
101© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_13

CHAPTER 13

The Stateless Nature
of the Web
A web application does not maintain state. It has no memory. Each request

to the web server is an independent event. Each request does not know

about previous requests. When you send your username and password,

the web server views this as an independent event. It does not keep track of

what you’re logging in to. The information is simply sent to the server.

When you submit a form, all the information about what to do with the

form data must be sent along with the form. Why? Because each request is

an independent transaction.

In real life this is what it would be like if you went to the bank and

got a new teller after each question. And the tellers don’t talk to each

other—only to you. And each teller would want to see your ID and check

your balance and do everything the other teller had already done. To make

such a situation easier, you could keep a running log of each transaction

that each teller could use to verify what has been done.

So, how does a web application maintain state? The answer is by using

either session variables or passing information known as parameters from

the previous transaction. Parameters are sent between the client

(web browser) and the server via either the URL or as other information

sent to the server as part of the request. This is called the request packet;

we have touched on this already in our discussion of servlets.

https://doi.org/10.1007/978-1-4842-3195-1_13

102

Session variables exist in the memory of the web server. Each request

includes a session ID. The session ID links the request to the session data

for that user. The session ID is automatically passed between requests. You

don’t have to do anything. It’s always there.

Since there is one session per user, you can store variables in each

user’s session. This is a space in memory that holds data while the user is

using the site. Since Java always knows the session ID, it has access to any

data in the session.

So, it’s the request packet and the session that tie the room together.

And you thought it was the rug! (Not funny? Watch The Big Lebowski

again). A session makes it easy for the server to connect one request to

another.

 The Process of Passing Data
The following list is a summary of the steps that are followed for data to be

sent from a web form to a JSP using a servlet:

 1. The form passes the request.

 2. Servlet receives the request.

 3. The servlet processes the request with

request.getParameter().

 4. The servlet generates a response based on the data

in the request.

 5. The servlet constructs a response in an object that

will be sent to the JSP.

 6. The JSP contains an attribute ${user}.

Chapter 13 the StateleSS Nature of the Web

103

 7. The servlet sets the attribute request.setAttribute

("user",myUser);.

 8. The servlet sends the JSP back to the originating

browser by calling getServletContext().

getRequestDispatcher(url).forward(request,

response);.

Chapter 13 the StateleSS Nature of the Web

	Chapter 13: The Stateless Nature of the Web
	 The Process of Passing Data

