
177© Dipanjan Sarkar, Raghav Bali and Tushar Sharma 2018
D. Sarkar et al., Practical Machine Learning with Python, https://doi.org/10.1007/978-1-4842-3207-1_4

CHAPTER 4

Feature Engineering and Selection

Building Machine Learning systems and pipelines take significant effort, which is evident from the
knowledge you gained in the previous chapters. In the first chapter, we presented some high-level
architecture for building Machine Learning pipelines. The path from data to insights and information is
not an easy and direct one. It is tough and also iterative in nature involving data scientists and analysts to
reiterate through several steps multiple times to get to the perfect model and derive correct insights. The
limitation of Machine Learning algorithms is the fact that they can only understand numerical values as
inputs. This is because, at the heart of any algorithm, we usually have multiple mathematical equations,
constraints, optimizations and computations. Hence it is almost impossible for us to feed raw data into any
algorithm and expect results. This is where features and attributes are extremely helpful in building models
on top of our data.

Building machine intelligence is a multi-layered process having multiple facets. In this book, so far,
we have already explored how you can retrieve, process, wrangle, and visualize data. Exploratory data
analysis and visualizations are the first step toward understanding your data better. Understanding your data
involves understanding the complete scope encompassing your data including the domain, constraints,
caveats, quality and available attributes. From Chapter 3, you might remember that data is comprised of
multiple fields, attributes, or variables. Each attribute by itself is an inherent feature of the data. You can then
derive further features from these inherent features and this itself forms a major part of feature engineering.
Feature selection is another important task that comes hand in hand with feature engineering, where the
data scientist is tasked with selecting the best possible subset of features and attributes that would help in
building the right model.

An important point to remember here is that feature engineering and selection is not a one-time
process which should be carried out in an ad hoc manner. The nature of building Machine Learning systems
is iterative (following the CRISP-DM principle) and hence extracting and engineering features from the
dataset is not a one-time task. You may need to extract new features and try out multiple selections each
time you build a model to get the best and optimal model for your problem. Data processing and feature
engineering is often described to be the toughest task or step in building any Machine Learning system by
data scientists. With the need of both domain knowledge as well as mathematical transformations, feature
engineering is often said to be both an art as well as a science. The obvious complexities involve dealing
with diverse types of data and variables. Besides this, each Machine Learning problem or task needs
specific features and there is no one solution fits all in the case of feature engineering. This makes feature
engineering all the more difficult and complex.

Hence we follow a proper structured approach in this chapter covering the following three major areas
in the feature engineering workflow. They are mentioned as follows.

•	 Feature extraction and engineering

•	 Feature scaling

•	 Feature selection

https://doi.org/10.1007/978-1-4842-3207-1_4
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

Chapter 4 ■ Feature engineering and SeleCtion

178

This chapter covers essential concepts for all the three major areas mentioned above. Techniques for
feature engineering will be covered in detail for diverse data types including numeric, categorical, temporal,
text and image data. We would like to thank our good friend and fellow data scientist, Gabriel Moreira for
helping us with some excellent compilations of feature engineering techniques over these diverse data
types. We also cover different feature scaling methods typically used as a part of the feature engineering
process to normalize values preventing higher valued features from taking unnecessary prominence. Several
feature selection techniques like filter, wrapper, and embedded methods will also be covered. Techniques
and concepts will be supplemented with sufficient hands-on examples and code snippets. Remember to
check out the relevant code under Chapter 4 in the GitHub repository at https://github.com/dipanjanS/
practical-machine-learning-with-python which contains necessary code, notebooks, and data. This will
make things easier to understand, help you gain enough knowledge to know which technique should be
used in which scenario and thus help you get started on your own journey toward feature engineering for
building Machine Learning models!

 Features: Understand Your Data Better
The essence of any Machine Learning model is comprised of two components namely, data and algorithms.
You might remember the same from the Machine Learning paradigm which we introduced in Chapter 1.
Any Machine Learning algorithm is at essence a combination of mathematical functions, equations and
optimizations which are often augmented with business logic as needed. These algorithms are not intelligent
enough to usually process raw data and discover latent patterns from the same which would be used to train
the system. Hence we need better data representations for building Machine Learning models, which are also
known as data features or attributes. Let’s look at some important concepts associated with data and features
in this section.

 Data and Datasets
Data is essential for analytics and Machine Learning. Without data we are literally powerless to implement
any intelligent system. The formal definition of data would be a collection or set of qualitative and/or
quantitative variables containing values based on observations. Typically data is usually measured and
collected from various observations. This is then stored it is raw form which can then be processed further
and analyzed as required. Typically in any analytics or Machine Learning system, you might need multiple
sources of data and processed data from one component can be fed as raw data to another component for
further processing. Data can be structured having definite rows and columns indicating observations and
attributes or unstructured like free textual data.

A dataset can be defined as a collection of data. Typically this indicates data present in the form of flat
files like CSV files or MS Excel files, relational database tables or views, or even raw data two-dimensional
matrices. Sample datasets which are quite popular in Machine Learning are available in the scikit-learn
package to quickly get started. The sklearn.datasets module has these sample datasets readily available
and other utilities pertaining to loading and handling datasets. You can find more details in this link
http://scikit-learn.org/stable/datasets/index.html#datasets to learn more about the toy datasets
and best practices for handling and loading data. Another popular resource for Machine Learning based
datasets is the UC Irvine Machine Learning repository which can be found here http://archive.ics.uci.
edu/ml/index.php and this contains a wide variety of datasets from real-world problems, scenarios and
devices. In fact the popular Machine Learning and predictive analytics competitive platform Kaggle also
features some datasets from UCI and other datasets pertaining to various competitions. Feel free to check
out these resources and we will in fact be using some datasets from these resources in this chapter as well as
in subsequent chapters.

http://dx.doi.org/10.1007/978-1-4842-3207-1_4
https://github.com/dipanjanS/practical-machine-learning-with-python
https://github.com/dipanjanS/practical-machine-learning-with-python
http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://scikit-learn.org/stable/datasets/index.html#datasets
http://scikit-learn.org/stable/datasets/index.html#datasets
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php

Chapter 4 ■ Feature engineering and SeleCtion

179

Features
Raw data is hardly used to build any Machine Learning model, mostly because algorithms can’t work with
data which is not properly processed and wrangled in a desired format. Features are attributes or properties
obtained from raw data. Each feature is a specific representation on top of the raw data. Typically, each
feature is an individual measurable attribute which usually is depicted by a column in a two dimensional
dataset. Each observation is depicted by a row and each feature will have a specific value for an observation.
Thus each row typically indicates a feature vector and the entire set of features across all the observations
forms a two-dimensional feature matrix also known as a feature set. Features are extremely important
toward building Machine Learning models and each feature represents a specific chunk of representation
and information from the data which is used by the model. Both quality as well as quantity of features
influences the performance of the model.

Features can be of two major types based on the dataset. Inherent raw features are obtained directly
from the dataset with no extra data manipulation or engineering. Derived features are usually what we
obtain from feature engineering where we extract features from existing data attributes. A simple example
would be creating a new feature Age from an employee dataset containing Birthdate by just subtracting their
birth date from the current date. The next major section covers more details on how to handle, extract, and
engineer features based on diverse data types.

Models
Features are better representations of underlying raw data which act as inputs to any Machine Learning
model. Typically a model is comprised of data features, optional class labels or numeric responses for
supervised learning and a Machine Learning algorithm. The algorithm is chosen based on the type of
problem we want to solve after converting it into a specific Machine Learning task. Models are built after
training the system on data features iteratively till we get the desired performance. Thus, a model is basically
used to represent relationships among the various features of our data.

Typically the process of modeling involves multiple major steps. Model building focuses on training
the model on data features. Model tuning and optimization involves tuning specific model parameters,
known as hyperparameters and optimizing the model to get the best model. Model evaluation involves
using standard performance evaluation metrics like accuracy to evaluate model performance. Model
deployment is usually the final step where, once we have selected the most suitable model, we deploy it live
in production which usually involves building an entire system around this model based on the CRISP-DM
methodology. Chapter 5 will focus on these aspects in further detail.

Revisiting the Machine Learning Pipeline
We covered the standard Machine Learning pipeline in detail in Chapter 1, which was based on the CRISP-
DM standard. Let’s refresh our memory by looking at Figure 4-1, which depicts our standard generic
Machine Learning pipeline with the major components identified with the various building blocks.

http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Chapter 4 ■ Feature engineering and SeleCtion

180

The figure clearly depicts the main components in the pipeline, which you should already be
well-versed on by now. These components are mentioned once more for ease of understanding.

•	 Data retrieval

•	 Data preparation

•	 Modeling

•	 Model evaluation and tuning

•	 Model deployment and monitoring

Our area of focus in this chapter falls under the blocks under “Data Preparation”. We already covered
processing and wrangling data in Chapter 3 in detail. Here, we will be focusing on the three major steps
essential toward handling data features. These are mentioned as follows.

 1. Feature extraction and engineering

 2. Feature scaling

 3. Feature selection

These blocks are highlighted in Figure 4-1 and are essential toward the process of transforming
processed data into features. By processed, we mean the raw data, after going through necessary pre-
processing and wrangling operations. The sequence of steps that are usually followed in the pipeline for
transforming processed data into features is depicted in a more detailed view in Figure 4-2.

Figure 4-1. Revisiting our standard Machine Learning pipeline

Figure 4-2. A standard pipeline for feature engineering, scaling, and selection

http://dx.doi.org/10.1007/978-1-4842-3207-1_3

Chapter 4 ■ Feature engineering and SeleCtion

181

It is quite evident that based on the sequence of steps depicted in the figure, features are first crafted
and engineering, necessary normalization and scaling is performed and finally the most relevant features
are selected to give us the final set of features. We will cover these three components in detail in subsequent
sections following the same sequence as depicted in the figure.

 Feature Extraction and Engineering
The process of feature extraction and engineering is perhaps the most important one in the entire Machine
Learning pipeline. Good features depicting the most suitable representations of the data help in building
effective Machine Learning models. In fact, more than often it’s not the algorithms but the features that
determine the effectiveness of the model. In simple words, good features give good models. A data scientist
approximately spends around 70% to 80% of his time in data processing, wrangling, and feature engineering
for building any Machine Learning model. Hence it’s of paramount importance to understand all aspects
pertaining to feature engineering if you want to be proficient in Machine Learning.

Typically feature extraction and feature engineering are synonyms that indicate the process of using a
combination of domain knowledge, hand-crafted techniques and mathematical transformations to convert
data into features. Henceforth we will be using the term feature engineering to refer to all aspects concerning
the task of extracting or creating new features from data. While the choice of Machine Learning algorithm
is very important when building a model, more than often, the choice and number of features tend to have
more impact toward the model performance. In this section, we will be looking to answer some questions
such as the why, what, and how of feature engineering to get a more in-depth understanding toward feature
engineering.

 What Is Feature Engineering?
We already informally explained the core concept behind feature engineering, where we use specific
components from domain knowledge and specific techniques to transform data into features. Data in
this case is raw data after necessary pre-processing and wrangling, which we have mentioned earlier. This
includes dealing with bad data, imputing missing values, transforming specific values, and so on. Features
are the final end result from the process of feature engineering, which depicts various representations of the
underlying data.

Let’s now look at a couple of definitions and quotes relevant to feature engineering from several
renowned people in the world of data science! Renowned computer and data scientist Andrew Ng talks
about Machine Learning and feature engineering.

“Coming up with features is difficult, time-consuming, requires expert knowledge. ‘Applied
Machine Learning’ is basically feature engineering.”

—Prof. Andrew Ng

This basically reinforces what we mentioned earlier about data scientists spending close to 80% of
their time in engineering features which is a difficult and time-consuming process, requiring both domain
knowledge and mathematical computations. Besides this, practical or applied Machine Learning is mostly
feature engineering because the time taken in building and evaluating models is considerably less than the
total time spent toward feature engineering. However, this doesn’t mean that modeling and evaluation are
any less important than feature engineering.

Chapter 4 ■ Feature engineering and SeleCtion

182

We will now look at a definition of feature engineering by Dr. Jason Brownlee, data scientist and ML
practitioner who provides a lot of excellent resources over at http://machinelearningmastery.com with
regard to Machine Learning and data science. Dr. Brownlee defines feature engineering as follows.

“Feature engineering is the process of transforming raw data into features that better
represent the underlying problem to the predictive models, resulting in improved model
accuracy on unseen data.”

—Dr. Jason Brownlee

Let’s spend some more time on this definition of feature engineering. It tells us that the process of
feature engineering involves transforming data into features taking into account several aspects pertaining
to the problem, model, performance, and data. These aspects are highlighted in this definition and are
explained in further detail as follows.

•	 Raw data: This is data in its native form after data retrieval from source. Typically
some amount of data processing and wrangling is done before the actual process of
feature engineering.

•	 Features: These are specific representations obtained from the raw data after the
process of feature engineering.

•	 The underlying problem: This refers to the specific business problem or use-
case we want to solve with the help of Machine Learning. The business problem is
typically converted into a Machine Learning task.

•	 The predictive models: Typically feature engineering is used for extracting features
to build Machine Learning models that learn about the data and the problem to be
solved from these features. Supervised predictive models are widely used for solving
diverse problems.

•	 Model accuracy: This refers to model performance metrics that are used to evaluate
the model.

•	 Unseen data: This is basically new data that was not used previously to build or train
the model. The model is expected to learn and generalize well for unseen data based
on good quality features.

Thus feature engineering is the process of transforming data into features to act as inputs for Machine
Learning models such that good quality features help in improving the overall model performance. Features
are also very much dependent on the underlying problem. Thus, even though the Machine Learning task
might be same in different scenarios, like classification of e-mails into spam and non-spam or classifying
handwritten digits, the features extracted in each scenario will be very different from the other.

By now you must be getting a good grasp on the idea and significance of feature engineering. Always
remember that for solving any Machine Learning problem, feature engineering is the key! This in fact is
reinforced by Prof. Pedro Domingos from the University of Washington, in his paper titled, “A Few Useful
Things to Know about Machine Learning” available at http://homes.cs.washington.edu/~pedrod/papers/
cacm12.pdf, which tells us the following.

“At the end of the day, some Machine Learning projects succeed and some fail. What makes
the difference? Easily the most important factor is the features used.”

—Prof. Pedro Domingos

http://machinelearningmastery.com/
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf
http://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Chapter 4 ■ Feature engineering and SeleCtion

183

Feature engineering is indeed both an art and a science to transform data into features for feeding
into models. Sometimes you need a combination of domain knowledge, experience, intuition, and
mathematical transformations to give you the features you need. By solving more problems over time, you
will gain the experience you need to know what features might be best suited for a problem. Hence do not be
overwhelmed, practice will make you master feature engineering with time. The following list depicts some
examples of engineering features.

•	 Deriving a person’s age from birth date and the current date

•	 Getting the average and median view count of specific songs and music videos

•	 Extracting word and phrase occurrence counts from text documents

•	 Extracting pixel information from raw images

•	 Tabulating occurrences of various grades obtained by students

The final quote to whet your appetite on feature engineering is from renowned Kaggler, Xavier Conort.
Most of you already know that tough Machine Learning problems are often posted on Kaggle regularly which
is usually open to everyone. Xavier’s thoughts on feature engineering are mentioned as follows.

“The algorithms we used are very standard for Kagglers. ...We spent most of our efforts in
feature engineering. ...We were also very careful to discard features likely to expose us to
the risk of over-fitting our model.”

—Xavier Conort

This should give you a good idea what is feature engineering, the various aspects surrounding it and
a very basic introduction into why do we really need feature engineering. In the following section, we will
expand more on why we need feature engineering, its benefits and advantages.

Why Feature Engineering?
We have defined feature engineering in the previous section and also touched upon the basics pertaining to
the importance of feature engineering. Let’s now look at why we need feature engineering and how can it be
an advantage for us when we are building Machine Learning models and working with data.

•	 Better representation of data: Features are basically various representations
of the underlying raw data. These representations can be better understood by
Machine Learning algorithms. Besides this, we can also often easily visualize
these representations. A simple example would be to visualize the frequent word
occurrences of a newspaper article as opposed to being totally perplexed as to what
to do with the raw text!

•	 Better performing models: The right features tend to give models that outperform
other models no matter how complex the algorithm is. In general if you have the
right feature set, even a simple model will perform well and give desired results. In
short, better features make better models.

•	 Essential for model building and evaluation: We have mentioned this numerous
times by now, raw data cannot be used to build Machine Learning models. Get
your data, extract features, and start building models! Also on evaluating model
performance and tuning the models, you can reiterate over your feature set to choose
the right set of features to get the best model.

Chapter 4 ■ Feature engineering and SeleCtion

184

•	 More flexibility on data types: While is it definitely easier to use numeric data types
directly with Machine Learning algorithms with little or no data transformations,
the real challenge is to build models on more complex data types like text, images,
and even videos. Feature engineering helps us build models on diverse data types
by applying necessary transformations and enables us to work even on complex
unstructured data.

•	 Emphasis on the business and domain: Data scientists and analysts are usually
busy in processing, cleaning data and building models as a part of their day to day
tasks. This often creates a gap between the business stakeholders and the technical/
analytics team. Feature engineering involves and enables data scientists to take
a step back and try to understand the domain and the business better, by taking
valuable inputs from the business and subject matter experts. This is necessary to
create and select features that might be useful for building the right model to solve
the problem. Pure statistical and mathematical knowledge is rarely sufficient to solve
a complex real-world problem. Hence feature engineering emphasizes to focus on
the business and the domain of the problem when building features.

This list, though not an exhaustive one, gives us a pretty good insight into the importance of feature
engineering and how it is an essential aspect of building Machine Learning models. The importance of the
problem to be solved and the domain is also pretty important in feature engineering.

How Do You Engineer Features?
There are no fixed rules for engineering features. It involves using a combination of domain knowledge,
business constraints, hand-crafted transformations and mathematical transformations to transform the
raw data into desired features. Different data types have different techniques for feature extraction. Hence
in this chapter, we focus on various feature engineering techniques and strategies for the following major
data types.

•	 Numeric data

•	 Categorical data

•	 Text data

•	 Temporal data

•	 Image data

Subsequent sections in this chapter focus on dealing with these diverse data types and specific
techniques which can be applied to engineer features. You can use them as a reference and guidebook for
engineering features from your own datasets in the future.

Another aspect into feature engineering has recently gained prominence. Here, you do not use hand-
crafted features but, make the machine itself try to detect patterns and extract useful data representations
from the raw data, which can be used as features. This process is also known as auto feature generation.
Deep Learning has proved to be extremely effective in this area and neural network architectures like
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Long Short Term Memory
networks (LSTMs) are extensively used for auto feature engineering and extraction. Let’s dive into the world
of feature engineering now with some real-world datasets and examples.

Chapter 4 ■ Feature engineering and SeleCtion

185

Feature Engineering on Numeric Data
Numeric data, fields, variables, or features typically represent data in the form of scalar information that
denotes an observation, recording, or measurement. Of course, numeric data can also be represented as a
vector of scalars where each specific entity in the vector is a numeric data point in itself. Integers and floats
are the most common and widely used numeric data types. Besides this, numeric data is perhaps the easiest
to process and is often used directly by Machine Learning models. If you remember we have talked about
numeric data previously in the “Data Description” section in Chapter 3.

Even though numeric data can be directly fed into Machine Learning models, you would still need to
engineer features that are relevant to the scenario, problem, and domain before building a model. Hence
the need for feature engineering remains. Important aspects of numeric features include feature scale and
distribution and you will observe some of these aspects in the examples in this section. In some scenarios,
we need to apply specific transformations to change the scale of numeric values and in other scenarios we
need to change the overall distribution of the numeric values, like transforming a skewed distribution to a
normal distribution.

The code used for this section is available in the code files for this chapter. You can load feature_
engineering_numeric.py directly and start running the examples or use the jupyter notebook, Feature
Engineering on Numeric Data.ipynb, for a more interactive experience. Before we begin, let’s load the
following dependencies and configuration settings.

In [1]: import pandas as pd
 ...: import matplotlib.pyplot as plt
 ...: import matplotlib as mpl
 ...: import numpy as np
 ...: import scipy.stats as spstats
 ...:
 ...: %matplotlib inline
 ...: mpl.style.reload_library()
 ...: mpl.style.use('classic')
 ...: mpl.rcParams['figure.facecolor'] = (1, 1, 1, 0)
 ...: mpl.rcParams['figure.figsize'] = [6.0, 4.0]
 ...: mpl.rcParams['figure.dpi'] = 100

Now that we have the initial dependencies loaded, let’s look at some ways to engineer features from
numeric data in the following sections.

Raw Measures
Just like we mentioned earlier, numeric features can be directly fed to Machine Learning models often since
they are in a format which can be easily understood, interpreted, and operated on. Raw measures typically
indicated using numeric variables directly as features without any form of transformation or engineering.
Typically these features can indicate values or counts.

http://dx.doi.org/10.1007/978-1-4842-3207-1_3

Chapter 4 ■ Feature engineering and SeleCtion

186

 Values
Usually, scalar values in its raw form indicate a specific measurement, metric, or observation belonging to
a specific variable or field. The semantics of this field is usually obtained from the field name itself or a data
dictionary if present. Let’s load a dataset now about Pokémon! This dataset is also available on Kaggle. If you
do not know, Pokémon is a huge media franchise surrounding fictional characters called Pokémon which
stands for pocket monsters. In short, you can think of them as fictional animals with superpowers! The
following snippet gives us an idea about this dataset.

