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CHAPTER 7

Analyzing Movie Reviews 
Sentiment

In this chapter, we continue with our focus on case-study oriented chapters, where we will focus on specific 
real-world problems and scenarios and how we can use Machine Learning to solve them. We will cover aspects 
pertaining to natural language processing (NLP), text analytics, and Machine Learning in this chapter. The 
problem at hand is sentiment analysis or opinion mining, where we want to analyze some textual documents 
and predict their sentiment or opinion based on the content of these documents. Sentiment analysis is perhaps 
one of the most popular applications of natural language processing and text analytics with a vast number of 
websites, books and tutorials on this subject. Typically sentiment analysis seems to work best on subjective 
text, where people express opinions, feelings, and their mood. From a real-world industry standpoint, 
sentiment analysis is widely used to analyze corporate surveys, feedback surveys, social media data, and 
reviews for movies, places, commodities, and many more. The idea is to analyze and understand the reactions 
of people toward a specific entity and take insightful actions based on their sentiment.

A text corpus consists of multiple text documents and each document can be as simple as a single 
sentence to a complete document with multiple paragraphs. Textual data, in spite of being highly 
unstructured, can be classified into two major types of documents. Factual documents that typically depict 
some form of statements or facts with no specific feelings or emotion attached to them. These are also 
known as objective documents. Subjective documents on the other hand have text that expresses feelings, 
moods, emotions, and opinions.

Sentiment analysis is also popularly known as opinion analysis or opinion mining. The key idea is to 
use techniques from text analytics, NLP, Machine Learning, and linguistics to extract important information 
or data points from unstructured text. This in turn can help us derive qualitative outputs like the overall 
sentiment being on a positive, neutral, or negative scale and quantitative outputs like the sentiment polarity, 
subjectivity, and objectivity proportions. Sentiment polarity is typically a numeric score that’s assigned to 
both the positive and negative aspects of a text document based on subjective parameters like specific words 
and phrases expressing feelings and emotion. Neutral sentiment typically has 0 polarity since it does not 
express and specific sentiment, positive sentiment will have polarity > 0, and negative < 0. Of course, you can 
always change these thresholds based on the type of text you are dealing with; there are no hard constraints 
on this.

In this chapter, we focus on trying to analyze a large corpus of movie reviews and derive the sentiment. 
We cover a wide variety of techniques for analyzing sentiment, which include the following.

•	 Unsupervised lexicon-based models

•	 Traditional supervised Machine Learning models

•	 Newer supervised Deep Learning models

•	 Advanced supervised Deep Learning models

https://doi.org/10.1007/978-1-4842-3207-1_7
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Besides looking at various approaches and models, we also focus on important aspects in the Machine 
Learning pipeline including text pre-processing, normalization, and in-depth analysis of models, including 
model interpretation and topic models. The key idea here is to understand how we tackle a problem like 
sentiment analysis on unstructured text, learn various techniques, models and understand how to interpret 
the results. This will enable you to use these methodologies in the future on your own datasets. Let’s get 
started!

�Problem Statement
The main objective in this chapter is to predict the sentiment for a number of movie reviews obtained from 
the Internet Movie Database (IMDb). This dataset contains 50,000 movie reviews that have been pre-labeled 
with “positive” and “negative” sentiment class labels based on the review content. Besides this, there are 
additional movie reviews that are unlabeled. The dataset can be obtained from http://ai.stanford.
edu/~amaas/data/sentiment/, courtesy of Stanford University and Andrew L. Maas, Raymond E. Daly, Peter 
T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. This dataset was also used in their famous paper, 
Learning Word Vectors for Sentiment Analysis proceedings of the 49th Annual Meeting of the Association 
for Computational Linguistics (ACL 2011). They have datasets in the form of raw text as well as already 
processed bag of words formats. We will only be using the raw labeled movie reviews for our analyses in 
this chapter. Hence our task will be to predict the sentiment of 15,000 labeled movie reviews and use the 
remaining 35,000 reviews for training our supervised models. We will still predict sentiments for only 15,000 
reviews in case of unsupervised models to maintain consistency and enable ease of comparison.

�Setting Up Dependencies
We will be using several Python libraries and frameworks specific to text analytics, NLP, and Machine 
Learning. While most of them will be mentioned in each section, you need to make sure you have pandas, 
numpy, scipy, and scikit-learn installed, which will be used for data processing and Machine Learning. 
Deep Learning frameworks used in this chapter include keras with the tensorflow backend, but you can 
also use theano as the backend if you choose to do so. NLP libraries which will be used include spacy, nltk, 
and gensim. Do remember to check that your installed nltk version is at least >= 3.2.4, otherwise, the 
ToktokTokenizer class may not be present. If you want to use a lower nltk version for some reason, you can 
use any other tokenizer like the default word_tokenize() based on the TreebankWordTokenizer. The version 
for gensim should be at least 2.3.0 and for spacy, the version used was 1.9.0. We recommend using the latest 
version of spacy which was recently released (version 2.x) as this has fixed several bugs and added several 
improvements. You also need to download the necessary dependencies and corpora for spacy and nltk in 
case you are installing them for the first time. The following snippets should get this done. For nltk you need 
to type the following code from a Python or ipython shell after installing nltk using either pip or conda.

import nltk
nltk.download('all', halt_on_error=False)

For spacy, you need to type the following code in a Unix shell\windows command prompt, to install the 
library (use pip install spacy if you don’t want to use conda) and also get the English model dependency.

$ conda config --add channels conda-forge  
$ conda install spacy
$ python -m spacy download en

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf
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We also use our custom developed text pre-processing and normalization module, which you will 
find in the files named contractions.py and text_normalizer.py. Utilities related to supervised model 
fitting, prediction, and evaluation are present in model_evaluation_utils.py, so make sure you have these 
modules in the same directory and the other Python files and jupyter notebooks for this chapter.

Getting the Data
The dataset will be available along with the code files for this chapter in the GitHub repository for this 
book at https://github.com/dipanjanS/practical-machine-learning-with-python under the filename 
movie_reviews.csv containing 50,000 labeled IMDb movie reviews. You can also download the same data 
from http://ai.stanford.edu/~amaas/data/sentiment/ if needed. Once you have the CSV file, you can 
easily load it in Python using the read_csv(...) utility function from pandas.

�Text Pre-Processing and Normalization
One of the key steps before diving into the process of feature engineering and modeling involves cleaning, 
pre-processing, and normalizing text to bring text components like phrases and words to some standard 
format. This enables standardization across a document corpus, which helps build meaningful features 
and helps reduce noise that can be introduced due to many factors like irrelevant symbols, special 
characters, XML and HTML tags, and so on. The file named text_normalizer.py has all the necessary 
utilities we will be using for our text normalization needs. You can also refer to the jupyter notebook named 
Text Normalization Demo.ipynb for a more interactive experience. The main components in our text 
normalization pipeline are described in this section.

•	 Cleaning text: Our text often contains unnecessary content like HTML tags, which 
do not add much value when analyzing sentiment. Hence we need to make sure we 
remove them before extracting features. The BeautifulSoup library does an excellent 
job in providing necessary functions for this. Our strip_html_tags(...) function 
enables in cleaning and stripping out HTML code.

•	 Removing accented characters: In our dataset, we are dealing with reviews in 
the English language so we need to make sure that characters with any other 
format, especially accented characters are converted and standardized into ASCII 
characters. A simple example would be converting é to e. Our remove_accented_
chars(...) function helps us in this respect.

•	 Expanding contractions: In the English language, contractions are basically 
shortened versions of words or syllables. These shortened versions of existing words 
or phrases are created by removing specific letters and sounds. More than often 
vowels are removed from the words. Examples would be, do not to don’t and I 
would to I’d. Contractions pose a problem in text normalization because we have 
to deal with special characters like the apostrophe and we also have to convert each 
contraction to its expanded, original form. Our expand_contractions(...) function 
uses regular expressions and various contractions mapped in our contractions.py 
module to expand all contractions in our text corpus.

•	 Removing special characters: Another important task in text cleaning and 
normalization is to remove special characters and symbols that often add to the extra 
noise in unstructured text. Simple regexes can be used to achieve this. Our function 
remove_special_characters(...) helps us remove special characters. In our code, 
we have retained numbers but you can also remove numbers if you do not want 
them in your normalized corpus.

https://github.com/dipanjanS/practical-machine-learning-with-python
http://ai.stanford.edu/~amaas/data/sentiment/
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•	 Stemming and lemmatization: Word stems are usually the base form of possible 
words that can be created by attaching affixes like prefixes and suffixes to the stem 
to create new words. This is known as inflection. The reverse process of obtaining 
the base form of a word is known as stemming. A simple example are the words 
WATCHES, WATCHING, and WATCHED. They have the word root stem WATCH 
as the base form. The nltk package offers a wide range of stemmers like the 
PorterStemmer and LancasterStemmer. Lemmatization is very similar to stemming, 
where we remove word affixes to get to the base form of a word. However the base 
form in this case is known as the root word but not the root stem. The difference 
being that the root word is always a lexicographically correct word (present in the 
dictionary) but the root stem may not be so. We will be using lemmatization only in 
our normalization pipeline to retain lexicographically correct words. The function 
lemmatize_text(...) helps us with this aspect.

•	 Removing stopwords: Words which have little or no significance especially when 
constructing meaningful features from text are also known as stopwords or stop 
words. These are usually words that end up having the maximum frequency if you do 
a simple term or word frequency in a document corpus. Words like a, an, the, and 
so on are considered to be stopwords. There is no universal stopword list but we use 
a standard English language stopwords list from nltk. You can also add your own 
domain specific stopwords if needed. The function remove_stopwords(...) helps 
us remove stopwords and retain words having the most significance and context in a 
corpus.

We use all these components and tie them together in the following function called normalize_
corpus(...), which can be used to take a document corpus as input and return the same corpus with 
cleaned and normalized text documents.

def normalize_corpus(corpus, html_stripping=True, contraction_expansion=True,
                     accented_char_removal=True, text_lower_case=True, 
                     text_lemmatization=True, special_char_removal=True, 
                     stopword_removal=True):
    normalized_corpus = []
    # normalize each document in the corpus
    for doc in corpus:
        # strip HTML
        if html_stripping:
            doc = strip_html_tags(doc)
        # remove accented characters
        if accented_char_removal:
            doc = remove_accented_chars(doc)
        # expand contractions    
        if contraction_expansion:
            doc = expand_contractions(doc)
        # lowercase the text    
        if text_lower_case:
            doc = doc.lower()
        # remove extra newlines
        doc = re.sub(r'[\r|\n|\r\n]+', ' ',doc)
        # insert spaces between special characters to isolate them    
        special_char_pattern = re.compile(r'([{.(-)!}])')
        doc = special_char_pattern.sub(" \\1 ", doc)
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        # lemmatize text
        if text_lemmatization:
            doc = lemmatize_text(doc)
        # remove special characters    
        if special_char_removal:
            doc = remove_special_characters(doc)  
        # remove extra whitespace
        doc = re.sub(' +', ' ', doc)
        # remove stopwords
        if stopword_removal:
            doc = remove_stopwords(doc, is_lower_case=text_lower_case)

        normalized_corpus.append(doc)

    return normalized_corpus

The following snippet depicts a small demo of text normalization on a sample document using our 
normalization module.

In [1]: from text_normalizer import normalize_corpus

In [2]: document = """<p>Héllo! Héllo! can you hear me! I just heard about <b>Python</
b>!<br/>\r\n 
   ...: It's an amazing language which can be used for Scripting, Web development,\r\n\r\n
   ...: Information Retrieval, Natural Language Processing, Machine Learning & Artificial 
Intelligence!\n
   ...: What are you waiting for? Go and get started.<br/> He's learning, she's learning, 
they've already\n\n
   ...: got a headstart!</p>
   ...:            """

In [3]: document
Out[3]: "<p>Héllo! Héllo! can you hear me! I just heard about <b>Python</b>!<br/>\r\n 
\n              It's an amazing language which can be used for Scripting, Web development, 
\r\n\r\n\n              Information Retrieval, Natural Language Processing, Machine 
Learning & Artificial Intelligence!\n\n              What are you waiting for? Go and 
get started.<br/> He's learning, she's learning, they've already\n\n\n              got a 
headstart!</p>\n           "

In [4]: normalize_corpus([document], text_lemmatization=False, stopword_removal=False, 
                         text_lower_case=False)
Out[4]: ['Hello Hello can you hear me I just heard about Python It is an amazing language 
which can be used for Scripting Web development Information Retrieval Natural Language 
Processing Machine Learning Artificial Intelligence What are you waiting for Go and get 
started He is learning she is learning they have already got a headstart ']

In [5]: normalize_corpus([document])
Out[5]: ['hello hello hear hear python amazing language use scripting web development 
information retrieval natural language processing machine learning artificial intelligence 
wait go get start learn learn already get headstart']
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Now that we have our normalization module ready, we can start modeling and analyzing our corpus. 
NLP and text analytics enthusiasts who might be interested in more in-depth details of text normalization 
can refer to the section “Text Normalization,” Chapter 3, page 115, of Text Analytics with Python (Apress; 
Dipanjan Sarkar, 2016).

