
Java EE Web
Application
Primer

Building Bullhorn: A Messaging
App with JSP, Servlets, JavaScript,
Bootstrap and Oracle
—
Dave Wolf
A.J. Henley

Java EE Web
Application Primer

Building Bullhorn: A Messaging
App with JSP, Servlets,

JavaScript, Bootstrap and
Oracle

Dave Wolf
A.J. Henley

Java EE Web Application Primer: Building Bullhorn: A Messaging App
with JSP, Servlets, JavaScript, Bootstrap and Oracle

ISBN-13 (pbk): 978-1-4842-3194-4 ISBN-13 (electronic): 978-1-4842-3195-1
https://doi.org/10.1007/978-1-4842-3195-1

Library of Congress Control Number: 2017962002

Copyright © 2017 by Dave Wolf, A.J. Henley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Manuel Jordan Elera
Coordinating Editor: Mark Powers
Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484231944.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dave Wolf
New York, USA

A.J. Henley
Washington, D.C., District of Columbia, USA

https://doi.org/10.1007/978-1-4842-3195-1

To those who seek to teach themselves.

v

Table of Contents

Chapter 1: Getting Started ��1

The Oracle Virtual Machine ���2

Chapter 2: What Is a Database? ���5

Referential Integrity ��6

Null Values ��6

Primary Keys, Foreign Keys, and Indexes ���7

Joining Tables ���7

Normalization ��8

Structured Query Language (SQL)���8

Working with the Oracle Database ��9

How to Open and Use SQL Developer ���10

Chapter 3: Installing and Running Eclipse ��11

Chapter 4: Bullhorn Site Overview ��15

The Components of Bullhorn ���15

What Does Each Page Look Like? ���17

Editing a Profile ��21

About the Authors ��ix

About the Technical Reviewer ���xi

Introduction ���xiii

vi

Chapter 5: What Is MVC? ��23

The Model, View, Controller, and Service in Bullhorn ��24

Chapter 6: Creating a Web Application ���27

Chapter 7: The DAO/Repository ��31

Implement Java Persistence (JPA) ��34

The Persistence�xml File ���36

The JPA Entities ��38

Chapter 8: The Service Layer ��43

Create a DbUtilities Class ��43

Create the DbUser Class ���44

Create the DbPost Class ��51

Chapter 9: The Controller ��57

What Is a Servlet? ���57

Getting the Form Data into the Servlet ���59

Sending the Data to the Next Page ���59

How the Servlet Finds the Next Page ��60

How to Set Values on Your Output Page ��60

How the Log Out Button Works ���61

The Login Servlet Code ���61

The News Feed Servlet Code ��64

The PostServ Servlet Code ��67

The Profile Servlet Code��69

The AddUser Servlet Code���74

Chapter 10: The Presentation/View ��77

Chapter 11: Designing Web Pages with HTML ������������������������������������79

Table of ConTenTsTable of ConTenTs

vii

Chapter 12: HTML5 Tags ���81

Explanation of Common Tags ��82

HTML Tables ��85

A Basic HTML5 and JSP Document ���86

JSP Standard Tag Library (JSTL) ���87

What Can You Do with JSTL? ��89

Prevent Cross-site Scripting Attacks ���89

Loop Through a Collection ���89

Set a Value ���90

Test a Condition ���90

Repeat Content a Fixed Number of Times ���91

Test a Condition and Choose an Alternative ��91

Determine If a String Is Null or Empty ���92

Formatting Dates ���92

How to Display Form Data ��93

Create an HTML Login Form ��93

Create a Page to Display the Output of Your Form ��95

How to Allow the User to Navigate Between Web Pages �������������������������������96

Reusing JSP Code ���96

Customizing Your Errors ��97

Chapter 13: The Stateless Nature of the Web �����������������������������������101

The Process of Passing Data���102

Chapter 14: Users and Sessions ���105

Adding Objects to the Session ��107

To Read a Value from the Session ���108

Table of ConTenTsTable of ConTenTs

viii

Chapter 15: How to Create Database Tables for Bullhorn �����������������109

Chapter 16: Make Web Pages Do Something Using JavaScript ��������111

Validate a Form Using JavaScript ���112

Display Number of Characters in Text Box ��114

Chapter 17: Cascading Style Sheets (CSS) ���������������������������������������115

Span and Div Tags ���116

Chapter 18: Making Pages Work on All Screen Sizes �����������������������119

Working with BootStrap ��120

Chapter 19: Use Gravatar to Display User’s Avatars with Posts �������123

Calculating an MD5 Hash with Java ���124

Chapter 20: The Presentation/View ��127

The Code for the Login Page ���127

The Code for the Home Page ��129

The Code for the News Feed Page ��130

The Code for the Profile Page ���132

The Code for the Add User Page ���134

The Code for the Support Page ���135

The Code for the Error Page ��136

The Navbar Include File ��136

The BootStrap Include File ��139

The Bootstrap Style Pages���140

The Footer Include File ��140

Index ���141

Table of ConTenTsTable of ConTenTs

ix

About the Authors

Dave Wolf is a certified Project Management

Professional (PMP) with over 20 years of

experience as a software developer, analyst,

and trainer. His latest projects include

collaboratively developing training materials

and programming bootcamps for Java and

Python.

