have been a cause of problem but with python and particularly 
pandas we don’t face any such problem and we can read the dataset using the function read_excel provided 
by the pandas library. We also take a look at some of the lines in the dataset.

In [3]: cs_df = pd.read_excel(io=r'Online Retail.xlsx')

http://archive.ics.uci.edu/ml/datasets/online+retail
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The few lines from the dataset gives us information about the attributes of the datasets, as shown in 
Figure 8-1.

The attributes of the dataset are easily identifiable from their names. We know right away what each of 
these fields might mean. For the sake of completeness, we include the description of each column here:

•	 InvoiceNo: A unique identifier for the invoice. An invoice number shared across 
rows means that those transactions were performed in a single invoice (multiple 
purchases).

•	 StockCode: Identifier for items contained in an invoice.

•	 Description: Textual description of each of the stock item.

•	 Quantity: The quantity of the item purchased.

•	 InvoiceDate: Date of purchase.

•	 UnitPrice: Value of each item.

•	 CustomerID: Identifier for customer making the purchase.

•	 Country: Country of customer.

Let’s analyze this data and first determine which are the top countries the retailer is shipping its items 
to, and how are the volumes of sales for those countries.

In [5]: cs_df.Country.value_counts().reset_index().head(n=10)
Out[5]:
            index  Country
0  United Kingdom   495478
1         Germany     9495
2          France     8557
3            EIRE     8196
4           Spain     2533
5     Netherlands     2371
6         Belgium     2069
7     Switzerland     2002
8        Portugal     1519
9       Australia     1259

This shows us that the bulk of ordering is taking place in its home country only which is not surprising. We 
also notice the odd country name EIRE, which is a little concerning. But a quick web search indicates that it is just 
an old name for Ireland, so no harm done! Interestingly, Australia is also in the top-ten list of sales by country.

Figure 8-1. Sample transactions from the Retail Transactions dataset
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Next we might be interested in how many unique customers the retailer is having and how do they stack 
up in the number of orders they make. We are also interested in knowing that what percentage of orders is 
made by the top 10 customers of the retailer. This information is interesting as it would tell us whether the 
user base of the firm is distributed relatively uniformly.

In [7]: cs_df.CustomerID.unique().shape
Out[7]: (4373,)

In [8]: (cs_df.CustomerID.value_counts()/sum(cs_df.CustomerID.value_counts())*100).
head(n=13).cumsum()
Out[8]:
17841.0    1.962249
14911.0    3.413228
14096.0    4.673708
12748.0    5.814728
14606.0    6.498553
15311.0    7.110850
14646.0    7.623350
13089.0    8.079807
13263.0    8.492020
14298.0    8.895138
15039.0    9.265809
14156.0    9.614850
18118.0    9.930462
Name: CustomerID, dtype: float64

This tells us that we have 4,373 unique customers but almost 10% of total sales are contributed by only 
13 customers (based on the cumulative percentage aggregation in the preceding output). This is expected 
given the fact that we have both wholesale and retail customers. The next thing we want to determine is how 
many unique items the firm is selling and check whether we have equal number of descriptions for them.

In [9]: cs_df.StockCode.unique().shape
Out[9]: (4070,)

In [10]: cs_df.Description.unique().shape
Out[10]: (4224,)

We have a mismatch in the number of StockCode and Description, as we can see that item descriptions 
are more than stock code values, which means that we have multiple descriptions for some of the stock 
codes. Although this is not going to interfere with our analysis, we would like to dig a little deeper in this to 
find out what may have caused this issue or what kind of duplicated descriptions are present in the data.

cat_des_df = cs_df.groupby(["StockCode","Description"]).count().reset_index()
cat_des_df.StockCode.value_counts()[cat_des_df.StockCode.value_counts()>1].reset_index().head()

   index  StockCode
0  20713          8
1  23084          7
2  85175          6
3  21830          6
4  21181          5
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In [13]: cs_df[cs_df['StockCode']
    ...:       ==cat_des_df.StockCode.value_counts()[cat_des_df.StockCode.value_counts()>1].
    ...:       reset_index()['index'][6]]['Description'].unique()
Out[13]:
array(['MISTLETOE HEART WREATH CREAM', 'MISTLETOE HEART WREATH WHITE',
       'MISTLETOE HEART WREATH CREAM', '?', 'had been put aside', nan], dtype=object)

This gives the multiple descriptions for one of those items and we witness the simple ways in which 
data quality can be corrupted in any dataset. A simple spelling mistake can end up in reducing data quality 
and an erroneous analysis. In an enterprise-level scenario, dedicated people work toward restoring data 
quality manually over time. Since the intent of this section is to focus on customer segmentation, we will be 
skipping this tedious activity for now. Let’s now verify the sanctity of the Quantity and UnitPrice attributes, 
as those are the attributes we will be using in our analysis.

In [14]: cs_df.Quantity.describe()
Out[14]:
count    541909.000000
mean          9.552250
std         218.081158
min      -80995.000000
25%           1.000000
50%           3.000000
75%          10.000000
max       80995.000000
Name: Quantity, dtype: float64

In [15]: cs_df.UnitPrice.describe()
Out[15]:
count    541909.000000
mean          4.611114
std          96.759853
min      -11062.060000
25%           1.250000
50%           2.080000
75%           4.130000
max       38970.000000
Name: UnitPrice, dtype: float64

We can observe from the preceding output that both of these attributes are having negative values, 
which may mean that we may have some return transactions in our data also. This scenario is quite common 
for any retailer but we need to handle these before we proceed to our analysis. These are some of the 
data quality issues we found in our dataset. In the real world, the datasets are generally messy and have 
considerable data quality issues, so it is always a good practice to explicitly verify information at hand before 
performing any kind of analysis. We encourage you to try and find similar issues with any dataset which you 
might want to analyze in the future.
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Customer Segmentation
Segmentation is the process of segregating any aggregated entity into separate parts or groups (segments). 
These parts may or may not share something common across them. Customer segmentation is similarly the 
process of dividing an organization’s customer bases into different sections or segments based on various 
customer attributes. It is driven by the belief that customers are inherently different and this difference is 
exemplified by their behavior. A deep understanding of an organization’s customer base and their behavior 
is often the focus of any customer segmentation project. The process of customer segmentation is based on 
the premise of finding differences among the customers’ behavior and patterns. These differences can be 
on the basis of their buying behavior, their demographic information, their geographic information, their 
psychographic attributes, and so on.

 Objectives
Customer segmentation can help an organization in multitude of ways. Before we describe the various ways 
it can be done, we want to enumerate the major objectives and benefits behind the motivation for customer 
segmentation.

Customer Understanding
One of the primary objectives of a customer segmentation process is a deeper understanding of a firm’s 
customers and their attributes and behavior. These insights into the customer base can be used in different 
ways, as we will discuss shortly. But the information is useful by itself. One of the mostly widely accepted 
business paradigms is “know your customer” and a segmentation of the customer base allows for a perfect 
dissection of this paradigm. This understanding and its exploitation is what forms the basis of the other 
benefits of customer segmentation.