�Unsupervised Lexicon-Based Models
We have talked about unsupervised learning methods in the past, which refer to specific modeling methods 
that can be applied directly on data features without the presence of labeled data. One of the major challenges 
in any organization is getting labeled datasets due the lack of time as well as resources to do this tedious task. 
Unsupervised methods are very useful in this scenario and we will be looking at some of these methods in 
this section. Even though we have labeled data, this section should give you a good idea of how lexicon based 
models work and you can apply the same in your own datasets when you do not have labeled data.

Unsupervised sentiment analysis models use well curated knowledgebases, ontologies, lexicons, and 
databases that have detailed information pertaining to subjective words, phrases including sentiment, 
mood, polarity, objectivity, subjectivity, and so on. A lexicon model typically uses a lexicon, also known as 
a dictionary or vocabulary of words specifically aligned toward sentiment analysis. Usually these lexicons 
contain a list of words associated with positive and negative sentiment, polarity (magnitude of negative or 
positive score), parts of speech (POS) tags, subjectivity classifiers (strong, weak, neutral), mood, modality, 
and so on. You can use these lexicons and compute sentiment of a text document by matching the presence 
of specific words from the lexicon, look at other additional factors like presence of negation parameters, 
surrounding words, overall context and phrases and aggregate overall sentiment polarity scores to decide 
the final sentiment score. There are several popular lexicon models used for sentiment analysis. Some of 
them are mentioned as follows.

•	 Bing Liu’s Lexicon

•	 MPQA Subjectivity Lexicon

•	 Pattern Lexicon

•	 AFINN Lexicon

•	 SentiWordNet Lexicon

•	 VADER Lexicon

This is not an exhaustive list of lexicon models, but definitely lists among the most popular ones 
available today. We will be covering the last three lexicon models in more detail with hands-on code 
and examples using our movie review dataset. We will be using the last 15,000 reviews and predict their 
sentiment and see how well our model performs based on model evaluation metrics like accuracy, 
precision, recall, and F1-score, which we covered in detail in Chapter 5. Since we have labeled data, it 
will be easy for us to see how well our actual sentiment values for these movie reviews match our lexicon-
model based predicted sentiment values. You can refer to the Python file titled unsupervised_sentiment_
analysis.py for all the code used in this section or use the jupyter notebook titled Sentiment Analysis - 
Unsupervised Lexical.ipynb for a more interactive experience. Before we start our analysis, let’s load the 
necessary dependencies and configuration settings using the following snippet.

In [1]: import pandas as pd
   ...: import numpy as np
   ...: import text_normalizer as tn
   ...: import model_evaluation_utils as meu
   ...: 
   ...: np.set_printoptions(precision=2, linewidth=80)

http://dx.doi.org/10.1007/978-1-4842-3207-1_3
http://dx.doi.org/10.1007/978-1-4842-3207-1_5


Chapter 7 ■ Analyzing Movie Reviews Sentiment

337

Now, we can load our IMDb review dataset, subset out the last 15,000 reviews which will be used for our 
analysis, and normalize them using the following snippet.

In [2]: dataset = pd.read_csv(r'movie_reviews.csv')
   ...: 
   ...: reviews = np.array(dataset['review'])
   ...: sentiments = np.array(dataset['sentiment'])
   ...: 
   ...: # extract data for model evaluation
   ...: test_reviews = reviews[35000:]
   ...: test_sentiments = sentiments[35000:]
   ...: sample_review_ids = [7626, 3533, 13010]
   ...: 
   ...: # normalize dataset
   ...: norm_test_reviews = tn.normalize_corpus(test_reviews)

We also extract out some sample reviews so that we can run our models on them and interpret their 
results in detail.

Bing Liu’s Lexicon
This lexicon contains over 6,800 words which have been divided into two files named positive-words.txt, 
containing around 2,000+ words/phrases and negative-words.txt, which contains 4,800+ words/phrases. 
The lexicon has been developed and curated by Bing Liu over several years and has also been explained 
in detail in his original paper by Nitin Jindal and Bing Liu, “Identifying Comparative Sentences in Text 
Documents” proceedings of the 29th Annual International ACM SIGIR, Seattle 2006. If you want to use this 
lexicon, you can get it from https:// www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon, 
which also includes a link to download it as an archive (RAR format).

MPQA Subjectivity Lexicon
The term MPQA stands for Multi-Perspective Question Answering and it contains a diverse set of resources 
pertaining to opinion corpora, subjectivity lexicon, subjectivity sense annotations, argument lexicon, debate 
corpora, opinion finder, and many more. This is developed and maintained by the University of Pittsburgh 
and their official web site http://mpqa.cs.pitt.edu/ contains all the necessary information. The 
subjectivity lexicon is a part of their opinion finder framework and contains subjectivity clues and contextual 
polarity. Details on this can be found in the paper by Theresa Wilson, Janyce Wiebe, and Paul Hoffmann, 
“Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis” proceeding of HLT-EMNLP-2005.

You can download the subjectivity lexicon from their official web site at http://mpqa.cs.pitt.edu/
lexicons/subj_lexicon/, contains subjectivity clues present in the dataset named subjclueslen1-
HLTEMNLP05.tff. The following snippet shows some sample lines from the lexicon.

type=weaksubj len=1 word1=abandonment pos1=noun stemmed1=n priorpolarity=negative 
type=weaksubj len=1 word1=abandon pos1=verb stemmed1=y priorpolarity=negative 
... 
... 
type=strongsubj len=1 word1=zenith pos1=noun stemmed1=n priorpolarity=positive 
type=strongsubj len=1 word1=zest pos1=noun stemmed1=n priorpolarity=positive

Each line consists of a specific word and its associated polarity, POS tag information, length (right now 
only words of length 1 are present), subjective context, and stem information.

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon
http://mpqa.cs.pitt.edu/
http://www.cs.pitt.edu/~wiebe/pubs/papers/emnlp05polarity.pdf
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
http://mpqa.cs.pitt.edu/lexicons/subj_lexicon/
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Pattern Lexicon
The pattern package is a complete natural language processing framework available in Python which can be 
used for text processing, sentiment analysis and more. This has been developed by CLiPS (Computational 
Linguistics & Psycholinguistics), a research center associated with the Linguistics Department of the Faculty 
of Arts of the University of Antwerp. Pattern uses its own sentiment module which internally uses a lexicon 
which you can access from their official GitHub repository at https://github.com/clips/pattern/blob/
master/pattern/text/en/en-sentiment.xml and this contains the complete subjectivity based lexicon 
database. Each line in the lexicon typically looks like the following sample.

<word form="absurd" wordnet_id="a-02570643" pos="JJ" sense="incongruous" polarity="-0.5" 
subjectivity="1.0" intensity="1.0" confidence="0.9" />

Thus you get important metadata information like WordNet corpus identifiers, polarity scores, word 
sense, POS tags, intensity, subjectivity scores, and so on. These can in turn be used to compute sentiment 
over a text document based on polarity and subjectivity score. Unfortunately, pattern has still not been 
ported officially for Python 3.x and it works on Python 2.7.x. However, you can still load this lexicon and do 
your own modeling as needed.

�AFINN Lexicon
The AFINN lexicon is perhaps one of the simplest and most popular lexicons that can be used extensively 
for sentiment analysis. Developed and curated by Finn Årup Nielsen, you can find more details on this 
lexicon in the paper by Finn Årup Nielsen, “A new ANEW: evaluation of a word list for sentiment analysis in 
microblogs”, proceedings of the ESWC2011 Workshop. The current version of the lexicon is AFINN-en-165.
txt and it contains over 3,300+ words with a polarity score associated with each word. You can find this 
lexicon at the author’s official GitHub repository along with previous versions of this lexicon including 
AFINN-111 at https://github.com/fnielsen/afinn/blob/master/afinn/data/. The author has also 
created a nice wrapper library on top of this in Python called afinn which we will be using for our analysis 
needs. You can import the library and instantiate an object using the following code.

In [3]: from afinn import Afinn
   ...: 
   ...: afn = Afinn(emoticons=True)

We can now use this object and compute the polarity of our chosen four sample reviews using the 
following snippet.

In [4]: for review, sentiment in zip(test_reviews[sample_review_ids], test_
sentiments[sample_review_ids]):
   ...:     print('REVIEW:', review)
   ...:     print('Actual Sentiment:', sentiment)
   ...:     print('Predicted Sentiment polarity:', afn.score(review))
   ...:     print('-'*60)
REVIEW: no comment - stupid movie, acting average or worse... screenplay - no sense at 
all... SKIP IT!
Actual Sentiment: negative

https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/clips/pattern/blob/master/pattern/text/en/en-sentiment.xml
https://github.com/fnielsen/afinn/blob/master/afinn/data/
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Predicted Sentiment polarity: -7.0
------------------------------------------------------------
REVIEW: I don't care if some people voted this movie to be bad. If you want the Truth this 
is a Very Good Movie! It has every thing a movie should have. You really should Get this 
one.
Actual Sentiment: positive
Predicted Sentiment polarity: 3.0
------------------------------------------------------------
REVIEW: Worst horror film ever but funniest film ever rolled in one you have got to see this 
film it is so cheap it is unbelievable but you have to see it really!!!! P.S. Watch the 
carrot
Actual Sentiment: positive
Predicted Sentiment polarity: -3.0
------------------------------------------------------------

We can compare the actual sentiment label for each review and also check out the predicted sentiment 
polarity score. A negative polarity typically denotes negative sentiment. To predict sentiment on our 
complete test dataset of 15,000 reviews (I used the raw text documents because AFINN takes into account 
other aspects like emoticons and exclamations), we can now use the following snippet. I used a threshold 
of >= 1.0 to determine if the overall sentiment is positive else negative. You can choose your own threshold 
based on analyzing your own corpora in the future.

In [5]: sentiment_polarity = [afn.score(review) for review in test_reviews]
   ...: predicted_sentiments = ['positive' if score >= 1.0 else 'negative' for score in 
                                                                        sentiment_polarity]

Now that we have our predicted sentiment labels, we can evaluate our model performance based on 
standard performance metrics using our utility function. See Figure 7-1.

In [6]: meu.display_model_performance_metrics(true_labels=test_sentiments, 
                                             predicted_labels=predicted_sentiments, 
                                             classes=['positive', 'negative']) 

We get an overall F1-Score of 71%, which is quite decent considering it’s an unsupervised model. 
Looking at the confusion matrix we can clearly see that quite a number of negative sentiment based 
reviews have been misclassified as positive (3,189) and this leads to the lower recall of 57% for the negative 
sentiment class. Performance for positive class is better with regard to recall or hit-rate, where we correctly 
predicted 6,376 out of 7,510 positive reviews, but precision is 67% because of the many wrong positive 
predictions made in case of negative sentiment reviews.

Figure 7-1.  Model performance metrics for AFINN lexicon based model



Chapter 7 ■ Analyzing Movie Reviews Sentiment

340

�SentiWordNet Lexicon
The WordNet corpus is definitely one of the most popular corpora for the English language used extensively 
in natural language processing and semantic analysis. WordNet gave us the concept of synsets or synonym 
sets. The SentiWordNet lexicon is based on WordNet synsets and can be used for sentiment analysis and 
opinion mining. The SentiWordNet lexicon typically assigns three sentiment scores for each WordNet synset. 
These include a positive polarity score, a negative polarity score and an objectivity score. Further details 
are available on the official web site http://sentiwordnet.isti.cnr.it, including research papers and 
download links for the lexicon. We will be using the nltk library, which provides a Pythonic interface into 
SentiWordNet. Consider we have the adjective awesome. We can get the sentiment scores associated with 
the synset for this word using the following snippet.