A.J. Henley is a technology educator with over

20 years of experience as a developer, designer,

and systems engineer. He is an instructor at

Howard University and Montgomery College.

xi

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic

developer and researcher who enjoys learning

new technologies for his own experiments and

for creating new integrations.

Manuel won the 2010 Springy Award—

Community Champion and Spring Champion

2013. In his little free time, he reads the Bible

and composes music on his guitar. Manuel

is known online as dr_pompeii. He has

tech reviewed numerous books for Apress,

including Pro Spring Messaging (2017), Pro Spring, 4th Edition (2014),

Practical Spring LDAP (2013), Pro JPA 2, Second Edition (2013), and

Pro Spring Security (2013).

Read his 13 detailed tutorials about many Spring technologies or

contact him through his blog at http://www.manueljordanelera.

blogspot.com. You can also follow him on his Twitter account,

 @dr_pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

xiii

Introduction

Are you a Java developer wondering how to create an Enterprise

application? Do you find the different components overwhelming or

confusing, not knowing how they go together? We’re here to help. What if

you could just get an example application working and use that knowledge

to continue your Java journey?

This book and the accompanying code will show you one way to

create a website. It’s not the only way. It may not be the best way for

every application. But it’s a way that will introduce you to the different

components of Java Enterprise application development. And it’s a good

way to get started.

In Java EE Web Application Primer, you’ll learn the basics of Java EE

application development. You’ll see how the parts connect. You will have

the Java code for a complete, working application.

 The Software
Our students take our courses to learn how to program for large

companies. We have found these are the skills most requested by the

companies hiring our students. We choose to use Java 8, Oracle 12c, and

Eclipse for developing the application. Similarly, we choose to use JPA

(Java Persistence API) instead of Hibernate. We choose JSTL (Java Standard

Tag Library) over other available options. Again, these technologies teach

core skills without hiding all the implementation details from the student.

Our application is designed to teach. We provide the complete source code.

xiv

You will learn much simply by reviewing and modifying the source code.

This book answers the questions you may have after working with the

source code, and the source code helps explain how the concepts in this

book have been implemented.

 How to Use This Book
We wrote this book based on our experience teaching Java bootcamps and

other programming courses. The objective of our courses is to help people

learn skills they can use at work. Businesses care more about results

than theory, and we apply that principle to our application. This book

answers the questions many of our students have about web application

development when starting out.

 What Our Students Have Achieved
“I remember when the light bulbs started going off in my head,
when the gibberish on the screen started to make sense. It was
the most amazing feeling to start catching up with the rest of
my impressive classmates.”

—Vicky, now a project manager at a Fortune 100 company

“I went through four years of university schooling in computer
science, and I can honestly say that going through this course
gave me a wealth of experience that I only had a taste of dur-
ing my schooling. I certainly had project experience under my
belt graduating with a tech degree, but doing project after
project with Dave and Alton, the instructors, really cemented
the theory and practices I had learned previously in stone.
More than that, I got to patch up a lot of holes that I had left
unfilled from missed opportunities in college.”

—Francis, now an analyst at a Fortune 100 company

InTroduCTIonInTroduCTIon

xv

If you’re ready to get started and develop your first Java Enterprise web

application, we thank you for choosing our book to begin your journey.

Know that you will face challenges and frustrations. You aren’t alone. We

have found that as our students worked through those, they learned more

about software development than we could ever teach in a book. You’re in

the right place. Wait no longer. It’s time to move on to Chapter 1!

InTroduCTIonInTroduCTIon

1© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_1

CHAPTER 1

Getting Started
VirtualBox allows you to create virtual computers within your physical

computer, enabling you to run multiple computers on one system. Setting

up VirtualBox requires very few steps. Once installed, you can then import

an existing virtual computer and begin work using that system.

Click and run the file to install VirtualBox just like with any other

software you’ve ever downloaded. If you are using Windows, double-click

the setup file and follow the prompts to install. If you are using a Mac, open

the DMG file that you downloaded and drag the VirtualBox file to your

Applications folder. During the installation, keep all of the options set to

their default.

Start the VirtualBox program. VirtualBox allows you to manage

your various virtual machines and easily create new ones. You can run

VirtualBox directly from the installation program, or you can start it from

the desktop icon.