In [2]: poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8')
 ...: poke_df.head()

If you observe the dataset depicted in Figure 4-3, there are several attributes there which represent
numeric raw values which can be used directly. The following snippet depicts some of these features with
more emphasis.

In [3]: poke_df[['HP', 'Attack', 'Defense']].head()
Out[3]:
 HP Attack Defense
0 45 49 49
1 60 62 63
2 80 82 83
3 80 100 123
4 39 52 43

You can directly use these attributes as features that are depicted in the previous dataframe. These
include each Pokémon’s HP (Hit Points), Attack, and Defense stats. In fact, we can also compute some basic
statistical measures on these fields using the following code.

In [4]: poke_df[['HP', 'Attack', 'Defense']].describe()
Out[4]:
 HP Attack Defense
count 800.000000 800.000000 800.000000
mean 69.258750 79.001250 73.842500
std 25.534669 32.457366 31.183501
min 1.000000 5.000000 5.000000
25% 50.000000 55.000000 50.000000
50% 65.000000 75.000000 70.000000
75% 80.000000 100.000000 90.000000
max 255.000000 190.000000 230.000000

Figure 4-3. Raw data from the Pokémon dataset

Chapter 4 ■ Feature engineering and SeleCtion

187

We can see multiple statistical measures like count, average, standard deviation, and quartiles for each
of the numeric features in this output. Try plotting their distributions if possible!

 Counts
Raw numeric measures can also indicate counts, frequencies and occurrences of specific attributes. Let’s
look at a sample of data from the million-song dataset, which depicts counts or frequencies of songs that
have been heard by various users.

In [5]: popsong_df = pd.read_csv('datasets/song_views.csv', encoding='utf-8')
 ...: popsong_df.head(10)

We can see that the listen_count field in the data depicted in Figure 4-4 can be directly used as a
count/frequency based numeric feature.

Binarization
Often raw numeric frequencies or counts are not necessary in building models especially with regard to
methods applied in building recommender engines. For example if I want to know if a person is interested
or has listened to a particular song, I do not need to know the total number of times he/she has listened to
the same song. I am more concerned about the various songs he/she has listened to. In this case, a binary
feature is preferred as opposed to a count based feature. We can binarize our listen_count field from our
earlier dataset in the following way.

In [6]: watched = np.array(popsong_df['listen_count'])
 ...: watched[watched >= 1] = 1
 ...: popsong_df['watched'] = watched

You can also use scikit-learn’s Binarizer class here from its preprocessing module to perform the
same task instead of numpy arrays, as depicted in the following code.

Figure 4-4. Song listen counts as a numeric feature

Chapter 4 ■ Feature engineering and SeleCtion

188

In [7]: from sklearn.preprocessing import Binarizer
 ...:
 ...: bn = Binarizer(threshold=0.9)
 ...: pd_watched = bn.transform([popsong_df['listen_count']])[0]
 ...: popsong_df['pd_watched'] = pd_watched
 ...: popsong_df.head(11)

You can clearly see from Figure 4-5 that both the methods have produced the same results depicted in
features watched and pd_watched. Thus, we have the song listen counts as a binarized feature indicating if
the song was listened to or not by each user.

Rounding
Often when dealing with numeric attributes like proportions or percentages, we may not need values with a
high amount of precision. Hence it makes sense to round off these high precision percentages into numeric
integers. These integers can then be directly used as raw numeric values or even as categorical (discrete-
class based) features. Let’s try applying this concept in a dummy dataset depicting store items and their
popularity percentages.

In [8]: items_popularity = pd.read_csv('datasets/item_popularity.csv', encoding='utf-8')
 ...: # rounding off percentages
 ...: items_popularity['popularity_scale_10'] =
 np.array(np.round((items_popularity['pop_percent'] * 10)), dtype='int')
 ...: items_popularity['popularity_scale_100'] =
 np.array(np.round((items_popularity['pop_percent'] * 100)), dtype='int')
 ...: items_popularity
Out[8]:
 item_id pop_percent popularity_scale_10 popularity_scale_100
0 it_01345 0.98324 10 98
1 it_03431 0.56123 6 56
2 it_04572 0.12098 1 12
3 it_98021 0.35476 4 35

Figure 4-5. Binarizing song counts

Chapter 4 ■ Feature engineering and SeleCtion

189

4 it_01298 0.92101 9 92
5 it_90120 0.81212 8 81
6 it_10123 0.56502 6 57

Thus after our rounding operations, you can see the new features in the data depicted in the previous
dataframe. Basically we tried two forms of rounding. The features depict the item popularities now both on
a scale of 1-10 and on a scale of 1-100. You can use these values both as numerical or categorical features
based on the scenario and problem.

 Interactions
A model is usually built in such a way that we try to model the output responses (discrete classes or
continuous values) as a function of the input feature variables. For example, a simple linear regression
equation can be depicted as y = c

1
x

1
 + c

2
x

2
 + ... + c

n
x

n
 where the input features are depicted by variables {x

1
, x

2
,

... x
n
} having weights or coefficients of {c

1
, c

2
, ... c

n
} respectively and the goal is the predict response y. In this

case, this simple linear model depicts the relationship between the output and inputs, purely based on the
individual, separate input features.

However, often in several real-world datasets and scenarios, it makes sense to also try to capture the
interactions between these feature variables as a part of the input feature set. A simple depiction of the
extension of the above linear regression formulation with interaction features would be y = c

1
x

1
 + c

2
x

2
 + ... +

c
n
x

n
 + c

11
x

1
2 + c

22
x

2
2 + c

12
x

1
x

2
 + ... where features like {x

1
x

2
, x

1
2, ...} denote the interaction features. Let’s try

engineering some interaction features on our Pokémon dataset now.

In [9]: atk_def = poke_df[['Attack', 'Defense']]
 ...: atk_def.head()
Out[9]:
 Attack Defense
0 49 49
1 62 63
2 82 83
3 100 123
4 52 43

We can see in this output, the two numeric features depicting Pokémon attack and defense. The
following code helps us build interaction features from these two features. We will build features up to the
second degree using the PolynomialFeatures class from scikit-learn's API.

In [10]: from sklearn.preprocessing import PolynomialFeatures
 ...:
 ...: pf = PolynomialFeatures(degree=2, interaction_only=False, include_bias=False)
 ...: res = pf.fit_transform(atk_def)
 ...: res
Out[10]:
array([[49., 49., 2401., 2401., 2401.],
 [62., 63., 3844., 3906., 3969.],
 [82., 83., 6724., 6806., 6889.],
 ...,
 [110., 60., 12100., 6600., 3600.],
 [160., 60., 25600., 9600., 3600.],
 [110., 120., 12100., 13200., 14400.]])

Chapter 4 ■ Feature engineering and SeleCtion

190

We can clearly see from this output that we have a total of five features including the new interaction
features. We can see the degree of each feature in the matrix, using the following snippet.

In [11]: pd.DataFrame(pf.powers_, columns=['Attack_degree', 'Defense_degree'])
Out[11]:
 Attack_degree Defense_degree
0 1 0
1 0 1
2 2 0
3 1 1
4 0 2

Now that we know what each feature actually represented from the degrees depicted, we can assign a
name to each feature as follows to get the updated feature set.

In [12]: intr_features = pd.DataFrame(res,
 ...: columns=['Attack', 'Defense',
 ...: 'Attack^2', 'Attack x Defense', 'Defense^2'])
 ...: intr_features.head(5)
Out[12]:
 Attack Defense Attack^2 Attack x Defense Defense^2
0 49.0 49.0 2401.0 2401.0 2401.0
1 62.0 63.0 3844.0 3906.0 3969.0
2 82.0 83.0 6724.0 6806.0 6889.0
3 100.0 123.0 10000.0 12300.0 15129.0
4 52.0 43.0 2704.0 2236.0 1849.0

Thus we can see our original and interaction features in Figure 4-10. The fit_transform(...) API
function from scikit-learn is useful to build a feature engineering representation object on the training
data, which can be reused on new data during model predictions by calling on the transform(...) function.
Let’s take some sample new observations for Pokémon attack and defense features and try to transform
them using this same mechanism.

In [13]: new_df = pd.DataFrame([[95, 75],[121, 120], [77, 60]],
 ...: columns=['Attack', 'Defense'])
 ...: new_df
Out[13]:
 Attack Defense
0 95 75
1 121 120
2 77 60

We can now use the pf object that we created earlier and transform these input features to give us the
interaction features as follows.

In [14]: new_res = pf.transform(new_df)
 ...: new_intr_features = pd.DataFrame(new_res,
 ...: columns=['Attack', 'Defense',
 ...: 'Attack^2', 'Attack x Defense', 'Defense^2'])
 ...: new_intr_features
Out[14]:

Chapter 4 ■ Feature engineering and SeleCtion

191

 Attack Defense Attack^2 Attack x Defense Defense^2
0 95.0 75.0 9025.0 7125.0 5625.0
1 121.0 120.0 14641.0 14520.0 14400.0
2 77.0 60.0 5929.0 4620.0 3600.0

Thus you can see that we have successfully obtained the necessary interaction features for the new
dataset. Try building interaction features on three or more features now!

 Binning
Often when working with numeric data, you might come across features or attributes which depict raw
measures such as values or frequencies. In many cases, often the distributions of these attributes are skewed
in the sense that some sets of values will occur a lot and some will be very rare. Besides that, there is also the
added problem of varying range of these values. Suppose we are talking about song or video view counts.
In some cases, the view counts will be abnormally large and in some cases very small. Directly using these
features in modeling might cause issues. Metrics like similarity measures, cluster distances, regression
coefficients and more might get adversely affected if we use raw numeric features having values which range
across multiple orders of magnitude. There are various ways to engineer features from these raw values so
we can these issues. These methods include transformations, scaling and binning/quantization.

In this section, we will talk about binning which is also known as quantization. The operation of binning
is used for transforming continuous numeric values into discrete ones. These discrete numbers can be
thought of as bins into which the raw values or numbers are binned or grouped into. Each bin represents a
specific degree of intensity and has a specific range of values which must fall into that bin. There are various
ways of binning data which include fixed-width and adaptive binning. Specific techniques can be employed
for each binning process. We will use a dataset extracted from the 2016 FreeCodeCamp Developer/Coder
survey which talks about various attributes pertaining to coders and software developers. You can check it
out yourself at https://github.com/freeCodeCamp/2016-new-coder-survey for more details. Let’s load the
dataset and take a peek at some interesting attributes.

In [15]: fcc_survey_df = pd.read_csv('datasets/fcc_2016_coder_survey_subset.csv',
 encoding='utf-8')
 ...: fcc_survey_df[['ID.x', 'EmploymentField', 'Age', 'Income']].head()

The dataframe depicted in Figure 4-6 shows us some interesting attributes of the coder survey dataset,
some of which we will be analyzing in this section. The ID.x variable is basically a unique identifier for each
coder/developer who took the survey and the other fields are pretty self-explanatory.

Figure 4-6. Important attributes from the FCC coder survey dataset

https://github.com/freeCodeCamp/2016-new-coder-survey

Chapter 4 ■ Feature engineering and SeleCtion

192

Fixed-Width Binning
In fixed-width binning, as the name indicates, we have specific fixed widths for each of the bins, which are
usually pre-defined by the user analyzing the data. Each bin has a pre-fixed range of values which should be
assigned to that bin on the basis of some business or custom logic, rules, or necessary transformations.

Binning based on rounding is one of the ways, where you can use the rounding operation that we
discussed earlier to bin raw values. Let’s consider the Age feature from the coder survey dataset. The
following code shows the distribution of developer ages who took the survey.

In [16]: fig, ax = plt.subplots()
 ...: fcc_survey_df['Age'].hist(color='#A9C5D3')
 ...: ax.set_title('Developer Age Histogram', fontsize=12)
 ...: ax.set_xlabel('Age', fontsize=12)
 ...: ax.set_ylabel('Frequency', fontsize=12)

The histogram in Figure 4-7 depicts the distribution of developer ages, which is slightly right skewed as
expected. Let’s try to assign these raw age values into specific bins based on the following logic.

Age Range: Bin

 0 - 9 : 0
10 - 19 : 1
20 - 29 : 2
30 - 39 : 3

Figure 4-7. Histogram depicting developer age distribution

Chapter 4 ■ Feature engineering and SeleCtion

193

40 - 49 : 4
50 - 59 : 5
60 - 69 : 6
 ... and so on

We can easily do this using what we learned in the “Rounding” section earlier where we round off these
raw age values by taking the floor value after dividing it by 10. The following code depicts the same.

In [17]: fcc_survey_df['Age_bin_round'] = np.array(np.floor(np.array(fcc_survey_df['Age']) /
 10.))
 ...: fcc_survey_df[['ID.x', 'Age', 'Age_bin_round']].iloc[1071:1076]
Out[17]:
 ID.x Age Age_bin_round
1071 6a02aa4618c99fdb3e24de522a099431 17.0 1.0
1072 f0e5e47278c5f248fe861c5f7214c07a 38.0 3.0
1073 6e14f6d0779b7e424fa3fdd9e4bd3bf9 21.0 2.0
1074 c2654c07dc929cdf3dad4d1aec4ffbb3 53.0 5.0
1075 f07449fc9339b2e57703ec7886232523 35.0 3.0

We take a specific slice of the dataset (rows 1071-1076) to depict users of varying ages. You can see
the corresponding bins for each age have been assigned based on rounding. But what if we need more
flexibility? What if I want to decide and fix the bin widths myself?

Binning based on custom ranges is the answer to the all our questions about fixed-width binning,
some of which I just mentioned. Let’s define some custom age ranges for binning developer ages using the
following scheme.

Age Range : Bin

 0 - 15 : 1
16 - 30 : 2
31 - 45 : 3
46 - 60 : 4
61 - 75 : 5
75 - 100 : 6

Based on this custom binning scheme, we will now label the bins for each developer age value with the
help of the following code. We will store both the bin range as well as the corresponding label.

In [18]: bin_ranges = [0, 15, 30, 45, 60, 75, 100]
 ...: bin_names = [1, 2, 3, 4, 5, 6]
 ...: fcc_survey_df['Age_bin_custom_range'] = pd.cut(np.array(fcc_survey_df['Age']),
 ...: bins=bin_ranges)
 ...: fcc_survey_df['Age_bin_custom_label'] = pd.cut(np.array(fcc_survey_df['Age']),
 ...: bins=bin_ranges, labels=bin_names)
 ...: fcc_survey_df[['ID.x', 'Age', 'Age_bin_round',
 ...: 'Age_bin_custom_range', 'Age_bin_custom_label']].iloc[1071:1076]

Chapter 4 ■ Feature engineering and SeleCtion

194

We can see from the dataframe output in Figure 4-8 that the custom bins based on our scheme have
been assigned for each developer’s age. Try out some of your own binning schemes!

 Adaptive Binning
So far, we have decided the bin width and ranges in fixed-width binning. However, this technique can lead to
irregular bins that are not uniform based on the number of data points or values which fall in each bin. Some
of the bins might be densely populated and some of them might be sparsely populated or even be empty!
Adaptive binning is a safer and better approach where we use the data distribution itself to decide what
should be the appropriate bins.

Quantile based binning is a good strategy to use for adaptive binning. Quantiles are specific values or
cut-points which help in partitioning the continuous valued distribution of a specific numeric field into
discrete contiguous bins or intervals. Thus, q-Quantiles help in partitioning a numeric attribute into q equal
partitions. Popular examples of quantiles include the 2-Quantile known as the median which divides the
data distribution into two equal bins, 4-Quantiles known as the quartiles, which divide the data into four
equal bins and 10-Quantiles also known as the deciles which create 10 equal width bins. Let’s now look at a
slice of data pertaining to developer income values in our coder survey dataset.

In [19]: fcc_survey_df[['ID.x', 'Age', 'Income']].iloc[4:9]
Out[19]:
 ID.x Age Income
4 9368291c93d5d5f5c8cdb1a575e18bec 20.0 6000.0
5 dd0e77eab9270e4b67c19b0d6bbf621b 34.0 40000.0
6 7599c0aa0419b59fd11ffede98a3665d 23.0 32000.0
7 6dff182db452487f07a47596f314bddc 35.0 40000.0
8 9dc233f8ed1c6eb2432672ab4bb39249 33.0 80000.0

The slice of data depicted by the dataframe shows us the income values for each developer in our
dataset. Let’s look at the whole data distribution for this Income variable now using the following code.

In [20]: fig, ax = plt.subplots()
 ...: fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3')
 ...: ax.set_title('Developer Income Histogram', fontsize=12)
 ...: ax.set_xlabel('Developer Income', fontsize=12)
 ...: ax.set_ylabel('Frequency', fontsize=12)

Figure 4-8. Custom age binning for developer ages

Chapter 4 ■ Feature engineering and SeleCtion

195

We can see from the distribution depicted in Figure 4-9 that as expected there is a right skew with lesser
developers earning more money and vice versa. Let’s take a 4-Quantile or a quartile based adaptive binning
scheme. The following snippet helps us obtain the income values that fall on the four quartiles in the distribution.

In [21]: quantile_list = [0, .25, .5, .75, 1.]
 ...: quantiles = fcc_survey_df['Income'].quantile(quantile_list)
 ...: quantiles
Out[21]:
0.00 6000.0
0.25 20000.0
0.50 37000.0
0.75 60000.0
1.00 200000.0

To visualize the quartiles obtained in this output better, we can plot them in our data distribution using
the following code snippet.

In [22]: fig, ax = plt.subplots()
 ...: fcc_survey_df['Income'].hist(bins=30, color='#A9C5D3')
 ...:
 ...: for quantile in quantiles:
 ...: qvl = plt.axvline(quantile, color='r')
 ...: ax.legend([qvl], ['Quantiles'], fontsize=10)
 ...:
 ...: ax.set_title('Developer Income Histogram with Quantiles', fontsize=12)
 ...: ax.set_xlabel('Developer Income', fontsize=12)
 ...: ax.set_ylabel('Frequency', fontsize=12)

Figure 4-9. Histogram depicting developer income distribution

Chapter 4 ■ Feature engineering and SeleCtion

196

The 4-Quantile values for the income attribute are depicted by red vertical lines in Figure 4-10.
Let’s now use quantile binning to bin each of the developer income values into specific bins using the
following code.

In [23]: quantile_labels = ['0-25Q', '25-50Q', '50-75Q', '75-100Q']
 ...: fcc_survey_df['Income_quantile_range'] = pd.qcut(fcc_survey_df['Income'],
 ...: q=quantile_list)
 ...: fcc_survey_df['Income_quantile_label'] = pd.qcut(fcc_survey_df['Income'],
 ...: q=quantile_list,
 ...: labels=quantile_labels)
 ...: fcc_survey_df[['ID.x', 'Age', 'Income',
 'Income_quantile_range', 'Income_quantile_label']].iloc[4:9]

Figure 4-10. Histogram depicting developer income distribution with quartile values

Figure 4-11. Quantile based bin ranges and labels for developer incomes

Chapter 4 ■ Feature engineering and SeleCtion

197

The result dataframe depicted in Figure 4-11 clearly shows the quantile based bin range and
corresponding label assigned for each developer income value in the Income_quantile_range and
Income_quantile_labels features, respectively.

Statistical Transformations
Let’s look at a different strategy of feature engineering on numerical data by using statistical or mathematical
transformations. In this section, we will look at the Log transform as well as the Box-Cox transform. Both of
these transform functions belong to the Power Transform family of functions. These functions are typically
used to create monotonic data transformations, but their main significance is that they help in stabilizing
variance, adhering closely to the normal distribution and making the data independent of the mean based
on its distribution. Several transformations are also used as a part of feature scaling, which we cover in a
future section.

Log Transform
The log transform belongs to the power transform family of functions. This function can be defined as
y = log

b
(x) which reads as log of x to the base b is equal to y. This translates to by = x, which indicates as

to what power must the base b be raised to in order to get x. The natural logarithm uses the base b = e
where e = 2.71828 popularly known as Euler’s number. You can also use base b = 10 used popularly in the
decimal system. Log transforms are useful when applied to skewed distributions as they tend to expand
the values which fall in the range of lower magnitudes and tend to compress or reduce the values which
fall in the range of higher magnitudes. This tends to make the skewed distribution as normal-like as
possible. Let’s use log transform on our developer income feature from our coder survey dataset.

In [24]: fcc_survey_df['Income_log'] = np.log((1+ fcc_survey_df['Income']))
 ...: fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_log']].iloc[4:9]
Out[24]:
 ID.x Age Income Income_log
4 9368291c93d5d5f5c8cdb1a575e18bec 20.0 6000.0 8.699681
5 dd0e77eab9270e4b67c19b0d6bbf621b 34.0 40000.0 10.596660
6 7599c0aa0419b59fd11ffede98a3665d 23.0 32000.0 10.373522
7 6dff182db452487f07a47596f314bddc 35.0 40000.0 10.596660
8 9dc233f8ed1c6eb2432672ab4bb39249 33.0 80000.0 11.289794

The dataframe obtained in this output depicts the log transformed income feature in the Income_log
field. Let’s now plot the data distribution of this transformed feature using the following code.

