
23© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_5

CHAPTER 5

What Is MVC?
The model-view-controller (MVC) pattern is a software-design pattern

used for creating data-driven web applications. A design pattern is a

general solution that addresses common software-design challenges.

While not a finished design, you may think of a design pattern as a

template or set of best practices.

Following the MVC pattern means you intend to keep the presentation

layer (view), business logic (controller), and database layer (model)

separate. Changes made to one layer will minimally impact the others.

The real benefit of MVC is not seen when writing the code, but rather

when maintaining it. Code is in independent units and can be maintained

without keeping the entire application in your head.

Team building around MVC is easier. The design lends itself to

segmentation among different people or groups. Imagine a View Team

that is responsible for great views, a Model Team that knows all about the

data, and a Controller Team that understands the application flow and

business rules. Each can work on their part of the application concurrently

without regard for the other teams. This allows for more rapid application

development.

Another great advantage of MVC is code reuse. The application’s logic

implemented in the model and controller gets reused for each different view.

https://doi.org/10.1007/978-1-4842-3195-1_5

24

�The Model, View, Controller, and Service
in Bullhorn
When you think of the model, think of the database. Generally, the model

is constructed first. The model must store the data. The model may consist

of classes that communicate with the database. The model in Bullhorn is

represented by the Oracle database and the entity classes, which represent

the tables in Oracle.

Once you create the data model and any classes that are part of the

model, move on to the services. The services are all the code that interacts

with the model.

Next, move on to the controller. The controller is part of the web

application and moves data between the services and the view. The

controller also determines which page or servlet is called next. In Bullhorn,

the servlets happen to also be the controller. This is not always the case.

The controller is simply that code that controls application-specific logic.

Since this is a web application, the servlets are in charge of getting data

from the view and determining which JSP will display next. If you have Java

classes that contain that functionality, they will be part of the controller.

The part of the application the user actually sees is called the view.

It presents the data to the user and gets data from the user, which is then

passed back to the model through the services and controller. The view

in Bullhorn consists of JSPs (Java Server Pages) using Bootstrap, CSS

(Cascading Style Sheets), JavaScript, and images. All the parts of the view

work to create the pages that are displayed in the user’s browser. See

Figure 5-1.

Chapter 5 What Is MVC?

25

Tip P erform validation in every layer. Data can come to your
application through ways unanticipated by you when you initially
develop it, not just through the browser. For example, it may come
to be that you need to import information into your database.
Or, you may later write a web service that interacts directly with your
service layer.

Figure 5-1.  The components of Bullhorn are logically divided into
layers called Model, View, Controller, and Service

Chapter 5 What Is MVC?

	Chapter 5: What Is MVC?
	 The Model, View, Controller, and Service in Bullhorn