Note Download VirtualBox from Oracle’s website:
http://www.oracle.com/technetwork/server-storage/
virtualbox/downloads/index.html

http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/downloads/index.html

2

 The Oracle Virtual Machine
Being lazy—I mean, efficient—we used a pre-built Oracle virtual

machine (VM) image to develop the site. Oracle makes this VM available

for download at no cost (registration required). The VM requires the

open source VirtualBox software be installed on your computer as just

described. The VM hosts the latest version of the Oracle database (version

12c). It also contains SQL Developer and even Java 1.8. You will only need

to install Eclipse, which we’ll cover in a later section.

Tip Download the Oracle Database Application Developer virtual
machine from the Oracle website at http://www.oracle.
com/technetwork/database/enterprise-edition/
databaseappdev-vm-161299.html. You must accept the terms of
the software prior to downloading.

Once you have the Oracle virtual machine file ready, select File ➤

Import Appliance in the menu bar. Click the Open Appliance button to

select the Oracle virtual machine file. Navigate to the file with the .ova

file extension. Selecting this file will open a dialog box in VirtualBox that

displays the settings. You can select the Import button from here. The next

window will show you the configuration of the current virtual appliance.

Once you click on Import, VirtualBox will copy the disk images and

create a virtual machine with the settings described in the dialog. You will

see the Oracle virtual machine in the VirtualBox Manager’s list of virtual

machines. The VirtualBox Manager is the first screen that opens when you

open VirtualBox. Select your machine, click Start, and give it time to load,

then you can work with that machine as if it were a separate computer.

ChApter 1 GettinG StArteD

http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

3

Note if you’re not using the Oracle virtual machine, you can
complete everything in this book using Windows.

You can download and install Oracle database version 12c for
Windows at http://www.oracle.com/technetwork/database/
enterprise-edition/downloads/database12c-win64-
download-2297732.html.

You will also need to install SQL Developer, which you can find at
http://www.oracle.com/technetwork/developer-tools/
sql-developer/downloads/index.html.

Finally, you will need to install eclipse Oxygen from http://www.
eclipse.org/downloads.

ChApter 1 GettinG StArteD

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/database12c-win64-download-2297732.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
http://www.eclipse.org/downloads
http://www.eclipse.org/downloads

5© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_2

CHAPTER 2

What Is a Database?
A database is a place to permanently store data for retrieval in a safe,

efficient way. A database allows us to create data and save it permanently.

It allows us to retrieve previously created data, update existing data, or

delete existing data.

A transaction groups SQL statements so that they are all applied to

the database. If one statement fails for some reason, all the statements

are undone from the database. Transactions ensure data integrity.

Transactions distinguish a database management system such as Oracle

from a file system.

The properties of a database transaction that ensure data validity are

atomicity, consistency, isolation, and durability.

• Atomicity refers to the fact that in each database

transaction either all the information is saved or none

of the information is saved.

• Consistency ensures that a transaction either works

correctly or the dataset is returned to the state it was in

before the transaction was executed.

• Isolation refers to the ability of a database to keep a

transaction that is not yet committed distinctly separate

from the working database.

6

• Durability refers to the way committed data is saved by

the system such that, even in the event of a failure and

system restart, the data is available in its correct state.

The database stores data in sets, which are most commonly viewed as

tables. One row of a database table represents a record containing related

attributes, called fields. Fields are represented by the columns in a table.

 Referential Integrity
Your database management system (DBMS) supports referential integrity.

The goal of referential integrity is to avoid having “orphaned” data.

Orphaned data can happen when you are deleting or updating the data

in your tables; for example, if you have a post in your database that does

not have a matching user. This shouldn’t happen and is often the result

of importing poorly formatted data or inadvertently deleting a user. A

database management system such as Oracle can enforce referential

integrity to prevent this by denying changes that will result in orphaned

data.

 Null Values
Sometimes there is no value in a column of a row. In this case, the column

stores a NULL value. You can think of this as a flag to indicate the absence

of data. NULL is different from the numeric value zero or a string with a

length of zero characters. It is neither. It is nothing, because no value has

been stored in the column for this record. NULL, it turns out, is very useful.

You can search for a field in records that contain NULL and know that they

are the ones with no value in the field.

Chapter 2 What Is a Database?

7

 Primary Keys, Foreign Keys, and Indexes
Databases are very powerful tools that allow us to search and sort data at

incredible speeds. An essential ingredient of the mechanics of a database

is that each record should be unique. To make each record unique, either

use an existing field that is unique to each record or add a field to each

record that contains a unique number.

Your DBMS can generate a unique number for each record. The

unique number of each record becomes its primary key. This field

distinguishes that record from any other in the table.

When a second table contains data related to that of the first table, the

second table can refer to the original using the primary key field.

A primary key used as a reference in another table is called a foreign

key. Foreign keys define a reference from one table (the child) to another

table (the parent).