In [25]: income_log_mean = np.round(np.mean(fcc_survey_df['Income_log']), 2)
 ...:
 ...: fig, ax = plt.subplots()
 ...: fcc_survey_df['Income_log'].hist(bins=30, color='#A9C5D3')
 ...: plt.axvline(income_log_mean, color='r')
 ...: ax.set_title('Developer Income Histogram after Log Transform', fontsize=12)
 ...: ax.set_xlabel('Developer Income (log scale)', fontsize=12)
 ...: ax.set_ylabel('Frequency', fontsize=12)
 ...: ax.text(11.5, 450, r'μ='+str(income_log_mean), fontsize=10)

Chapter 4 ■ Feature engineering and SeleCtion

198

Figure 4-12. Histogram depicting developer income distribution after log transform

Thus we can clearly see that the original developer income distribution that was right skewed in
Figure 4-10 is more Gaussian or normal-like in Figure 4-12 after applying the log transform.

 Box-Cox Transform
Let’s now look at the Box-Cox transform, another popular function belonging to the power transform family
of functions. This function has a prerequisite that the numeric values to be transformed must be positive
(similar to what log transform expects). In case they are negative, shifting using a constant value helps.
Mathematically, the Box-Cox transform function can be defined as,

y f x x
x

for

x fore

= () = =
-

>

() =

ì

í
ï

îï

ü

ý
ï

þï
,

log
l l

l

l

l

l 1
0

0

Such that the resulted transformed output y is a function of input x and transformation parameter λ
such that when λ = 0, the resultant transform is the natural log transform, which we discussed earlier. The
optimal value of λ is usually determined using a maximum likelihood or log-likelihood estimation. Let’s
apply the Box-Cox transform on our developer income feature. To do this, first we get the optimal lambda
value from the data distribution by removing the non-null values using the following code.

Chapter 4 ■ Feature engineering and SeleCtion

199

In [26]: # get optimal lambda value from non null income values
 ...: income = np.array(fcc_survey_df['Income'])
 ...: income_clean = income[~np.isnan(income)]
 ...: l, opt_lambda = spstats.boxcox(income_clean)
 ...: print('Optimal lambda value:', opt_lambda)
Optimal lambda value: 0.117991239456

Now that we have obtained the optimal λ value, let’s use the Box-Cox transform for two values of λ such
that λ = 0 & λ = λ

optimal
 and transform the raw numeric values pertaining to developer incomes.

In [27]: fcc_survey_df['Income_boxcox_lambda_0'] = spstats.boxcox((1+fcc_survey_df['Income']),
 ...: lmbda=0)
 ...: fcc_survey_df['Income_boxcox_lambda_opt'] = spstats.boxcox(fcc_survey_df['Income'],
 ...: lmbda=opt_lambda)
 ...: fcc_survey_df[['ID.x', 'Age', 'Income', 'Income_log',
 ...: 'Income_boxcox_lambda_0', 'Income_boxcox_lambda_opt']].iloc[4:9]

The dataframe obtained in the output shown in Figure 4-13 depicts the income feature after applying
the Box-Cox transform for λ = 0 and λ = λ

optimal
 in the Income_boxcox_lambda_0 and Income_boxcox_lambda_

opt fields respectively. Also as expected, the Income_log field has the same values as the Box-Cox transform
with λ = 0. Let’s now plot the data distribution for the Box-Cox transformed developer values with optimal
lambda. See Figure 4-14.

In [30]: income_boxcox_mean = np.round(np.mean(fcc_survey_df['Income_boxcox_lambda_opt']), 2)
 ...:
 ...: fig, ax = plt.subplots()
 ...: fcc_survey_df['Income_boxcox_lambda_opt'].hist(bins=30, color='#A9C5D3')
 ...: plt.axvline(income_boxcox_mean, color='r')
 ...: ax.set_title('Developer Income Histogram after Box–Cox Transform', fontsize=12)
 ...: ax.set_xlabel('Developer Income (Box–Cox transform)', fontsize=12)
 ...: ax.set_ylabel('Frequency', fontsize=12)
 ...: ax.text(24, 450, r'μ='+str(income_boxcox_mean), fontsize=10)

Figure 4-13. Dataframe depicting developer income distribution after box-cox transform

Chapter 4 ■ Feature engineering and SeleCtion

200

The distribution of the transformed numeric values for developer income after the Box-Cox distribution
also look similar to the one we had obtained after the Log transform such that it is more normal-like and the
extreme right skew that was present in the raw data has been minimized here.

Feature Engineering on Categorical Data
So far, we have been working on continuous numeric data and you have also seen various techniques for
engineering features from the same. We will now look at another structured data type, which is categorical
data. Any attribute or feature that is categorical in nature represents discrete values that belong to a specific
finite set of categories or classes. Category or class labels can be text or numeric in nature. Usually there are
two types of categorical variables—nominal and ordinal.

Nominal categorical features are such that there is no concept of ordering among the values, i.e., it does
not make sense to sort or order them. Movie or video game genres, weather seasons, and country names are
some examples of nominal attributes. Ordinal categorical variables can be ordered and sorted on the basis of
their values and hence these values have specific significance such that their order makes sense. Examples
of ordinal attributes include clothing size, education level, and so on.

In this section, we look at various strategies and techniques for transforming and encoding categorical
features and attributes. The code used for this section is available in the code files for this chapter. You can
load feature_engineering_categorical.py directly and start running the examples or use the jupyter
notebook, Feature Engineering on Categorical Data.ipynb, for a more interactive experience. Before
we begin, let’s load the following dependencies.

In [1]: import pandas as pd
 ...: import numpy as np

Figure 4-14. Histogram depicting developer income distribution after box-cox transform (λ = λ
optimal

)

Chapter 4 ■ Feature engineering and SeleCtion

201

Once you have these dependencies loaded, let’s get started and engineer some features from
categorical data.

Transforming Nominal Features
Nominal features or attributes are categorical variables that usually have a finite set of distinct discrete
values. Often these values are in string or text format and Machine Learning algorithms cannot understand
them directly. Hence usually you might need to transform these features into a more representative numeric
format. Let’s look at a new dataset pertaining to video game sales. This dataset is also available on Kaggle
(https://www.kaggle.com/gregorut/videogamesales). We have downloaded a copy of this for your
convenience. The following code helps us load this dataset and view some of the attributes of our interest.

In [2]: vg_df = pd.read_csv('datasets/vgsales.csv', encoding='utf-8')
 ...: vg_df[['Name', 'Platform', 'Year', 'Genre', 'Publisher']].iloc[1:7]
Out[2]:
 Name Platform Year Genre Publisher
1 Super Mario Bros. NES 1985.0 Platform Nintendo
2 Mario Kart Wii Wii 2008.0 Racing Nintendo
3 Wii Sports Resort Wii 2009.0 Sports Nintendo
4 Pokemon Red/Pokemon Blue GB 1996.0 Role-Playing Nintendo
5 Tetris GB 1989.0 Puzzle Nintendo
6 New Super Mario Bros. DS 2006.0 Platform Nintendo

The dataset depicted in this dataframe shows us various attributes pertaining to video games. Features
like Platform, Genre, and Publisher are nominal categorical variables. Let’s now try to transform the video
game Genre feature into a numeric representation. Do note here that this doesn’t indicate that the transformed
feature will be a numeric feature. It will still be a discrete valued categorical feature with numbers instead of
text for each genre. The following code depicts the total distinct genre labels for video games.

In [3]: genres = np.unique(vg_df['Genre'])
 ...: genres
Out[3]:
array(['Action', 'Adventure', 'Fighting', 'Misc', 'Platform', 'Puzzle',
 'Racing', 'Role-Playing', 'Shooter', 'Simulation', 'Sports',
 'Strategy'], dtype=object)

This output tells us we have 12 distinct video game genres in our dataset. Let’s transform this feature
now using a mapping scheme in the following code.

In [4]: from sklearn.preprocessing import LabelEncoder
 ...:
 ...: gle = LabelEncoder()
 ...: genre_labels = gle.fit_transform(vg_df['Genre'])
 ...: genre_mappings = {index: label for index, label in enumerate(gle.classes_)}
 ...: genre_mappings
Out[4]:
{0: 'Action', 1: 'Adventure', 2: 'Fighting', 3: 'Misc',
 4: 'Platform', 5: 'Puzzle', 6: 'Racing', 7: 'Role-Playing',
 8: 'Shooter', 9: 'Simulation', 10: 'Sports', 11: 'Strategy'}

https://www.kaggle.com/gregorut/videogamesales

Chapter 4 ■ Feature engineering and SeleCtion

202

From the output, we can see that a mapping scheme has been generated where each genre value is
mapped to a number with the help of the LabelEncoder object gle. The transformed labels are stored in the
genre_labels value. Let’s write it back to the original dataframe and view the results.

In [5]: vg_df['GenreLabel'] = genre_labels
 ...: vg_df[['Name', 'Platform', 'Year', 'Genre', 'GenreLabel']].iloc[1:7]
Out[5]:
 Name Platform Year Genre GenreLabel
1 Super Mario Bros. NES 1985.0 Platform 4
2 Mario Kart Wii Wii 2008.0 Racing 6
3 Wii Sports Resort Wii 2009.0 Sports 10
4 Pokemon Red/Pokemon Blue GB 1996.0 Role-Playing 7
5 Tetris GB 1989.0 Puzzle 5
6 New Super Mario Bros. DS 2006.0 Platform 4

The GenreLabel field depicts the mapped numeric labels for each of the Genre labels and we can clearly
see that this adheres to the mappings that we generated earlier.

 Transforming Ordinal Features
Ordinal features are similar to nominal features except that order matters and is an inherent property with
which we can interpret the values of these features. Like nominal features, even ordinal features might be
present in text form and you need to map and transform them into their numeric representation. Let’s now
load our Pokémon dataset that we used earlier and look at the various values of the Generation attribute for
each Pokémon.

In [6]: poke_df = pd.read_csv('datasets/Pokemon.csv', encoding='utf-8')
 ...: poke_df = poke_df.sample(random_state=1, frac=1).reset_index(drop=True)
 ...:
 ...: np.unique(poke_df['Generation'])
Out[6]: array(['Gen 1', 'Gen 2', 'Gen 3', 'Gen 4', 'Gen 5', 'Gen 6'], dtype=object)

We resample the dataset in this code just so we can get a good slice of data later on that represents
all the distinct values which we are looking for. From this output we can see that there are a total of six
generations of Pokémon. This attribute is definitely ordinal because Pokémon belonging to Generation 1
were introduced earlier in the video games and the television shows than Generation 2 and so on. Hence
they have a sense of order among them. Unfortunately, since there is a specific logic or set of rules involved
in case of each ordinal variable, there is no generic module or function to map and transform these features
into numeric representations. Hence we need to hand-craft this using our own logic, which is depicted in the
following code snippet.

In [7]: gen_ord_map = {'Gen 1': 1, 'Gen 2': 2, 'Gen 3': 3,
 ...: 'Gen 4': 4, 'Gen 5': 5, 'Gen 6': 6}
 ...:
 ...: poke_df['GenerationLabel'] = poke_df['Generation'].map(gen_ord_map)
 ...: poke_df[['Name', 'Generation', 'GenerationLabel']].iloc[4:10]
Out[7]:
 Name Generation GenerationLabel
4 Octillery Gen 2 2
5 Helioptile Gen 6 6
6 Dialga Gen 4 4

Chapter 4 ■ Feature engineering and SeleCtion

203

7 DeoxysDefense Forme Gen 3 3
8 Rapidash Gen 1 1
9 Swanna Gen 5 5

Thus, you can see that it is really easy to build your own transformation mapping scheme with the help
of Python dictionaries and use the map(...) function from pandas to transform the ordinal feature.

Encoding Categorical Features
We have mentioned several times in the past that Machine Learning algorithms usually work well with
numerical values. You might now be wondering we already transformed and mapped the categorical
variables into numeric representations in the previous sections so why would we need more levels
of encoding again? The answer to this is pretty simple. If we directly fed these transformed numeric
representations of categorical features into any algorithm, the model will essentially try to interpret these as
raw numeric features and hence the notion of magnitude will be wrongly introduced in the system.

A simple example would be from our previous output dataframe, a model fit on GenerationLabel
would think that value 6 > 5 > 4 and so on. While order is important in the case of Pokémon generations
(ordinal variable), there is no notion of magnitude here. Generation 6 is not larger than Generation 5 and
Generation 1 is not smaller than Generation 6. Hence models built using these features directly would
be sub-optimal and incorrect models. There are several schemes and strategies where dummy features are
created for each unique value or label out of all the distinct categories in any feature. In the subsequent
sections, we will discuss some of these schemes including one hot encoding, dummy coding, effect coding,
and feature hashing schemes.

One Hot Encoding Scheme
Considering we have numeric representation of any categorical feature with m labels, the one hot encoding
scheme, encodes or transforms the feature into m binary features, which can only contain a value of 1 or
0. Each observation in the categorical feature is thus converted into a vector of size m with only one of the
values as 1 (indicating it as active). Let’s take our Pokémon dataset and perform some one hot encoding
transformations on some of its categorical features.

In [8]: poke_df[['Name', 'Generation', 'Legendary']].iloc[4:10]
Out[8]:
 Name Generation Legendary
4 Octillery Gen 2 False
5 Helioptile Gen 6 False
6 Dialga Gen 4 True
7 DeoxysDefense Forme Gen 3 True
8 Rapidash Gen 1 False
9 Swanna Gen 5 False

Considering the dataframe depicted in the output, we have two categorical features, Generation and
Legendary, depicting the Pokémon generations and their legendary status. First, we need to transform these
text labels into numeric representations. The following code helps us achieve this.

In [9]: from sklearn.preprocessing import OneHotEncoder, LabelEncoder
 ...:
 ...: # transform and map pokemon generations
 ...: gen_le = LabelEncoder()

Chapter 4 ■ Feature engineering and SeleCtion

204

 ...: gen_labels = gen_le.fit_transform(poke_df['Generation'])
 ...: poke_df['Gen_Label'] = gen_labels
 ...:
 ...: # transform and map pokemon legendary status
 ...: leg_le = LabelEncoder()
 ...: leg_labels = leg_le.fit_transform(poke_df['Legendary'])
 ...: poke_df['Lgnd_Label'] = leg_labels
 ...:
 ...: poke_df_sub = poke_df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd_Label']]
 ...: poke_df_sub.iloc[4:10]
Out[9]:
 Name Generation Gen_Label Legendary Lgnd_Label
4 Octillery Gen 2 1 False 0
5 Helioptile Gen 6 5 False 0
6 Dialga Gen 4 3 True 1
7 DeoxysDefense Forme Gen 3 2 True 1
8 Rapidash Gen 1 0 False 0
9 Swanna Gen 5 4 False 0

The features Gen_Label and Lgnd_Label now depict the numeric representations of our categorical
features. Let’s now apply the one hot encoding scheme on these features using the following code.

In [10]: # encode generation labels using one-hot encoding scheme
 ...: gen_ohe = OneHotEncoder()
 ...: gen_feature_arr = gen_ohe.fit_transform(poke_df[['Gen_Label']]).toarray()
 ...: gen_feature_labels = list(gen_le.classes_)
 ...: gen_features = pd.DataFrame(gen_feature_arr, columns=gen_feature_labels)
 ...:
 ...: # encode legendary status labels using one-hot encoding scheme
 ...: leg_ohe = OneHotEncoder()
 ...: leg_feature_arr = leg_ohe.fit_transform(poke_df[['Lgnd_Label']]).toarray()
 ...: leg_feature_labels = ['Legendary_'+str(cls_label) for cls_label in leg_le.classes_]
 ...: leg_features = pd.DataFrame(leg_feature_arr, columns=leg_feature_labels)

Now, you should remember that you can always encode both the features together using the fit_
transform(...) function by passing it a two-dimensional array of the two features. But we are depicting this
encoding for each feature separately, to make things easier to understand. Besides this, we can also create
separate dataframes and label them accordingly. Let’s now concatenate these feature frames and see the
final result.

In [11]: poke_df_ohe = pd.concat([poke_df_sub, gen_features, leg_features], axis=1)
 ...: columns = sum([['Name', 'Generation', 'Gen_Label'],gen_feature_labels,
 ...: ['Legendary', 'Lgnd_Label'],leg_feature_labels], [])
 ...: poke_df_ohe[columns].iloc[4:10]

Chapter 4 ■ Feature engineering and SeleCtion

205

From the result feature set depicted in Figure 4-15, we can clearly see the new one hot encoded features
for Gen_Label and Lgnd_Label. Each of these one hot encoded features is binary in nature and if they
contain the value 1, it means that feature is active for the corresponding observation. For example, row 6
indicates the Pokémon Dialga is a Gen 4 Pokémon having Gen_Label 3 (mapping starts from 0) and the
corresponding one hot encoded feature Gen 4 has the value 1 and the remaining one hot encoded features
are 0. Similarly, its Legendary status is True, corresponding Lgnd_Label is 1 and the one hot encoded feature
Legendary_True is also 1, indicating it is active.

Suppose we used this data in training and building a model but now we have some new Pokémon data
for which we need to engineer the same features before we want to run it by our trained model. We can use
the transform(...) function for our LabelEncoder and OneHotEncoder objects, which we have previously
constructed to engineer the features from the training data. The following code shows us two dummy data
points pertaining to new Pokémon.

In [12]: new_poke_df = pd.DataFrame([['PikaZoom', 'Gen 3', True],
 ...: ['CharMyToast', 'Gen 4', False]],
 ...: columns=['Name', 'Generation', 'Legendary'])
 ...: new_poke_df
Out[12]:
 Name Generation Legendary
0 PikaZoom Gen 3 True
1 CharMyToast Gen 4 False

We will follow the same process as before of first converting the text categories into numeric
representations using our previously built LabelEncoder objects, as depicted in the following code.

In [13]: new_gen_labels = gen_le.transform(new_poke_df['Generation'])
 ...: new_poke_df['Gen_Label'] = new_gen_labels
 ...:
 ...: new_leg_labels = leg_le.transform(new_poke_df['Legendary'])
 ...: new_poke_df['Lgnd_Label'] = new_leg_labels
 ...:
 ...: new_poke_df[['Name', 'Generation', 'Gen_Label', 'Legendary', 'Lgnd_Label']]
Out[13]:
 Name Generation Gen_Label Legendary Lgnd_Label
0 PikaZoom Gen 3 2 True 1
1 CharMyToast Gen 4 3 False 0

We can now use our previously built LabelEncoder objects and perform one hot encoding on these new
data observations using the following code. See Figure 4-16.

Figure 4-15. Feature set depicting one hot encoded features for Pokémon generation and legendary status

Chapter 4 ■ Feature engineering and SeleCtion

206

In [14]: new_gen_feature_arr = gen_ohe.transform(new_poke_df[['Gen_Label']]).toarray()
 ...: new_gen_features = pd.DataFrame(new_gen_feature_arr, columns=gen_feature_labels)
 ...:
 ...: new_leg_feature_arr = leg_ohe.transform(new_poke_df[['Lgnd_Label']]).toarray()
 ...: new_leg_features = pd.DataFrame(new_leg_feature_arr, columns=leg_feature_labels)
 ...:
 ...: new_poke_ohe = pd.concat([new_poke_df, new_gen_features, new_leg_features], axis=1)
 ...: columns = sum([['Name', 'Generation', 'Gen_Label'], gen_feature_labels,
 ...: ['Legendary', 'Lgnd_Label'], leg_feature_labels], [])
 ...: new_poke_ohe[columns]

Thus, you can see how we used the fit_transform(...) functions to engineer features on our
dataset and then we were able to use the encoder objects to engineer features on new data using the
transform(...) function based on the data what it observed previously, specifically the distinct categories
and their corresponding labels and one hot encodings. You should always follow this workflow in the future
for any type of feature engineering when you deal with training and test datasets when you build models.
Pandas also provides a wonderful function called to_dummies(...), which helps us easily perform one hot
encoding. The following code depicts how to achieve this.

In [15]: gen_onehot_features = pd.get_dummies(poke_df['Generation'])
 ...: pd.concat([poke_df[['Name', 'Generation']], gen_onehot_features], axis=1).
iloc[4:10]
Out[15]:
 Name Generation Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
4 Octillery Gen 2 0 1 0 0 0 0
5 Helioptile Gen 6 0 0 0 0 0 1
6 Dialga Gen 4 0 0 0 1 0 0
7 DeoxysDefense Forme Gen 3 0 0 1 0 0 0
8 Rapidash Gen 1 1 0 0 0 0 0
9 Swanna Gen 5 0 0 0 0 1 0

The output depicts the one hot encoding scheme for Pokémon generation values similar to what we
depicted in our previous analyses.