 Target Marketing
The most visible reason for customer segmentation is the ability to focus marketing efforts effectively 
and efficiently. If a firm knows the different segments of its customer base, it can devise better marketing 
campaigns which are tailor made for the segment. Consider the example of any travel company, if it knows 
that the major segments of its customers are the budget travelers and the luxury travelers, it can have two 
separate marketing campaigns for each of the group. One can focus on the higher value aspects of the 
company’s offerings relevant to budget deals while the other campaign deals with luxurious offerings. 
Although the example seems quite trivial, the same logic can be extended in a number of ways to arrive 
at better marketing practices. A good segmentation model allows for better understanding of customer 
requirements and hence increases the chances of the success of any marketing campaign developed by the 
organization.

Optimal Product Placement
A good customer segmentation strategy can also help the firm with developing or offering new products. 
This benefit is highly dependent on the way the segmentation process is leveraged. Consider a very simple 
example in which an online retailer finds out that a major section of its customers are buying makeup 
products together. This may prompt him to bundle those product together as a combined offering, which 
may increase sales margin for the retailer and make the buying process more streamlined for the customer.
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Finding Latent Customer Segments
A customer segmentation process helps the organization with knowing its customer base. An obvious side 
effect of any such practice is finding out which segment of customers it might be missing. This can help in 
identifying untapped customer segments by focused on marketing campaigns or new product development.

 Higher Revenue
This is the most obvious requirement of any customer segmentation project. The reason being that customer 
segmentation can lead to higher revenue due to the combined effects of all the advantages identified in this 
section.

Strategies
The easy answer to the question of “How to do customer segmentation?” would be “In any way you deem fit” 
and it would be a perfectly acceptable answer. The reason this is the right answer, is because of the original 
definition of customer segmentation. It is just a way of differentiating between the customers. It can be as 
simple as making groups of customers based on age groups or other attributes using a manual process or as 
complex as using a sophisticated algorithm for finding out those segments in an automated fashion. Since 
our book is all about Machine Learning, we describe how customer segmentation can be translated into a 
core Machine Learning task. The detailed code for this section is available in the notebook titled Customer 
Segmentation.ipynb.

 Clustering
We are dealing with an unlabeled, unsupervised transactional dataset from which we want to find 
out customer segments. Thus, the most obvious method to perform customer segmentation is using 
unsupervised Machine Learning methods like clustering. Hence, this will be the method that we use for 
customer segmentation in this chapter. The method is as simple as collecting as much data about the 
customers as possible in the form of features or attributes and then finding out the different clusters that can 
be obtained from that data. Finally, we can find traits of customer segments by analyzing the characteristics 
of the clusters.

 Exploratory Data Analysis
Using exploratory data analysis is another way of finding out customer segments. This is usually done by 
analysts who have a good knowledge about the domain relevant to both products and customers. It can be 
done flexibly to include the top decision points in an analysis. For example, finding out the range of spends 
by customers will give rise to customer segments based on spends. We can proceed likewise on important 
attributes of customers until we get segments of customer that have interesting characteristics.

Clustering vs. Customer Segmentation
In our use case, we will be using a clustering based model to find out interesting segments of customers. 
Before we go on to modify our data for the model there is an interesting point we would like to clarify. A lot of 
people think that clustering is equivalent to customer segmentation. Although it is true that clustering is one 
of the most suitable techniques for segmentation, it is not the only technique. Besides this, it is just a method 
that is “applied” to extract segments.
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Customer segmentation is just the task of segmenting customers. It can be solved in several ways 
and it need not always be a complex model. Clustering provides a mathematical framework which can be 
leveraged for finding out such segment boundaries in the data. Clustering is especially useful when we have 
a lot of attributes about the customer on which we can make different segments. Also, often it is observed 
that a clustering-based segmentation will be superior to an arbitrary segmentation process and it will often 
encompass the segments that can be devised using such an arbitrary process.

 Clustering Strategy
Now that we have some information about what customer segmentation is, various strategies and how it can 
be useful, we can start with the process of finding out customer segments in our online retail dataset. The 
dataset that we have consists of only the sales transactions of the customers and no other information about 
them, i.e., no other additional attributes. Usually in larger organizations we will usually have more attributes 
of information about the customers that can help in clustering. However, it will be interesting and definitely 
a challenge to work with this limited attribute dataset! So we will use a RFM—Recency, Frequency and 
Monetary Value—based model of customer value for finding our customer segments.

 RFM Model for Customer Value
The RFM model is a popular model in marketing and customer segmentation for determining a customer’s 
value. The RFM model will take the transactions of a customer and calculate three important informational 
attributes about each customer:

•	 Recency: The value of how recently a customer purchased at the establishment

•	 Frequency: How frequent the customer’s transactions are at the establishment

•	 Monetary value: The dollar (or pounds in our case) value of all the transactions that 
the customer made at the establishment

A combination of these three values can be used to assign a value to the customer. We can directly think 
of some desirable segments that we would want on such model. For example, a high value customer is one 
who buys frequently, just bought something recently, and spends a high amount whenever he buys or shops!

 Data Cleaning
We hinted in the “Exploratory Data Analysis” section about the return transactions that we have in our 
dataset. Before proceeding with our analysis workflow, we will find out all such transactions and remove 
them. Another possibility is to remove the matching buying transactions also from the dataset. But we will 
assume that those transactions are still important hence we will keep them intact. Another data cleaning 
operation is to separate transactions for a particular geographical region only, as we don’t want data from 
Germany’s customers to affect the analysis for another country’s customers. The following snippet of code 
achieves both these tasks. We focus on UK customers, which are notably the largest segment (based on country!).

In [16]: # Separate data for one geography
    ...: cs_df = cs_df[cs_df.Country == 'United Kingdom']
    ...:
    ...: # Separate attribute for total amount
    ...: cs_df['amount'] = cs_df.Quantity*cs_df.UnitPrice
    ...:
    ...: # Remove negative or return transactions
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    ...: cs_df = cs_df[~(cs_df.amount<0)]
    ...: cs_df.head()
    ...:
Out[16]:
  InvoiceNo StockCode                          Description  Quantity  \
0    536365    85123A   WHITE HANGING HEART T-LIGHT HOLDER         6
1    536365     71053                  WHITE METAL LANTERN         6
2    536365    84406B       CREAM CUPID HEARTS COAT HANGER         8
3    536365    84029G  KNITTED UNION FLAG HOT WATER BOTTLE         6
4    536365    84029E       RED WOOLLY HOTTIE WHITE HEART.         6

          InvoiceDate  UnitPrice  CustomerID         Country  amount
0 2010-12-01 08:26:00       2.55     17850.0  United Kingdom   15.30
1 2010-12-01 08:26:00       3.39     17850.0  United Kingdom   20.34
2 2010-12-01 08:26:00       2.75     17850.0  United Kingdom   22.00
3 2010-12-01 08:26:00       3.39     17850.0  United Kingdom   20.34
4 2010-12-01 08:26:00       3.39     17850.0  United Kingdom   20.34

The data now has only buying transactions from United Kingdom. We will now remove all the 
transactions that have a missing value for the CustomerID field as all our subsequent transactions will be 
based on the customer entities.

In [17]: cs_df = cs_df[~(cs_df.CustomerID.isnull())]
In [18]: cs_df.shape
Out[18]: (354345, 9)

The next step is creating the recency, frequency, and monetary value features for each of the customers 
that exist in our dataset.