In [8]: from nltk.corpus import sentiwordnet as swn
   ...: 
   ...: awesome = list(swn.senti_synsets('awesome', 'a'))[0]
   ...: print('Positive Polarity Score:', awesome.pos_score())
   ...: print('Negative Polarity Score:', awesome.neg_score())
   ...: print('Objective Score:', awesome.obj_score())
Positive Polarity Score: 0.875
Negative Polarity Score: 0.125
Objective Score: 0.0

Let’s now build a generic function to extract and aggregate sentiment scores for a complete textual 
document based on matched synsets in that document.

def analyze_sentiment_sentiwordnet_lexicon(review,
                                           verbose=False):

    # tokenize and POS tag text tokens
    tagged_text = [(token.text, token.tag_) for token in tn.nlp(review)]
    pos_score = neg_score = token_count = obj_score = 0
    # get wordnet synsets based on POS tags
    # get sentiment scores if synsets are found
    for word, tag in tagged_text:
        ss_set = None
        if 'NN' in tag and list(swn.senti_synsets(word, 'n')):
            ss_set = list(swn.senti_synsets(word, 'n'))[0]
        elif 'VB' in tag and list(swn.senti_synsets(word, 'v')):
            ss_set = list(swn.senti_synsets(word, 'v'))[0]
        elif 'JJ' in tag and list(swn.senti_synsets(word, 'a')):
            ss_set = list(swn.senti_synsets(word, 'a'))[0]
        elif 'RB' in tag and list(swn.senti_synsets(word, 'r')):
            ss_set = list(swn.senti_synsets(word, 'r'))[0]
        # if senti-synset is found        
        if ss_set:
            # add scores for all found synsets
            pos_score += ss_set.pos_score()
            neg_score += ss_set.neg_score()
            obj_score += ss_set.obj_score()
            token_count += 1

http://sentiwordnet.isti.cnr.it/
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    # aggregate final scores
    final_score = pos_score - neg_score
    norm_final_score = round(float(final_score) / token_count, 2)
    final_sentiment = 'positive' if norm_final_score >= 0 else 'negative'
    if verbose:
        norm_obj_score = round(float(obj_score) / token_count, 2)
        norm_pos_score = round(float(pos_score) / token_count, 2)
        norm_neg_score = round(float(neg_score) / token_count, 2)
        # to display results in a nice table
        sentiment_frame = pd.DataFrame([[final_sentiment, norm_obj_score, norm_pos_score, 
                                         norm_neg_score, norm_final_score]],
                                       columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'], 
                                                        �['Predicted Sentiment', 

'Objectivity',
                                                         �'Positive', 'Negative', 

'Overall']], 
                                                        labels=[[0,0,0,0,0],[0,1,2,3,4]]))
        print(sentiment_frame)
    return final_sentiment 

Our function basically takes in a movie review, tags each word with its corresponding POS tag, extracts 
out sentiment scores for any matched synset token based on its POS tag, and finally aggregates the scores. 
This will be clearer when we run it on our sample documents.

In [10]: for review, sentiment in zip(test_reviews[sample_review_ids], test_
sentiments[sample_review_ids]):
    ...:     print('REVIEW:', review)
    ...:     print('Actual Sentiment:', sentiment)
    ...:     pred = analyze_sentiment_sentiwordnet_lexicon(review, verbose=True)    
    ...:     print('-'*60)
REVIEW: no comment - stupid movie, acting average or worse... screenplay - no sense at 
all... SKIP IT!
Actual Sentiment: negative
     SENTIMENT STATS:                                      
  Predicted Sentiment Objectivity Positive Negative Overall
0            negative        0.76     0.09     0.15   -0.06
------------------------------------------------------------
REVIEW: I don't care if some people voted this movie to be bad. If you want the Truth this 
is a Very Good Movie! It has every thing a movie should have. You really should Get this 
one.
Actual Sentiment: positive
     SENTIMENT STATS:                                      
  Predicted Sentiment Objectivity Positive Negative Overall
0            positive        0.74      0.2     0.06    0.14
------------------------------------------------------------
REVIEW: Worst horror film ever but funniest film ever rolled in one you have got to see this 
film it is so cheap it is unbelievable but you have to see it really!!!! P.S. watch the 
carrot
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Actual Sentiment: positive
     SENTIMENT STATS:                                      
  Predicted Sentiment Objectivity Positive Negative Overall
0            positive         0.8     0.14     0.07    0.07
------------------------------------------------------------

We can clearly see the predicted sentiment along with sentiment polarity scores and an objectivity 
score for each sample movie review depicted in formatted dataframes. Let’s use this model now to predict 
the sentiment of all our test reviews and evaluate its performance. A threshold of >=0 has been used for the 
overall sentiment polarity to be classified as positive and < 0 for negative sentiment. See Figure 7-2.

In [11]: predicted_sentiments = [analyze_sentiment_sentiwordnet_lexicon(review, 
verbose=False) 
                                                            for review in norm_test_reviews]
    ...: meu.display_model_performance_metrics(true_labels=test_sentiments, 
                                              predicted_labels=predicted_sentiments, 
    ...:                                      classes=['positive', 'negative'])

We get an overall F1-Score of 68%, which is definitely a step down from our AFINN based model. While 
we have lesser number of negative sentiment based reviews being misclassified as positive, the other aspects 
of the model performance have been affected.

�VADER Lexicon
The VADER lexicon, developed by C.J. Hutto, is a lexicon that is based on a rule-based sentiment analysis 
framework, specifically tuned to analyze sentiments in social media. VADER stands for Valence Aware 
Dictionary and Sentiment Reasoner. Details about this framework can be read in the original paper by Hutto, 
C.J. & Gilbert, E.E. (2014) titled “VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social 
Media Text”, proceedings of the Eighth International Conference on Weblogs and Social Media (ICWSM-14). 
You can use the library based on nltk's interface under the nltk.sentiment.vader module. Besides this, 
you can also download the actual lexicon or install the framework from https://github.com/cjhutto/
vaderSentiment, which also contains detailed information about VADER. This lexicon, present in the file 
titled vader_lexicon.txt contains necessary sentiment scores associated with words, emoticons and slangs 
(like wtf, lol, nah, and so on). There were a total of over 9000 lexical features from which over 7500 curated 
lexical features were finally selected in the lexicon with proper validated valence scores. Each feature was 
rated on a scale from "[-4] Extremely Negative" to "[4] Extremely Positive", with allowance for "[0] 
Neutral (or Neither, N/A)". The process of selecting lexical features was done by keeping all features that 
had a non-zero mean rating and whose standard deviation was less than 2.5, which was determined by the 
aggregate of ten independent raters. We depict a sample from the VADER lexicon as follows.

Figure 7-2.  Model performance metrics for SentiWordNet lexicon based model

https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment
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:(     -1.9     1.13578 [-2, -3, -2, 0, -1, -1, -2, -3, -1, -4]
:)      2.0     1.18322 [2, 2, 1, 1, 1, 1, 4, 3, 4, 1]
...
terrorizing     -3.0    1.0     [-3, -1, -4, -4, -4, -3, -2, -3, -2, -4]
thankful         2.7    0.78102 [4, 2, 2, 3, 2, 4, 3, 3, 2, 2]

Each line in the preceding lexicon sample depicts a unique term, which can either be an emoticon or a 
word. The first token indicates the word/emoticon, the second token indicates the mean sentiment polarity 
score, the third token indicates the standard deviation, and the final token indicates a list of scores given 
by ten independent scorers. Now let’s use VADER to analyze our movie reviews! We build our own modeling 
function as follows.

from nltk.sentiment.vader import SentimentIntensityAnalyzer

def analyze_sentiment_vader_lexicon(review, 
                                    threshold=0.1,
                                    verbose=False):
    # pre-process text
    review = tn.strip_html_tags(review)
    review = tn.remove_accented_chars(review)
    review = tn.expand_contractions(review)

    # analyze the sentiment for review
    analyzer = SentimentIntensityAnalyzer()
    scores = analyzer.polarity_scores(review)
    # get aggregate scores and final sentiment
    agg_score = scores['compound']
    final_sentiment = 'positive' if agg_score >= threshold\
                                   else 'negative'
    if verbose:
        # display detailed sentiment statistics
        positive = str(round(scores['pos'], 2)*100)+'%'
        final = round(agg_score, 2)
        negative = str(round(scores['neg'], 2)*100)+'%'
        neutral = str(round(scores['neu'], 2)*100)+'%'
        sentiment_frame = pd.DataFrame([[final_sentiment, final, positive,
                                        negative, neutral]],
                                        columns=pd.MultiIndex(levels=[['SENTIMENT STATS:'], 
                                                    �['Predicted Sentiment', 'Polarity Score',
                                                     'Positive', 'Negative', 'Neutral']], 
                                                    labels=[[0,0,0,0,0],[0,1,2,3,4]]))
        print(sentiment_frame)

    return final_sentiment

In our modeling function, we do some basic pre-processing but keep the punctuations and emoticons 
intact. Besides this, we use VADER to get the sentiment polarity and also proportion of the review text with 
regard to positive, neutral and negative sentiment. We also predict the final sentiment based on a user-input 
threshold for the aggregated sentiment polarity. Typically, VADER recommends using positive sentiment 
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for aggregated polarity >= 0.5, neutral between [-0.5, 0.5], and negative for polarity < -0.5. We use a 
threshold of >= 0.4 for positive and < 0.4 for negative in our corpus. The following is the analysis of our 
sample reviews.

In [13]: for review, sentiment in zip(test_reviews[sample_review_ids], test_
sentiments[sample_review_ids]):
    ...:     print('REVIEW:', review)
    ...:     print('Actual Sentiment:', sentiment)
    ...:     pred = analyze_sentiment_vader_lexicon(review, threshold=0.4, verbose=True)    
    ...:     print('-'*60)
REVIEW: no comment - stupid movie, acting average or worse... screenplay - no sense at 
all... SKIP IT!
Actual Sentiment: negative
     SENTIMENT STATS:                                         
  Predicted Sentiment Polarity Score Positive Negative Neutral
0            negative           -0.8     0.0%    40.0%   60.0%
------------------------------------------------------------
REVIEW: I don't care if some people voted this movie to be bad. If you want the Truth this 
is a Very Good Movie! It has every thing a movie should have. You really should Get this 
one.
Actual Sentiment: positive
     SENTIMENT STATS:                                                     
  Predicted Sentiment Polarity Score Positive  Negative Neutral
0            negative          -0.16    16.0%  14.0%    69.0%
------------------------------------------------------------
REVIEW: Worst horror film ever but funniest film ever rolled in one you have got to see this 
film it is so cheap it is unbelievable but you have to see it really!!!! P.S. Watch the carrot
Actual Sentiment: positive
     SENTIMENT STATS:                                         
  Predicted Sentiment Polarity Score Positive Negative Neutral
0            positive           0.49    11.0%    11.0%   77.0%
------------------------------------------------------------

We can see the details statistics pertaining to the sentiment and polarity for each sample movie review. 
Let’s try out our model on the complete test movie review corpus now and evaluate the model performance. 
See Figure 7-3.

In [14]: predicted_sentiments = [analyze_sentiment_vader_lexicon(review, threshold=0.4, 
                                                    verbose=False) for review in test_
reviews]
    ...: meu.display_model_performance_metrics(true_labels=test_sentiments, 
                                              predicted_labels=predicted_sentiments, 
    ...:                                      classes=['positive', 'negative'])

Figure 7-3.  Model performance metrics for VADER lexicon based model
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We get an overall F1-Score and model accuracy of 71%, which is quite similar to the AFINN based 
model. The AFINN based model only wins out on the average precision by 1%; otherwise, both models have 
a similar performance.

Classifying Sentiment with Supervised Learning
Another way to build a model to understand the text content and predict the sentiment of the text based 
reviews is to use supervised Machine Learning. To be more specific, we will be using classification models 
for solving this problem. We have already covered the concepts relevant to supervised learning and 
classification in Chapter 1 under the section “Supervised Learning”. With regard to details on building and 
evaluating classification models, you can head over to Chapter 5 and refresh your memory if needed. We will 
be building an automated sentiment text classification system in subsequent sections. The major steps to 
achieve this are mentioned as follows.