Dummy Coding Scheme
The dummy coding scheme is similar to the one hot encoding scheme, except in the case of dummy coding
scheme, when applied on a categorical feature with m distinct labels, we get m-1 binary features. Thus each
value of the categorical variable gets converted into a vector of size m-1. The extra feature is completely
disregarded and thus if the category values range from {0, 1, ..., m-1} the 0th or the m-1th feature is usually
represented by a vector of all zeros (0).

Figure 4-16. Feature set depicting one hot encoded features for new pokemon data points

Chapter 4 ■ Feature engineering and SeleCtion

207

The following code depicts the dummy coding scheme on Pokémon Generation by dropping the first
level binary encoded feature (Gen 1).

In [16]: gen_dummy_features = pd.get_dummies(poke_df['Generation'], drop_first=True)
 ...: pd.concat([poke_df[['Name', 'Generation']], gen_dummy_features], axis=1).iloc[4:10]
Out[16]:
 Name Generation Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
4 Octillery Gen 2 1 0 0 0 0
5 Helioptile Gen 6 0 0 0 0 1
6 Dialga Gen 4 0 0 1 0 0
7 DeoxysDefense Forme Gen 3 0 1 0 0 0
8 Rapidash Gen 1 0 0 0 0 0
9 Swanna Gen 5 0 0 0 1 0

If you want, you can also choose to drop the last level binary encoded feature (Gen 6) by using the
following code.

In [17]: gen_onehot_features = pd.get_dummies(poke_df['Generation'])
 ...: gen_dummy_features = gen_onehot_features.iloc[:,:-1]
 ...: pd.concat([poke_df[['Name', 'Generation']], gen_dummy_features], axis=1).iloc[4:10]
Out[17]:
 Name Generation Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
4 Octillery Gen 2 0 1 0 0 0
5 Helioptile Gen 6 0 0 0 0 0
6 Dialga Gen 4 0 0 0 1 0
7 DeoxysDefense Forme Gen 3 0 0 1 0 0
8 Rapidash Gen 1 1 0 0 0 0
9 Swanna Gen 5 0 0 0 0 1

Thus from these outputs you can see that based on the encoded level binary feature which we drop, that
particular categorical value is represented by a vector/encoded features, which all represent 0. For example
in the previous result feature set, Pokémon Heloptile belongs to Gen 6 and is represented by all 0s in the
encoded dummy features.

 Effect Coding Scheme
The effect coding scheme is very similar to the dummy coding scheme in most aspects. However, the
encoded features or feature vector, for the category values that represent all 0s in the dummy coding scheme,
is replaced by -1s in the effect coding scheme. The following code depicts the effect coding scheme on the
Pokémon Generation feature.

In [18]: gen_onehot_features = pd.get_dummies(poke_df['Generation'])
 ...: gen_effect_features = gen_onehot_features.iloc[:,:-1]
 ...: gen_effect_features.loc[np.all(gen_effect_features == 0, axis=1)] = -1.
 ...: pd.concat([poke_df[['Name', 'Generation']], gen_effect_features], axis=1).iloc[4:10]
Out[18]:
 Name Generation Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
4 Octillery Gen 2 0.0 1.0 0.0 0.0 0.0
5 Helioptile Gen 6 -1.0 -1.0 -1.0 -1.0 -1.0
6 Dialga Gen 4 0.0 0.0 0.0 1.0 0.0

Chapter 4 ■ Feature engineering and SeleCtion

208

7 DeoxysDefense Forme Gen 3 0.0 0.0 1.0 0.0 0.0
8 Rapidash Gen 1 1.0 0.0 0.0 0.0 0.0
9 Swanna Gen 5 0.0 0.0 0.0 0.0 1.0

We can clearly see from the output feature set that all 0s have been replaced by -1 in case of values
which were previously all 0 in the dummy coding scheme.

Bin-Counting Scheme
The encoding schemes discovered so far work quite well on categorical data in general, but they start
causing problems when the number of distinct categories in any feature becomes very large. Essential for
any categorical feature of m distinct labels, you get m separate features. This can easily increase the size of
the feature set causing problems like storage issues, model training problems with regard to time, space
and memory. Besides this, we also have to deal with what is popularly known as the curse of dimensionality
where basically with an enormous number of features and not enough representative samples, model
performance starts getting affected. Hence we need to look toward other categorical data feature
engineering schemes for features having a large number of possible categories (like IP addresses).

The bin-counting scheme is useful for dealing with categorical variables with many categories. In
this scheme, instead of using the actual label values for encoding, we use probability based statistical
information about the value and the actual target or response value which we aim to predict in our modeling
efforts. A simple example would be based on past historical data for IP addresses and the ones which were
used in DDOS attacks; we can build probability values for a DDOS attack being caused by any of the IP
addresses. Using this information, we can encode an input feature which depicts that if the same IP address
comes in the future, what is the probability value of a DDOS attack being caused. This scheme needs
historical data as a pre-requisite and is an elaborate one. Depicting this with a complete example is out of
scope of this chapter but there are several resources online that you can refer to.

 Feature Hashing Scheme
The feature hashing scheme is another useful feature engineering scheme for dealing with large scale
categorical features. In this scheme, a hash function is typically used with the number of encoded features
pre-set (as a vector of pre-defined length) such that the hashed values of the features are used as indices in
this pre-defined vector and values are updated accordingly. Since a hash function maps a large number of
values into a small finite set of values, multiple different values might create the same hash which is termed
as collisions. Typically, a signed hash function is used so that the sign of the value obtained from the hash is
used as the sign of the value which is stored in the final feature vector at the appropriate index. This should
ensure lesser collisions and lesser accumulation of error due to collisions.

Hashing schemes work on strings, numbers and other structures like vectors. You can think of hashed
outputs as a finite set of h bins such that when hash function is applied on the same values, they get assigned
to the same bin out of the h bins based on the hash value. We can assign the value of h, which becomes the
final size of the encoded feature vector for each categorical feature we encode using the feature hashing
scheme. Thus even if we have over 1000 distinct categories in a feature and we set h = 10, the output feature
set will still have only 10 features as compared to 1000 features if we used a one hot encoding scheme.

Let’s look at the following code snippet, which shows us the number of distinct genres we have in our
video game dataset.

In [19]: unique_genres = np.unique(vg_df[['Genre']])
 ...: print("Total game genres:", len(unique_genres))
 ...: print(unique_genres)

Chapter 4 ■ Feature engineering and SeleCtion

209

Total game genres: 12
['Action' 'Adventure' 'Fighting' 'Misc' 'Platform' 'Puzzle' 'Racing'
 'Role-Playing' 'Shooter' 'Simulation' 'Sports' 'Strategy']

We can clearly see from the output that there are 12 distinct genres and if we used a one hot encoding
scheme on the Genre feature, we would end up having 12 binary features. Instead, we will now use a feature
hashing scheme by leveraging scikit-learn's FeatureHasher class, which uses a signed 32-bit version of
the Murmurhash3 hash function. The following code shows us how to use the feature hashing scheme where
we will pre-set the feature vector size to be 6 (6 features instead of 12).

In [21]: from sklearn.feature_extraction import FeatureHasher
 ...:
 ...: fh = FeatureHasher(n_features=6, input_type='string')
 ...: hashed_features = fh.fit_transform(vg_df['Genre'])
 ...: hashed_features = hashed_features.toarray()
 ...: pd.concat([vg_df[['Name', 'Genre']], pd.DataFrame(hashed_features)], axis=1).

iloc[1:7]
Out[21]:
 Name Genre 0 1 2 3 4 5
1 Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0
2 Mario Kart Wii Racing -1.0 0.0 0.0 0.0 0.0 -1.0
3 Wii Sports Resort Sports -2.0 2.0 0.0 -2.0 0.0 0.0
4 Pokemon Red/Pokemon Blue Role-Playing -1.0 1.0 2.0 0.0 1.0 -1.0
5 Tetris Puzzle 0.0 1.0 1.0 -2.0 1.0 -1.0
6 New Super Mario Bros. Platform 0.0 2.0 2.0 -1.0 1.0 0.0

Thus we can clearly see from the result feature set that the Genre categorical feature has been encoded
using the hashing scheme into 6 features instead of 12. We can also see that rows 1 and 6 denote the same
genre of games, Platform which have been rightly encoded into the same feature vector as expected.

Feature Engineering on Text Data
Dealing with structured data attributes like numeric or categorical variables are usually not as challenging
as unstructured attributes like text and images. In case of unstructured data like text documents, the first
challenge is dealing with the unpredictable nature of the syntax, format, and content of the documents,
which make it a challenge to extract useful information for building models. The second challenge is
transforming these textual representations into numeric representations that can be understood by Machine
Learning algorithms. There exist various feature engineering techniques employed by data scientists
daily to extract numeric feature vectors from unstructured text. In this section, we discuss several of these
techniques. Before we get started, you should remember that there are two aspects to execute feature
engineering on text data.

•	 Pre-processing and normalizing text

•	 Feature extraction and engineering

Without text pre-processing and normalization, the feature engineering techniques will not work
at their core efficiency hence it is of paramount importance to pre-process textual documents. You can
load feature_engineering_text.py directly and start running the examples or use the jupyter notebook,
Feature Engineering on Text Data.ipynb, for a more interactive experience. Let’s load the following
necessary dependencies before we start.

Chapter 4 ■ Feature engineering and SeleCtion

210

In [1]: import pandas as pd
 ...: import numpy as np
 ...: import re
 ...: import nltk

Let’s now load some sample text documents, do some basic pre-processing, and learn about various
feature engineering strategies to deal with text data. The following code creates our sample text corpus (a
collection of text documents), which we will use in this section.

In [2]: corpus = ['The sky is blue and beautiful.',
 ...: 'Love this blue and beautiful sky!',
 ...: 'The quick brown fox jumps over the lazy dog.',
 ...: 'The brown fox is quick and the blue dog is lazy!',
 ...: 'The sky is very blue and the sky is very beautiful today',
 ...: 'The dog is lazy but the brown fox is quick!'
 ...:]
 ...: labels = ['weather', 'weather', 'animals', 'animals', 'weather', 'animals']
 ...: corpus = np.array(corpus)
 ...: corpus_df = pd.DataFrame({'Document': corpus,
 ...: 'Category': labels})
 ...: corpus_df = corpus_df[['Document', 'Category']]
 ...: corpus_df
Out[2]:
 Document Category
0 The sky is blue and beautiful. weather
1 Love this blue and beautiful sky! weather
2 The quick brown fox jumps over the lazy dog. animals
3 The brown fox is quick and the blue dog is lazy! animals
4 The sky is very blue and the sky is very beaut... weather
5 The dog is lazy but the brown fox is quick! animals

We can see that we have a total of six documents, where three of them are relevant to weather and the
other three talk about animals as depicted by the Category class label.

Text Pre-Processing
Before feature engineering, we need to pre-process, clean, and normalize the text like we mentioned before.
There are multiple pre-processing techniques, some of which are quite elaborate. We will not be going into
a lot of details in this section but we will be covering a lot of them in further detail in a future chapter when
we work on text classification and sentiment analysis. Following are some of the popular pre-processing
techniques.

•	 Text tokenization and lower casing

•	 Removing special characters

•	 Contraction expansion

•	 Removing stopwords

•	 Correcting spellings

•	 Stemming

•	 Lemmatization

Chapter 4 ■ Feature engineering and SeleCtion

211

For more details on these topics, you can jump ahead to Chapter 7 of this book or refer to the section
“Text Normalization,” Chapter 3, page 115 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016).
which covers each of these techniques in detail. We will be normalizing our text here by lowercasing,
removing special characters, tokenizing, and removing stopwords. The following code helps us achieve this.

In [3]: wpt = nltk.WordPunctTokenizer()
 ...: stop_words = nltk.corpus.stopwords.words('english')
 ...:
 ...: def normalize_document(doc):
 ...: # lower case and remove special characters\whitespaces
 ...: doc = re.sub(r'[^a-zA-Z0-9\s]', '', doc, re.I)
 ...: doc = doc.lower()
 ...: doc = doc.strip()
 ...: # tokenize document
 ...: tokens = wpt.tokenize(doc)
 ...: # filter stopwords out of document
 ...: filtered_tokens = [token for token in tokens if token not in stop_words]
 ...: # re-create document from filtered tokens
 ...: doc = ' '.join(filtered_tokens)
 ...: return doc
 ...:
 ...: normalize_corpus = np.vectorize(normalize_document)

The np.vectorize(...) function helps us run the same function over all elements of a numpy array
instead of writing a loop. We will now use this function to pre-process our text corpus.

In [4]: norm_corpus = normalize_corpus(corpus)
 ...: norm_corpus
Out[4]:
array(['sky blue beautiful', 'love blue beautiful sky',
 'quick brown fox jumps lazy dog', 'brown fox quick blue dog lazy',
 'sky blue sky beautiful today', 'dog lazy brown fox quick'],
 dtype='<U32')

You can compare each text document with its original form in our initial dataframe. You will see that
each document is in the lowercase, special symbols have been removed and stopwords (words which carry
little meaning like articles, pronouns, etc.) have been removed. We can now engineer features from this pre-
processed corpus.

 Bag of Words Model
This is perhaps one of the simplest yet effective schemes of vectorizing features from unstructured text. The
core principle of this model is to convert text documents into numeric vectors. The dimension or size of each
vector is N where N indicates all possible distinct words across the corpus of documents. Each document
once transformed is a numeric vector of size N where the values or weights in the vector indicate the
frequency of each word in that specific document. The following code helps us vectorize the text corpus into
numeric feature vectors.

In [5]: from sklearn.feature_extraction.text import CountVectorizer
 ...:
 ...: cv = CountVectorizer(min_df=0., max_df=1.)

http://dx.doi.org/10.1007/978-1-4842-3207-1_7
http://dx.doi.org/10.1007/978-1-4842-3207-1_3

Chapter 4 ■ Feature engineering and SeleCtion

212

 ...: cv_matrix = cv.fit_transform(norm_corpus)
 ...: cv_matrix = cv_matrix.toarray()
 ...: cv_matrix
Out[5]:
array([[1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0],
 [1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0],
 [0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0],
 [0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0],
 [1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1],
 [0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0]], dtype=int64)

The output represents a numeric term frequency based feature vector for each document like we
mentioned before. To understand it better, we can represent it using the feature names and view it as a
dataframe.

In [6]: vocab = cv.get_feature_names()
 ...: pd.DataFrame(cv_matrix, columns=vocab)
Out[6]:
 beautiful blue brown dog fox jumps lazy love quick sky today
0 1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 1 0 1 0
2 0 0 1 1 1 1 1 0 1 0 0
3 0 1 1 1 1 0 1 0 1 0 0
4 1 1 0 0 0 0 0 0 0 2 1
5 0 0 1 1 1 0 1 0 1 0 0

We can clearly see now that each row of the dataframe depicts the term frequency vector for each text
document. Hence the name bag of words because this model represents unstructured text into a bag of
words without taking into account word positions, syntax, or semantics.

Bag of N-Grams Model
We have used single word terms as features in the above mentioned bag of words model. But what if we
also wanted to take into account phrases or collection of words which occur in a sequence? N-grams help
us achieve that. An n-gram is basically a collection of word tokens from a text document such that these
tokens are contiguous and occur in a sequence. Bi-grams indicate n-grams of order 2 (two words), Tri-grams
indicate n-grams of order 3 (three words), and so on. We can easily extend the bag of words model to use a
bag of n-grams model to give us n-gram based feature vectors. The following code computes bi-gram based
features on our corpus.

In [7]: bv = CountVectorizer(ngram_range=(2,2))
 ...: bv_matrix = bv.fit_transform(norm_corpus)
 ...: bv_matrix = bv_matrix.toarray()
 ...: vocab = bv.get_feature_names()
 ...: pd.DataFrame(bv_matrix, columns=vocab)

Chapter 4 ■ Feature engineering and SeleCtion

213

Figure 4-17 clearly shows our bi-gram feature vectors where each feature is a bi-gram of two contiguous
words and the values depict the frequency of that bi-gram in each document. You can use the ngram_range
parameter to extend the n-gram range to get n-grams of higher orders. Typically n-grams until order three
are sufficient for most tasks in Machine Learning and natural language processing.

TF-IDF Model
There are some potential problems which might arise with the Bag of Words model when it is used on large
corpora. Since the feature vectors are based on absolute term frequencies, there might be some terms which
occur frequently across all documents and these will tend to overshadow other terms in the feature set. The
TF-IDF model tries to combat this issue by using a scaling or normalizing factor in its computation. TF-IDF
stands for Term Frequency-Inverse Document Frequency, which uses a combination of two metrics in
its computation, namely: term frequency (tf) and inverse document frequency (idf). This technique was
developed for ranking results for queries in search engines and now it is an indispensable model in the
world of information retrieval and text analytics.

Mathematically, we can define TF-IDF as tfidf = tf x idf, which can be expanded further to be
represented as follows.

tfidf w D tf w D idf w D tf w D
C

df w
, ,() = ()´ () = ()´

()
æ

è
çç

ö

ø
÷÷, , log

Here, tfidf (w, D) is the TF-IDF score for word w in document D. The term tf (w, D) represents the term
frequency of the word w in document D, which can be obtained from the Bag of Words model. The term
idf (w, D) is the inverse document frequency for the term w, which can be computed as the log transform
of the total number of documents in the corpus C divided by the document frequency of the word w,
which is basically the frequency of documents in the corpus where the word w occurs. The following code
depicts TF-IDF based feature engineering on our corpus.

In [8]: from sklearn.feature_extraction.text import TfidfVectorizer
 ...:
 ...: tv = TfidfVectorizer(min_df=0., max_df=1., use_idf=True)
 ...: tv_matrix = tv.fit_transform(norm_corpus)
 ...: tv_matrix = tv_matrix.toarray()
 ...:
 ...: vocab = tv.get_feature_names()
 ...: pd.DataFrame(np.round(tv_matrix, 2), columns=vocab)

Figure 4-17. Bi-gram feature vectors for our corpus based on bag of n-grams model

Chapter 4 ■ Feature engineering and SeleCtion

214

Out[8]:
 beautiful blue brown dog fox jumps lazy love quick sky today
0 0.60 0.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00
1 0.46 0.39 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.46 0.00
2 0.00 0.00 0.38 0.38 0.38 0.54 0.38 0.00 0.38 0.00 0.00
3 0.00 0.36 0.42 0.42 0.42 0.00 0.42 0.00 0.42 0.00 0.00
4 0.36 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.52
5 0.00 0.00 0.45 0.45 0.45 0.00 0.45 0.00 0.45 0.00 0.00

Thus, the preceding output depicts the TF-IDF based feature vectors for each of our text documents.
Notice how this is a scaled and normalized version as compared to the raw Bag of Words model. Interested
readers who might want to dive into further details of how the internals of this model work can refer to page
181 of Text Analytics with Python (Apress; Dipanjan Sarkar, 2016).

Document Similarity
You can even build on top of the tf-idf based features we engineered in the previous section and use them
to generate new features which can be useful in multiple applications. An example of this is computing
document similarity. This is very useful in domains like search engines, document clustering, and
information retrieval. Document similarity is the process of using a distance or similarity based metric that
can be used to identify how similar a text document is with another document based on features extracted
from the documents like bag of words or tf-idf. Pairwise document similarity in a corpus involves computing
document similarity for each pair of documents in a corpus. Thus if you have C documents in a corpus, you
would end up with a C x C matrix such that each row and column represents the similarity score for a pair of
documents, which represent the indices at the row and column, respectively.

There are several similarity and distance metrics that are used to compute document similarity. These
include cosine distance/similarity, BM25 distance, Hellinger-Bhattacharya distance, jaccard distance,
and so on. In our analysis, we will be using perhaps the most popular and widely used similarity metric,
cosine similarity. Cosine similarity basically gives us a metric representing the cosine of the angle between
the feature vector representations of two text documents. Figure 4-18 shows some typical feature vector
alignments for text documents.

Figure 4-18. Cosine similarity depictions for text document feature vectors (Source: Text Analytics with
Python, Apress)

Chapter 4 ■ Feature engineering and SeleCtion

215

From Figure 4-18, we can clearly see that feature vectors having a similar orientation will be very
close to one another and the angle between them will be closer to 0° and thus cosine similarity would
be cos 0° = 1 When cosine similarity is close to cos 90° = 0, the angle between the documents is closer
to 90° indicating they are far apart and hence not very similar. Similarity scores close to -1 indicate the
documents have completely opposite orientation as the angle between them would be closer to 180°.
The following code helps us compute pairwise cosine similarity for all the documents in our sample corpus.

In [9]: from sklearn.metrics.pairwise import cosine_similarity
 ...:
 ...: similarity_matrix = cosine_similarity(tv_matrix)
 ...: similarity_df = pd.DataFrame(similarity_matrix)
 ...: similarity_df
Out[9]:
 0 1 2 3 4 5
0 1.000000 0.753128 0.000000 0.185447 0.807539 0.000000
1 0.753128 1.000000 0.000000 0.139665 0.608181 0.000000
2 0.000000 0.000000 1.000000 0.784362 0.000000 0.839987
3 0.185447 0.139665 0.784362 1.000000 0.109653 0.933779
4 0.807539 0.608181 0.000000 0.109653 1.000000 0.000000
5 0.000000 0.000000 0.839987 0.933779 0.000000 1.000000

From the pairwise similarity matrix obtained in the preceding output, we can clearly see that
documents 0, 1, and 4 have very strong similarity among one another. Also documents 2, 3, and 5 have
strong similarity among themselves. This must indicate they all have some similar features. This is a perfect
example of grouping or clustering that can be solved by unsupervised learning.