Recency

To create the recency feature variable, we need to decide the reference date for our analysis. For our use 
case, we will define the reference date as one day after the last transaction in our dataset.

In [19]: refrence_date = cs_df.InvoiceDate.max()
    ...: refrence_date = refrence_date + datetime.timedelta(days = 1)
    ...: refrence_date
Out[20]: Timestamp('2011-12-10 12:49:00')

We will construct the recency variable as the number of days before the reference date when a customer 
last made a purchase. The following snippet of code will create this variable for us.

In [21]: cs_df['days_since_last_purchase'] = refrence_date - cs_df.InvoiceDate
    ...: cs_df['days_since_last_purchase_num'] = cs_df['days_since_last_purchase'].
astype('timedelta64[D]')

In [22]: customer_history_df = cs_df.groupby("CustomerID").min().reset_index()
[['CustomerID', 'days_since_last_purchase_num']]
    ...: customer_history_df.rename(columns={'days_since_last_purchase_num':'recency'}, 
inplace=True)
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Before we proceed, let’s examine how the distribution of customer recency looks for our data  
(see Figure 8-2).

x = customer_history_df.recency
mu = np.mean(customer_history_df.recency)
sigma = math.sqrt(np.var(customer_history_df.recency))
n, bins, patches = plt.hist(x, 1000, facecolor='green', alpha=0.75)

# add a 'best fit' line
y = mlab.normpdf( bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=2)

plt.xlabel('Recency in days')
plt.ylabel('Number of transactions')
plt.title(r'$\mathrm{Histogram\ of\ sales\ recency}\ $')
plt.grid(True)

Figure 8-2. Distribution of sales recency

The histogram in Figure 8-2 tells us that we have skewed distribution of sales recency with a much 
higher number of frequent transactions and a fairly uniform number of less recent transactions.

Frequency and Monetary Value

Using similar methods, we can create a frequency and monetary value variable for our dataset. We will 
create these variables separately and then merge all the dataframes to arrive at the customer value dataset. 
We will perform our clustering-based customer segmentation on this dataframe. The following snippet will 
create both these variables and the final merged dataframe.
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In [29]: customer_monetary_val = cs_df[['CustomerID',  
                                        'amount']].groupby("CustomerID").sum().reset_index()
    ...: customer_history_df = customer_history_df.merge(customer_monetary_val, how='outer')
    ...: customer_history_df.amount = customer_history_df.amount+0.001
    ...:
    ...: customer_freq = cs_df[['CustomerID',                  
                                'amount']].groupby("CustomerID").count().reset_index()
    ...: customer_freq.rename(columns={'amount':'frequency'},inplace=True)
    ...: customer_history_df = customer_history_df.merge(customer_freq, how='outer')

The input dataframe for clustering will look like the dataframe depicted in Figure 8-3. Notice that we 
have added a small figure 0.001 to the customer monetary value, as we will be transforming our values to 
the log scale and presence of zeroes in our data may lead to an error.

Figure 8-3. Customer value dataframe

Data Preprocessing

Once we have created our customer value dataframe, we will perform some preprocessing on the data. For 
our clustering, we will be using the K-means clustering algorithm, which we discussed in the earlier chapters. 
One of the requirements for proper functioning of the algorithm is the mean centering of the variable 
values. Mean centering of a variable value means that we will replace the actual value of the variable with a 
standardized value, so that the variable has a mean of 1 and variance of 0. This ensures that all the variables 
are in the same range and the difference in ranges of values doesn’t cause the algorithm to not perform well. 
This is akin to feature scaling.

Another problem that you can investigate about is the huge range of values each variable can take. This 
problem is particularly noticeable for the monetary amount variable. To take care of this problem, we will 
transform all the variables on the log scale. This transformation, along with the standardization, will ensure 
that the input to our algorithm is a homogenous set of scaled and transformed values.

An important point about the data preprocessing step is that sometimes we need it to be reversible. In 
our case, we will have the clustering results in terms of the log transformed and scaled variable. But to make 
inferences in terms of the original data, we will need to reverse transform all the variable so that we get back 
the actual RFM figures. This can be done by using the preprocessing capabilities of Python.

In [30]: from sklearn import preprocessing
    ...: import math
    ...: customer_history_df['recency_log'] = customer_history_df['recency'].apply(math.log)
    ...: customer_history_df['frequency_log'] = customer_history_df['frequency'].apply(math.log)
    ...: customer_history_df['amount_log'] = customer_history_df['amount'].apply(math.log)
    ...: feature_vector = ['amount_log', 'recency_log','frequency_log']
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    ...: X = customer_history_df[feature_vector].as_matrix()
    ...: scaler = preprocessing.StandardScaler().fit(X)
    ...: X_scaled = scaler.transform(X)

The previous code snippet will create a log valued and mean centered version of our dataset. We can 
visualize the results of our preprocessing by inspecting the variable with the widest range of values. The 
following code snippet will help us visualize this.

In [31]: x = customer_history_df.amount_log
    ...: n, bins, patches = plt.hist(x, 1000, facecolor='green', alpha=0.75)
    ...: plt.xlabel('Log of Sales Amount')
    ...: plt.ylabel('Probability')
    ...: plt.title(r'$\mathrm{Histogram\ of\ Log\ transformed\ Customer\ Monetary\ value}\ $')
    ...: plt.grid(True)
    ...: plt.show()

The resulting graph is a distribution resembling normal distribution with mean 0 and variance of 1, as 
clearly depicted in Figure 8-4.

Figure 8-4. Scaled and log transformed sales amount
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Let’s try to visualize our three main features (R, F, and M) on a three-dimensional plot to see if we can 
understand any interesting patterns that the data distribution is showing.

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

xs =customer_history_df.recency_log
ys = customer_history_df.frequency_log
zs = customer_history_df.amount_log
ax.scatter(xs, ys, zs, s=5)

ax.set_xlabel('Recency')
ax.set_ylabel('Frequency')
ax.set_zlabel('Monetary')

The obvious patterns we can see from the plot in Figure 8-5 is that people who buy with a higher 
frequency and more recency tend to spend more based on the increasing trend in Monetary value with a 
corresponding increasing and decreasing trend for Frequency and Recency, respectively. Do you notice any 
other interesting patterns?

Figure 8-5. Customer value dataframe
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Clustering for Segments

We will be using the K-means clustering algorithm for finding out clusters (or segments in our data). It is one 
of the simplest clustering algorithms that we can employ and hence it is widely used in practice. We will give 
you a brief primer of the algorithm before we go on to using the same, for finding segments in our data.

 K-Means Clustering
The K-means clustering belongs to the partition based\centroid based clustering family of algorithms. The 
steps that happen in the K-means algorithm for partitioning the data are as given follows:

 1. The algorithm starts with random point initializations of the required number of 
centers. The “K” in K-means stands for the number of clusters.

 2. In the next step, each of the data point is assigned to the center closest to it. The 
distance metric used in K-means clustering is normal Euclidian distance.

 3. Once the data points are assigned, the centers are recalculated by averaging the 
dimensions of the points belonging to the cluster.

 4. The process is repeated with new centers until we reach a point where the 
assignments become stable. In this case, the algorithm terminates.