	 1.	 Prepare train and test datasets (optionally a validation dataset)

	 2.	 Pre-process and normalize text documents

	 3.	 Feature engineering

	 4.	 Model training

	 5.	 Model prediction and evaluation

These are the major steps for building our system. Optionally the last step would be to deploy the 
model in your server or on the cloud. Figure 7-4 shows a detailed workflow for building a standard text 
classification system with supervised learning (classification) models.

Figure 7-4.  Blueprint for building an automated text classification system (Source: Text Analytics with 
Python, Apress 2016) 

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
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In our scenario, documents indicate the movie reviews and classes indicate the review sentiments that 
can either be positive or negative, making it a binary classification problem. We will build models using both 
traditional Machine Learning methods and newer Deep Learning in the subsequent sections. You can refer 
to the Python file titled supervised_sentiment_analysis.py for all the code used in this section or use the 
jupyter notebook titled Sentiment Analysis - Supervised.ipynb for a more interactive experience. Let’s 
load the necessary dependencies and settings before getting started.

In [1]: import pandas as pd
   ...: import numpy as np
   ...: import text_normalizer as tn
   ...: import model_evaluation_utils as meu
   ...: 
   ...: np.set_printoptions(precision=2, linewidth=80)

We can now load our IMDb movie reviews dataset, use the first 35,000 reviews for training models and 
the remaining 15,000 reviews as the test dataset to evaluate model performance. Besides this, we will also 
use our normalization module to normalize our review datasets (Steps 1 and 2 in our workflow).

In [2]: dataset = pd.read_csv(r'movie_reviews.csv')
   ...: 
   ...: # take a peek at the data
   ...: print(dataset.head())
   ...: reviews = np.array(dataset['review'])
   ...: sentiments = np.array(dataset['sentiment'])
   ...: 
   ...: # build train and test datasets
   ...: train_reviews = reviews[:35000]
   ...: train_sentiments = sentiments[:35000]
   ...: test_reviews = reviews[35000:]
   ...: test_sentiments = sentiments[35000:]
   ...: 
   ...: # normalize datasets
   ...: norm_train_reviews = tn.normalize_corpus(train_reviews)
   ...: norm_test_reviews = tn.normalize_corpus(test_reviews)
                                              review sentiment
0  One of the other reviewers has mentioned that ...  positive
1  A wonderful little production. <br /><br />The...  positive
2  I thought this was a wonderful way to spend ti...  positive
3  Basically there's a family where a little boy ...  negative
4  Petter Mattei's "Love in the Time of Money" is...  positive

Our datasets are now prepared and normalized so we can proceed from Step 3 in our text classification 
workflow described earlier to build our classification system.

�Traditional Supervised Machine Learning Models
We will be using traditional classification models in this section to classify the sentiment of our movie 
reviews. Our feature engineering techniques (Step 3) will be based on the Bag of Words model and the 
TF-IDF model, which we discussed extensively in the section titled “Feature Engineering on Text Data” in 
Chapter 4. The following snippet helps us engineer features using both these models on our train and test 
datasets.

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
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In [3]: from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
   ...: 
   ...: # build BOW features on train reviews
   ...: cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_range=(1,2))
   ...: cv_train_features = cv.fit_transform(norm_train_reviews)
   ...: # build TFIDF features on train reviews
   ...: tv = TfidfVectorizer(use_idf=True, min_df=0.0, max_df=1.0, ngram_range=(1,2),
   ...:                      sublinear_tf=True)
   ...: tv_train_features = tv.fit_transform(norm_train_reviews)
   ...: 
   ...: # transform test reviews into features
   ...: cv_test_features = cv.transform(norm_test_reviews)
   ...: tv_test_features = tv.transform(norm_test_reviews)
   ...: 
   ...: print('BOW model:> Train features shape:', cv_train_features.shape, 
              ' Test features shape:', cv_test_features.shape)
   ...: print('TFIDF model:> Train features shape:', tv_train_features.shape, 
              ' Test features shape:', tv_test_features.shape)

BOW model:> Train features shape: (35000, 2114021)  Test features shape: (15000, 2114021)
TFIDF model:> Train features shape: (35000, 2114021)  Test features shape: (15000, 2114021)

We take into account word as well as bi-grams for our feature-sets. We can now use some traditional 
supervised Machine Learning algorithms which work very well on text classification. We recommend using 
logistic regression, support vector machines, and multinomial Naïve Bayes models when you work on your 
own datasets in the future. In this chapter, we built models using Logistic Regression as well as SVM. The 
following snippet helps initialize these classification model estimators.

In [4]: from sklearn.linear_model import SGDClassifier, LogisticRegression
   ...: 
   ...: lr = LogisticRegression(penalty='l2', max_iter=100, C=1)
   ...: svm = SGDClassifier(loss='hinge', n_iter=100)

Without going into too many theoretical complexities, the logistic regression model is a supervised 
linear Machine Learning model used for classification regardless of its name. In this model, we try to predict 
the probability that a given movie review will belong to one of the discrete classes (binary classes in our 
scenario). The function used by the model for learning is represented here.

P y positive X XT=( ) = ( )s q

P y negative X XT=( ) = - ( )1 s q

Where the model tries to predict the sentiment class using the feature vector X  and s z
e z( ) =

+ -

1

1
, which is 

popularly known as the sigmoid function or logistic function or the logit function. The main objective of this 
model is to search for an optimal value of q  such that probability of the positive sentiment class is 

maximum when the feature vector X  is for a positive movie review and small when it is for a negative movie 

review. The logistic function helps model the probability to describe the final prediction class. The optimal 
value of q  can be obtained by minimizing an appropriate cost\loss function using standard methods like 
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gradient descent (refer to the section, “The Three Stages of Logistic Regression” in Chapter 5 if you are 
interested in more details). Logistic regression is also popularly known as logit regression or MaxEnt 
(maximum entropy) classifier.

We will now use our utility function train_predict_model(...) from our model_evaluation_utils 
module to build a logistic regression model on our training features and evaluate the model performance on 
our test features (Steps 4 and 5). See Figure 7-5.

In [5]: # Logistic Regression model on BOW features
   ...: lr_bow_predictions = meu.train_predict_model(classifier=lr, 
   ...:                        �train_features=cv_train_features, train_labels=train_

sentiments,
   ...:                        test_features=cv_test_features, test_labels=test_sentiments)
   ...: meu.display_model_performance_metrics(true_labels=test_sentiments, 
   ...:                                      predicted_labels=lr_bow_predictions,
   ...:                                      classes=['positive', 'negative'])

We get an overall F1-Score and model accuracy of 91%, as depicted in Figure 7-5, which is really 
excellent! We can now build a logistic regression model similarly on our TF-IDF features using the following 
snippet. See Figure 7-6.

In [6]: # Logistic Regression model on TF-IDF features
   ...: lr_tfidf_predictions = meu.train_predict_model(classifier=lr, 
   ...:                         �train_features=tv_train_features, train_labels=train_

sentiments,
   ...:                         test_features=tv_test_features, test_labels=test_sentiments)
   ...: meu.display_model_performance_metrics(true_labels=test_sentiments,  
   ...:                                      predicted_labels=lr_tfidf_predictions,
   ...:                                      classes=['positive', 'negative'])

Figure 7-6.  Model performance metrics for logistic regression on TF-IDF features

Figure 7-5.  Model performance metrics for logistic regression on Bag of Words features

http://dx.doi.org/10.1007/978-1-4842-3207-1_5


Chapter 7 ■ Analyzing Movie Reviews Sentiment

349

We get an overall F1-Score and model accuracy of 90%, depicted in Figure 7-6, which is great 
but our previous model is still slightly better. You can similarly use the Support Vector Machine model 
estimator object svm, which we created earlier, and use the same snippet to train and predict using an SVM 
model. We obtained a maximum accuracy and F1-score of 90% with the SVM model (refer to the jupyter 
notebook for step-by-step code snippets). Thus you can see how effective and accurate these supervised 
Machine Learning classification algorithms are in building a text sentiment classifier.

Newer Supervised Deep Learning Models
We have already mentioned multiple times in previous chapters about how Deep Learning has 
revolutionized the Machine Learning landscape over the last decade. In this section, we will be building 
some deep neural networks and train them on some advanced text features based on word embeddings 
to build a text sentiment classification system similar to what we did in the previous section. Let’s load the 
following necessary dependencies before we start our analysis.

In [7]: import gensim
   ...: import keras
   ...: from keras.models import Sequential
   ...: from keras.layers import Dropout, Activation, Dense
   ...: from sklearn.preprocessing import LabelEncoder
Using TensorFlow backend.

If you remember in Chapter 4, we talked about encoding categorical class labels and also the one-
hot encoding scheme. So far, our models in scikit-learn directly accepted the sentiment class labels as 
positive and negative and internally performed these operations. However for our Deep Learning models, 
we need to do this explicitly. The following snippet helps us tokenize our movie reviews and also converts 
the text-based sentiment class labels into one-hot encoded vectors (forms a part of Step 2).

In [8]: le = LabelEncoder()
   ...: num_classes=2 
   ...: # tokenize train reviews & encode train labels
   ...: tokenized_train = [tn.tokenizer.tokenize(text)
   ...:                    for text in norm_train_reviews]
   ...: y_tr = le.fit_transform(train_sentiments)
   ...: y_train = keras.utils.to_categorical(y_tr, num_classes)
   ...: # tokenize test reviews & encode test labels
   ...: tokenized_test = [tn.tokenizer.tokenize(text)
   ...:                    for text in norm_test_reviews]
   ...: y_ts = le.fit_transform(test_sentiments)
   ...: y_test = keras.utils.to_categorical(y_ts, num_classes)
   ...: 
   ...: # print class label encoding map and encoded labels
   ...: �print('Sentiment class label map:', dict(zip(le.classes_, le.transform 

(le.classes_))))
   ...: print('Sample test label transformation:\n'+'-'*35,
   ...:       '\nActual Labels:', test_sentiments[:3], '\nEncoded Labels:', y_ts[:3], 
   ...:       '\nOne hot encoded Labels:\n', y_test[:3])
Sentiment class label map: {'positive': 1, 'negative': 0}

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
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Sample test label transformation:
----------------------------------- 
Actual Labels: ['negative' 'positive' 'negative'] 
Encoded Labels: [0 1 0] 
One hot encoded Labels:
 [[ 1.  0.]
  [ 0.  1.]
  [ 1.  0.]]

Thus, we can see from the preceding sample outputs how our sentiment class labels have been encoded 
into numeric representations, which in turn have been converted into one-hot encoded vectors. The 
feature engineering techniques we will be using in this section (Step 3) are slightly more advanced word 
vectorization techniques that are based on the concept of word embeddings. We will be using the word2vec 
and GloVe models to generate embeddings. The word2vec model was built by Google and we have covered 
this in detail in Chapter 4 under the section “Word Embeddings”. We will be choosing the size parameter to 
be 500 in this scenario representing feature vector size to be 500 for each word.

In [9]: # build word2vec model
   ...: w2v_num_features = 500
   ...: �w2v_model = gensim.models.Word2Vec(tokenized_train, size=w2v_num_features, 

window=150,
   ...:                                    min_count=10, sample=1e-3)

We will be using the document word vector averaging scheme on this model from Chapter 4 to 
represent each movie review as an averaged vector of all the word vector representations for the different 
words in the review. The following function helps us compute averaged word vector representations for any 
corpus of text documents.

def averaged_word2vec_vectorizer(corpus, model, num_features):
    vocabulary = set(model.wv.index2word)
    def average_word_vectors(words, model, vocabulary, num_features):
        feature_vector = np.zeros((num_features,), dtype="float64")
        nwords = 0.        
        for word in words:
            if word in vocabulary: 
                nwords = nwords + 1.
                feature_vector = np.add(feature_vector, model[word])
        if nwords:
            feature_vector = np.divide(feature_vector, nwords)
        return feature_vector

    features = [average_word_vectors(tokenized_sentence, model, vocabulary, num_features)
                    for tokenized_sentence in corpus]
    return np.array(features)

We can now use the previous function to generate averaged word vector representations on our two 
movie review datasets.