Let’s use K-means clustering to try to use the features to see if we can actually cluster or group these
documents based on their feature representations. In K-means clustering, we have an input parameter k,
which specifies the number of clusters it will output using the document features. This clustering method is a
centroid based clustering method, where it tries to cluster these documents into clusters of equal variance. It
tries to create these clusters by minimizing the within-cluster sum of squares measure, also known as inertia.
The following snippet builds a clustering model using our similarity features to cluster our text documents.

In [10]: from sklearn.cluster import KMeans
 ...:
 ...: km = KMeans(n_clusters=2)
 ...: km.fit_transform(similarity_df)
 ...: cluster_labels = km.labels_
 ...: cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])
 ...: pd.concat([corpus_df, cluster_labels], axis=1)
Out[10]:
 Document Category ClusterLabel
0 The sky is blue and beautiful. weather 0
1 Love this blue and beautiful sky! weather 0
2 The quick brown fox jumps over the lazy dog. animals 1
3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

The output obtained clearly shows us that our K-means clustering model has labeled our documents
into two clusters with labels 0 and 1. We can also see that these labels are correct where labels with value
0 indicate documents relevant to weather and labels with value 1 indicate documents relevant to animals.
Thus you can see how useful these features are in document clustering and categorization!

Chapter 4 ■ Feature engineering and SeleCtion

216

 Topic Models
Besides document terms, phrases and similarities, we can also use some summarization techniques to
extract topic or concept based features from text documents. The idea of topic models revolves around the
process of extracting key themes or concepts from a corpus of documents which are represented as topics.
Each topic can be represented as a bag or collection of words/terms from the document corpus. Together,
these terms signify a specific topic, theme or a concept and each topic can be easily distinguished from other
topics by virtue of the semantic meaning conveyed by these terms. These concepts can range from simple
facts and statements to opinions and outlook. Topic models are extremely useful in summarizing large
corpus of text documents to extract and depict key concepts. They are also useful in extracting features from
text data that capture latent patterns in the data.

There are various techniques for topic modeling and most of them involve some form of matrix
decomposition. Some techniques like Latent Semantic Indexing (LSI) use matrix decomposition operations,
more specifically Singular Valued Decomposition (refer back to important mathematical concepts in
Chapter 1), to split a term-document matrix (transpose of our TF-IDF document-term feature matrix) into
three matrices, U, S & VT. You can use the left singular vectors in matrix U and multiply it by the singular
vectors S to get terms and their weights (signifying importance) per topic. You can use scikit-learn or
gensim to use LSI based topic modeling.

Another technique is Latent Dirichlet Allocation (LDA), which uses a generative probabilistic model
where each document consists of a combination of several topics and each term or word can be assigned to
a specific topic. This is similar to pLSI based model (probabilistic LSI). Each latent topic contains a Dirichlet
prior over them in the case of LDA. The math behind this is pretty involving and it would not be possible to
go into details in the current scope. Interested readers can refer to page 241 of Text Analytics with Python
(Apress; Dipanjan Sarkar, 2016) for further details on LDA. For the purpose of feature engineering, you
need to remember that when LDA is applied on a document-term matrix (TF-IDF feature matrix), it gets
decomposed into two main components. A document-topic matrix, which would be the feature matrix we
are looking for and a topic-term matrix, which helps us in looking at potential topics in the corpus. The
following code builds an LDA model to extract features and topics from our sample corpus.

In [11]: from sklearn.decomposition import LatentDirichletAllocation
 ...:
 ...: lda = LatentDirichletAllocation(n_topics=2, max_iter=100, random_state=42)
 ...: dt_matrix = lda.fit_transform(tv_matrix)
 ...: features = pd.DataFrame(dt_matrix, columns=['T1', 'T2'])
 ...: features
Out[11]:
 T1 T2
0 0.190615 0.809385
1 0.176860 0.823140
2 0.846148 0.153852
3 0.815229 0.184771
4 0.180563 0.819437
5 0.839140 0.160860

Thus, the dt_matrix refers to the document-topic matrix giving us two features since we chose number
of topics to be 2. You can also use the other matrix obtained from the decomposition, the topic-term matrix
to see the topics extracted from our corpus using the LDA model using the following code.

In [12]: tt_matrix = lda.components_
 ...: for topic_weights in tt_matrix:
 ...: topic = [(token, weight) for token, weight in zip(vocab, topic_weights)]
 ...: topic = sorted(topic, key=lambda x: -x[1])

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Chapter 4 ■ Feature engineering and SeleCtion

217

 ...: topic = [item for item in topic if item[1] > 0.6]
 ...: print(topic)
 ...: print()
[('fox', 1.7265536238698524), ('quick', 1.7264910761871224), ('dog', 1.7264019823624879),
('brown', 1.7263774760262807), ('lazy', 1.7263567668213813), ('jumps', 1.0326450363521607),
('blue', 0.7770158513472083)]

[('sky', 2.263185143458752), ('beautiful', 1.9057084998062579), ('blue',
1.7954559705805626), ('love', 1.1476805311187976), ('today', 1.0064979209198706)]

The preceding output represents each of the two topics as a collection of terms and their importance
is depicted by the corresponding weight. It is definitely interesting to see that the two topics are quite
distinguishable from each other by looking at the terms. The first topic shows terms relevant to animals and
the second topic shows terms relevant to weather. This is reinforced by applying our unsupervised K-means
clustering algorithm on our document-topic feature matrix (dt_matrix) using the following code snippet.

In [13]: km = KMeans(n_clusters=2)
 ...: km.fit_transform(features)
 ...: cluster_labels = km.labels_
 ...: cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])
 ...: pd.concat([corpus_df, cluster_labels], axis=1)
Out[13]:
 Document Category ClusterLabel
0 The sky is blue and beautiful. weather 0
1 Love this blue and beautiful sky! weather 0
2 The quick brown fox jumps over the lazy dog. animals 1
3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

This clearly makes sense and we can see that by just using two topic-model based features, we are still
able to cluster our documents efficiently!

Word Embeddings
There are several advanced word vectorization models that have recently gained a lot of prominence. Almost
all of them deal with the concept of word embeddings. Basically, word embeddings can be used for feature
extraction and language modeling. This representation tries to map each word or phrase into a complete
numeric vector such that semantically similar words or terms tend to occur closer to each other and
these can be quantified using these embeddings. The word2vec model is perhaps one of the most popular
neural network based probabilistic language models and can be used to learn distributed representational
vectors for words. Word embeddings produced by word2vec involve taking in a corpus of text documents,
representing words in a large high dimensional vector space such that each word has a corresponding vector
in that space and similar words (even semantically) are located close to one another, analogous to what we
observed in document similarity earlier.

The word2vec model was released by Google in 2013 and uses a neural network based implementation
with architectures like continuous Bag of Words and Skip-Grams to learn the distributed vector
representations of words in a corpus. We will be using the gensim framework to implement the same model
on our corpus to extract features. Some of the important parameters in the model are explained briefly as
follows.

Chapter 4 ■ Feature engineering and SeleCtion

218

•	 size: Represents the feature vector size for each word in the corpus when
transformed.

•	 window: Sets the context window size specifying the length of the window of words to
be taken into account as belonging to a single, similar context when training.

•	 min_count: Specifies the minimum word frequency value needed across the corpus
to consider the word as a part of the final vocabulary during training the model.

•	 sample: Used to downsample the effects of words which occur very frequently.

The following snippet builds a word2vec embedding model on the documents of our sample corpus.
Remember to tokenize each document before passing it to the model.

In [14]: from gensim.models import word2vec
 ...:
 ...: wpt = nltk.WordPunctTokenizer()
 ...: tokenized_corpus = [wpt.tokenize(document) for document in norm_corpus]
 ...:
 ...: # Set values for various parameters
 ...: feature_size = 10 # Word vector dimensionality
 ...: window_context = 10 # Context window size
 ...: min_word_count = 1 # Minimum word count
 ...: sample = 1e-3 # Downsample setting for frequent words
 ...:
 ...: w2v_model = word2vec.Word2Vec(tokenized_corpus, size=feature_size,
 ...: window=window_context, min_count = min_word_count,
 ...: sample=sample)
Using TensorFlow backend.

Each word in the corpus will essentially now be a vector itself of size 10. We can verify the same using
the following code.

In [15]: w2v_model.wv['sky']
Out[15]:
array([0.02626196, -0.02171229, -0.04910386, 0.0194816 , 0.01649994,
 0.01200452, 0.04641563, 0.01844106, 0.02693636, -0.02992732], dtype=float32)

A question might arise in your mind now that so far, we had feature vectors for each complete
document, but now we have vectors for each word. How on earth do we represent entire documents now?
We can do that using various aggregation and combinations. A simple scheme would be to use an averaged
word vector representation, where we simply sum all the word vectors occurring in a document and then
divide by the count of word vectors to represent an averaged word vector for the document. The following
code enables us to do the same.

In [16]: def average_word_vectors(words, model, vocabulary, num_features):
 ...:
 ...: feature_vector = np.zeros((num_features,),dtype="float64")
 ...: nwords = 0.
 ...:
 ...: for word in words:
 ...: if word in vocabulary:
 ...: nwords = nwords + 1.

Chapter 4 ■ Feature engineering and SeleCtion

219

 ...: feature_vector = np.add(feature_vector, model[word])
 ...:
 ...: if nwords:
 ...: feature_vector = np.divide(feature_vector, nwords)
 ...:
 ...: return feature_vector
 ...:
 ...:
 ...: def averaged_word_vectorizer(corpus, model, num_features):
 ...: vocabulary = set(model.wv.index2word)
 ...: features = [average_word_vectors(tokenized_sentence, model, vocabulary,
 num_features)
 ...: for tokenized_sentence in corpus]
 ...: return np.array(features)

In [17]: w2v_feature_array = averaged_word_vectorizer(corpus=tokenized_corpus, model=w2v_model,
 ...: num_features=feature_size)
 ...: pd.DataFrame(w2v_feature_array)

Thus, we have our averaged word vector based feature set for all our corpus documents, as depicted
by the dataframe in Figure 4-19. Let’s use a different clustering algorithm this time known as Affinity
Propagation to try to cluster our documents based on these new features. Affinity Propagation is based on
the concept of message passing and you do not need to specify the number of clusters beforehand like you
did in K-means clustering.

In [18]: from sklearn.cluster import AffinityPropagation
 ...:
 ...: ap = AffinityPropagation()
 ...: ap.fit(w2v_feature_array)
 ...: cluster_labels = ap.labels_
 ...: cluster_labels = pd.DataFrame(cluster_labels, columns=['ClusterLabel'])
 ...: pd.concat([corpus_df, cluster_labels], axis=1)
Out[18]:
 Document Category ClusterLabel
0 The sky is blue and beautiful. weather 0
1 Love this blue and beautiful sky! weather 0
2 The quick brown fox jumps over the lazy dog. animals 1

Figure 4-19. Averaged word vector feature set for our corpus documents

Chapter 4 ■ Feature engineering and SeleCtion

220

3 The brown fox is quick and the blue dog is lazy! animals 1
4 The sky is very blue and the sky is very beaut... weather 0
5 The dog is lazy but the brown fox is quick! animals 1

The preceding output uses the averaged word vectors based on word embeddings to cluster
the documents in our corpus and we can clearly see that it has obtained the right clusters! There are
several other schemes of aggregating word vectors like using TF-IDF weights along with the word vector
representations. Besides this there have been recent advancements in the field of Deep Learning where
architectures like RNNs and LSTMs are also used for engineering features from text data.

Feature Engineering on Temporal Data
Temporal data involves datasets that change over a period of time and time-based attributes are of
paramount importance in these datasets. Usually temporal attributes include some form of data, time,
and timestamp values and often optionally include other metadata like time zones, daylight savings time
information, and so on. Temporal data, especially time-series based data is extensively used in multiple
domains like stock, commodity, and weather forecasting. You can load feature_engineering_temporal.
py directly and start running the examples or use the jupyter notebook, Feature Engineering on Temporal
Data.ipynb, for a more interactive experience. Let’s load the following dependencies before we move on to
acquiring some temporal data.

In [1]: import datetime
 ...: import numpy as np
 ...: import pandas as pd
 ...: from dateutil.parser import parse
 ...: import pytz

We will now use some sample time-based data as our source of temporal data by loading the following
values in a dataframe.

In [2]: time_stamps = ['2015-03-08 10:30:00.360000+00:00', '2017-07-13 15:45:05.755000-07:00',
 ...: '2012-01-20 22:30:00.254000+05:30', '2016-12-25
00:30:00.000000+10:00']
 ...: df = pd.DataFrame(time_stamps, columns=['Time'])
 ...: df
Out[2]:
 Time
0 2015-03-08 10:30:00.360000+00:00
1 2017-07-13 15:45:05.755000-07:00
2 2012-01-20 22:30:00.254000+05:30
3 2016-12-25 00:30:00.000000+10:00

Of course by default, they are stored as strings or text in the dataframe so we can convert time into
Timestamp objects by using the following code snippet.

In [3]: ts_objs = np.array([pd.Timestamp(item) for item in np.array(df.Time)])
 ...: df['TS_obj'] = ts_objs
 ...: ts_objs
Out[3]:
array([Timestamp('2015-03-08 10:30:00.360000+0000', tz='UTC'),

Chapter 4 ■ Feature engineering and SeleCtion

221

 Timestamp('2017-07-13 15:45:05.755000-0700', tz='pytz.FixedOffset(-420)'),
 Timestamp('2012-01-20 22:30:00.254000+0530', tz='pytz.FixedOffset(330)'),
 Timestamp('2016-12-25 00:30:00+1000', tz='pytz.FixedOffset(600)')], dtype=object)

You can clearly see from the temporal values that we have multiple components for each Timestamp
object which include date, time, and even a time based offset, which can be used to identify the time zone
also. Of course there is no way we can directly ingest or use these features in any Machine Learning model.
Hence we need specific strategies to extract meaningful features from this data. In the following sections, we
cover some of these strategies that you can start using on your own temporal data in the future.

Date-Based Features
Each temporal value has a date component that can be used to extract useful information and features
pertaining to the date. These include features and components like year, month, day, quarter, day of the
week, day name, day and week of the year, and many more. The following code depicts how we can obtain
some of these features from our temporal data.

In [4]: df['Year'] = df['TS_obj'].apply(lambda d: d.year)
 ...: df['Month'] = df['TS_obj'].apply(lambda d: d.month)
 ...: df['Day'] = df['TS_obj'].apply(lambda d: d.day)
 ...: df['DayOfWeek'] = df['TS_obj'].apply(lambda d: d.dayofweek)
 ...: df['DayName'] = df['TS_obj'].apply(lambda d: d.weekday_name)
 ...: df['DayOfYear'] = df['TS_obj'].apply(lambda d: d.dayofyear)
 ...: df['WeekOfYear'] = df['TS_obj'].apply(lambda d: d.weekofyear)
 ...: df['Quarter'] = df['TS_obj'].apply(lambda d: d.quarter)
 ...:
 ...: df[['Time', 'Year', 'Month', 'Day', 'Quarter',
 ...: 'DayOfWeek', 'DayName', 'DayOfYear', 'WeekOfYear']]

The features depicted in Figure 4-20 show some of the attributes we talked about earlier and have
been derived purely from the date segment of each temporal value. Each of these features can be used
as categorical features and further feature engineering can be done like one hot encoding, aggregations,
binning, and more.

Figure 4-20. Date based features in temporal data

Chapter 4 ■ Feature engineering and SeleCtion

222

 Time-Based Features
Each temporal value also has a time component that can be used to extract useful information and features
pertaining to the time. These include attributes like hour, minute, second, microsecond, UTC offset, and
more. The following code snippet extracts some of the previously mentioned time-based features from our
temporal data.

In [5]: df['Hour'] = df['TS_obj'].apply(lambda d: d.hour)
 ...: df['Minute'] = df['TS_obj'].apply(lambda d: d.minute)
 ...: df['Second'] = df['TS_obj'].apply(lambda d: d.second)
 ...: df['MUsecond'] = df['TS_obj'].apply(lambda d: d.microsecond)
 ...: df['UTC_offset'] = df['TS_obj'].apply(lambda d: d.utcoffset())
 ...:
 ...: df[['Time', 'Hour', 'Minute', 'Second', 'MUsecond', 'UTC_offset']]

The features depicted in Figure 4-21 show some of the attributes we talked about earlier which have
been derived purely from the time segment of each temporal value. We can further engineer these features
based on categorical feature engineering techniques and even derive other features like extracting time
zones. Let’s try to use binning to bin each temporal value into a specific time of the day by leveraging the
Hour feature we just obtained.

In [6]: hour_bins = [-1, 5, 11, 16, 21, 23]
 ...: bin_names = ['Late Night', 'Morning', 'Afternoon', 'Evening', 'Night']
 ...: df['TimeOfDayBin'] = pd.cut(df['Hour'],
 ...: bins=hour_bins, labels=bin_names)
 ...: df[['Time', 'Hour', 'TimeOfDayBin']]
Out[6]:
 Time Hour TimeOfDayBin
0 2015-03-08 10:30:00.360000+00:00 10 Morning
1 2017-07-13 15:45:05.755000-07:00 15 Afternoon
2 2012-01-20 22:30:00.254000+05:30 22 Night
3 2016-12-25 00:30:00.000000+10:00 0 Late Night

Thus you can see from the preceding output that based on hour ranges (0-5, 5-11, 11-16, 16-21,
21-23) we have assigned a specific time of the day bin for each temporal value. The UTC offset component
of the temporal data is very useful in knowing how far ahead or behind is that time value from the UTC
(Coordinated Universal Time), which is the primary time standard that clocks and time are regulated from.
This information can also be used to engineer new features like potential time zones from which each
temporal value might have been obtained. The following code helps us achieve the same.

Figure 4-21. Time based features in temporal data

Chapter 4 ■ Feature engineering and SeleCtion

223

In [7]: df['TZ_info'] = df['TS_obj'].apply(lambda d: d.tzinfo)
 ...: df['TimeZones'] = df['TS_obj'].apply(lambda d: list({d.astimezone(tz).tzname()
 ...: for tz in map(pytz.timezone,
 ...: pytz.all_timezones_set)
 ...: if d.astimezone(tz).utcoffset() == d.utcoffset()}))
 ...:
 ...: df[['Time', 'UTC_offset', 'TZ_info', 'TimeZones']]

Thus as we mentioned earlier, the features depicted in Figure 4-22 show some of the attributes
pertaining to time zone relevant information for each temporal value. We can also get time components in
other formats, like the Epoch, which is basically the number of seconds that have elapsed since January 1,
1970 (midnight UTC) and the Gregorian Ordinal, where January 1st of year 1 is represented as 1 and so on.
The following code helps us extract these representations. See Figure 4-23.

In [8]: df['TimeUTC'] = df['TS_obj'].apply(lambda d: d.tz_convert(pytz.utc))
 ...: df['Epoch'] = df['TimeUTC'].apply(lambda d: d.timestamp())
 ...: df['GregOrdinal'] = df['TimeUTC'].apply(lambda d: d.toordinal())
 ...:
 ...: df[['Time', 'TimeUTC', 'Epoch', 'GregOrdinal']]

Do note we converted each temporal value to UTC before deriving the other features. These alternate
representations of time can be further used for easy date arithmetic. The epoch gives us time elapsed in
seconds and the Gregorian ordinal gives us time elapsed in days. We can use this to derive further features
like time elapsed from the current time or time elapsed from major events of importance based on the
problem we are trying to solve. Let’s compute the time elapsed for each temporal value since the current
time. See Figure 4-24.

In [9]: curr_ts = datetime.datetime.now(pytz.utc)
 ...: # compute days elapsed since today
 ...: df['DaysElapsedEpoch'] = (curr_ts.timestamp() - df['Epoch']) / (3600*24)
 ...: df['DaysElapsedOrdinal'] = (curr_ts.toordinal() - df['GregOrdinal'])
 ...:
 ...: df[['Time', 'TimeUTC', 'DaysElapsedEpoch', 'DaysElapsedOrdinal']]

Figure 4-22. Time zone relevant features in temporal data

Figure 4-23. Time components depicted in various representations

Chapter 4 ■ Feature engineering and SeleCtion

224

Based on our computations, each new derived feature should give us the elapsed time difference
between the current time and the time value in the Time column (actually TimeUTC since conversion to UTC
is necessary). Both the values are almost equal to one another, which is expected. Thus you can use time and
date arithmetic to extract and engineer more features which can help build better models. Alternate time
representations enable you to do date time arithmetic directly instead of dealing with specific API methods
of Timestamp and datetime objects from Python. However you can use any method to get to the results you
want. It’s all about ease of use and efficiency!