We will adapt the code given in the scikit-learn documentation at http://scikit-learn.org/
stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html and use the silhouette score for 
finding out the optimal number of clusters during our clustering process. We leave it as an exercise for you 
to adapt the code and create the visualization in Figure 8-6. You are encouraged to modify the code in the 
documentation to not only build the visualization, but also to capture the centers and the silhouette score 
of each cluster in a dictionary, as we will need to refer to those for performing our analysis of the customer 
segments obtained. Of course, in case you find it overwhelming, you can always refer to the detailed code 
snippet in the Customer Segmentation.ipynb notebook.

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
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In the visualization depicted in Figure 8-6, we plotted the silhouette score of each cluster along with the 
center of each of the cluster discovered. We will use this information in the next section on cluster analysis. 
Although we have to keep in mind that in several cases and scenarios, sometimes we may have to drop the 
mathematical explanation given by the algorithm and look at the business relevance of the results obtained.

Cluster Analysis

Before we proceed to the analysis of clusters such obtained, let’s look at the cluster center values after 
retransforming them to normal values from the log and scaled version. The following code helps us convert 
the center values to the reversed transformed values.

In [38]: for i in range(3,6,2):
    ...:     print("for {} number of clusters".format(i))

Figure 8-6. Silhouette analysis with three and five clusters
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    ...:     cent_transformed = scaler.inverse_transform(cluster_centers[i]['cluster_center'])
    ...:     print(pd.DataFrame(np.exp(cent_transformed),columns=feature_vector))
    ...:     print("Silhouette score for cluster {} is {}". format(i, 
                                                    cluster_centers[i]['silhouette_score']))
    ...:     print()

for 3 number of clusters
    amount_log  recency_log  frequency_log
0   843.937271    44.083222      53.920633
1   221.236034   121.766072      10.668661
2  3159.294272     7.196647     177.789098
Silhouette score for cluster 3 is 0.30437444714898737

for 5 number of clusters
    amount_log  recency_log  frequency_log
0  3905.544371     5.627973     214.465989
1  1502.519606    46.880212      92.306262
2   142.867249   126.546751       5.147370
3   408.235418   139.056216      25.530424
4   464.371885    13.386419      29.581298
Silhouette score for cluster 5 is 0.27958641427323727

When we look at the results of the clustering process, we can infer some interesting insights. Consider 
the three-cluster configuration and try to understand the following insights.

•	 We get three clusters with stark differences in the Monetary value of the customer.

•	 Cluster 2 is the cluster of high value customer who shops frequently and is certainly 
an important segment for each business.

•	 In the similar way we obtain customer groups with low and medium spends in 
clusters with labels 1 and 0, respectively.

•	 Frequency and Recency correlate perfectly to the Monetary value based on the trend 
we talked about in Figure 8-3 (High Monetary-Low Recency-High Frequency).

The five-cluster configuration results are more surprising! When we go looking for more segments, we 
find out that our high valued customer base is comprised of two subgroups:

•	 Those who shop often and with high amount (represented by cluster 0).

•	 Those who have a decent spend but are not as frequent (represented by cluster 1).

This is in direct conflict with the result we obtain from the silhouette score matrix which says the five-
cluster segments are less optimal then the three cluster segments. Of course, remember you must not strictly 
go after mathematical metrics all the time and think about the business aspects too. Besides this, there could 
be more insights that are uncovered as you visualize the data based on these segments which might prove 
that in-fact the three-cluster segmentation was far better. For instance, if you check the right-side plot in 
Figure 8-6, you can see that segments with five clusters have too much overlap among them, as compared to 
segments with three clusters.
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 Cluster Descriptions
On the basis of eyeballing the cluster centers, we can figure out that we have a good difference in the 
customer value in the segments as defined in terms of recency, amount and frequency. To further drill 
down on this point and find out the quality of these difference, we can label our data with the corresponding 
cluster label and then visualize these differences. We will do this visualization for probably one of the most 
important customer value indicators, the total dollar value sales.

To arrive at such distinction based summary computations, we will first label each data row in our 
customer summary dataframe with the corresponding label as returned by our clustering algorithm. 
Note that you have to modify the code you are using if you want to try a different configuration of let’s say 
two or four clusters. We will have to make changes so that we capture the labels for each different cluster 
configuration. We encourage you to try other cluster configurations to see if you get even better segments! 
The following code will extract the clustering label and attach it with our customer summary dataframe.

labels = cluster_centers[5]['labels']
customer_history_df['num_cluster5_labels'] = labels
labels = cluster_centers[3]['labels']
customer_history_df['num_cluster3_labels'] = labels

Once we have the labels assigned to each of the customers, our task is simple. Now we want to find out 
how the summary of customer in each group is varying. If we can visualize that information we will able to 
find out the differences in the clusters of customers and we can modify our strategy on the basis of those 
differences. We have used a lot of matplotlib and seaborn so far; we will be using plotly in this section for 
creating some interactive plots that you can play around with in your jupyter notebook!

 ■ Note  While plotly provides excellent interactive visualizations in jupyter notebooks, you might come 
across some notebook rendering issues that come up as popups when you open the notebook. to fix this 
problem, upgrade your nbformat library by running the conda update nbformat command and re-open the 
notebook. the problem should disappear.

The following code leverages plotly and will take the cluster labels we got for the configuration of 
five clusters and create boxplots that will show how the median, minimum, maximum, highest, and lowest 
values are varying in the five groups. Note that we want to avoid the extremely high outlier values of each 
group, as they will interfere in making a good observation (due to noise) around the central tendencies of 
each cluster. So we will restrict the data such that only data points which are less than 0.8th percentile of the 
cluster is used. This will give us good information about the majority of the users in that cluster segment. 
The following code will help us create this plot for the total sales value.

import plotly as py
import plotly.graph_objs as go
py.offline.init_notebook_mode()

x_data = ['Cluster 1','Cluster 2','Cluster 3','Cluster 4', 'Cluster 5']
cutoff_quantile = 80
field_to_plot = 'amount'

y0=customer_history_df[customer_history_df['num_cluster5_labels']==0][field_to_plot].values
y0 = y0[y0<np.percentile(y0, cutoff_quantile)]
y1=customer_history_df[customer_history_df['num_cluster5_labels']==1][field_to_plot].values
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y1 = y1[y1<np.percentile(y1, cutoff_quantile)]
y2=customer_history_df[customer_history_df['num_cluster5_labels']==2][field_to_plot].values
y2 = y2[y2<np.percentile(y2, cutoff_quantile)]
y3=customer_history_df[customer_history_df['num_cluster5_labels']==3][field_to_plot].values
y3 = y3[y3<np.percentile(y3, cutoff_quantile)]
y4=customer_history_df[customer_history_df['num_cluster5_labels']==4][field_to_plot].values
y4 = y4[y4<np.percentile(y4, cutoff_quantile)]
y_data = [y0,y1,y2,y3,y4]

colors = ['rgba(93, 164, 214, 0.5)', 'rgba(255, 144, 14, 0.5)', 'rgba(44, 160, 101, 0.5)', 
'rgba(255, 65, 54, 0.5)', 'rgba(207, 114, 255, 0.5)', 'rgba(127, 96, 0, 0.5)']
traces = []

for xd, yd, cls in zip(x_data, y_data, colors):
        traces.append(go.Box(
            y=yd,      name=xd,     boxpoints=False,
            jitter=0.5,      whiskerwidth=0.2,
            fillcolor=cls,       marker=dict(size=2,),
            line=dict(width=1), ))