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_4
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In [10]: # generate averaged word vector features from word2vec model
    ...: avg_wv_train_features = averaged_word2vec_vectorizer(corpus=tokenized_train, 
    ...:                                                 model=w2v_model, num_features=500)
    ...: avg_wv_test_features = averaged_word2vec_vectorizer(corpus=tokenized_test, 
    ...:                                                 model=w2v_model, num_features=500)

The GloVe model, which stands for Global Vectors, is an unsupervised model for obtaining word vector 
representations. Created at Stanford University, this model is trained on various corpora like Wikipedia, 
Common Crawl, and Twitter and corresponding pre-trained word vectors are available that can be used 
for our analysis needs. You can refer to the original paper by Jeffrey Pennington, Richard Socher, and 
Christopher D. Manning. 2014, called GloVe: Global Vectors for Word Representation, for more details. The 
spacy library provided 300-dimensional word vectors trained on the Common Crawl corpus using the GloVe 
model. They provide a simple standard interface to get feature vectors of size 300 for each word as well as the 
averaged feature vector of a complete text document. The following snippet leverages spacy to get the GloVe 
embeddings for our two datasets. Do note that you can also build your own GloVe model by leveraging other 
pre-trained models or by building a model on your own corpus by using the resources available at  
https://nlp.stanford.edu/projects/glove which contains pre-trained word embeddings, code and examples.

In [11]: # feature engineering with GloVe model
    ...: train_nlp = [tn.nlp(item) for item in norm_train_reviews]
    ...: train_glove_features = np.array([item.vector for item in train_nlp])
    ...: 
    ...: test_nlp = [tn.nlp(item) for item in norm_test_reviews]
    ...: test_glove_features = np.array([item.vector for item in test_nlp])

You can check the feature vector dimensions for our datasets based on each of the previous models 
using the following code.

In [12]: print('Word2Vec model:> Train features shape:', avg_wv_train_features.shape, 
               ' Test features shape:', avg_wv_test_features.shape)
    ...: print('GloVe model:> Train features shape:', train_glove_features.shape, 
               ' Test features shape:', test_glove_features.shape)
Word2Vec model:> Train features shape: (35000, 500)  Test features shape: (15000, 500)
GloVe model:> Train features shape: (35000, 300)  Test features shape: (15000, 300)

We can see from the preceding output that as expected the word2vec model features are of size 500 
and the GloVe features are of size 300. We can now proceed to Step 4 of our classification system workflow 
where we will build and train a deep neural network on these features. We have already briefly covered the 
various aspects and architectures with regard to deep neural networks in Chapter 1 under the section “Deep 
Learning”. We will be using a fully-connected four layer deep neural network (multi-layer perceptron or deep 
ANN) for our model. We do not count the input layer usually in any deep architecture, hence our model will 
consist of three hidden layers of 512 neurons or units and one output layer with two units that will be used to 
either predict a positive or negative sentiment based on the input layer features. Figure 7-7 depicts our deep 
neural network model for sentiment classification.

https://nlp.stanford.edu/pubs/glove.pdf#_blank
http://dx.doi.org/10.1007/978-1-4842-3207-1_1
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We call this a fully connected deep neural network (DNN) because neurons or units in each pair 
of adjacent layers are fully pairwise connected. These networks are also known as deep artificial neural 
networks (ANNs) or Multi-Layer Perceptrons (MLPs) since they have more than one hidden layer. The 
following function leverages keras on top of tensorflow to build the desired DNN model.

def construct_deepnn_architecture(num_input_features):
    dnn_model = Sequential()
    dnn_model.add(Dense(512, activation='relu', input_shape=(num_input_features,)))
    dnn_model.add(Dropout(0.2))
    dnn_model.add(Dense(512, activation='relu'))
    dnn_model.add(Dropout(0.2))
    dnn_model.add(Dense(512, activation='relu'))
    dnn_model.add(Dropout(0.2))
    dnn_model.add(Dense(2))
    dnn_model.add(Activation('softmax'))

    dnn_model.compile(loss='categorical_crossentropy', optimizer='adam',                 
                      metrics=['accuracy'])
    return dnn_model

From the preceding function, you can see that we accept a parameter num_input_features, which 
decides the number of units needed in the input layer (500 for word2vec and 300 for glove features). We 
build a Sequential model, which helps us linearly stack our hidden and output layers.

We use 512 units for all our hidden layers and the activation function relu indicates a rectified linear 
unit. This function is typically defined as relu x x( ) = ( )max 0,  where x is typically the input to a neuron. This 
is popularly known as the ramp function also in electronics and electrical engineering. This function is 
preferred now as compared to the previously popular sigmoid function because it tries to solve the vanishing 
gradient problem. This problem occurs when x > 0  and as x increases, the gradient from sigmoids becomes 
really small (almost vanishing) but relu prevents this from happening. Besides this, it also helps with faster 
convergence of gradient descent. We also use regularization in the network in the form of Dropout layers. By 
adding a dropout rate of 0.2, it randomly sets 20% of the input feature units to 0 at each update during 
training the model. This form of regularization helps prevent overfitting the model.

Figure 7-7.  Fully connected deep neural network model for sentiment classification
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The final output layer consists of two units with a softmax activation function. The softmax function is 
basically a generalization of the logistic function we saw earlier, which can be used to represent a probability 
distribution over n possible class outcomes. In our case n = 2  where the class can either be positive or 
negative and the softmax probabilities will help us determine the same. The binary softmax classifier is also 
interchangeably known as the binary logistic regression function.

The compile(...) method is used to configure the learning or training process of the DNN model 
before we actually train it. This involves providing a cost or loss function in the loss parameter. This will be 
the goal or objective which the model will try to minimize. There are various loss functions based on the 
type of problem you want to solve, for example the mean squared error for regression and categorical cross-
entropy for classification. Check out https://keras.io/losses/ for a list of possible loss functions.

We will be using categorical_crossentropy, which helps us minimize the error or loss from the 
softmax output. We need an optimizer for helping us converge our model and minimize the loss or error 
function. Gradient descent or stochastic gradient descent is a popular optimizer. We will be using the adam 
optimizer which only required first order gradients and very little memory. Adam also uses momentum 
where basically each update is based on not only the gradient computation of the current point but also 
includes a fraction of the previous update. This helps with faster convergence. You can refer to the original 
paper from https://arxiv.org/pdf/1412.6980v8.pdf for further details on the ADAM optimizer. Finally, 
the metrics parameter is used to specify model performance metrics that are used to evaluate the model 
when training (but not used to modify the training loss itself). Let’s now build a DNN model based on our 
word2vec input feature representations for our training reviews.

In [13]: w2v_dnn = construct_deepnn_architecture(num_input_features=500)

You can also visualize the DNN model architecture with the help of keras, similar to what we had done 
in Chapter 4, by using the following code. See Figure 7-8.

In [14]: from IPython.display import SVG
    ...: from keras.utils.vis_utils import model_to_dot
    ...: 
    ...: SVG(model_to_dot(w2v_dnn, show_shapes=True, show_layer_names=False, 
    ...:                  rankdir='TB').create(prog='dot', format='svg'))

We will now be training our model on our training reviews dataset of word2vec features represented 
by avg_wv_train_features (Step 4). We will be using the fit(...) function from keras for the training 
process and there are some parameters which you should be aware of. The epoch parameter indicates one 
complete forward and backward pass of all the training examples through the network. The batch_size 
parameter indicates the total number of samples which are propagated through the DNN model at a time 
for one backward and forward pass for training the model and updating the gradient. Thus if you have 1,000 
observations and your batch size is 100, each epoch will consist of 10 iterations where 100 observations will 
be passed through the network at a time and the weights on the hidden layer units will be updated. We also 

Figure 7-8.  Visualizing the DNN model architecture using keras

https://keras.io/losses/
https://arxiv.org/pdf/1412.6980v8.pdf
http://dx.doi.org/10.1007/978-1-4842-3207-1_4
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specify a validation_split of 0.1 to extract 10% of the training data and use it as a validation dataset for 
evaluating the performance at each epoch. The shuffle parameter helps shuffle the samples in each epoch 
when training the model.

In [18]: batch_size = 100
    ...: w2v_dnn.fit(avg_wv_train_features, y_train, epochs=5, batch_size=batch_size, 
    ...:             shuffle=True, validation_split=0.1, verbose=1)
Train on 31500 samples, validate on 3500 samples
Epoch 1/5 31500/31500 - 11s - loss: 0.3097 - acc: 0.8720 - val_loss: 0.3159 - val_acc: 0.8646
Epoch 2/5 31500/31500 - 11s - loss: 0.2869 - acc: 0.8819 - val_loss: 0.3024 - val_acc: 0.8743
Epoch 3/5 31500/31500 - 11s - loss: 0.2778 - acc: 0.8857 - val_loss: 0.3012 - val_acc: 0.8763
Epoch 4/5 31500/31500 - 11s - loss: 0.2708 - acc: 0.8901 - val_loss: 0.3041 - val_acc: 0.8734
Epoch 5/5 31500/31500 - 11s - loss: 0.2612 - acc: 0.8920 - val_loss: 0.3023 - val_acc: 0.8763

The preceding snippet tells us that we have trained our DNN model on the training data for five epochs 
with 100 as the batch size. We get a validation accuracy of close to 88%, which is quite good. Time now to put 
our model to the real test! Let’s evaluate our model performance on the test review word2vec features (Step 5).

In [19]: y_pred = w2v_dnn.predict_classes(avg_wv_test_features)
    ...: predictions = le.inverse_transform(y_pred)
    ...: meu.display_model_performance_metrics(true_labels=test_sentiments, 
    ...:               predicted_labels=predictions, classes=['positive', 'negative'])

The results depicted in Figure 7-9 show us that we have obtained a model accuracy and F1-score of 
88%, which is great! You can use a similar workflow to build and train a DNN model for our GloVe based 
features and evaluate the model performance. The following snippet depicts the workflow for Steps 4 and 5 
of our text classification system blueprint.

# build DNN model
glove_dnn = construct_deepnn_architecture(num_input_features=300)
# train DNN model on GloVe training features
batch_size = 100
glove_dnn.fit(train_glove_features, y_train, epochs=5, batch_size=batch_size, 
              shuffle=True, validation_split=0.1, verbose=1)
# get predictions on test reviews
y_pred = glove_dnn.predict_classes(test_glove_features)
predictions = le.inverse_transform(y_pred)
# Evaluate model performance
meu.display_model_performance_metrics(true_labels=test_sentiments, predicted_
labels=predictions, 
                                      classes=['positive', 'negative'])

Figure 7-9.  Model performance metrics for deep neural networks on word2vec features
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We obtained an overall model accuracy and F1-score of 85% with the GloVe features, which is still good 
but not better than what we obtained using our word2vec features. You can refer to the Sentiment Analysis -  
Supervised.ipynb jupyter notebook to see the step-by-step outputs obtained for the previous code. This 
concludes our discussion on building text sentiment classification systems leveraging newer Deep Learning 
models and methodologies. Onwards to learning about advanced Deep Learning models!

�Advanced Supervised Deep Learning Models
We have used fully connected deep neural network and word embeddings in the previous section. Another 
new and interesting approach toward supervised Deep Learning is the use of recurrent neural networks 
(RNNs) and long short term memory networks (LSTMs) which also considers the sequence of data (words, 
events, and so on). These are more advanced models than your regular fully connected deep networks 
and usually take more time to train. We will leverage keras on top of tensorflow and try to build a LSTM-
based classification model here and use word embeddings as our features. You can refer to the Python file 
titled sentiment_analysis_adv_deep_learning.py for all the code used in this section or use the jupyter 
notebook titled Sentiment Analysis - Advanced Deep Learning.ipynb for a more interactive experience.

We will be working on our normalized and pre-processed train and test review datasets, norm_
train_reviews and norm_test_reviews, which we created in our previous analyses. Assuming you have 
them loaded up, we will first tokenize these datasets such that each text review is decomposed into its 
corresponding tokens (workflow Step 2).

In [1]: tokenized_train = [tn.tokenizer.tokenize(text) for text in norm_train_reviews]
    ...: tokenized_test = [tn.tokenizer.tokenize(text) for text in norm_test_reviews]

For feature engineering (Step 3), we will be creating word embeddings. However, we will create them 
ourselves using keras instead of using pre-built ones like word2vec or GloVe, which we used earlier. Word 
embeddings tend to vectorize text documents into fixed sized vectors such that these vectors try to capture 
contextual and semantic information.