To make access to a column of data more efficient, the database will

create an object called an index. An index contains an entry for each value

in the indexed column(s), resulting in fast access to rows. Like an index

in a print book, the database can look up the requested value in the index

and quickly locate its corresponding row in the table.

 Joining Tables
Relationships are a means to join data to different tables. This helps you

avoid redundancy in the tables. You can divide your data into different

tables—entering it only once—and then reference it from other tables by

establishing relationships.

Chapter 2 What Is a Database?

8

There are three types of relationships, as follows:

• A One-to-One relationship is where each record in the

first table has only one matching record in the second

table. This usually happens when information in one table

is divided across multiple tables. This is not common.

• A One-to-Many relationship is where each record in the

first table matches with multiple records in the second

table. For example, a user can have multiple posts.

• A Many-to-Many relationship is where each record

in the first table can have many corresponding

records in the second table, and also each record

in the second table can have many corresponding

records in the first table.

 Normalization
In a normalized data structure, each table contains information about a

single entity and each piece of information is stored in exactly one place.

Normalization is the process of efficiently organizing data in a

database. This is done by organizing the columns (fields or attributes) and

tables of a relational database to minimize data redundancy.

The goals of the normalization process are to eliminate redundant data

and ensure data dependencies make sense.

 Structured Query Language (SQL)
A database has its own programming language, SQL (Structured Query

Language). SQL is a nonprocedural language that provides database

access. All database operations are performed using SQL. Java can talk

to the database management system using SQL. This is done using the

Chapter 2 What Is a Database?

9

JDBC API, which allows your application to specify which records to

retrieve based on various criteria. For example, you can select records

created between certain dates or update only records that meet given

criteria. SQL can also be used to create database objects, such as user

tables and saved queries, which are known as views. A view contains

no data itself but is simply the stored query the use of which simplifies

accessing the data.

SQL (pronounced as the letters S-Q-L or sequel) is a specialized

database language that consists of statements that are very close to

English. SQL has one purpose: to communicate with a database. We

communicate with the database to add, update, or delete data. We also

communicate with the database to create and modify tables and other

database objects.

Almost every major DBMS supports SQL. Learning SQL will enable

you to interact with almost every database you might encounter. SQL is

easy to learn. The statements consist of descriptive English words. SQL

is powerful. Cleverly using the language elements allows you to perform

complex database operations. SQL is a standard governed by ANSI

(American National Standards Institute). In addition to the standard

implementation of SQL, most vendors implement their own proprietary

extensions. The version of SQL) you use for Oracle may differ from the

version you use to access other databases.

 Working with the Oracle Database
Just as you use an IDE (integrated development environment) to work with

Java programs, you can also use an IDE to work with Oracle databases.

This IDE is called SQL Developer. The virtual machine has a copy of SQL

Developer already installed.

Chapter 2 What Is a Database?

10

 How to Open and Use SQL Developer
To open SQL Developer in the virtual machine, simply click its icon on the

desktop.

Tip Oracle provides step-by-step instructions for using sQL
Developer on their technetwork website. If you use the virtual
machine, then everything is installed for you. browse to http://
www.oracle.com/webfolder/technetwork/tutorials/obe/
db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html.

Chapter 2 What Is a Database?

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/sqldev/r40/sqldev4.0_GS/sqldev4.0_GS.html

11© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_3

CHAPTER 3

Installing and
Running Eclipse
Your virtual machine contains all the software you need to create

Bullhorn—the Oracle Database 12c, SQL Developer, and Java 1.8—but it

doesn’t contain the Eclipse IDE. You will need to download and install that

yourself. Fortunately, the installation process is very easy.

INSTALL ECLIPSE ON THE VIRTUAL MACHINE

To install Eclipse on the virtual machine, you will need to open Firefox and

download the Eclipse archive. Then, you will need to extract the files from the

archive. Next, you will need to run the setup program that is included in the

archive files. Finally, open Eclipse.

 1. From the virtual machine, open the Firefox web browser. You

can get to Firefox by clicking on the Applications menu and

selecting the icon for Firefox Web Browser.

 2. Next, browse to http://www.eclipse.org/downloads.

 3. Click on the orange button to download Eclipse. You’ll be

installing the latest version, which is called Oxygen.

 4. You’ll be directed to another page with an orange Download

button. Click this one as well.

http://www.eclipse.org/downloads

12

 5. Select the option to open with the Archive Manager when this

window is displayed. The Archive Manager is the program that

will extract your files.

 6. You’ll be prompted to select a folder into which you want to

place the extracted files. Browse to the Home folder and select

Extract.

 7. Check the option to open the folder to view the files.

Once you see the extracted files, look for the file called

eclipse- install.

 8. Select the option to install Eclipse for Java EE.

 9. Your folder should be /home/oracle/eclipse/

jee- oxygen.