layout = go.Layout(
    title='Difference in sales {} from cluster to cluster'.format(field_to_plot),
    yaxis=dict(
        autorange=True,        showgrid=True,
        zeroline=True,        dtick=1000,
        gridcolor='black',        gridwidth=0.1,
        zerolinecolor='rgb(255, 255, 255)',
        zerolinewidth=2,    ),
    margin=dict(l=40,r=30, b=80, t=100,    ),
    paper_bgcolor='white',    plot_bgcolor='white',  showlegend=False
)

fig = go.Figure(data=traces, layout=layout)
py.offline.iplot(fig)
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Let’s also take a look at the plot that is generated as a result of this code snippet. In Figure 8-7 we can see 
that the Clusters 1 and 2 have a higher average sales amount, thus being the highest spenders. Although we 
don’t see much difference in the sales values of Clusters 4 and 5, we do see a markedly smaller sales amount 
in Cluster 3. This gives us an indication that we can merge the candidates of Clusters 4 and 5 together, at 
least on the basis of sales amount. You can plot similar figures for recency and frequency also to figure out 
differences in the cluster on the basis of those values. Detailed code and visualizations are present in the 
notebook for three- and five-cluster based segments. Plotly enables us to interact with the plots to see the 
central tendency values in each boxplot in the notebook. We show the difference in sales amount across 
three segments based on the three-cluster configuration just so you can compare it with Figure 8-7.

The detailed visualization is shown in Figure 8-8, which talks about difference in the sales\revenue 
across the three segments. It is clear that this is much more distinguishable and we also have lesser overlap 
as compared to Figure 8-7 where Clusters 4 and 5 were very similar. This doesn’t mean that the previous 
method was wrong; it’s just one of the dimensions where some segments were similar to each other.

Figure 8-7. Difference in sales amount values across the five segments
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We can further improve the quality of clustering by adding relevant features to the dataset that we 
have created. Often firms will buy data regarding their customers from external data vendors and use it to 
enhance the segmentation process. We had a limitation of only having around a year worth of transaction 
data but even a mid-size organization may have multiple years of transaction data which can improve 
the results. Another dimension to explore can be trying out different algorithms for performing the 
segmentation for instance hierarchical clustering, which we explored in some of the earlier chapters. A good 
segmentation process will encompass all these avenues to arrive at optimal segments that provide valuable 
insight. We encourage you to get creative with the process and build your own examples.

The important caveat from this analysis is that when it comes to correlating the actual value of results 
with the mathematical metrics we cannot always rely on the metrics. We need to include this habit of 
including business metrics and domain insights in our modeling process as often times this becomes the 
difference between an implemented high value project and a forgotten data-focused solution. Once we 
obtain these results, we can further discuss them with the marketing team of the organization to come up 
with appropriate practices for each of the segment identified.

Cross Selling
What is cross selling? In the simplest terms, cross selling is the ability to sell more products to a customer 
by analyzing the customer’s shopping trends as well as general shopping trends and patterns which are in 
common with the customer’s shopping patterns. This simple definition captures the essential idea of cross 
selling, but it is not as descriptive as we would like it to be.

We will illustrate the idea with an example. Say we are concerned about our health (which everyone 
should be) and decide to buy a protein supplement on our favorite e-commerce site. In most scenarios, the 
moment you get to your product page, you will have a section that will tell you other products that you can 
buy along with the product(s) of your choice. See Figure 8-9.

Figure 8-8. Difference in sales amount values across the three segments
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More often than not, these recommended products would be very appealing. For example, if I am in 
the market for a protein supplement it will definitely be a good idea for me to buy a vitamin supplement too. 
The retailer will often offer you a bundle of products with some attractive offer and it is highly likely that we 
will end up buying the bundled products instead of just the original item. This is the simple but powerful 
concept of cross selling. We research the customer transactions and find out potential additions to the 
customer’s original needs and offer it to the customer as a suggestion in the hope and intent that they buy 
them benefiting both the customer as well as the retail establishment.

Cross selling is ubiquitous in both the online and offline retail worlds. The simplicity and the 
effectiveness of the idea make it an essential and powerful marketing tool for all types of retailers. The idea of 
cross selling can be extended to any organization, irrespective of whether it is an online or offline retailer or 
whether it is selling its products to the end users of whole sellers.

In this section, we explore association rule-mining, a powerful technique that can be used for cross 
selling, then we illustrate the concept of market basket analysis for a toy dataset, and finally we apply the 
same concepts to our retail transactions dataset.

Market Basket Analysis with Association Rule-Mining
Before we go on to understand how to generate the association rules from our transactional data, let’s try 
to understand how we will use those rules. A famous story in data analytics circles is the story of “Beer and 
Diapers”. The basic crux of the story is the concept that a major retailer upon analyzing their customer 
transaction behavior discovered a strong association between sales of beer and diapers. The retailer was 
able to exploit this association by moving the beer section close to the diapers section leading to higher sales 
volume (The origins of the story may have some fact but the whole concept is debatable. We encourage you 
to go through the discussion at http://www.dssresources.com/newsletters/66.php for learning more 
about this story).

Although the beer and diaper story may or may not have been a myth, the concept of finding sales 
association in customer behavior is an important and inspiring one. Suppose we can mathematically 
capture the significance of these associations, then it would be a good idea to try and exploit the rules which 
are likely to be correct. The whole concept of association rule-mining is based on the concept that customer 
purchase behavior has a pattern which can be exploited for selling more items to the customer in the future. 
An association rule usually has the structure as depicted in this equation:

item item item itemk1 2 3, , ®{ }

Figure 8-9. Cross selling example

http://www.dssresources.com/newsletters/66.php
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This rule can be read in the obvious manner that when the customer bought items on the (left hand 
side) LHS of the rule he is likely to buy the item

k
. In the later sections, we define mathematical metrics that 

will capture the strength of such rules.
We can use these rules in a variety of ways. The most obvious way to use these rules is to develop 

bundles of products which make it convenient for the customer to buy these items together. Another way to 
use these rules is to bundle products along with some discounts for other relevant products in the bundle, 
hence ensuring that the customer becomes more likely to buy more items. Some unlikely ways to use 
association rules is for designing a better web site navigational structure, intrusion detection, bioinformatics, 
and so on.

Association Rule-Mining Basics
Before proceeding to explore the association rules in our dataset, we will go through some essential concepts 
for association rule-mining. These terms and concepts will help you in the later analysis and also in 
understanding the rules that the algorithm will generate. Consider Table 8-1 with some toy transaction data.

Each row in the table consists of a transaction. For example, the customer bought milk and bread in the 
first transaction. Following are some vital concepts pertaining to association rule-mining.

•	 Itemset: Itemset is just a collection of one or more items that occur together in a 
transaction. For example, here {milk, bread} is example of an itemset.

•	 Support: Support is defined as number of times an itemset appears in the dataset. 
Mathematically it is defined as:

supp beer diaper
t

,{ }( ) = number of transactions with beer and diaper

ootal transactions

In the previous example, support (beer, diaper) = 1/5 = 0.2.