 Feature Engineering on Image Data
Another very popular format of unstructured data is images. Sound and visual data in the form of images,
video, and audio are very popular sources of data which pose a lot of challenge to data scientists in terms
of processing, storage, feature extraction and modeling. However their benefits as sources of data are quite
rewarding especially in the field of artificial intelligence and computer vision. Due to the unstructured
nature of data, it is not possible to directly use images for training models. If you are given a raw image, you
might have a hard time trying to think of ways to represent it so that any Machine Learning algorithm can
utilize it for model training. There are various strategies and techniques that can be used in this case to
engineer the right features from images. One of the core principles to remember when dealing with images
is that any image can be represented as a matrix of numeric pixel values. With that thought in mind, let’s get
started! You can load feature_engineering_image.py directly and start running the examples or use the
jupyter notebook, Feature Engineering on Image Data.ipynb, for a more interactive experience. Let’s
start by loading the necessary dependencies and configuration settings.

In [1]: import skimage
 ...: import numpy as np
 ...: import pandas as pd
 ...: import matplotlib.pyplot as plt
 ...: from skimage import io
 ...:
 ...: %matplotlib inline

The scikit-image (skimage) library is an excellent framework consisting of several useful interfaces
and algorithms for image processing and feature extraction. Besides this, we will also leverage the mahotas
framework, which is useful in computer vision and image processing. Open CV is another useful framework
that you can check out if interested in aspects pertaining to computer vision. Let’s now look at ways to
represent images as useful feature vector representations.

Figure 4-24. Deriving elapsed time difference from current time

Chapter 4 ■ Feature engineering and SeleCtion

225

 Image Metadata Features
There are tons of useful features obtainable from the image metadata itself without even processing the
image. Most of this information can be found from the EXIF data, which is usually recorded for each image
by the device when the picture is being taken. Following are some of the popular features that are obtainable
from the image EXIF data.

•	 Image create date and time

•	 Image dimensions

•	 Image compression format

•	 Device make and model

•	 Image resolution and aspect ratio

•	 Image artist

•	 Flash, aperture, focal length, and exposure

For more details on what other data points can be used as features from image EXIF metadata,
you can refer to https://sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html, which lists the
possible EXIF tags.

Raw Image and Channel Pixels
An image can be represented by the value of each of its pixels as a two dimensional array. We can leverage
numpy arrays for this. However, color images usually have three components also known as channels. The
R, G, and B channels stand for the red, green, and blue channels, respectively. This can be represented as
a three dimensional array (m, n, c) where m indicates the number of rows in the image, n indicates the
number of columns. These are determined by the image dimensions. The c indicates which channel it
represents (R, G or B). Let’s load some sample color images now and try to understand their representation.

In [2]: cat = io.imread('datasets/cat.png')
 ...: dog = io.imread('datasets/dog.png')
 ...: df = pd.DataFrame(['Cat', 'Dog'], columns=['Image'])
 ...:
 ...: print(cat.shape, dog.shape)
(168, 300, 3) (168, 300, 3)

In [3]: fig = plt.figure(figsize = (8,4))
 ...: ax1 = fig.add_subplot(1,2, 1)
 ...: ax1.imshow(cat)
 ...: ax2 = fig.add_subplot(1,2, 2)
 ...: ax2.imshow(dog)

https://sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html

Chapter 4 ■ Feature engineering and SeleCtion

226

We can clearly see from Figure 4-25 that we have two images of a cat and a dog having dimensions
168x300 pixels where each row and column denotes a specific pixel of the image. The third dimension
indicates these are color images having three color channels. Let’s now try to use numpy indexing to slice out
and extract the three color channels separately for the dog image.

In [4]: dog_r = dog.copy() # Red Channel
 ...: dog_r[:,:,1] = dog_r[:,:,2] = 0 # set G,B pixels = 0
 ...: dog_g = dog.copy() # Green Channel
 ...: dog_g[:,:,0] = dog_r[:,:,2] = 0 # set R,B pixels = 0
 ...: dog_b = dog.copy() # Blue Channel
 ...: dog_b[:,:,0] = dog_b[:,:,1] = 0 # set R,G pixels = 0
 ...:
 ...: plot_image = np.concatenate((dog_r, dog_g, dog_b), axis=1)
 ...: plt.figure(figsize = (10,4))
 ...: plt.imshow(plot_image)

We can clearly see from Figure 4-26 how we can easily use numpy indexing and extract out the three
color channels from the sample image. You can now refer to any of these channel’s raw image pixel matrix
and even flatten it if needed to form a feature vector.

In [5]: dog_r[:,:,0]
Out[5]:
array([[160, 160, 160, ..., 113, 113, 112],
 [160, 160, 160, ..., 113, 113, 112],
 ...,

Figure 4-25. Our two sample color images

Figure 4-26. Extracting red, green, and blue channels from our color RGB image

Chapter 4 ■ Feature engineering and SeleCtion

227

 [165, 165, 165, ..., 212, 211, 210],
 [165, 165, 165, ..., 210, 210, 209],
 [164, 164, 164, ..., 209, 209, 209]], dtype=uint8)

This image pixel matrix is a two-dimensional matrix so you can extract features from this further or even
flatten it to a one-dimensional vector to use as inputs for any Machine Learning algorithm.

Grayscale Image Pixels
If you are dealing with color images, it might get difficult working with multiple channels and
three-dimensional arrays. Hence converting images to grayscale is a nice way of keeping the necessary pixel
intensity values but getting an easy to process two-dimensional image. Grayscale images usually capture the
luminance or intensity of each pixel such that each pixel value can be computed using the equation

Y = 0.2125 x R + 0.7154 x G + 0.0721 x B

Where R, G & B are the pixel values of the three channels and Y captures the final pixel intensity
information and is usually ranges from 0(complete intensity absence - black) to 1(complete intensity
presence - white). The following snippet shows us how to convert RGB color images to grayscale and extract
the raw pixel values, which can be used as features.

In [6]: from skimage.color import rgb2gray
 ...:
 ...: cgs = rgb2gray(cat)
 ...: dgs = rgb2gray(dog)
 ...:
 ...: print('Image shape:', cgs.shape, '\n')
 ...:
 ...: # 2D pixel map
 ...: print('2D image pixel map')
 ...: print(np.round(cgs, 2), '\n')
 ...:
 ...: # flattened pixel feature vector
 ...: print('Flattened pixel map:', (np.round(cgs.flatten(), 2)))
Image shape: (168, 300)

2D image pixel map
[[0.42 0.41 0.41 ..., 0.5 0.52 0.53]
 [0.41 0.41 0.4 ..., 0.51 0.52 0.54]
 ...,
 [0.11 0.11 0.1 ..., 0.51 0.51 0.51]
 [0.11 0.11 0.1 ..., 0.51 0.51 0.51]]

Flattened pixel map: [0.42 0.41 0.41 ..., 0.51 0.51 0.51]

 Binning Image Intensity Distribution
We already obtained the raw image intensity values for the grayscale images in the previous section. One
approach would be to use these raw pixel values themselves as features. Another approach would be to binning
the image intensity distribution based on intensity values using a histogram and using the bins as features. The
following code snippet shows us how the image intensity distribution looks for the two sample images.

Chapter 4 ■ Feature engineering and SeleCtion

228

In [7]: fig = plt.figure(figsize = (8,4))
 ...: ax1 = fig.add_subplot(2,2, 1)
 ...: ax1.imshow(cgs, cmap="gray")
 ...: ax2 = fig.add_subplot(2,2, 2)
 ...: ax2.imshow(dgs, cmap='gray')
 ...: ax3 = fig.add_subplot(2,2, 3)
 ...: c_freq, c_bins, c_patches = ax3.hist(cgs.flatten(), bins=30)
 ...: ax4 = fig.add_subplot(2,2, 4)
 ...: d_freq, d_bins, d_patches = ax4.hist(dgs.flatten(), bins=30)

As we mentioned, image intensity ranges from 0 to 1 and is evident by the x-axes depicted in
Figure 4-27. The y-axes depict the frequency of the respective bins. We can clearly see that the dog image
has more concentration of the bin frequencies around 0.6 - 0.8 indicating higher intensity and the reason
for that being that the Labrador dog is white in color and white has a high intensity value like we mentioned
in the previous section. The variables c_freq, c_bins, and d_freq, d_bins can be used to get the numeric
values pertaining to the bins and used as features.

Image Aggregation Statistics
We already obtained the raw image intensity values for the grayscale images in the previous section.
One approach would be to use them as features directly or use some level of aggregations and statistical
measures which can be obtained from the pixels and intensity. We already saw an approach of binning
intensity values using histograms. In this section, we use descriptive statistical measures and aggregations to
compute specific features from the image pixel values.

We can compute RGB ranges for each image by basically subtracting the maximum from the minimum
value for pixel values in each channel. The following code helps us achieve this.

In [8]: from scipy.stats import describe
 ...:
 ...: cat_rgb = cat.reshape((168*300), 3).T
 ...: dog_rgb = dog.reshape((168*300), 3).T

Figure 4-27. Binning image intensity distributions with histograms

Chapter 4 ■ Feature engineering and SeleCtion

229

 ...:
 ...: cs = describe(cat_rgb, axis=1)
 ...: ds = describe(dog_rgb, axis=1)
 ...:
 ...: cat_rgb_range = cs.minmax[1] - cs.minmax[0]
 ...: dog_rgb_range = ds.minmax[1] - ds.minmax[0]
 ...: rgb_range_df = pd.DataFrame([cat_rgb_range, dog_rgb_range],
 ...: columns=['R_range', 'G_range', 'B_range'])
 ...: pd.concat([df, rgb_range_df], axis=1)
Out[8]:
 Image R_range G_range B_range
0 Cat 240 223 235
1 Dog 246 250 246

We can then use these range features as specific characteristic attributes of each image. Besides this, we
can also compute other metrics like mean, median, variance, skewness, and kurtosis for each image channel
as follows.

In [9]: cat_stats= np.array([np.round(cs.mean, 2),np.round(cs.variance, 2),
 ...: np.round(cs.kurtosis, 2),np.round(cs.skewness, 2),
 ...: np.round(np.median(cat_rgb, axis=1), 2)]).flatten()
 ...: dog_stats= np.array([np.round(ds.mean, 2),np.round(ds.variance, 2),
 ...: np.round(ds.kurtosis, 2),np.round(ds.skewness, 2),
 ...: np.round(np.median(dog_rgb, axis=1), 2)]).flatten()
 ...:
 ...: stats_df = pd.DataFrame([cat_stats, dog_stats],
 ...: columns=['R_mean', 'G_mean', 'B_mean', 'R_var', 'G_var',
 ...: 'B_var', 'R_kurt', 'G_kurt', 'B_kurt', 'R_skew',
 ...: 'G_skew', 'B_skew', 'R_med', 'G_med', 'B_med'])
 ...: pd.concat([df, stats_df], axis=1)

We can observe from the features obtained in Figure 4-28 that the mean, median, and kurtosis values
for the various channels for the dog image are mostly greater than corresponding ones in the cat image.
Variance and skewness are however more for the cat image.

 Edge Detection
One of the more interesting and sophisticated techniques involve detecting edges in an image. Edge
detection algorithms can be used to detect sharp intensity and brightness changes in an image and find
areas of interest. The canny edge detector algorithm developed by John Canny is one of the most widely
used edge detector algorithms today. This algorithm typically involves using a Gaussian distribution with
a specific standard deviation σ (sigma) to smoothen and denoise the image. Then we apply a Sobel filter
to extract image intensity gradients. Norm value of this gradient is used to determine the edge strength.

Figure 4-28. Image channel aggregation statistical features

Chapter 4 ■ Feature engineering and SeleCtion

230

Potential edges are thinned down to curves with width of 1 pixel and hysteresis based thresholding is used
to label all points above a specific high threshold as edges and then recursively use the low threshold value
to label points above the low threshold as edges connected to any of the previously labeled points. The
following code applied the canny edge detector to our sample images.

In [10]: from skimage.feature import canny
 ...:
 ...: cat_edges = canny(cgs, sigma=3)
 ...: dog_edges = canny(dgs, sigma=3)
 ...:
 ...: fig = plt.figure(figsize = (8,4))
 ...: ax1 = fig.add_subplot(1,2, 1)
 ...: ax1.imshow(cat_edges, cmap='binary')
 ...: ax2 = fig.add_subplot(1,2, 2)
 ...: ax2.imshow(dog_edges, cmap='binary')

The image plots based on the edge feature arrays depicted in Figure 4-29 clearly show the prominent
edges of our cat and dog. You can use these edge feature arrays (cat_edges and dog_edges) by flattening
them, extracting pixel values and positions pertaining to the edges (non-zero values), or even by aggregating
them like finding out the total number of pixels making edges, mean value, and so on.

Object Detection
Another interesting technique in the world of computer vision is object detection where features useful
in highlighting specific objects in the image are detected and extracted. The histogram of oriented
gradients, also known as HOG, is one of the techniques that’s extensively used in object detection. Going
into the details of this technique would not be possible in the current scope but for the process of feature
engineering, you need to remember that the HOG algorithm works by following a sequence of steps similar
to edge detection. The image is normalized and denoised to remove excess illumination effects. First
order image gradients are computed to capture image attributes like contour, texture, and so on. Gradient
histograms are built on top of these gradients based on specific windows called cells. Finally these cells
are normalized and a flattened feature descriptor is obtained, which can be used as a feature vector for our
models. The following code shows the HOG object detection technique on our sample images.

In [11]: from skimage.feature import hog
 ...: from skimage import exposure
 ...:

Figure 4-29. Canny edge detection to extract edge based features

Chapter 4 ■ Feature engineering and SeleCtion

231

 ...: fd_cat, cat_hog = hog(cgs, orientations=8, pixels_per_cell=(8, 8),
 ...: cells_per_block=(3, 3), visualise=True)
 ...: fd_dog, dog_hog = hog(dgs, orientations=8, pixels_per_cell=(8, 8),
 ...: cells_per_block=(3, 3), visualise=True)
 ...:
 ...: # rescaling intensity to get better plots
 ...: cat_hogs = exposure.rescale_intensity(cat_hog, in_range=(0, 0.04))
 ...: dog_hogs = exposure.rescale_intensity(dog_hog, in_range=(0, 0.04))
 ...:
 ...: fig = plt.figure(figsize = (10,4))
 ...: ax1 = fig.add_subplot(1,2, 1)
 ...: ax1.imshow(cat_hogs, cmap='binary')
 ...: ax2 = fig.add_subplot(1,2, 2)
 ...: ax2.imshow(dog_hogs, cmap='binary')

The image plots in Figure 4-30 show us how the HOG detector has identified the objects in our sample
images. You can also get the flattened feature descriptors as follows.

In [12]: print(fd_cat, fd_cat.shape)
[0.00288784 0.00301086 0.0255757 ..., 0. 0. 0.] (47880,)

Localized Feature Extraction
We have talked about aggregating pixel values from two-dimensional image or feature matrices and also
flattening them into feature vectors. Localized feature extraction based techniques are slightly better
methods which try to detect and extract localized feature descriptors on various small localized regions of
our input images. This is hence rightly named localized feature extraction. We will be using the popular and
patented SURF algorithm invented by Herbert Bay, et al. SURF stands for Speeded Up Robust Features. The
main idea is to get scale invariant local feature descriptors from images which can be used later as image
features. This algorithm is similar to the popular SIFT algorithm. There are mainly two major phases in this
algorithm. The first phase is to detect points of interest using square shaped filters and hessian matrices. The
second phase is to build feature descriptors by extracting localized features around these points of interest.
There are usually computed by taking a localized square image region around a point of interest and then
aggregating Haar wavelet responses at specific interval based sample points. We use the mahotas Python
framework for extracting SURF feature descriptors from our sample images.

Figure 4-30. HOG object detector to extract features based on object detection

https://en.wikipedia.org/wiki/Herbert_Bay#Herbert Bay

Chapter 4 ■ Feature engineering and SeleCtion

232

In [13]: from mahotas.features import surf
 ...: import mahotas as mh
 ...:
 ...: cat_mh = mh.colors.rgb2gray(cat)
 ...: dog_mh = mh.colors.rgb2gray(dog)
 ...:
 ...: cat_surf = surf.surf(cat_mh, nr_octaves=8, nr_scales=16, initial_step_size=1,
 threshold=0.1, max_points=50)
 ...: dog_surf = surf.surf(dog_mh, nr_octaves=8, nr_scales=16, initial_step_size=1,
 threshold=0.1, max_points=54)
 ...:
 ...: fig = plt.figure(figsize = (10,4))
 ...: ax1 = fig.add_subplot(1,2, 1)
 ...: ax1.imshow(surf.show_surf(cat_mh, cat_surf))
 ...: ax2 = fig.add_subplot(1,2, 2)
 ...: ax2.imshow(surf.show_surf(dog_mh, dog_surf))

Figure 4-31. Localized feature extraction with SURF

The square boxes in the image plots in Figure 4-31 depict the square image regions around the points of
interest which were used for localized feature extraction. You can also use the surf.dense(...) function to
extract uniform dimensional feature descriptors at dense points with regular interval spacing in pixels. The
following code depicts how to achieve this.

In [14]: cat_surf_fds = surf.dense(cat_mh, spacing=10)
 ...: dog_surf_fds = surf.dense(dog_mh, spacing=10)
 ...: cat_surf_fds.shape
Out[14]: (140, 64)

We see from the preceding output that we have obtained 140 feature descriptors of size 64 (elements)
each. You can further apply other schemes on this like aggregation, flattening, and so on to derive further
features. Another sophisticated technique that you can use to extract features on these SURF feature
descriptors is to use the visual bag of words model, which we discuss in the next section.

Chapter 4 ■ Feature engineering and SeleCtion

233

Visual Bag of Words Model
We have seen the effectiveness of the popular Bag of Words model in extracting meaningful features from
unstructured text documents. Bag of words refers to the document being broken down into its constituents,
words and computing frequency of occurrences or other measures like tf-idf. Similarly, in case of image raw
pixel matrices or derived feature descriptors from other algorithms, we can apply a bag of words principle.
However the constituents will not be words in this case but they will be subset of features/pixels extracted
from images which are similar to each other.

Imagine you have multiple pictures of octopuses and you were able to extract the 140 dense surf
features each having 64 values in each feature vector. You can now use an unsupervised learning algorithm
like clustering to extract clusters of similar feature descriptors. Each cluster can be labeled as a visual word
or a visual feature. Subsequently, each feature descriptor can be binned into one of these clusters or visual
words. Thus, you end up getting a one-dimensional visual bag of words vector with counts of number of
feature descriptors assigned to each of the visual words for the 140x64 feature descriptor matrix. Each
feature or visual word tends to capture some portion of the images that are similar to each other like octopus
eyes, tentacles, suckers, and so on, as depicted in Figure 4-32.

The basic idea is hence to get a feature descriptor matrix from using any algorithm like SURF, apply an
unsupervised algorithm like K-means clustering, and extract out k bins or visual features/words and their
counts (based on number of feature descriptors assigned to each bin). Then for each subsequent image, once
you extract the feature descriptors, you can use the K-means model to assign each feature descriptor to one
of the visual feature clusters and get a one-dimensional vector of counts. This is depicted in Figure 4-33 for
a sample octopus image, assuming our VBOW (Visual Bag of Words) model has three bins of eyes, tentacles,
and suckers.

Figure 4-32. Visual bag of words (Courtesy of Ian London, Image Classification in Python with Visual Bag
of Words)

Chapter 4 ■ Feature engineering and SeleCtion

234

Figure 4-33. Transforming an image into a VBOW vector (Courtesy of Ian London, Image Classification in
Pythonwith Visual Bag of Words)

Thus you can see from Figure 4-33, how a two-dimensional image and its corresponding feature
descriptors can be easily transformed into a one-dimensional VBOW vector [1, 3, 5]. Going into
extensive details of the VBOW model would not be possible in the current scope, but I would like to thank
my friend and fellow data scientist, Ian London, for helping me out with providing the two figures on VBOW
models. I would also recommend you to check out his wonderful blog article https://ianlondon.github.
io/blog/visual-bag-of-words/, which talks about using the VBOW model for image classification.

We will now use our 140x64 SURF feature descriptors for our two sample images and use K-means
clustering on them and compute VBOW vectors for each image by assigning each feature descriptor to one
of the bins. We will take k=20 in this case. See Figure 4-34.

In [15]: from sklearn.cluster import KMeans
 ...:
 ...: k = 20
 ...: km = KMeans(k, n_init=100, max_iter=100)
 ...:
 ...: surf_fd_features = np.array([cat_surf_fds, dog_surf_fds])
 ...: km.fit(np.concatenate(surf_fd_features))
 ...:
 ...: vbow_features = []
 ...: for feature_desc in surf_fd_features:
 ...: labels = km.predict(feature_desc)
 ...: vbow = np.bincount(labels, minlength=k)
 ...: vbow_features.append(vbow)
 ...:
 ...: vbow_df = pd.DataFrame(vbow_features)
 ...: pd.concat([df, vbow_df], axis=1)

Figure 4-34. Transforming SURF descriptors into VBOW vectors for sample images

https://ianlondon.github.io/blog/visual-bag-of-words/
https://ianlondon.github.io/blog/visual-bag-of-words/

Chapter 4 ■ Feature engineering and SeleCtion

235

Figure 4-35. Localized feature extraction with SURF for new image

You can see how easy it is to transform complex two-dimensional SURF feature descriptor matrices into
easy to interpret VBOW vectors. Let’s now take a new image and think about how we could apply the VBOW
pipeline. First we would need to extract the SURF feature descriptors from the image using the following
snippet (This is only to depict the localized image subsets used in SURF we will actually use the dense
features as before.) See Figure 4-35.