 10. Click Launch.

 11. Accept the default workspace. This is where your project files

will be kept.

You have just installed Eclipse Oxygen.

HOW TO CHANGE THE PORT IN TOMCAT

By default, Tomcat is configured to listen on the following port numbers: 8005,

8080, and 8009. The port we’re most interested in is 8080 since it’s used for

HTTP access. When you run a web application in Eclipse using Tomcat, the

URL becomes http://localhost:8080/ApplicationName. However,

sometimes these ports are used by other software running on the computer.

Fortunately, Eclipse makes it easy to change the port numbers.

CHAPTER 3 INSTALLINg AND RUNNINg ECLIPSE

13

 1. From your web project, in the Servers view, double-click on the

server name.

 2. That will open a configuration page for Tomcat as follows:

 3. Notice that the port numbers are shown in the table on the

right. Click to edit; for example:

 4. Once you change the port number for HTTP from 8080 to 9000,

you should press Ctrl + S to save the change and restart the

server.

Your application should now run without conflict. If you do get a conflict, then

you’ve chosen another used port. Repeat the process with a different port

number. It’s best to select a port within the range of 1025 to 65535. You can

research “Well-known port numbers” to find many articles explaining the

reasoning here.

CHAPTER 3 INSTALLINg AND RUNNINg ECLIPSE

15© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_4

CHAPTER 4

Bullhorn Site Overview
The diagram in Figure 4-1 illustrates how the site fits together. Only the

core components are shown. You may wish to add additional pages and

classes as needed.

 The Components of Bullhorn
• Servlets Java classes that extend the web server to

provide an interface to the browser and database or

other servlets.

Session holds objects (but only if Servlet adds them)
JSP (Java Server Page) = HTML + Java Code (and maybe JavaScript)
Servlet = Java code which create objects such as the User
Class = Java code used as a blueprint for an objects
For simplicity, all passwords are the word ‘password’

Note: Not all classes
are shown in this diagram

Bullhorn Overview Diagram

User object in session is available to all servlets and JSPs

JPA (data
access)
Classes

Login Servlet Home Servlet
Newsfeed

Servlet

Profile

user email

password

motto

Update

Newsfeed

Posts
Post item

Post item
Post item

Post item

Home Page

post text

Submit

Login Page

Login

user email

...................

Request Request Request Request Request Request

Session - visible to all servlets and JSPs
Session times out 20 minutes after last accessed

Database
Posts Table
Users Table

Figure 4-1. The components that make up Bullhorn

16

• JPA classes Java Persistence API classes that are used

to communicate between the servlets and the database.

• Request objects represent information sent between

the browser and the servlets. This information might

include email addresses and passwords that are being

used by the servlet to allow access to the site.

• Sessions are the web server’s method or approach of

retaining data while the user is accessing the site.

• User objects The user information is stored in a class

that will be stored in the session and is available to all

pages for the current user.

• JSP (Java Server Pages) Web pages that contain HTML

and tags from the JSP Standard Tag Library to add

functionality. Because they contain code they can

dynamically render for each user’s request. The JSP

Standard Tag Library permits each person to view their

own version of the page.

• HTML (Hypertext Markup Language) pages. HTML is a

system for tagging text files to control fonts, colors, and

images on your web pages.

Tip To keep your HTML from getting too complicated, use CSS
(Cascading Style Sheets) and JavaScript to control the presentation of
your content and let HTML control the layout.

The Bullhorn application contains web pages for login, home, news

feed, and user profile. The user starts at the login page. Once the user

clicks the Login button, the request (data from the login form) will be sent

to the login servlet.

CHapTer 4 BuLLHorn SiTe overview

17

The login servlet will validate the user against the database. A

valid user will be stored in the session, which is the website’s way of

remembering data between page views. Invalid users will not get past the

login page until they enter a correct username and password combination.

We will create other objects (classes) to validate data or support the

classes and pages shown in the diagram.

 What Does Each Page Look Like?
The login page will contain text boxes in which the user will enter their

email and password. This information will be verified in the login servlet. If

they match what is in the database then the user will be redirected to their

home page. If they do not match then the user will be prompted to log in

again. Users who reach the login page but aren’t registered on the site can

register for a login by clicking on the “Join” link. See Figure 4-2.

Figure 4-2. The login page contains text boxes for email and
password and a button to sign in to the application

CHapTer 4 BuLLHorn SiTe overview

18

The home page will allow each user to create a new post. Each post is

limited to 141 characters, so the home page enforces this restriction (see

Figure 4-3). Once the user is logged in, all pages contain a navigation bar at

the top that allows the user to navigate to different pages, view or edit their

profile, and search for posts containing a specific word.

Figure 4-3. The home page contains a form to submit a post to the
database. The form contains a text box and buttons to either submit
the post or clear the form.