•	 Confidence: Confidence is a measure of the times the number of times a rule is 
found to exist in the dataset. For a rule which states beer diaper®{ }  the confidence 

is mathematically definedas:

confidence beer diaper
supp beer and diaper

supp beer
,{ }( ) = ( )

( )

Table 8-1. Example of a Transaction Set

Trans.ID Items

1 {milk, bread}

2 {butter}

3 {beer, diaper}

4 {milk, bread, butter}

5 {bread}
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•	 Lift: Lift of the rule is defined as the ratio of observed support to the support 
expected in the case the elements of the rule were independent. For the previous set 
of transactions if the rule is defined as X ®{ }Y , then the lift of the rule is defined as:

lift X Y
supp X Y

supp X supp Y
®( ) = È( )

( )* ( )( )

•	 Frequent itemset: Frequent itemsets are itemsets whose support is greater than a 
user defined support threshold.

 FP Growth 
The most famous algorithm for association rule-mining is the Apriori algorithm, for which you will find a lot 
of code and resources on the web and in standard data mining literature. However, here we will use a 
different and more efficient algorithm, the FP growth algorithm for finding our association rules. The major 
bottleneck in any association rule-mining algorithm is the generation of frequent itemsets. If the transaction 
dataset is having k unique products, then potentially we have 2k  possible itemsets. The Apriori algorithm 

will first generate these itemsets and then proceed to finding the frequent itemsets.
This limitation is a huge performance bottleneck as even for around 100 unique products the possible 

number of itemsets is huge. This limitation makes the Apriori algorithm prohibitively computationally 
expensive. The FP growth algorithm is superior to Apriori algorithm as it doesn’t need to generate all the 
candidate itemsets. The algorithm uses a special data structure that helps it retains itemset association 
information. An example of the data structure is depicted in Figure 8-10.

Figure 8-10. An example of an FP-tree
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We will not go into detailed mathematical descriptions of the algorithm here, as the intent is to not to 
keep this section math heavy but to focus on how it can be leveraged to find patterns in this data. However, 
we will explain it in brief so you can understand the core concepts in this method. The FP growth algorithm 
uses a divide-and-conquer strategy and leverages a special data structure called the FP-tree, as depicted  
in Figure 8-10, to find frequent itemsets without generating all itemsets. The core steps of the algorithm are 
as follows:

 1. Take in the transactional database and create an FP-tree structure to represent 
frequent itemsets.

 2. Divide this compressed representation into multiple conditional datasets such 
that each one is associated with a frequent pattern.

 3. Mine for patterns in each such dataset so that shorter patterns can be recursively 
concatenated to longer patterns, hence making it more efficient.

If you are interested in finding about it, you can refer to the Wikibooks link at https://en.wikibooks.
org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm, which 
talks about FP growth and the FP tree structure in detail.

Association Rule-Mining in Action
We will illustrate association rule-mining using the famous grocery dataset. The dataset is available by 
default in the R language’s base package. To use in in Python, you can obtain it from https://github.com/
stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv or even from our official GitHub 
repository mentioned at the start of this chapter. This dataset consists of a collection of transactions that are 
sourced from a grocery retailer. We will use this data as the basis of our analysis and build our rule-mining 
work flow using this data.

Once we have grasped the basics of association rule-mining on the grocery dataset, we will leave it 
as an exercise for you to apply the same concepts on our transaction dataset that we used in the customer 
segmentation section. Remember to load the following dependencies before getting started.

import csv
import pandas as pd
import matplotlib.pyplot as plt
import Orange
from Orange.data import Domain, DiscreteVariable, ContinuousVariable
from orangecontrib.associate.fpgrowth import *

%matplotlib inline

Check out the “Mining Rules” section for details on how to install the Orange framework dependencies. 
The code for this section is available in the Cross Selling.ipynb notebook.

Exploratory Data Analysis
The grocery dataset that we mentioned earlier is arranged so that each of the line occurring in the dataset 
is a transaction. The items given in each row are comma-separated and are the items in that particular 
transaction. Take a look at the first few lines of the dataset depicted in Figure 8-11.

https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm
https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Frequent_Pattern_Mining/The_FP-Growth_Algorithm
https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv
https://github.com/stedy/Machine-Learning-with-R-datasets/blob/master/groceries.csv
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The first observation that we make from this dataset is that it is not available in a completely structured, 
easy-to-analyze format. This limitation will mean that the first thing we will have to do is to write custom 
code that will convert the raw file into a data structure we can use. Since we have done most of our analysis 
until now using the pandas dataframe, we will convert this data into a similar data structure. The following 
code snippet will perform the conversion for us.

grocery_items = set()
with open("grocery_dataset.txt") as f:
    reader = csv.reader(f, delimiter=",")
    for i, line in enumerate(reader):
        grocery_items.update(line)
output_list = list()
with open("grocery_dataset.txt") as f:
    reader = csv.reader(f, delimiter=",")
    for i, line in enumerate(reader):
        row_val = {item:0 for item in grocery_items}
        row_val.update({item:1 for item in line})
        output_list.append(row_val)

grocery_df = pd.DataFrame(output_list)

In [3]: grocery_df.shape
Out[3]: (9835, 169)

The conversion gives us a dataframe of dimension (num_transaction, total_items), where each 
transaction row has columns corresponding to its constituent items as 1. For example, for row 3 in Figure 8-11, 
we will have the column for whole milk as 1 and the rest of columns will be all 0. Although this data structure 
is sparse, meaning it has a lot of zeros, our framework that extracts association rules will take care of this 
sparseness.

Before we proceed to building association rules on our dataset, we will explore some salient features of 
our dataset. We already know that we have 9,835 total transactions and a total of 169 items in the dataset. But 
what are the top 10 items that occur in the dataset and how much of the total sales they account for. We can 
plot a simple histogram that will help us extract this information.

In [4]: total_item_count = sum(grocery_df.sum())
   ...: print(total_item_count)
   ...: item_summary_df = grocery_df.sum().sort_values(ascending = False).reset
   ...: _index().head(n=20)
   ...: item_summary_df.rename(columns={item_summary_df.columns[0]:'item_name',

Figure 8-11. Grocery dataset transactions
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   ...: item_summary_df.columns[1]:'item_count'}, inplace=True)
   ...: item_summary_df.head()
43367
Out[4]:
          item_name  item_count
0        whole milk        2513
1  other vegetables        1903
2        rolls/buns        1809
3              soda        1715
4            yogurt        1372

For creating the histogram, we will create a summary dataframe using the previous code. This tells us 
that we have a total of 43,000+ items occurring in total in all those transactions and we also see the top five 
most sold items. Let’s use this dataframe to plot the top 20 most sold items. The following snippet of code 
will help us create the required bar graph.

objects = (list(item_summary_df['item_name'].head(n=20)))
y_pos = np.arange(len(objects))
performance = list(item_summary_df['item_count'].head(n=20))
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects, rotation='vertical')
plt.ylabel('Item count')
plt.title('Item sales distribution')

The bar graph depicting the item sales is depicted in Figure 8-12. It indicates that a surprisingly large 
share of total items is claimed by only these 20 items.
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Let’s also find out how much percentage of total sales is explained by these 20 items alone. We will use 
the cumulative sum function offered by pandas (cumsum) to find this out. We will create two columns in our 
dataframe. One will tell how much percentage of total sales can be attributed to a particular item and the 
other will keep a cumulative sum of this sales percentage.

item_summary_df['item_perc'] = item_summary_df['item_count']/total_item_count
item_summary_df['total_perc'] = item_summary_df.item_perc.cumsum()
item_summary_df.head(10)

          item_name  item_count  item_perc  total_perc
0        whole milk        2513   0.057947    0.057947
1  other vegetables        1903   0.043881    0.101829
2        rolls/buns        1809   0.041714    0.143542
3              soda        1715   0.039546    0.183089
4            yogurt        1372   0.031637    0.214725

In [12]: item_summary_df[item_summary_df.total_perc <= 0.5].shape
Out[12]: (19, 4)

Figure 8-12. Grocery dataset top 20 items based on sales
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This shows us that the top five items are responsible for 21.4% of the entire sales and only the top 20 
items are responsible for over 50% of the sales! This is important for us, as we don’t want to find association 
rules for items which are bought very infrequently. With this information we can limit the items we want 
to explore for creating our association rules. This also helps us in keeping our possible itemset number to a 
manageable figure.