In [16]: new_cat = io.imread('datasets/new_cat.png')
 ...: newcat_mh = mh.colors.rgb2gray(new_cat)
 ...: newcat_surf = surf.surf(newcat_mh, nr_octaves=8, nr_scales=16, initial_step_size=1,
 threshold=0.1, max_points=50)
 ...:
 ...: fig = plt.figure(figsize = (10,4))
 ...: ax1 = fig.add_subplot(1,2, 1)
 ...: ax1.imshow(surf.show_surf(newcat_mh, newcat_surf))

Let’s now extract the dense SURF features and transform them into a VBOW vector using our previously
trained VBOW model. The following code helps us achieve this. See Figure 4-36.

In [17]: new_surf_fds = surf.dense(newcat_mh, spacing=10)
 ...:
 ...: labels = km.predict(new_surf_fds)
 ...: new_vbow = np.bincount(labels, minlength=k)
 ...: pd.DataFrame([new_vbow])

Thus you can see the final VBOW feature vector for the new image based on SURF feature descriptors. This
is also an example of using an unsupervised Machine Learning model for feature engineering. You can now
compare the similarity of this new image with the other two sample images using some similarity metrics.

Figure 4-36. Transforming new image SURF descriptors into a VBOW vector

Chapter 4 ■ Feature engineering and SeleCtion

236

In [18]: from sklearn.metrics.pairwise import euclidean_distances, cosine_similarity
 ...:
 ...: eucdis = euclidean_distances(new_vbow.reshape(1,-1) , vbow_features)
 ...: cossim = cosine_similarity(new_vbow.reshape(1,-1) , vbow_features)
 ...:
 ...: result_df = pd.DataFrame({'EuclideanDistance': eucdis[0],
 ...: 'CosineSimilarity': cossim[0]})
 ...: pd.concat([df, result_df], axis=1)
Out[18]:
 Image CosineSimilarity EuclideanDistance
0 Cat 0.871609 21.260292
1 Dog 0.722096 30.000000

Based on the distance and similarity metrics, we can see that our new image (of a cat) is definitely closer
to the cat image than the dog image. Try this out with a bigger dataset to get better results!

Automated Feature Engineering with Deep Learning
We have used a lot of simple and sophisticated feature engineering techniques so far in this section. Building
complex feature engineering systems and pipelines is time consuming and building algorithms for the same
is even more tasking. Deep Learning is a novel and new approach toward automating this complex task of
feature engineering by making the machine extract features automatically by learning multiple layered and
complex representations of the underlying raw data.

Convolutional neural networks or CNNs are extensively used for automated feature extraction in
images. We have already covered the basic principles of CNNs in Chapter 1. Go ahead and refresh your
memory you heading to the “Important Concepts” sub-section under the “Deep Learning” section in
Chapter 1. Just like we mentioned before, the idea of CNNs operate on the principles of convolution and
pooling besides your regular activation function layers.

Convolutional layers typically slides or convolves learnable filters (also known as kernels or convolution
matrix) across the entire width and height of the input image pixels. Dot products between the input pixels
and the filter are computed at each position on sliding the filter. Two-dimensional activation maps for the
filter get created and consequently the network is able to learn these filters when it activates on detecting
specific features like edges, corners and so on. If we take n filters, we will get n separate two-dimensional
activation maps, which can then be stacked along the depth dimension to get the output volume.

Pooling is a kind of aggregation or downsampling layer where typically a non-linear downsampling
operation is inserted between convolutional layers. Filters are applied here too. They are slided along the
convolution output matrix and, for each sliding operation, also known as a stride, elements in the slice of
matrix covered by the pooling filter are either summed (Sum pooling) or averaged (Mean pooling) or the
maximum value is selected (Max pooling). More than often max pooling works really well in several real-
world scenarios. Pooling helps in reducing feature dimensionality and control model overfitting. Let’s now
try to use Deep Learning for automated feature extraction on our sample images using CNNs. Load the
following dependencies necessary for building deep networks.

In [19]: from keras.models import Sequential
 ...: from keras.layers.convolutional import Conv2D
 ...: from keras.layers.convolutional import MaxPooling2D
 ...: from keras import backend as K
Using TensorFlow backend.

http://dx.doi.org/10.1007/978-1-4842-3207-1_1
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Chapter 4 ■ Feature engineering and SeleCtion

237

You can use Theano or Tensorflow as your backend Deep Learning framework for keras to work on.
I am using tensorflow in this scenario. Let’s build a basic two-layer CNN now with a Max Pooling layer
between them.

In [20]: model = Sequential()
 ...: model.add(Conv2D(4, (4, 4), input_shape=(168, 300, 3), activation='relu',
 ...: kernel_initializer='glorot_uniform'))
 ...: model.add(MaxPooling2D(pool_size=(2, 2)))
 ...: model.add(Conv2D(4, (4, 4), activation='relu',
 ...: kernel_initializer='glorot_uniform'))

We can actually visualize this network architecture using the following code snippet to understand the
layers that have been used in this network, in a better way.

In [21]: from IPython.display import SVG
 ...: from keras.utils.vis_utils import model_to_dot
 ...:
 ...: SVG(model_to_dot(model, show_shapes=True,
 ...: show_layer_names=True, rankdir='TB').create(prog='dot', format='svg'))

You can now understand from the depiction in Figure 4-37 that we are using two two-dimensional
Convolutional layers containing four (4x4) filters. We also have a Max Pool layer between them of size (2x2)
for some downsampling. Let’s now build some functions to extract features from these intermediate network
layers.

Figure 4-37. Visualizing our two-layer convolutional neural network architecture

Chapter 4 ■ Feature engineering and SeleCtion

238

In [22]: first_conv_layer = K.function([model.layers[0].input, K.learning_phase()],
 ...: [model.layers[0].output])
 ...: second_conv_layer = K.function([model.layers[0].input, K.learning_phase()],
 ...: [model.layers[2].output])

Let’s now use these functions to extract the feature representations learned in the convolutional layers
and visualize these features to see what the network is trying to learn from the images.

In [23]: catr = cat.reshape(1, 168, 300,3)
 ...:
 ...: # extract features
 ...: first_conv_features = first_conv_layer([catr])[0][0]
 ...: second_conv_features = second_conv_layer([catr])[0][0]
 ...:
 ...: # view feature representations
 ...: fig = plt.figure(figsize = (14,4))
 ...: ax1 = fig.add_subplot(2,4, 1)
 ...: ax1.imshow(first_conv_features[:,:,0])
 ...: ax2 = fig.add_subplot(2,4, 2)
 ...: ax2.imshow(first_conv_features[:,:,1])
 ...: ax3 = fig.add_subplot(2,4, 3)
 ...: ax3.imshow(first_conv_features[:,:,2])
 ...: ax4 = fig.add_subplot(2,4, 4)
 ...: ax4.imshow(first_conv_features[:,:,3])
 ...:
 ...: ax5 = fig.add_subplot(2,4, 5)
 ...: ax5.imshow(second_conv_features[:,:,0])
 ...: ax6 = fig.add_subplot(2,4, 6)
 ...: ax6.imshow(second_conv_features[:,:,1])
 ...: ax7 = fig.add_subplot(2,4, 7)
 ...: ax7.imshow(second_conv_features[:,:,2])
 ...: ax8 = fig.add_subplot(2,4, 8)
 ...: ax8.imshow(second_conv_features[:,:,3])

Figure 4-38. Intermediate feature maps obtained after passing though convolutional Layers

Chapter 4 ■ Feature engineering and SeleCtion

239

The feature map visualizations depicted in Figure 4-38 are definitely interesting. You can clearly see
that each feature matrix produced by the convolutional neural network is trying to learn something about
the image like its texture, corners, edges, illumination, hue, brightness, and so on. This should give you an
idea of how these activation feature maps can then be used as features for images. In fact you can stack the
output of a CNN, flatten it if needed, and pass it as an input layer to a multi-layer fully connected perceptron
neural network and use it to solve the problem of image classification. This should give you a head start on
automated feature extraction with the power of Deep Learning!

Don’t worry if you did not understand some of the terms mentioned in this section; we will cover Deep
Learning and CNNs in more depth in a subsequent chapter. If can’t wait to get started with Deep Learning,
you can fire up the bonus notebook provided with this chapter, called Bonus - Classifying handwritten
digits using Deep CNNs.ipynb, for a complete real-world example of applying CNNs and Deep Learning
to classify hand-written digits!

Feature Scaling
When dealing with numeric features, we have specific attributes which may be completely unbounded in nature,
like view counts of a video or web page hits. Using the raw values as input features might make models biased
toward features having really high magnitude values. These models are typically sensitive to the magnitude or
scale of features like linear or logistic regression. Other models like tree based methods can still work without
feature scaling. However it is still recommended to normalize and scale down the features with feature scaling,
especially if you want to try out multiple Machine Learning algorithms on input features. We have already seen
some examples of scaling and transforming features using log and box-cox transforms earlier in this chapter.
In this section, we look at some popular feature scaling techniques. You can load feature_scaling.py directly
and start running the examples or use the jupyter notebook, Feature Scaling.ipynb for a more interactive
experience. Let’s start by loading the following dependencies and configurations.

In [1]: from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
 ...: import numpy as np
 ...: import pandas as pd
 ...: np.set_printoptions(suppress=True)

Let’s now load some sample data of user views pertaining to online videos. The following snippet
creates this sample dataset.

In [2]: views = pd.DataFrame([1295., 25., 19000., 5., 1., 300.], columns=['views'])
 ...: views
Out[2]:
 views
0 1295.0
1 25.0
2 19000.0
3 5.0
4 1.0
5 300.0

From the preceding dataframe we can see that we have five videos that have been viewed by users and
the total view count for each video is depicted by the feature views. It is quite evident that some videos have
been viewed a lot more than the others, giving a rise to values of high scale and magnitude. Let’s look at how
we can scale this feature using several handy techniques.

Chapter 4 ■ Feature engineering and SeleCtion

240

Standardized Scaling
The standard scaler tries to standardize each value in a feature column by removing the mean and scaling
the variance to be 1 from the values. This is also known as centering and scaling and can be denoted
mathematically as

SS X
X

i
i X

X

() = -m
s

where each value in feature X is subtracted by the mean μ
X
 and the resultant is divided by the standard

deviation σ
X
. This is also popularly known as Z-score scaling. You can also divide the resultant by the

variance instead of the standard deviation if needed. The following snippet helps us achieve this.

In [3]: ss = StandardScaler()
 ...: views['zscore'] = ss.fit_transform(views[['views']])
 ...: views
Out[3]:
 views zscore
0 1295.0 -0.307214
1 25.0 -0.489306
2 19000.0 2.231317
3 5.0 -0.492173
4 1.0 -0.492747
5 300.0 -0.449877

We can see the standardized and scaled values in the zscore column in the preceding dataframe. In
fact, you can manually use the formula we used earlier to compute the same result. The following example
computes the z-score mathematically.

In [4]: vw = np.array(views['views'])
 ...: (vw[0] - np.mean(vw)) / np.std(vw)
Out[4]: -0.30721413311687235

 Min-Max Scaling
With min-max scaling, we can transform and scale our feature values such that each value is within the
range of [0, 1]. However the MinMaxScaler class in scikit-learn also allows you to specify your own upper
and lower bound in the scaled value range using the feature_range variable. Mathematically we can
represent this scaler as

MMS X
X X

X Xi
i() = - ()
()- ()

min

max min

where we scale each value in the feature X by subtracting it from the minimum value in the feature min
(X) and dividing the resultant by the difference between the maximum and minimum values in the feature
max(X) - min (X). The following snippet helps us compute this.

In [5]: mms = MinMaxScaler()
 ...: views['minmax'] = mms.fit_transform(views[['views']])

Chapter 4 ■ Feature engineering and SeleCtion

241

 ...: views
Out[5]:
 views zscore minmax
0 1295.0 -0.307214 0.068109
1 25.0 -0.489306 0.001263
2 19000.0 2.231317 1.000000
3 5.0 -0.492173 0.000211
4 1.0 -0.492747 0.000000
5 300.0 -0.449877 0.015738

The preceding output shows the min-max scaled values in the minmax column and as expected, the
maximum viewed video in row index 2 has a value of 1, and the minimum viewed video in row index 4 has a
value of 0. You can also compute this mathematically using the following code (sample computation for the
first row).

In [6]: (vw[0] - np.min(vw)) / (np.max(vw) - np.min(vw))
Out[6]: 0.068108847834096528

 Robust Scaling
The disadvantage of min-max scaling is that often the presence of outliers affects the scaled values for any
feature. Robust scaling tries to use specific statistical measures to scale features without being affected by
outliers. Mathematically this scaler can be represented as

RS X
X median X

IQR Xi
i() = - ()

()()1 3,

where we scale each value of feature X by subtracting the median of X and dividing the resultant by the IQR
also known as the Inter-Quartile Range of X which is the range (difference) between the first quartile (25th
%ile) and the third quartile (75th %ile). The following code performs robust scaling on our sample feature.

In [7]: rs = RobustScaler()
 ...: views['robust'] = rs.fit_transform(views[['views']])
 ...: views
Out[7]:
 views zscore minmax robust
0 1295.0 -0.307214 0.068109 1.092883
1 25.0 -0.489306 0.001263 -0.132690
2 19000.0 2.231317 1.000000 18.178528
3 5.0 -0.492173 0.000211 -0.151990
4 1.0 -0.492747 0.000000 -0.155850
5 300.0 -0.449877 0.015738 0.132690

The scaled values are depicted in the robust column and you can compare them with the scaled
features in the other columns. You can also compute the same using the mathematical equation we
formulated for the robust scaler as depicted in the following snippet (for the first row index value).

In [8]: quartiles = np.percentile(vw, (25., 75.))

Chapter 4 ■ Feature engineering and SeleCtion

242

 ...: iqr = quartiles[1] - quartiles[0]
 ...: (vw[0] - np.median(vw)) / iqr
Out[8]: 1.0928829915560916

There are several other techniques for feature scaling and normalization, but these should be sufficient
to get you started and are used extensively in building Machine Learning systems. Always remember to
check if you need to scale and standardize features whenever you are dealing with numerical features.

Feature Selection
While it is good to try to engineering features that try to capture some latent representations and patterns
in the underlying data, it is not always a good thing to deal with feature sets having maybe thousands
of features or even more. Dealing with a large number of features bring us to the concept of the curse of
dimensionality which we mentioned earlier during the “Bin Counting” section in “Feature Engineering on
Categorical Data”. More features tend to make models more complex and difficult to interpret. Besides this,
it can often lead to models over-fitting on the training data. This basically leads to a very specialized model
tuned only to the data which it used for training and hence even if you get a high model performance, it
will end up performing very poorly on new, previously unseen data. The ultimate objective is to select an
optimal number of features to train and build models that generalize very well on the data and prevent
overfitting.

Feature selection strategies can be divided into three main areas based on the type of strategy and
techniques employed for the same. They are described briefly as follows.

•	 Filter methods: These techniques select features purely based on metrics like
correlation, mutual information and so on. These methods do not depend on results
obtained from any model and usually check the relationship of each feature with
the response variable to be predicted. Popular methods include threshold based
methods and statistical tests.

•	 Wrapper methods: These techniques try to capture interaction between multiple
features by using a recursive approach to build multiple models using feature
subsets and select the best subset of features giving us the best performing model.
Methods like backward selecting and forward elimination are popular wrapper
based methods.

•	 Embedded methods: These techniques try to combine the benefits of the other
two methods by leveraging Machine Learning models themselves to rank and score
feature variables based on their importance. Tree based methods like decision trees
and ensemble methods like random forests are popular examples of embedded
methods.

The benefits of feature selection include better performing models, less overfitting, more generalized
models, less time for computations and model training, and to get a good insight into understanding
the importance of various features in your data. In this section, we look at some of the most widely used
techniques in feature selection. You can load feature_selection.py directly and start running the
examples or use the jupyter notebook, Feature Selection.ipynb for a more interactive experience. Let’s
start by loading the following dependencies and configurations.

In [1]: import numpy as np
 ...: import pandas as pd
 ...: np.set_printoptions(suppress=True)
 ...: pt = np.get_printoptions()['threshold']

Chapter 4 ■ Feature engineering and SeleCtion

243

We will now look at various ways of selecting features including statistical and model based techniques
by using some sample datasets.

Threshold-Based Methods
This is a filter based feature selection strategy, where you can use some form of cut-off or thresholding for
limiting the total number of features during feature selection. Thresholds can be of various forms. Some of
them can be used during the feature engineering process itself, where you can specify threshold parameters.
A simple example of this would be to limit feature terms in the Bag of Words model, which we used for text
based feature engineering earlier. The scikit-learn framework provides parameters like min_df and max_
df which can be used to specify thresholds for ignoring terms which have document frequency above and
below user specified thresholds. The following snippet depicts a way to do this.

In [2]: from sklearn.feature_extraction.text import CountVectorizer
 ...:
 ...: cv = CountVectorizer(min_df=0.1, max_df=0.85, max_features=2000)
 ...: cv
Out[2]:
CountVectorizer(analyzer='word', binary=False, decode_error='strict',
 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
 lowercase=True, max_df=0.85, max_features=2000, min_df=0.1,
 ngram_range=(1, 1), preprocessor=None, stop_words=None,
 strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None)

This basically builds a count vectorizer which ignores feature terms which occur in less than 10% of the
total corpus and also ignores terms which occur in more than 85% of the total corpus. Besides this we also
put a hard limit of 2000 maximum features in the feature set.

Another way of using thresholds is to use variance based thresholding where features having low
variance (below a user-specified threshold) are removed. This signifies that we want to remove features that
have values that are more or less constant across all the observations in our datasets. We can apply this to
our Pokémon dataset, which we used earlier in this chapter. First we convert the Generation feature to a
categorical feature as follows.

In [3]: df = pd.read_csv('datasets/Pokemon.csv')
 ...: poke_gen = pd.get_dummies(df['Generation'])
 ...: poke_gen.head()
Out[3]:
 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
0 1 0 0 0 0 0
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0

Next, we want to remove features from the one hot encoded features where the variance is less than
0.15. We can do this using the following snippet.

Chapter 4 ■ Feature engineering and SeleCtion

244

In [4]: from sklearn.feature_selection import VarianceThreshold
 ...:
 ...: vt = VarianceThreshold(threshold=.15)
 ...: vt.fit(poke_gen)
Out[4]: VarianceThreshold(threshold=0.15)

To view the variances as well as which features were finally selected by this algorithm, we can use the
variances_ property and the get_support(...) function respectively. The following snippet depicts this
clearly in a formatted dataframe.

In [5]: pd.DataFrame({'variance': vt.variances_,
 ...: 'select_feature': vt.get_support()},
 ...: index=poke_gen.columns).T
Out[5]:
 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
select_feature True False True False True False
variance 0.164444 0.114944 0.16 0.128373 0.163711 0.0919937

We can clearly see which features have been selected based on their True values and also their variance
being above 0.15. To get the final subset of selected features, you can use the following code.

In [6]: poke_gen_subset = poke_gen.iloc[:,vt.get_support()].head()
 ...: poke_gen_subset
Out[6]:
 Gen 1 Gen 3 Gen 5
0 1 0 0
1 1 0 0
2 1 0 0
3 1 0 0
4 1 0 0

The preceding feature subset depicts that features Gen 1, Gen 3, and Gen 5 have been finally selected
out of the original six features.

 Statistical Methods
Another widely used filter based feature selection method, which is slightly more sophisticated, is to
select features based on univariate statistical tests. You can use several statistical tests for regression and
classification based models including mutual information, ANOVA (analysis of variance) and chi-square
tests. Based on scores obtained from these statistical tests, you can select the best features on the basis
of their score. Let’s load a sample dataset now with 30 features. This dataset is known as the Wisconsin
Diagnostic Breast Cancer dataset, which is also available in its native or raw format at https://archive.
ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic), which is the UCI Machine Learning
repository. We will use scikit-learn to load the data features and the response class variable.

In [7]: from sklearn.datasets import load_breast_cancer
 ...:
 ...: bc_data = load_breast_cancer()
 ...: bc_features = pd.DataFrame(bc_data.data, columns=bc_data.feature_names)
 ...: bc_classes = pd.DataFrame(bc_data.target, columns=['IsMalignant'])
 ...:

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic

Chapter 4 ■ Feature engineering and SeleCtion

245

 ...: # build featureset and response class labels
 ...: bc_X = np.array(bc_features)
 ...: bc_y = np.array(bc_classes).T[0]
 ...: print('Feature set shape:', bc_X.shape)
 ...: print('Response class shape:', bc_y.shape)
Feature set shape: (569, 30)
Response class shape: (569,)

We can clearly see that, as we mentioned before, there are a total of 30 features in this dataset and a
total of 569 rows of observations. To get some more detail into the feature names and take a peek at the data
points, you can use the following code.