Each page contains the same navigation bar, which allows the user

to move around the application. The navigation bar contains the logo,

links for the home page and the news feed page, and a search box. It also

displays the name of the logged-in user. The user can also select from

various user options, which is implemented as a drop-down list. These

include logging out, viewing or editing profile, and submitting feedback.

See Figure 4-4.

CHapTer 4 BuLLHorn SiTe overview

19

The “News Feed” link in the navigation bar will take a user to the

news feed page, which displays all posts from all users. Each user’s email

address is a link that will display the user’s profile information. Clicking

Search in the navigation bar will also display the news feed, but filtered to

posts that contain the text entered in the search text box. See Figure 4-5.

Figure 4-4. The navigation bar in Bullhorn shows at the top of every
page

Figure 4-5. The news feed page displays any posts that are in the
database

CHapTer 4 BuLLHorn SiTe overview

20

The profile for a user is read-only. It displays their email, motto, join

date, and avatar image, if any. Users can view profiles for other users by

clicking on their user names from the news feed page. See Figure 4-6.

Figure 4-6. The profile page for a user shown in read-only view

CHapTer 4 BuLLHorn SiTe overview

21

Figure 4-7. The profile page for the logged-in user displays with text
boxes and a button so the user can make changes

 Editing a Profile
If a user views their own profile, then the profile can be edited. See

Figure 4-7.

CHapTer 4 BuLLHorn SiTe overview

22

The support page doesn’t show much, just some text to let you know

it exists. We could modify this to include a text box that will send an email

or add a record to the database. Then, the support person could check for

new messages periodically. See Figure 4-8.

Figure 4-8. The support page could allow you to let users submit
requests to the web administrator

CHapTer 4 BuLLHorn SiTe overview

23© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_5

CHAPTER 5

What Is MVC?
The model-view-controller (MVC) pattern is a software-design pattern

used for creating data-driven web applications. A design pattern is a

general solution that addresses common software-design challenges.

While not a finished design, you may think of a design pattern as a

template or set of best practices.

Following the MVC pattern means you intend to keep the presentation

layer (view), business logic (controller), and database layer (model)

separate. Changes made to one layer will minimally impact the others.

The real benefit of MVC is not seen when writing the code, but rather

when maintaining it. Code is in independent units and can be maintained

without keeping the entire application in your head.

Team building around MVC is easier. The design lends itself to

segmentation among different people or groups. Imagine a View Team

that is responsible for great views, a Model Team that knows all about the

data, and a Controller Team that understands the application flow and

business rules. Each can work on their part of the application concurrently

without regard for the other teams. This allows for more rapid application

development.

Another great advantage of MVC is code reuse. The application’s logic

implemented in the model and controller gets reused for each different view.

24

 The Model, View, Controller, and Service
in Bullhorn
When you think of the model, think of the database. Generally, the model

is constructed first. The model must store the data. The model may consist

of classes that communicate with the database. The model in Bullhorn is

represented by the Oracle database and the entity classes, which represent

the tables in Oracle.

Once you create the data model and any classes that are part of the

model, move on to the services. The services are all the code that interacts

with the model.

Next, move on to the controller. The controller is part of the web

application and moves data between the services and the view. The

controller also determines which page or servlet is called next. In Bullhorn,

the servlets happen to also be the controller. This is not always the case.

The controller is simply that code that controls application-specific logic.

Since this is a web application, the servlets are in charge of getting data

from the view and determining which JSP will display next. If you have Java

classes that contain that functionality, they will be part of the controller.

The part of the application the user actually sees is called the view.

It presents the data to the user and gets data from the user, which is then

passed back to the model through the services and controller. The view

in Bullhorn consists of JSPs (Java Server Pages) using Bootstrap, CSS

(Cascading Style Sheets), JavaScript, and images. All the parts of the view

work to create the pages that are displayed in the user’s browser. See

Figure 5-1.

Chapter 5 What Is MVC?

25

Tip perform validation in every layer. Data can come to your
application through ways unanticipated by you when you initially
develop it, not just through the browser. For example, it may come
to be that you need to import information into your database.
Or, you may later write a web service that interacts directly with your
service layer.

Figure 5-1. The components of Bullhorn are logically divided into
layers called Model, View, Controller, and Service

Chapter 5 What Is MVC?

27© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_6

CHAPTER 6

Creating a Web
Application
We will create the Bullhorn application as a dynamic web project, which will

allow us to develop it with HTML, JSP, servlets, and using JPA to connect to the

database. If you understand what all those things are then you can stop reading

now. If you’re still with me, then those things will be explained as we go.

Our dynamic web application will contain not only static HTML pages

but also dynamic Java Server Pages (JSPs) and servlets. We’ll be able to

pass data between the different parts of the application.