Mining Rules
We will be using the Orange and the Orange3-Associate frameworks, which can be installed using the 
commands conda install orange3 and pip install orange3-associate. The orange3-associate 
package contains the implementation of FP growth provided by the group who developed for the Orange 
data mining package, The Bioinformatics Laboratory at the University of Ljubljana, Slovenia  
(https://fri.uni-lj.si/en/laboratory/biolab).

 ■ Note  We encourage you to experiment with the Orange package, which is available at https://orange.
biolab.si/. it is a gui-driven data mining framework written in python and highly conducive for learning data 
analysis in an interactive way.

Before we go on using the package for finding association rules, we will discuss about the way data 
is represented in Orange library. The data representation is a little tricky but we will help you modify the 
existing data into the format required by Orange. Primarily we will focus on how to convert our pandas 
dataframes to the Orange Table data structure.

Orange Table Data Structure

The Table data structure is the primary way to represent any tabular data in Orange. Although it is similar 
in some way to a numpy array or a pandas dataframe, it differs from them in the way it stores metadata 
about the actual data. In our case we can easily convert our pandas dataframe to the Table data structure 
by providing the metadata about our columns. We need to define the domain for each of our variables. The 
domain means the possible set of values that each of our variables can use. This information will be stored 
as metadata and will be used in later transformation of the data. As our columns are only having binary 
values—i.e. either 0 or 1—we can easily create the domain by using this information. The following code 
snippet helps us convert our dataframe to an Orange table.

from Orange.data import Domain, DiscreteVariable, ContinuousVariable
from orangecontrib.associate.fpgrowth import *

input_assoc_rules = grocery_df
domain_grocery = Domain([DiscreteVariable.make(name=item, values=['0', '1']) for item in 
                                                                    input_assoc_rules.columns])
data_gro_1 = Orange.data.Table.from_numpy(domain=domain_grocery,  
                                         X=input_assoc_rules.as_matrix(),Y= None)

Here we defined the domain of our data by specifying each variable as a DiscreteVariable having 
values as (0, 1). Then using this domain, we created our Table structure for our data.

https://fri.uni-lj.si/en/laboratory/biolab
https://orange.biolab.si/
https://orange.biolab.si/
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 Using the FP Growth Algorithm

Now we have all the pieces required to perform our rule-mining. But before proceeding, we want to take care 
of one more important aspect of the analysis. We saw in the earlier section how only a handful of items are 
responsible for bulk of our sales so we want to prune our dataset to reflect this information. For this we have 
created a function prune_dataset (check out the notebook), which will help us reduce the size of our dataset 
based on our requirements. The function can be used for performing two types of pruning:

•	 Pruning based on percentage of total sales: The parameter total_sales_perc will 
help us select the number of items that will explain the required percentage of sales. 
The default value is 50% or 0.5.

•	 Pruning based on ranks of items: Another way to perform the pruning is to specify 
the starting and the ending rank of the items for which we want to prune our dataset.

By default, we will only look for transactions which have at least two items, as transactions with only 
one item are counter to the whole concept of association rule-mining. The following code snippet will help 
us select only that subset of data which explain 40% of the total sales by leveraging our pruning function.

output_df, item_counts = prune_dataset(input_df=grocery_df, length_trans=2,total_sales_perc=0.4)
print(output_df.shape)
print(list(output_df.columns))

(4585, 13)
['whole milk', 'other vegetables', 'rolls/buns', 'soda', 'yogurt', 'bottled water', 'root 
vegetables', 'tropical fruit', 'shopping bags', 'sausage', 'pastry', 'citrus fruit', 
'bottled beer']

So we find out that we have only 13 items responsible for 40% of sales and 4585 transactions that have 
those items along with other items and we can also see what those items are. The next step is to convert this 
selected data into the required Table data structure.

input_assoc_rules = output_df
domain_grocery = Domain([DiscreteVariable.make(name=item,values=['0', '1']) for item in  
                                                                     input_assoc_rules.columns])
data_gro_1 = Orange.data.Table.from_numpy(domain=domain_grocery,     
                                         X=input_assoc_rules.as_matrix(), Y= None)
data_gro_1_en, mapping = OneHot.encode(data_gro_1, include_class=False)

The new addition to the previous code is the last line. This is required for coding our input so that the 
entire domain is represented as binary variables. This will complete all the parsing and data manipulation 
required for our rule-mining. Phew!

The final step is creating our rules. We need to specify two pieces of information for generating our 
rules: support and confidence. We have already defined both of them conceptually earlier, so we will not be 
defining them again. An important piece of information is to start with a higher support, as lower support 
will mean a higher number of frequent itemsets and hence a longer execution time. We will specify a min-
support of 0.01—45 transactions at least—and see the number of frequent itemsets that we get before we 
specify confidence and generate our rules.

min_support = 0.01
print("num of required transactions = ", int(input_assoc_rules.shape[0]*min_support))
num_trans = input_assoc_rules.shape[0]*min_support
itemsets = dict(frequent_itemsets(data_gro_1_en, min_support=min_support))
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num of required transactions =  45

In [25]: len(itemsets)
Out[25]: 166886

So we get a whopping 166,886 itemsets for a support of only 1%! This will increase exponentially if 
we decrease the support or if we increase the number of items in our dataset. The next step is specifying a 
confidence value and generating our rules. We have written a code snippet that will take a confidence value 
and generate the rules that fulfill our specified support and confidence criteria. The rules generated are then 
decoded using the mapping and variable names. Orange3-Associate also provides a helper function that will 
help us extract metrics about each of these rules. The following code snippet will perform rule generation and 
decoding of rules, and then compile it all in a neat dataframe that we can use for further analysis.