In [8]: np.set_printoptions(threshold=30)
 ...: print('Feature set data [shape: '+str(bc_X.shape)+']')
 ...: print(np.round(bc_X, 2), '\n')
 ...: print('Feature names:')
 ...: print(np.array(bc_features.columns), '\n')
 ...: print('Response Class label data [shape: '+str(bc_y.shape)+']')
 ...: print(bc_y, '\n')
 ...: print('Response variable name:', np.array(bc_classes.columns))
 ...: np.set_printoptions(threshold=pt)
Feature set data [shape: (569, 30)]
[[17.99 10.38 122.8 ..., 0.27 0.46 0.12]
 [20.57 17.77 132.9 ..., 0.19 0.28 0.09]
 [19.69 21.25 130. ..., 0.24 0.36 0.09]
 ...,
 [16.6 28.08 108.3 ..., 0.14 0.22 0.08]
 [20.6 29.33 140.1 ..., 0.26 0.41 0.12]
 [7.76 24.54 47.92 ..., 0. 0.29 0.07]]

Feature names:
['mean radius' 'mean texture' 'mean perimeter' 'mean area'
 'mean smoothness' 'mean compactness' 'mean concavity'
 'mean concave points' 'mean symmetry' 'mean fractal dimension'
 'radius error' 'texture error' 'perimeter error' 'area error'
 'smoothness error' 'compactness error' 'concavity error'
 'concave points error' 'symmetry error' 'fractal dimension error'
 'worst radius' 'worst texture' 'worst perimeter' 'worst area'
 'worst smoothness' 'worst compactness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']

Response Class label data [shape: (569,)]
[0 0 0 ..., 0 0 1]

Response variable name: ['IsMalignant']

This gives us a better perspective on the data we are dealing with. The response class variable is a binary
class where 1 indicates the tumor detected was benign and 0 indicates it was malignant. We can also see
the 30 features that are real valued numbers that describe characteristics of cell nuclei present in digitized
images of breast mass. Let’s now use the chi-square test on this feature set and select the top 15 best features
out of the 30 features. The following snippet helps us achieve this.

Chapter 4 ■ Feature engineering and SeleCtion

246

In [9]: from sklearn.feature_selection import chi2, SelectKBest
 ...:
 ...: skb = SelectKBest(score_func=chi2, k=15)
 ...: skb.fit(bc_X, bc_y)
Out[9]: SelectKBest(k=15, score_func=<function chi2 at 0x0000018C2BEB7840>)

You can see that we have passed our input features (bc_X) and corresponding response class outputs
(bc_y) to the fit(...) function when computing the necessary metrics. The chi-square test will compute
statistics between each feature and the class variable (univariate tests). Selecting the top K features is more
than likely to remove features having a low score and consequently they are most likely to be independent
of the class variable and hence not useful in building models. We sort the scores to see the most relevant
features using the following code.

In [10]: feature_scores = [(item, score) for item, score in zip(bc_data.feature_names,
 skb.scores_)]
 ...: sorted(feature_scores, key=lambda x: -x[1])[:10]
Out[10]:
[('worst area', 112598.43156405364),
 ('mean area', 53991.655923750892),
 ('area error', 8758.5047053344697),
 ('worst perimeter', 3665.0354163405909),
 ('mean perimeter', 2011.1028637679051),
 ('worst radius', 491.68915743332195),
 ('mean radius', 266.10491719517802),
 ('perimeter error', 250.57189635982184),
 ('worst texture', 174.44939960571074),
 ('mean texture', 93.897508098633352)]

We can now create a subset of the 15 selected features obtained from our original feature set of 30
features with the help of the chi-square test by using the following code.

In [11]: select_features_kbest = skb.get_support()
 ...: feature_names_kbest = bc_data.feature_names[select_features_kbest]
 ...: feature_subset_df = bc_features[feature_names_kbest]
 ...: bc_SX = np.array(feature_subset_df)
 ...: print(bc_SX.shape)
 ...: print(feature_names_kbest)
(569, 15)
['mean radius' 'mean texture' 'mean perimeter' 'mean area' 'mean concavity'
 'radius error' 'perimeter error' 'area error' 'worst radius'
 'worst texture' 'worst perimeter' 'worst area' 'worst compactness'
 'worst concavity' 'worst concave points']

Thus from the preceding output, you can see that our new feature subset bc_SX has 569 observations
of 15 features instead of 30 and we also printed the names of the selected features for your ease of
understanding. To view the new feature set, you can use the following snippet.

In [12]: np.round(feature_subset_df.iloc[20:25], 2)

Chapter 4 ■ Feature engineering and SeleCtion

247

The dataframe with the top scoring features is depicted in Figure 4-39. Let’s now build a simple
classification model using logistic regression on the original feature set of 30 features and compare the
model accuracy performance with another model built using our selected 15 features. For model evaluation,
we will use the accuracy metric (percent of correct predictions) and use a five-fold cross-validation scheme.
We will be covering model evaluation and tuning strategies in detail in Chapter 5, so do not despair if
you cannot understand some of the terminology right now. The main idea here is to compare the model
prediction performance between models trained on different feature sets.

In [13]: from sklearn.linear_model import LogisticRegression
 ...: from sklearn.model_selection import cross_val_score
 ...:
 ...: # build logistic regression model
 ...: lr = LogisticRegression()
 ...:
 ...: # evaluating accuracy for model built on full featureset
 ...: full_feat_acc = np.average(cross_val_score(lr, bc_X, bc_y, scoring='accuracy', cv=5))
 ...: # evaluating accuracy for model built on selected featureset
 ...: sel_feat_acc = np.average(cross_val_score(lr, bc_SX, bc_y, scoring='accuracy', cv=5))
 ...:
 ...: print('Model accuracy statistics with 5-fold cross validation')
 ...: print('Model accuracy with complete feature set', bc_X.shape, ':', full_feat_acc)
 ...: print('Model accuracy with selected feature set', bc_SX.shape, ':', sel_feat_acc)
Model accuracy statistics with 5-fold cross validation
Model accuracy with complete feature set (569, 30) : 0.950904193921
Model accuracy with selected feature set (569, 15) : 0.952643324356

The accuracy metrics clearly show us that we actually built a better model having accuracy of 95.26%
when trained on the selected 15 feature subset as compared to the model built with the original 30 features
which had an accuracy of 95.09%. Try this out on your own datasets! Do you see any improvements?

Recursive Feature Elimination
You can also rank and score features with the help of a Machine Learning based model estimator such that
you recursively keep eliminating lower scored features till you arrive at the specific feature subset count.
Recursive Feature Elimination, also known as RFE, is a popular wrapper based feature selection technique,
which allows you to use this strategy. The basic idea is to start off with a specific Machine Learning estimator
like the Logistic Regression algorithm we used for our classification needs. Next we take the entire feature set
of 30 features and the corresponding response class variables. RFE aims to assign weights to these features
based on the model fit. Features with the smallest weights are pruned out and then a model is fit again on

Figure 4-39. Selected feature subset of the Wisconsin Diagnostic Breast Cancer dataset using chi-square tests

http://dx.doi.org/10.1007/978-1-4842-3207-1_5

Chapter 4 ■ Feature engineering and SeleCtion

248

the remaining features to obtain the new weights or scores. This process is recursively carried out multiple
times and each time features with the lowest scores/weights are eliminated, until the pruned feature subset
contains the desired number of features that the user wanted to select (this is taken as an input parameter at
the start). This strategy is also popularly known as backward elimination. Let’s select the top 15 features on
our breast cancer dataset now using RFE.

In [14]: from sklearn.feature_selection import RFE
 ...:
 ...: lr = LogisticRegression()
 ...: rfe = RFE(estimator=lr, n_features_to_select=15, step=1)
 ...: rfe.fit(bc_X, bc_y)
Out[14]:
RFE(estimator=LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
 intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
 penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
 verbose=0, warm_start=False),
 n_features_to_select=15, step=1, verbose=0)

We can now use the get_support(...) function to obtain the final 15 selected features. This is depicted
in the following snippet.

In [15]: select_features_rfe = rfe.get_support()
 ...: feature_names_rfe = bc_data.feature_names[select_features_rfe]
 ...: print(feature_names_rfe)
['mean radius' 'mean texture' 'mean perimeter' 'mean smoothness'
 'mean concavity' 'mean concave points' 'mean symmetry' 'texture error'
 'worst radius' 'worst texture' 'worst smoothness' 'worst concavity'
 'worst concave points' 'worst symmetry' 'worst fractal dimension']

Can we compare this feature subset with the one we obtained using statistical tests in the previous
section and see which features are common among both these subsets? Of course we can! Let’s use set
operations to get the list of features that were selected by both these techniques.

In [16]: set(feature_names_kbest) & set(feature_names_rfe)
Out[16]:
{'mean concavity', 'mean perimeter', 'mean radius', 'mean texture',
 'worst concave points', 'worst concavity', 'worst radius', 'worst texture'}

Thus we can see that 8 out of 15 features are common and have been chosen by both the feature
selection techniques, which is definitely interesting!

 Model-Based Selection
Tree based models like decision trees and ensemble models like random forests (ensemble of trees) can
be utilized not just for modeling alone but for feature selection. These models can be used to compute
feature importances when building the model that can in turn be used for selecting the best features and
discarding irrelevant features with lower scores. Random forest is an ensemble model. This can be used as
an embedded feature selection method, where each decision tree model in the ensemble is built by taking
a training sample of data from the entire dataset. This sample is a bootstrap sample (sample taken with
replacement). Splits at any node are taken by choosing the best split from a random subset of the features
rather than taking all the features into account. This randomness tends to reduce the variance of the model

Chapter 4 ■ Feature engineering and SeleCtion

249

at the cost of slightly increasing the bias. Overall this produces a better and more generalized model. We will
cover the bias-variance tradeoff in more detail in Chapter 5. Let’s now use the random forest model to score
and rank features based on their importance.

In [17]: from sklearn.ensemble import RandomForestClassifier
 ...:
 ...: rfc = RandomForestClassifier()
 ...: rfc.fit(bc_X, bc_y)
Out[17]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
 max_depth=None, max_features='auto', max_leaf_nodes=None,
 min_impurity_split=1e-07, min_samples_leaf=1,
 min_samples_split=2, min_weight_fraction_leaf=0.0,
 n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
 verbose=0, warm_start=False)

The following code uses this random forest estimator to score the features based on their importance
and we display the top 10 most important features based on this score.

In [18]: importance_scores = rfc.feature_importances_
 ...: feature_importances = [(feature, score) for feature, score in zip(bc_data.feature_
names, importance_scores)]
 ...: sorted(feature_importances, key=lambda x: -x[1])[:10]
Out[18]:
[('worst area', 0.25116985146898885),
 ('worst radius', 0.16995187376059454),
 ('worst concavity', 0.1164662504282163),
 ('worst concave points', 0.11253251729478526),
 ('mean concave points', 0.10839170432994949),
 ('mean concavity', 0.063554137255925847),
 ('mean area', 0.023771318604377804),
 ('worst perimeter', 0.020636790800076958),
 ('worst texture', 0.019171556030722112),
 ('mean radius', 0.014908508522792335)]

You can now use a threshold based parameter to filter out the top n features as needed or you can even
make use of the SelectFromModel meta-transformer provided by scikit-learn by using it as a wrapper on
top of this model. Can you find out how many of the higher ranked features from the random forest model
are in common with the previous two feature selectors?

Dimensionality Reduction
Dealing with a lot of features can lead to issues like model overfitting, complex models, and many more that
all roll up to what we have mentioned as the curse of dimensionality. Refer to the section “Dimensionality
Reduction” in Chapter 1 to refresh your memory. Dimensionality reduction is the process of reducing
the total number of features in our feature set using strategies like feature selection or feature extraction.
We have already talked about feature selection extensively in the previous section. We now cover feature
extraction where the basic objective is to extract new features from the existing set of features such that
the higher-dimensional dataset with many features can be reduced into a lower-dimensional dataset of
these newly created features. A very popular technique of linear data transformation from higher to lower
dimensions is Principal Component Analysis, also known as PCA. Let’s try to understand more about PCA
and how we can use it for feature extraction in the following sections.

http://dx.doi.org/10.1007/978-1-4842-3207-1_5
http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Chapter 4 ■ Feature engineering and SeleCtion

250

 Feature Extraction with Principal Component Analysis
Principal component analysis, popularly known as PCA, is a statistical method that uses the process of
linear, orthogonal transformation to transform a higher-dimensional set of features that could be possibly
correlated into a lower-dimensional set of linearly uncorrelated features. These transformed and newly
created features are also known as Principal Components or PCs. In any PCA transformation, the total
number of PCs is always less than or equal to the initial number of features. The first principal component
tries to capture the maximum variance of the original set of features. Each of the succeeding components
tries to capture more of the variance such that they are orthogonal to the preceding components. An
important point to remember is that PCA is sensitive to feature scaling.

Our main task is to take a set of initial features with dimension let’s say D and reduce it to a subset of
extracted principal components of a lower dimension LD. The matrix decomposition process of Singular
Value Decomposition is extremely useful in helping us obtain the principal components. You can quickly
refresh your memory on SVD by referring to the sub-section of “Singular Value Decomposition” under the
“Important Concepts” in the “Mathematics” section in Chapter 1 to check out the necessary mathematical
formula and concepts. Considering we have a data matrix F

(n x D)
, where we have n observations and

D dimensions (features), we can depict SVD of the feature matrix as (F
(n x D)

) = USVT such that all the principal
components are contained in the component VT, which can be depicted as follows:

V

PC

PC

PC

T
D D

D

D

D D

´()

´()

´()

´()

=
¼

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

1 1

2 1

1

The principal components are represented by {PC
1
, PC

2
, ... PC

D
} , which are all one-dimensional vectors

of dimensions (1 x D). For extracting the first d principal components, we can first transpose this matrix to
obtain the following representation.

PC V PC PC PCD D
T T

D D D D´() () () ()= () = ¼é
ëê

ù
ûú1 1 2 1 1x x x

Now we can extract out the first d principal components such that d ≤ D and the reduced principal
component set can be depicted as follows.

PC V PC PC PCD D
T T

D D D D´() () () ()= () = ¼é
ëê

ù
ûú1 1 2 1 1x x x

Finally, to perform dimensionality reduction, we can get the reduced feature set using the following
mathematical transformation F

(n x d)
 = F

(n x D)
⋅PC

(D x d)
 where the dot product between the original feature

matrix and the reduced subset of principal components gives us a reduced feature set of d features. A very
important point to remember here is that you might need to center your initial feature matrix by removing
the mean because by default, PCA assumes that your data is centered around the origin.

http://dx.doi.org/10.1007/978-1-4842-3207-1_1

Chapter 4 ■ Feature engineering and SeleCtion

251

Let’s try to extract the first three principal components now from our breast cancer feature set of
30 features using SVD. We first center our feature matrix and then use SVD and subsetting to extract the first
three PCs using the following code.

In [19]: # center the feature set
 ...: bc_XC = bc_X - bc_X.mean(axis=0)
 ...:
 ...: # decompose using SVD
 ...: U, S, VT = np.linalg.svd(bc_XC)
 ...:
 ...: # get principal components
 ...: PC = VT.T
 ...:
 ...: # get first 3 principal components
 ...: PC3 = PC[:, 0:3]
 ...: PC3.shape
Out[19]: (30, 3)

We can now get the reduced feature set of three features by using the dot product operation we
discussed earlier. The following snippet gives us the final reduced feature set that can be used for modeling.

reduce feature set dimensionality
np.round(bc_XC.dot(PC3), 2)
Out[20]:
array([[-1160.14, -293.92, -48.58],
 [-1269.12, 15.63, 35.39],
 [-995.79, 39.16, 1.71],
 ...,
 [-314.5 , 47.55, 10.44],
 [-1124.86, 34.13, 19.74],
 [771.53, -88.64, -23.89]])

Thus you can see how powerful SVD and PCA can be in helping us reduce dimensionality by extracting
necessary features. Of course in Machine Learning systems and pipelines you can use utilities from scikit-
learn instead of writing unnecessary code and equations. The following code enables us to perform PCA on
our breast cancer feature set leveraging scikit-learn's APIs.

In [21]: from sklearn.decomposition import PCA
 ...: pca = PCA(n_components=3)
 ...: pca.fit(bc_X)
Out[21]:
PCA(copy=True, iterated_power='auto', n_components=3, random_state=None,
 svd_solver='auto', tol=0.0, whiten=False)

To understand how much of the variance is explained by each of these principal components, you can
use the following code.

In [22]: pca.explained_variance_ratio_
Out[22]: array([0.98204467, 0.01617649, 0.00155751])

Chapter 4 ■ Feature engineering and SeleCtion

252

From the preceding output, as expected, we can see the maximum variance is explained by the first
principal component. To obtain the reduced feature set, we can use the following snippet.

In [23]: bc_pca = pca.transform(bc_X)
 ...: np.round(bc_pca, 2)
Out[23]:
array([[1160.14, -293.92, 48.58],
 [1269.12, 15.63, -35.39],
 [995.79, 39.16, -1.71],
 ...,
 [314.5 , 47.55, -10.44],
 [1124.86, 34.13, -19.74],
 [-771.53, -88.64, 23.89]])

If you compare the values of this reduced feature set with the values obtained in our mathematical
implementation based code, you will see they are exactly the same except sign inversions in some cases.

The reason for sign inversion in some of the values in principal components is because the direction of these
principal components is unstable. The sign indicates direction. Hence even if the principal components point in
opposite directions, they should still be on the same plane and hence shouldn't have an effect when modeling
with this data.

Let’s now quickly build a logistic regression model as before and use model accuracy and five-fold cross
validation to evaluate the model quality using these three features.

In [24]: np.average(cross_val_score(lr, bc_pca, bc_y, scoring='accuracy', cv=5))
Out[24]: 0.92808003078106949

We can see from the preceding output that even though we used only three features derived from the
principal components instead of the original 30 features, we still obtained a model accuracy close to 93%,
which is quite decent!

Summary
This was a content packed chapter with a lot of hands-on examples based on real-world datasets. The main
intent of this chapter is to get you familiarized with essential concepts, tools, techniques, and strategies used
for feature extraction, engineering, scaling, and selection. One of the toughest tasks that data scientists face
day in and day out is data processing and feature engineering. Hence it is of paramount importance that you
understand the various aspects involved with deriving features from raw data. This chapter is intended to be
used both as a starting ground as well as a reference guide for understanding what techniques and strategy
should be applied when trying to engineer features on your own datasets. We cover the basic concepts of
feature engineering, scaling, and selection and also the importance behind each of these processes. Feature
engineering techniques are covered extensively for diverse data types including numerical, categorical, text,

Chapter 4 ■ Feature engineering and SeleCtion

253

temporal and images. Multiple feature scaling techniques are also covered, which are useful to tone down
the scale and magnitude of features before modeling. Finally, we cover feature selection techniques in detail
with emphasis on the three different strategies of feature selection namely filter, wrapper, and embedded
methods. Special sections on dimensionality reduction and automated feature extraction using Deep
Learning have also been included since they have gained a lot of prominence in both research as well as the
industry. I want to conclude this chapter by leaving you with the following quote by Peter Norvig, renowned
computer scientist and director at Google, which should reinforce the importance of feature engineering.

“More data beats clever algorithms, but better data beats more data.”
—Peter Norvig

	Chapter 4: Feature Engineering and Selection
	 Features: Understand Your Data Better
	 Data and Datasets
	Features
	Models

	Revisiting the Machine Learning Pipeline
	 Feature Extraction and Engineering
	 What Is Feature Engineering?
	Why Feature Engineering?
	How Do You Engineer Features?

	Feature Engineering on Numeric Data
	Raw Measures
	 Values
	 Counts

	Binarization
	Rounding
	 Interactions
	 Binning
	Fixed-Width Binning
	 Adaptive Binning

	Statistical Transformations
	Log Transform
	 Box-Cox Transform

	Feature Engineering on Categorical Data
	Transforming Nominal Features
	 Transforming Ordinal Features
	Encoding Categorical Features
	One Hot Encoding Scheme
	Dummy Coding Scheme
	 Effect Coding Scheme
	Bin-Counting Scheme
	 Feature Hashing Scheme

	Feature Engineering on Text Data
	Text Pre-Processing
	 Bag of Words Model
	Bag of N-Grams Model
	TF-IDF Model
	Document Similarity
	 Topic Models
	Word Embeddings

	Feature Engineering on Temporal Data
	Date-Based Features
	 Time-Based Features

	 Feature Engineering on Image Data
	 Image Metadata Features
	Raw Image and Channel Pixels
	Grayscale Image Pixels
	 Binning Image Intensity Distribution
	Image Aggregation Statistics
	 Edge Detection
	Object Detection
	Localized Feature Extraction
	Visual Bag of Words Model
	Automated Feature Engineering with Deep Learning

	Feature Scaling
	Standardized Scaling
	 Min-Max Scaling
	 Robust Scaling

	Feature Selection
	Threshold-Based Methods
	 Statistical Methods
	Recursive Feature Elimination
	 Model-Based Selection

	Dimensionality Reduction
	 Feature Extraction with Principal Component Analysis

	Summary