The database is actually a separate piece of software that your web

application will communicate with. In many systems, the database actually

resides on a different computer entirely. The JSPs will send information

to the servlets. The servlets will send information to (and get information

from) the database through the service layer. And the servlet will send the

result back to the JSP.

Note It is possible to send information straight to the database
from a JSP. It is also possible to send information between two JSPs.
We won’t do that here. We’re putting a servlet in between every
conversation. That allows us to intercept each message with some
Java code in the servlet, which will make it easy to validate, evaluate,
and redirect each intercepted message.

28

CREATE A DYNAMIC WEB PROJECT USING ECLIPSE

Eclipse is preconfigured for various types of projects. I find the Dynamic Web

Project most helpful. Starting one only consists of a few simple steps.

 1. From Eclipse choose File ➤ New ➤ Dynamic Web Project.

Give it a project name, such as SampleDynamicWebProject,

as shown in Step 2.

 2. Select the target runtime as Tomcat v.8.0 or higher. You may be

prompted to install Tomcat before you can continue.

 3. Click Finish.

 4. If prompted, select “Yes” to associate with a Java EE

Perspective.

 5. Once your project contains some web pages, you can start them by

selecting the page in the Project Explorer, then right- click and select

Run As ➤ Run on Server. Your application will start in Eclipse.

ChaPTEr 6 CrEaTInG a WEb aPPlICaTIOn

29

The dynamic web project generates folders for organizing

Java code (see Figure 6-1). The most important are the Java

source folder and the web content folder. Java servlets and

classes should be placed in the src folder shown under Java

resources. JSP files belong in the WebContent folder. JSP files

must not be placed in WEB-INF or they will not be accessible

by your application. Use the lib folder under WEB-INF for Jar

(Java archive) files. We’ll work with Jar files when we add the

database to our project.

Tip The Jar (Java archive) files for bullhorn can be found in
WebContent/WEB-INF/lib. You should copy all the Jar files
in bullhorn to the /WEB-INF/lib directory for any Dynamic Web
application you choose to develop.

Figure 6-1. The folder structure of a dynamic web project in
Eclipse

ChaPTEr 6 CrEaTInG a WEb aPPlICaTIOn

31© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_7

CHAPTER 7

The DAO/Repository
Bullhorn requires two tables, for users and posts. We’ll create these tables

in Oracle and call them Bhuser and Bhpost, respectively. The user table

will need the following fields: user name, user email, password, motto,

and join date. The posts table will contain fields for post text, post date,

and the ID of the user who created the post. Each table will also contain an

ID field to uniquely identify each record. We can instruct SQL Developer

to construct the tables by running scripts. Simply enter the text seen in

Listing 7-1 in SQL Developer inside a new SQL worksheet.

Listing 7-1. The Data Definition for the Bhuser Table

 CREATE TABLE BHUSER

 ("BHUSERID" NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT

BY 1 START WITH 1 CACHE 20 NOORDER NOCYCLE ,

 "USERNAME" VARCHAR2(50 BYTE) NOT NULL,

 "USERPASSWORD" VARCHAR2(50 BYTE),

 "MOTTO" VARCHAR2(100 BYTE) NOT NULL,

 "USEREMAIL" VARCHAR2(100 BYTE) NOT NULL,

 "JOINDATE" DATE NOT NULL,

 PRIMARY KEY ("BHUSERID")

) ;

32

Now that we have a place to store our users, we can add another table

in which to store the posts. The SQL for creating the Bhpost table is shown

in Listing 7-2. You will enter that in SQL Developer in a SQL worksheet.

Many developers use the same SQL worksheet and enter each table

one below the other. Once the SQL is in a SQL worksheet, highlight the

statements and press the CTRL and Enter keys together. Create the Bhuser

table first since the Bhpost table contains a foreign key representing the

BhuserId in the Bhuser table.

Listing 7-2. SQL for Creating the Bhpost Table

 CREATE TABLE BHPOST

 ("POSTID" NUMBER GENERATED BY DEFAULT ON NULL AS IDENTITY

MINVALUE 1 MAXVALUE 9999999999999999999999999999 INCREMENT

BY 1 START WITH 1 CACHE 20 NOORDER NOCYCLE ,

 "POSTDATE" DATE NOT NULL,

 "POSTTEXT" VARCHAR2(141 BYTE) NOT NULL,

 "BHUSERID" NUMBER NOT NULL,

 PRIMARY KEY ("POSTID")

);

Next, you may wish to enter some test data. Listings 7-3 and 7-4 show

a few statements you can run. Enter the SQL into SQL Developer, highlight

the statements, and press CTRL + Enter.