For generating embeddings, we will use the Embedding layer from keras, which requires documents 
to be represented as tokenized and numeric vectors. We already have tokenized text vectors in our 
tokenized_train and tokenized_text variables. However we would need to convert them into numeric 
representations. Besides this, we would also need the vectors to be of uniform size even though the 
tokenized text reviews will be of variable length due to the difference in number of tokens in each review. For 
this, one strategy could be to take the length of the longest review (with maximum number of tokens\words) 
and set it as the vector size, let’s call this max_len. Reviews of shorter length can be padded with a PAD term 
in the beginning to increase their length to max_len.

We would need to create a word to index vocabulary mapping for representing each tokenized text 
review in a numeric form. Do note you would also need to create a numeric mapping for the padding term 
which we shall call PAD_INDEX and assign it the numeric index of 0. For unknown terms, in case they are 
encountered later on in the test dataset or newer, previously unseen reviews, we would need to assign it to 
some index too. This would be because we will vectorize, engineer features, and build models only on the 
training data. Hence, if some new term should come up in the future (which was originally not a part of the 
model training), we will consider it as an out of vocabulary (OOV) term and assign it to a constant index (we 
will name this term NOT_FOUND_INDEX and assign it the index of vocab_size+1). The following snippet helps 
us create this vocabulary from our tokenized_train corpus of training text reviews.
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In [2]: from collections import Counter
   ...: 
   ...: # build word to index vocabulary
   ...: token_counter = Counter([token for review in tokenized_train for token in review])
   ...: vocab_map = {item[0]: index+1 
                      for index, item in enumerate(dict(token_counter).items())}
   ...: max_index = np.max(list(vocab_map.values()))
   ...: vocab_map['PAD_INDEX'] = 0
   ...: vocab_map['NOT_FOUND_INDEX'] = max_index+1
   ...: vocab_size = len(vocab_map)
   ...: # view vocabulary size and part of the vocabulary map
   ...: print('Vocabulary Size:', vocab_size)
   ...: print('Sample slice of vocabulary map:', dict(list(vocab_map.items())[10:20]))
Vocabulary Size: 82358
Sample slice of vocabulary map: {'martyrdom': 6, 'palmira': 7, 'servility': 8, 'gardening': 
9, 'melodramatically': 73505, 'renfro': 41282, 'carlin': 41283, 'overtly': 41284, 'rend': 
47891, 'anticlimactic': 51}

In this case we have used all the terms in our vocabulary, you can easily filter and use more relevant 
terms here (based on their frequency) by using the most_common(count) function from Counter and taking 
the first count terms from the list of unique terms in the training corpus. We will now encode the tokenized 
text reviews based on the previous vocab_map. Besides this, we will also encode the text sentiment class 
labels into numeric representations.

In [3]: from keras.preprocessing import sequence
   ...: from sklearn.preprocessing import LabelEncoder
   ...: 
   ...: # get max length of train corpus and initialize label encoder
   ...: le = LabelEncoder()
   ...: num_classes=2 # positive -> 1, negative -> 0
   ...: max_len = np.max([len(review) for review in tokenized_train])
   ...:
   ...: ## Train reviews data corpus
   ...: # Convert tokenized text reviews to numeric vectors
   ...: train_X = [[vocab_map[token] for token in tokenized_review] 
                       for tokenized_review in tokenized_train]
   ...: train_X = sequence.pad_sequences(train_X, maxlen=max_len) # pad 
   ...: ## Train prediction class labels
   ...: # Convert text sentiment labels (negative\positive) to binary encodings (0/1)
   ...: train_y = le.fit_transform(train_sentiments)
   ...: 
   ...: ## Test reviews data corpus
   ...: # Convert tokenized text reviews to numeric vectors
   ...: test_X = [[vocab_map[token] if vocab_map.get(token) else vocab_map['NOT_FOUND_INDEX'] 
   ...:            for token in tokenized_review] 
   ...:               for tokenized_review in tokenized_test]
   ...: test_X = sequence.pad_sequences(test_X, maxlen=max_len)



Chapter 7 ■ Analyzing Movie Reviews Sentiment

357

   ...: ## Test prediction class labels
   ...: # Convert text sentiment labels (negative\positive) to binary encodings (0/1)
   ...: test_y = le.transform(test_sentiments)
   ...:
   ...: # view vector shapes
   ...: print('Max length of train review vectors:', max_len)
   ...: print('Train review vectors shape:', train_X.shape, 
               ' Test review vectors shape:', test_X.shape)

Max length of train review vectors: 1442
Train review vectors shape: (35000, 1442)  Test review vectors shape: (15000, 1442)

From the preceding code snippet and the output, it is clear that we encoded each text review into a 
numeric sequence vector so that the size of each review vector is 1442, which is basically the maximum 
length of reviews from the training dataset. We pad shorter reviews and truncate extra tokens from longer 
reviews such that the shape of each review is constant as depicted in the output. We can now proceed with 
Step 3 and a part of Step 4 of the classification workflow by introducing the Embedding layer and coupling it 
with the deep network architecture based on LSTMs.

from keras.models import Sequential
from keras.layers import Dense, Embedding, Dropout, SpatialDropout1D
from keras.layers import LSTM

EMBEDDING_DIM = 128 # dimension for dense embeddings for each token
LSTM_DIM = 64 # total LSTM units

model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=EMBEDDING_DIM, input_length=max_len))
model.add(SpatialDropout1D(0.2))
model.add(LSTM(LSTM_DIM, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation="sigmoid"))

model.compile(loss="binary_crossentropy", optimizer="adam",
              metrics=["accuracy"])

The Embedding layer helps us generate the word embeddings from scratch. This layer is also initialized 
with some weights initially and this gets updated based on our optimizer similar to weights on the neuron 
units in other layers when the network tries to minimize the loss in each epoch. Thus, the embedding layer 
tries to optimize its weights such that we get the best word embeddings which will generate minimum 
error in the model and also capture semantic similarity and relationships among words. How do we get the 
embeddings, let’s consider we have a review with 3 terms ['movie', 'was', 'good'] and a vocab_map 
consisting of word to index mappings for 82358 words. The word embeddings would be generated somewhat 
similar to Figure 7-10.
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Based on our model architecture, the Embedding layer takes in three parameters—input_dim, which is 
equal to the vocabulary size (vocab_size) of 82358, output_dim, which is 128, representing the dimension of 
dense embedding (depicted by rows in the EMBEDDING LAYER in Figure 7-10), and input_len, which specifies 
the length of the input sequences (movie review sequence vectors), which is 1442. In the example depicted 
in Figure 7-10, since we have one review, the dimension is (1, 3). This review is converted into a numeric 
sequence [2, 57, 121] based on the VOCAB_MAP. Then the specific columns representing the indices in the 
review sequence are selected from the EMBEDDING LAYER (vectors at column indices 2, 57 and 121 respectively), 
to generate the final word embeddings. This gives us an embedding vector of dimension (1, 128, 3) 
also represented as (1, 3, 128) when each row is represented based on each sequence word embedding 
vector. Many Deep Learning frameworks like keras represent the embedding dimensions as (m, n) where m 
represents all the unique terms in our vocabulary (82358) and n represents the output_dim which is 128 in this 
case. Consider a transposed version of the layer depicted in Figure 7-10 and you are good to go!

Usually if you have the encoded review terms sequence vector represented in one-hot encoded 
format (3, 82358) and do a matrix multiplication with the EMBEDDING LAYER represented as (82358, 128) 
where each row represents the embedding for a word in the vocabulary, you will directly obtain the word 
embeddings for the review sequence vector as (3, 128). The weights in the embedding layer get updated 
and optimized in each epoch based on the input data when propagated through the whole network like we 
mentioned earlier such that overall loss and error is minimized to get maximum model performance.

These dense word embeddings are then passed to the LSTM layer having 64 units. We already introduced 
you to the LSTM architecture briefly in Chapter 1 in the subsection titled “Long Short Term Memory 
Networks” in the “Important Concepts” section under “Deep Learning”. LSTMs basically try to overcome 
the shortcomings of RNN models especially with regard to handling long term dependencies and problems 
which occur when the weight matrix associated with the units (neurons) become too small (leading to 
vanishing gradient) or too large (leading to exploding gradient). These architectures are more complex than 
regular deep networks and going into detailed internals and math concepts would be out of the current 
scope, but we will try to cover the essentials here without making it math heavy. If you’re interested in 
researching the internals of LSTMs, check out the original paper which inspired it all, by Hochreiter, S., and 
Schmidhuber, J. (1997). Long short-term memory. Neural computation. 9(8), 1735-1780. We depict the basic 
architecture of RNNs and compare it with LSTMs in Figure 7-11.

Figure 7-10.  Understanding how word embeddings are generated

http://dx.doi.org/10.1007/978-1-4842-3207-1_1


Chapter 7 ■ Analyzing Movie Reviews Sentiment

359

The RNN units usually have a chain of repeating modules (this happens when we unroll the loop; refer 
to Figure 1-13 in Chapter 1, where we talk about this) such that the module has a simple structure of having 
maybe one layer with the tanh activation. LSTMs are also a special type of RNN, having a similar structure 
but the LSTM unit has four neural network layers instead of just one. The detailed architecture of the LSTM 
cell is shown in Figure 7-12.

Figure 7-11.  Basic structure of RNN and LSTM units (Source: Christopher Olah’s blog: colah.github.io)

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
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The detailed architecture of an LSTM cell is depicted in Figure 7-12. The notation t indicates one time 
step, C depicts the cell states, and h indicates the hidden states. The gates i f o, ,

�
C  help in removing or 

adding information to the cell state. The gates i, f & o represent the input, output and forget gates respectively 
and each of them are modulated by the sigmoid layer which outputs numbers from 0 to 1 controlling how 
much of the output from these gates should pass. Thus this helps is protecting and controlling the cell state. 
Detailed work flow of how information flows through the LSTM cell is depicted in Figure 7-13 in four steps.

	 1.	 The first step talks about the forget gate layer f, which helps us decide what 
information should we throw away from the cell state. This is done by looking at 
the previous hidden state ht-1  and current inputs x

t
 as depicted in the equation. 

The sigmoid layer helps control how much of this should be kept or forgotten.

	 2.	 The second step depicts the input gate layer t, which helps decide what 
information will be stored in the current cell state. The sigmoid layer in the input 
gate helps decide which values will be updated based on h xt t-1  again. The tanh 

layer helps create a vector of the new candidate values 
�
Ct  based on h xt t-1 ,  

which can be added to the current cell state. Thus the tanh layer creates the 
values and the input gate with sigmoid layer helps choose which values should 
be updated.

	 3.	 The third step involves updating the old cell state C
t ‐ 1

 to the new cell state C
t
 by 

leveraging what we obtained in the first two steps. We multiply the old cell state 
by the forget gate f Ct t´( )-1  and then add the new candidate values scaled by the 

input gate with sigmoid layer it t´( )�
C .

	 4.	 The fourth and final step helps us decide what should be the final output which 
is basically a filtered version of our cell state. The output gate with the sigmoid 
layer o helps us select which parts of the cell state will pass to the final output. 
This is multiplied with the cell state values when passed through the tanh layer to 
give us the final hidden state values h ot t t= ´ ( )tanh

�
C .

Figure 7-12.  Detailed architecture of an LSTM cell (Source: Christopher Olah’s blog: colah.github.io)
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All these steps in this detailed workflow are depicted in Figure 7-13 with necessary annotations and 
equations. We would like to thank our good friend Christopher Olah for providing us detailed information 
as well as the images for depicting the internal workings of LSTM networks. We recommend checking out 
Christopher’s blog at http://colah.github.io/posts/2015-08-Understanding-LSTMs for more details. 
A shout out also goes to Edwin Chen, for explaining RNNs and LSTMs in an easy-to-understand format. 
We recommend referring to Edwin’s blog at http://blog.echen.me/2017/05/30/exploring-lstms for 
information on the workings of RNNs and LSTMs.

The final layer in our deep network is the Dense layer with 1 unit and the sigmoid activation function. 
We basically use the binary_crossentropy function with the adam optimizer since this is a binary 
classification problem and the model will ultimately predict a 0 or a 1, which we can decode back to a 
negative or positive sentiment prediction with our label encoder. You can also use the categorical_
crossentropy loss function here, but you would need to then use a Dense layer with 2 units instead with a 
softmax function. Now that our model is compiled and ready, we can head on to Step 4 of our classification 
workflow of actually training the model. We use a similar strategy from our previous deep network models, 
where we train our model on the training data with five epochs, batch size of 100 reviews, and a 10% 
validation split of training data to measure validation accuracy.