confidence = 0.3
rules_df = pd.DataFrame()

if len(itemsets) < 1000000: 
    rules = [(P, Q, supp, conf)
    for P, Q, supp, conf in association_rules(itemsets, confidence)
       if len(Q) == 1 ]

    names = {item: '{}={}'.format(var.name, val)
        for item, var, val in OneHot.decode(mapping, data_gro_1, mapping)}
    eligible_ante = [v for k,v in names.items() if v.endswith("1")]
    N = input_assoc_rules.shape[0] * 0.5
    rule_stats = list(rules_stats(rules, itemsets, N))
    rule_list_df = []
    for ex_rule_frm_rule_stat in rule_stats:
        ante = ex_rule_frm_rule_stat[0]            
        cons = ex_rule_frm_rule_stat[1]
        named_cons = names[next(iter(cons))]
        if named_cons in eligible_ante:
            rule_lhs = [names[i][:-2] for i in ante if names[i] in eligible_ante]
            ante_rule = ', '.join(rule_lhs)
            if ante_rule and len(rule_lhs)>1 :
                rule_dict = {'support' : ex_rule_frm_rule_stat[2],
                             'confidence' : ex_rule_frm_rule_stat[3],
                             'coverage' : ex_rule_frm_rule_stat[4],
                             'strength' : ex_rule_frm_rule_stat[5],
                             'lift' : ex_rule_frm_rule_stat[6],
                             'leverage' : ex_rule_frm_rule_stat[7],
                             'antecedent': ante_rule,
                             'consequent':named_cons[:-2] }
                rule_list_df.append(rule_dict)
    rules_df = pd.DataFrame(rule_list_df)
    print("Raw rules data frame of {} rules generated".format(rules_df.shape[0]))
    if not rules_df.empty:
        pruned_rules_df = rules_df.groupby(['antecedent','consequent']).max().reset_index()
    else:
        print("Unable to generate any rule")

Raw rules data frame of 16628 rules generated
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The output of this code snippet consists of the association rules dataframe that we can use for our 
analysis. You can play around with the item number, consequent, antecedent, support, and confidence 
values to generate different rules. Let’s take some sample rules generated using transactions that explain 
40% of total sales, min-support of 1% (required number of transactions >=45) and confidence greater than 
30%. Here, we have collected rules having maximum lift for each of the items that can be a consequent (that 
appear on the right side) by using the following code.

(pruned_rules_df[['antecedent','consequent',
                  'support','confidence','lift']].groupby('consequent')
                                                 .max()
                                                 .reset_index()
                                                  .sort_values(['lift', 

'support','confidence'],
                                                              ascending=False))

Let’s interpret the first rule, which states that:

yogurt whole milk tropical fruit, , ®{ }root vegtables

The pattern that the rule states in the equation is easy to understand—people who bought yogurt, whole 
milk, and tropical fruit also tend to buy root vegetables. Let’s try to understand the metrics. Support of the 
rule is 228, which means, all the items together appear in 228 transactions in the dataset. Confidence of the 
rule is 46%, which means that 46% of the time the antecedent items occurred we also had the consequent 
in the transaction (i.e. 46% of times, customers who bought the left side items also bought root vegetables). 
Another important metric in Figure 8-13 is Lift. Lift means that the probability of finding root vegetables 
in the transactions which have yogurt, whole milk, and tropical fruit is greater than the normal probability 

Figure 8-13. Association rules on the grocery dataset
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of finding root vegetables in the previous transactions (2.23). Typically, a lift value of 1 indicates that the 
probability of occurrence of the antecedent and consequent together are independent of each other. Hence, 
the idea is to look for rules having a lift much greater than 1. In our case, all the previously mentioned rules 
are good quality rules.

This is a significant piece of information, as this can prompt a retailer to bundle specific products like 
these together or run a marketing scheme that offers discount on buying root vegetables along with these 
other three products.

We encourage you to try similar analyses with your own datasets in the future and also with the online 
retail transactions dataset that we used for our market segmentation case study. Considering the dataset 
Online Retail from market segmentation, the workflow for that particular analysis will be very similar. The 
only difference among these two datasets is the way in which they are represented. You can leverage the 
following code snippets to analyze patterns from the United Kingdom in that dataset.

cs_mba = pd.read_excel(io=r'Online Retail.xlsx')
cs_mba_uk = cs_mba[cs_mba.Country == 'United Kingdom']
# remove returned items
cs_mba_uk = cs_mba_uk[~(cs_mba_uk.InvoiceNo.str.contains("C") == True)]
cs_mba_uk = cs_mba_uk[~cs_mba_uk.Quantity<0] 

# create transactional database
items = list(cs_mba_uk.Description.unique())
grouped = cs_mba_uk.groupby('InvoiceNo')
transaction_level_df_uk = grouped.aggregate(lambda x: tuple(x)).reset_index()
[['InvoiceNo','Description']]
transaction_dict = {item:0 for item in items}
output_dict = dict()
temp = dict()
for rec in transaction_level_df_uk.to_dict('records'):
    invoice_num = rec['InvoiceNo']
    items_list = rec['Description']
    transaction_dict = {item:0 for item in items}
    transaction_dict.update({item:1 for item in items if item in items_list})
    temp.update({invoice_num:transaction_dict})

new = [v for k,v in temp.items()]
tranasction_df = pd.DataFrame(new)
del(tranasction_df[tranasction_df.columns[0]])

Once you build the transactional dataset, you can choose your own configuration based on which you 
want to extract and mine rules. For instance, the following code mines for patterns on the top 15 most sold 
products with min-support of 0.01 (min transactions 49) and minimum confidence of 0.3

output_df_uk_n, item_counts_n = prune_dataset(input_df=tranasction_df, length_trans=2, 
                                              start_item=0, end_item=15)
input_assoc_rules = output_df_uk_n
domain_transac = Domain([DiscreteVariable.make(name=item,values=['0', '1']) for item in 
                                                                    input_assoc_rules.

columns])
data_tran_uk = Orange.data.Table.from_numpy(domain=domain_transac,  X=input_assoc_rules.
as_matrix(),Y= None)
data_tran_uk_en, mapping = OneHot.encode(data_tran_uk, include_class=True)
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support = 0.01
num_trans = input_assoc_rules.shape[0]*support
itemsets = dict(frequent_itemsets(data_tran_uk_en, support))
confidence = 0.3
rules_df = pd.DataFrame()
 ...  # rest of the code similar to what we did earlier

The rest of the analysis can be performed using the same workflow which we used for the groceries 
dataset. Feel free to check out the Cross Selling.ipynb notebook in case you get stuck. Figure 8-14 shows 
some patterns from the previous analysis on our Online Retail dataset.

It is quite evident from the metrics in Figure 8-14 that these are excellent quality rules. We can see that 
items relevant to baking are purchased together and items like bags are purchased together. Try changing 
the previously mentioned parameters and see if you can find more interesting patterns!

Summary
In this chapter, we read about some simple yet high-value case studies. The crux of the chapter was to realize 
that the most important part about any analytics or Machine Learning-based solution is the value it can 
deliver to the organization. Being an analytics or data science professional, we must always try to balance 
the value aspect of our work with its technical complexity. We learned some important methods that have 
the potential to directly contribute to the revenue generation of organizations and retail establishments. 
We looked at ideas pertaining to customer segmentation, its impact, and explored a novel way of using 
unsupervised learning to find out customer segments and view interesting patterns and behavior. Cross 
selling introduced us to the world of pattern-mining and rule-based frameworks like association rule-
mining and principles like market basket analysis. We utilized a framework that was entirely different from 
the ones that we have used until now and understood the value of data parsing and pre-processing besides 
regular modeling and analysis. In subsequent chapters of this book, we increase the technical complexity 
of our case studies, but we urge you to always have an eye out for defining the value and impact of these 
solutions. Stay tuned!

Figure 8-14. Association rules on the online retail dataset for UK customers
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