Figure 7-13.  Walkthrough of data flow in an LSTM cell (Source: Christopher Olah’s blog: colah.github.io)

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://blog.echen.me/2017/05/30/exploring-lstms
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In [4]: batch_size = 100
   ...: model.fit(train_X, train_y, epochs=5, batch_size=batch_size, 
   ...:           shuffle=True, validation_split=0.1, verbose=1)
Train on 31500 samples, validate on 3500 samples
Epoch 1/5 31500/31500 - 2491s - loss: 0.4081 - acc: 0.8184 - val_loss: 0.3006 - val_acc: 
0.8751
Epoch 2/5 31500/31500 - 2489s - loss: 0.2253 - acc: 0.9158 - val_loss: 0.3209 - val_acc: 
0.8780
Epoch 3/5 31500/31500 - 2656s - loss: 0.1431 - acc: 0.9493 - val_loss: 0.3483 - val_acc: 
0.8671
Epoch 4/5 31500/31500 - 2604s - loss: 0.1023 - acc: 0.9658 - val_loss: 0.3803 - val_acc: 
0.8729
Epoch 5/5 31500/31500 - 2701s - loss: 0.0694 - acc: 0.9761 - val_loss: 0.4430 - val_acc: 
0.8706

Training LSTMs on CPU is notoriously slow and as you can see my model took approximately 3.6 hours 
to train for just five epochs on an i5 3rd Gen Intel CPU with 8 GB of memory. Of course, a cloud-based 
environment like Google Cloud Platform or AWS on GPU took me approximately less than an hour to train 
the same model. So I would recommend you choose a GPU based Deep Learning environment, especially 
when working with RNNs or LSTM based network architectures. Based on the preceding output, we can 
see that just with five epochs we have decent validation accuracy but the training accuracy starts shooting 
up indicating some over-fitting might be happening. Ways to overcome this include adding more data or by 
increasing the drouput rate. Do give it a shot and see if it works! Time to put our model to the test! Let’s see 
how well it predicts the sentiment for our test reviews and use the same model evaluation framework we 
have used for our previous models (Step 5).

In [5]: # predict sentiments on test data
   ...: pred_test = model.predict_classes(test_X)
   ...: predictions = le.inverse_transform(pred_test.flatten())
   ...: # evaluate model performance
   ...: meu.display_model_performance_metrics(true_labels=test_sentiments, 
   ...:                    predicted_labels=predictions, classes=['positive', 'negative'])

The results depicted in Figure 7-14 show us that we have obtained a model accuracy and F1-score  
of 88%, which is quite good! With more quality data, you can expect to get even better results. Try 
experimenting with different architectures and see if you get better results!

Figure 7-14.  Model performance metrics for LSTM based Deep Learning model on word embeddings
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Analyzing Sentiment Causation
We built both supervised and unsupervised models to predict the sentiment of movie reviews based on the 
review text content. While feature engineering and modeling is definitely the need of the hour, you also need 
to know how to analyze and interpret the root cause behind how model predictions work. In this section, 
we analyze sentiment causation. The idea is to determine the root cause or key factors causing positive or 
negative sentiment. The first area of focus will be model interpretation, where we will try to understand, 
interpret, and explain the mechanics behind predictions made by our classification models. The second area 
of focus is to apply topic modeling and extract key topics from positive and negative sentiment reviews.

�Interpreting Predictive Models
One of the challenges with Machine Learning models is the transition from a pilot or proof-of-concept 
phase to the production phase. Business and key stakeholders often perceive Machine Learning models as 
complex black boxes and poses the question, why should I trust your model? Explaining to them complex 
mathematical or theoretical concepts doesn’t serve the purpose. Is there some way in which we can explain 
these models in an easy-to-interpret manner? This topic in fact has gained extensive attention very recently 
in 2016. Refer to the original research paper by M.T. Ribeiro, S. Singh & C. Guestrin titled “Why Should 
I Trust You?: Explaining the Predictions of Any Classifier” from https://arxiv.org/pdf/1602.04938.
pdf to understand more about model interpretation and the LIME framework. Check out more on model 
interpretation in Chapter 5 where we cover the skater framework in detail which performs excellent 
interpretations of various models.

There are various ways to interpret the predictions made by our predictive sentiment classification 
models. We want to understand more into why a positive review was correctly predicted as having positive 
sentiment or a negative review having negative sentiment. Besides this, no model is a 100% accurate always, 
so we would also want to understand the reason for mis-classifications or wrong predictions. The code used 
in this section is available in the file named sentiment_causal_model_interpretation.py or you can also 
refer to the jupyter notebook named Sentiment Causal Analysis - Model Interpretation.ipynb for an 
interactive experience.

Let’s first build a basic text classification pipeline for the model that worked best for us so far. This is the 
Logistic Regression model based on the Bag of Words feature model. We will leverage the pipeline module 
from scikit-learn to build this Machine Learning pipeline using the following code.

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

# build BOW features on train reviews
cv = CountVectorizer(binary=False, min_df=0.0, max_df=1.0, ngram_range=(1,2))
cv_train_features = cv.fit_transform(norm_train_reviews)
# build Logistic Regression model
lr = LogisticRegression()
lr.fit(cv_train_features, train_sentiments)

# Build Text Classification Pipeline
lr_pipeline = make_pipeline(cv, lr)

# save the list of prediction classes (positive, negative)
classes = list(lr_pipeline.classes_)

https://arxiv.org/pdf/1602.04938.pdf
https://arxiv.org/pdf/1602.04938.pdf
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
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We build our model based on norm_train_reviews, which contains the normalized training reviews 
that we have used in all our earlier analyses. Now that we have our classification pipeline ready, you can 
actually deploy the model by using pickle or joblib to save the classifier and feature objects similar to what 
we discussed in the “Model Deployment” section in Chapter 5. Assuming our pipeline is in production, how 
do we use it for new movie reviews? Let’s try to predict the sentiment for two new sample reviews (which 
were not used in training the model).

In [3]: lr_pipeline.predict(['the lord of the rings is an excellent movie', 
   ...:                      'i hated the recent movie on tv, it was so bad'])
Out[3]: array(['positive', 'negative'], dtype=object)

Our classification pipeline predicts the sentiment of both the reviews correctly! This is a good start, 
but how do we interpret the model predictions? One way is to typically use the model prediction class 
probabilities as a measure of confidence. You can use the following code to get the prediction probabilities 
for our sample reviews.

In [4]: pd.DataFrame(lr_pipeline.predict_proba(['the lord of the rings is an excellent movie', 
   ...:                      'i hated the recent movie on tv, it was so bad']), 
columns=classes)
Out[4]: 
   negative  positive
0  0.169653  0.830347
1  0.730814  0.269186

Thus we can say that the first movie review has a prediction confidence or probability of 83% to 
have positive sentiment as compared to the second movie review with a 73% probability to have negative 
sentiment. Let’s now kick it up a notch, instead of playing around with toy examples, we will now run the 
same analysis on actual reviews from the test_reviews dataset (we will use norm_test_reviews, which 
has the normalized text reviews). Besides prediction probabilities, we will be using the skater framework 
for easy interpretation of the model decisions, similar to what we have done in Chapter 5 under the section 
“Model Interpretation”. You need to load the following dependencies from the skater package first. We 
also define a helper function which takes in a document index, a corpus, its response predictions, and an 
explainer object and helps us with the our model interpretation analysis.

from skater.core.local_interpretation.lime.lime_text import LimeTextExplainer

explainer = LimeTextExplainer(class_names=classes)
# helper function for model interpretation
def interpret_classification_model_prediction(doc_index, norm_corpus, corpus, 
                                              prediction_labels, explainer_obj):
    # display model prediction and actual sentiments
    print("Test document index: {index}\nActual sentiment: {actual}
                                       \nPredicted sentiment: {predicted}"
      .format(index=doc_index, actual=prediction_labels[doc_index],
              predicted=lr_pipeline.predict([norm_corpus[doc_index]])))
    # display actual review content
    print("\nReview:", corpus[doc_index])
    # display prediction probabilities
    print("\nModel Prediction Probabilities:")
    for probs in zip(classes, lr_pipeline.predict_proba([norm_corpus[doc_index]])[0]):
        print(probs)

http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_5
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    # display model prediction interpretation
    exp = explainer.explain_instance(norm_corpus[doc_index], 
                                     lr_pipeline.predict_proba, num_features=10, 
                                     labels=[1])
    exp.show_in_notebook()

The preceding snippet leverages skater to explain our text classifier to analyze its decision-making 
process in an easy to interpret form. Even though the model might be a complex one in a global perspective, 
it is easier to explain and approximate the model behavior on local instances. This is done by learning the 
model around the vicinity of the data point of interest X by sampling instances around X and assigning 
weightages based on their proximity toX. Thus, these locally learned linear models help in explaining 
complex models in a more easy to interpret way with class probabilities, contribution of top features to the 
class probabilities that aid in the decision making process. Let’s take a movie review from our test dataset 
where both the actual and predicted sentiment is negative and analyze it with the helper function we created 
in the preceding snippet.

In [6]: doc_index = 100 
   ...: interpret_classification_model_prediction(doc_index=doc_index, corpus=norm_test_
reviews,
                                         �corpus=test_reviews, prediction_labels=test_

sentiments,
                                         explainer_obj=explainer) 

Test document index: 100
Actual sentiment: negative
Predicted sentiment: ['negative']

Review: Worst movie, (with the best reviews given it) I've ever seen. Over the top dialog, 
acting, and direction. more slasher flick than thriller. With all the great reviews this 
movie got I'm appalled that it turned out so silly. shame on you Martin Scorsese

Model Prediction Probabilities:
('negative', 0.8099323456145181)
('positive', 0.19006765438548187)

Figure 7-15.  Model interpretation for our classification model’s correct prediction for a negative review



Chapter 7 ■ Analyzing Movie Reviews Sentiment

366

The results depicted in Figure 7-15 show us the class prediction probabilities and also the top 10 
features that contributed the maximum to the prediction decision making process. These key features 
are also highlighted in the normalized movie review text. Our model performs quite well in this scenario 
and we can see the key features that contributed to the negative sentiment of this review including bad, 
silly, dialog, and shame, which make sense. Besides this, the word great contributed the maximum to 
the positive probability of 0.19 and in fact if we had removed this word from our review text, the positive 
probability would have dropped significantly.

The following code runs a similar analysis on a test movie review with both actual and predicted 
sentiment of positive value.

In [7]: doc_index = 2000
   ...: interpret_classification_model_prediction(doc_index=doc_index, corpus=norm_test_
reviews,
                                         �corpus=test_reviews, prediction_labels=test_

sentiments,
                                         explainer_obj=explainer)

Test document index: 2000
Actual sentiment: positive
Predicted sentiment: ['positive']

Review: I really liked the Movie "JOE." It has really become a cult classic among 
certain age groups.<br /><br />The Producer of this movie is a personal friend of mine. 
He is my Stepsons Father-In-Law. He lives in Manhattan's West side, and has a Bungalow. 
in Southampton, Long Island. His son-in-law live next door to his Bungalow.<br /><br 
/>Presently, he does not do any Producing, But dabbles in a business with HBO movies.<br 
/><br />As a person, Mr. Gil is a real gentleman and I wish he would have continued in the 
production business of move making.

Model Prediction Probabilities:
('negative', 0.020629181561415355)
('positive', 0.97937081843858464)

Figure 7-16.  Model interpretation for our classification model’s correct prediction for a positive review
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The results depicted in Figure 7-16 show the top features responsible for the model making a decision of 
predicting this review as positive. Based on the content, the reviewer really liked this model and also it was a 
real cult classic among certain age groups. In our final analysis, we will look at the model interpretation of an 
example where the model makes a wrong prediction.

In [8]: doc_index = 347 
   ...: interpret_classification_model_prediction(doc_index=doc_index, corpus=norm_test_
reviews,
                                         corpus=test_reviews, prediction_labels=test_
sentiments,
                                         explainer_obj=explainer)

Test document index: 347
Actual sentiment: negative
Predicted sentiment: ['positive']

Review: When I first saw this film in cinema 11 years ago, I loved it. I still think the 
directing and cinematography are excellent, as is the music. But it's really the script that 
has over the time started to bother me more and more. I find Emma Thompson's writing self-
absorbed and unfaithful to the original book; she has reduced Marianne to a side-character, 
a second fiddle to her much too old, much too severe Elinor - she in the movie is given 
many sort of 'focus moments', and often they appear to be there just to show off Thompson 
herself.<br /><br />I do understand her cutting off several characters from the book, but 
leaving out the one scene where Willoughby in the book is redeemed? For someone who red 
and cherished the book long before the movie, those are the things always difficult to 
digest.<br /><br />As for the actors, I love Kate Winslet as Marianne. She is not given the 
best script in the world to work with but she still pulls it up gracefully, without too much 
sentimentality. Alan Rickman is great, a bit old perhaps, but he plays the role beautifully. 
And Elizabeth Spriggs, she is absolutely fantastic as always.

Model Prediction Probabilities:
('negative', 0.067198213044844413)
('positive', 0.93280178695515559)

Figure 7-17.  Model interpretation for our classification model’s incorrect prediction
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The preceding output tells us that our model predicted the movie review indicating a positive sentiment 
when in-fact the actual sentiment label is negative for the same review. The results depicted in Figure 7-17 
tell us that the reviewer in fact shows signs of positive sentiment in the movie review, especially in parts 
where he\she tells us that “I loved it. I still think the directing and cinematography are excellent, as is the 
music... Alan Rickman is great, a bit old perhaps, but he plays the role beautifully. And Elizabeth Spriggs, she 
is absolutely fantastic as always.” and feature words from the same have been depicted in the top features 
contributing to positive sentiment. The model interpretation also correctly identifies the aspects of the 
review contributing to negative sentiment like, “But it’s really the script that has over the time started to 
bother me more and more.”. Hence, this is one of the more complex reviews which indicate both positive 
and negative sentiment and the final interpretation would be in the reader’s hands. You can now use this 
same framework to interpret your own classification models in the future and understand where your model 
might be performing well and where it might need improvements!

�Analyzing Topic Models
Another way of analyzing key terms, concepts or topics responsible for sentiment is to use a different 
approach known as topic modeling. We have already covered some basics into topic modeling in the section 
titled “Topic Models” under “Feature Engineering on Text Data” in Chapter 4. The main aim of topic models 
is to extract and depict key topics or concepts which are otherwise latent and not very prominent in huge 
corpora of text documents. We have already seen the use of Latent Dirichlet Allocation (LDA) for topic 
modeling in Chapter 4. In this section, we use another topic modeling technique called Non-Negative Matrix 
factorization. Refer to the Python file named sentiment_causal_topic_models.py or the jupyter notebook 
titled Sentiment Causal Analysis - Topic Models.ipynb for a more interactive experience.

The first step in this analysis is to combine all our normalized train and test reviews and separate out 
these reviews into positive and negative sentiment reviews. Once we do this, we will extract features from 
these two datasets using the TF-IDF feature vectorizer. The following snippet helps us achieve this.

In [11]: from sklearn.feature_extraction.text import TfidfVectorizer
    ...: 
    ...: # consolidate all normalized reviews
    ...: norm_reviews = norm_train_reviews+norm_test_reviews
    ...: # get tf-idf features for only positive reviews
    ...: positive_reviews = [review for review, sentiment in zip(norm_reviews, sentiments) 
                                 if sentiment == 'positive']
    ...: ptvf = TfidfVectorizer(use_idf=True, min_df=0.05, max_df=0.95, 
                                ngram_range=(1,1), sublinear_tf=True)
    ...: ptvf_features = ptvf.fit_transform(positive_reviews)
    ...: # get tf-idf features for only negative reviews
    ...: negative_reviews = [review for review, sentiment in zip(norm_reviews, sentiments) 
                                 if sentiment == 'negative']
    ...: ntvf = TfidfVectorizer(use_idf=True, min_df=0.05, max_df=0.95, 
                                ngram_range=(1,1), sublinear_tf=True)
    ...: ntvf_features = ntvf.fit_transform(negative_reviews)
    ...: # view feature set dimensions
    ...: print(ptvf_features.shape, ntvf_features.shape)

(25000, 331) (25000, 331)

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_4
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From the preceding output dimensions, you can see that we have filtered out a lot of the features we 
used previously when building our classification models by making min_df to be 0.05 and max_df to be 
0.95. This is to speed up the topic modeling process and remove features that either occur too much or too 
rarely. Let’s now import the necessary dependencies for the topic modeling process.

In [12]: import pyLDAvis
    ...: import pyLDAvis.sklearn
    ...: from sklearn.decomposition import NMF
    ...: import topic_model_utils as tmu
    ...: 
    ...: pyLDAvis.enable_notebook()
    ...: total_topics = 10

The NMF class from scikit-learn will help us with topic modeling. We also use pyLDAvis for building 
interactive visualizations of topic models. The core principle behind Non-Negative Matrix Factorization 
(NNMF) is to apply matrix decomposition (similar to SVD) to a non-negative feature matrix X such that 
the decomposition can be represented as X ≈ WH where W & H are both non-negative matrices which if 
multiplied should approximately re-construct the feature matrix X. A cost function like L2 norm can be used 
for getting this approximation. Let’s now apply NNMF to get 10 topics from our positive sentiment reviews. 
We will also leverage some utility functions from our topic_model_utils module to display the results in a 
clean format.

In [13]: # build topic model on positive sentiment review features
    ...: pos_nmf = NMF(n_components=total_topics, 
    ...:           random_state=42, alpha=0.1, l1_ratio=0.2)
    ...: pos_nmf.fit(ptvf_features)      
    ...: # extract features and component weights
    ...: pos_feature_names = ptvf.get_feature_names()
    ...: pos_weights = pos_nmf.components_
    ...: # extract and display topics and their components
    ...: pos_topics = tmu.get_topics_terms_weights(pos_weights, pos_feature_names)
    ...: tmu.print_topics_udf(topics=pos_topics, total_topics=total_topics,
    ...:                  num_terms=15, display_weights=False)
Topic #1 without weights
['like', 'not', 'think', 'really', 'say', 'would', 'get', 'know', 'thing', 'much', 'bad', 
'go', 'lot', 'could', 'even']

Topic #2 without weights
['movie', 'see', 'watch', 'great', 'good', 'one', 'not', 'time', 'ever', 'enjoy', 
'recommend', 'make', 'acting', 'like', 'first']

Topic #3 without weights
['show', 'episode', 'series', 'tv', 'watch', 'dvd', 'first', 'see', 'time', 'one', 'good', 
'year', 'remember', 'ever', 'would']

Topic #4 without weights
['performance', 'role', 'play', 'actor', 'cast', 'good', 'well', 'great', 'character', 
'excellent', 'give', 'also', 'support', 'star', 'job']
...
Topic #10 without weights
['love', 'fall', 'song', 'wonderful', 'beautiful', 'music', 'heart', 'girl', 'would', 
'watch', 'great', 'favorite', 'always', 'family', 'woman']
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We depict some of the topics out of the 10 topics generated in the preceding output. You can leverage 
pyLDAvis now to visualize these topics in an interactive visualization. See Figure 7-18.

In [14]: pyLDAvis.sklearn.prepare(pos_nmf, ptvf_features, ptvf, R=15)

The visualization depicted in Figure 7-18 shows us the 10 topics from positive movie reviews and we 
can see the top relevant terms for Topic 6 highlighted in the output. From the topics and the terms, we can 
see terms like movie cast, actors, performance, play, characters, music, wonderful, good, and so on have 
contributed toward positive sentiment in various topics. This is quite interesting and gives you a good 
insight into the components of the reviews that contribute toward positive sentiment of the reviews. This 
visualization is completely interactive if you are using the jupyter notebook and you can click on any of the 
bubbles representing topics in the Intertopic Distance Map on the left and see the most relevant terms in 
each of the topics in the right bar chart.

The plot on the left is rendered using Multi-dimensional Scaling (MDS). Similar topics should be close 
to one another and dissimilar topics should be far apart. The size of each topic bubble is based on the 
frequency of that topic and its components in the overall corpus.

The visualization on the right shows the top terms. When no topic it selected, it shows the top 15 most 
salient topics in the corpus. A term’s saliency is defined as a measure of how frequently the term appears the 
corpus and its distinguishing factor when used to distinguish between topics. When some topic is selected, 
the chart changes to show something similar to Figure 7-13, which shows the top 15 most relevant terms for 
that topic. The relevancy metric is controlled by λ, which can be changed based on a slider on top of the bar 
chart (refer to the notebook to interact with this). If you’re interested in more mathematical theory behind 
these visualizations, you are encouraged to check out more details at https://cran.r-project.org/web/
packages/LDAvis/vignettes/details.pdf, which is a vignette for the R package LDAvis, which has been 
ported to Python as pyLDAvis.

Figure 7-18.  Visualizing topic models on positive sentiment movie reviews

https://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf
https://cran.r-project.org/web/packages/LDAvis/vignettes/details.pdf
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Let’s now extract topics and run this same analysis on our negative sentiment reviews from the movie 
reviews dataset.

In [15]: # build topic model on negative sentiment review features
    ...: neg_nmf = NMF(n_components=10, 
    ...:           random_state=42, alpha=0.1, l1_ratio=0.2)
    ...: neg_nmf.fit(ntvf_features)      
    ...: # extract features and component weights
    ...: neg_feature_names = ntvf.get_feature_names()
    ...: neg_weights = neg_nmf.components_
    ...: # extract and display topics and their components
    ...: neg_topics = tmu.get_topics_terms_weights(neg_weights, neg_feature_names)
    ...: tmu.print_topics_udf(topics=neg_topics,
    ...:                  total_topics=total_topics,
    ...:                  num_terms=15,
    ...:                  display_weights=False)
Topic #1 without weights
['get', 'go', 'kill', 'guy', 'scene', 'take', 'end', 'back', 'start', 'around', 'look', 
'one', 'thing', 'come', 'first']

Topic #2 without weights
['bad', 'movie', 'ever', 'acting', 'see', 'terrible', 'one', 'plot', 'effect', 'awful', 
'not', 'even', 'make', 'horrible', 'special']
...
Topic #10 without weights
['waste', 'time', 'money', 'watch', 'minute', 'hour', 'movie', 'spend', 'not', 'life', 
'save', 'even', 'worth', 'back', 'crap']

In [16]: pyLDAvis.sklearn.prepare(neg_nmf, ntvf_features, ntvf, R=15)

Figure 7-19.  Visualizing topic models on positive sentiment movie reviews
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The visualization depicted in Figure 7-19 shows us the 10 topics from negative movie reviews and we 
can see the top relevant terms for Topic 8 highlighted in the output. From the topics and the terms, we can 
see terms like waste, time, money, crap, plot, terrible, acting, and so on have contributed toward negative 
sentiment in various topics. Of course, there are high chances of overlap between topics from positive 
and negative sentiment reviews, but there will be distinguishable, distinct topics that further help us with 
interpretation and causal analysis.

�Summary
This case-study oriented chapter introduces the IMDb movie review dataset with the objective of predicting 
the sentiment of the reviews based on the textual content. We covered concepts and techniques from natural 
language processing (NLP), text analytics, Machine Learning and Deep Learning in this chapter. We covered 
multiple aspects from NLP including text pre-processing, normalization, feature engineering as well as text 
classification. Unsupervised learning techniques using sentiment lexicons like Afinn, SentiWordNet, and 
VADER were covered in extensive detail, to show how we can analyze sentiment in the absence of labeled 
training data, which is a very valid problem in today’s organizations. Detailed workflow diagrams depicting 
text classification as a supervised Machine Learning problem helped us in relating NLP with Machine 
Learning so that we can use Machine Learning techniques and methodologies to solve this problem of 
predicting sentiment when labeled data is available.

The focus on supervised methods was two-fold. This included traditional Machine Learning 
approaches and models like Logistic Regression and Support Vector Machines and newer Deep Learning 
models including deep neural networks, RNNs, and LSTMs. Detailed concepts, workflows, hands-on 
examples and comparative analyses with multiple supervised models and different feature engineering 
techniques have been covered for the purpose of predicting sentiment from movie reviews with maximum 
model performance. The final section of this chapter covered a very important aspect of Machine Learning 
that is often neglected in our analyses. We looked at ways to analyze and interpret the cause of positive or 
negative sentiment. Analyzing and visualizing model interpretations and topic models have been covered 
with several examples, to give you a good insight into how you can re-use these frameworks on your own 
datasets. The frameworks and methodologies used in this chapter should be useful for you in tackling 
similar problems on your own text data in the future.
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