Listing 7-3. SQL Statements for Entering Test Data for the Bhuser

Table

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI

NDATE) values ('user 1','password','motto for user 1','user1@

domain.com',to_date('18-JUN-16','DD-MON-RR'));

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI

NDATE) values ('user 2','password','motto for user 2','user2@

domain.com',to_date('22-JUL-15','DD-MON-RR'));

Chapter 7 the DaO/repOsitOry

33

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI

NDATE) values ('user 3','password','motto for user 3','user3@

domain.com',to_date('31-DEC-16','DD-MON-RR'));

Insert into BHUSER (USERNAME,USERPASSWORD,MOTTO,USEREMAIL,JOI

NDATE) values ('user 4','password','motto for user 4','user4@

domain.com',to_date('22-JAN-17','DD-MON-RR'));

-- commit saves the data to the database

commit;

Listing 7-4. SQL Statements for Entering Test Data for the Bhpost

Table

Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values (to_

date('18-JUN-17','DD-MON-RR'),'This is a test post',1);

Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values (to_

date('21-AUG-17','DD-MON-RR'),'Bullhorn is a fun program!',2);

Insert into BHPOST (POSTDATE,POSTTEXT,BHUSERID) values

(to_date('30-JUL-17','DD-MON-RR'),'Hello, I am posting

something',2);

-- commit saves the data to the database

commit;

If you need to recreate the tables, you can just delete them by running

the following two lines in a SQL worksheet (Listing 7-5).

Listing 7-5. SQL Statements for Deleting Existing Table and Data

DROP TABLE BHPOST;

DROP TABLE BHUSER;

Now that you have your tables created and some test data entered

in Oracle, it’s time to go back to Eclipse and connect your project to the

database. We’ll use the Java Persistence API (JPA) for this.

Chapter 7 the DaO/repOsitOry

34

 Implement Java Persistence (JPA)
The Java Persistence API (JPA) is a set of standards that specify how Java

will connect to a database using entities, also known as POJO (plain old

Java objects). Each entity represents a single row in our database table. JPA

treats the database objects as Java objects. Our program simply interacts

with the entity, which in turn interacts with the database.

Sometimes we have a table that contains data from other tables. For

example, a post in the Bullhorn table will contain a user ID that identifies

the user who submitted the post. With JPA, the ID is replaced with the

entire User object, allowing you to access all the data about the user from

the Post entity.

JPA allows you to use your object-oriented programming skills to work

with a database. Furthermore, it makes all databases look the same to

your program. JPA is an object-relational mapping specification. It takes

care of the details of connecting to the database. You set the values of

various parameters for your existing database, and JPA will do the rest.

The Eclipse JPA tools examine the tables and create a class for each. The

class name is based on the table name. We will use Eclipse JPA tools to

create the class and its getters and setters. The class fields map to the table

fields. Each class represents one table in your database. An instance of

a class represents one record, or row, in the table. The Eclipse JPA tools

will handle sequences and identity keys. They will also handle table

relationships. When your table contains a foreign key to another record

in another table in the database, your class will contain an instance of the

object representing the foreign key’s table. For example, a userID column

in your Posts table becomes a User object embedded in your Posts class.

An advantage of using JPA is that we can change the database without

changing our Java code. The database information is stored in an XML

file, which can be edited without recompiling your application. You may

start off writing your application using MySQL, then as it grows move up to

Oracle without any changes to your application code.

Chapter 7 the DaO/repOsitOry

35

Queries in JPA are written in a language called JPQL (Java Persistence

Query Language). This language is the same for all databases.

To implement JPA we need to configure a file called the persistence.

xml. This file must be found under the Java source code folder in a folder

called META-INF. Eclipse uses that configuration to generate the entity

classes. After that, we will create helper classes for our application.

The first step is to copy three JAR files to the WEB-INF\lib folder of

your project. The JAR files for this project are included with the code

download. They can also be found in the WEB-INF\lib folder of the

Bullhorn application. The JAR files are called eclipselink.jar, javax.

persistence_2.1.0.v201304241213.jar, and ojdbc6.jar.

Note place the following Jar files in the WEB- INF\lib folder:
eclipselink.jar, javax.persistence_2.1.0.v201304241213.
jar, and ojdbc6.jar. any other location may not work. you may
include the other Jar files you find in Bullhorn at the same time. We’ll use
them later.

Chapter 7 the DaO/repOsitOry

36

 The Persistence.xml File
To configure JPA, we need to create the persistence.xml file. In Eclipse,

there are a few ways to create such a file, but we will create it in the src

directory called META-INF. This particular location is required by the JPA

specification. It can be any text file, which you will fill in with the values

shown in Table 7-1. Don’t feel like typing it all? You can copy the file from

the download that accompanies this book. The values you need to change

are detailed in the table. You may need to modify them as shown.

Table 7-1. Settings for the Elements of the Bullhorn persistence.xml

File

XML Tag Name Recommended Value

persistence Unit Name Bullhorn

transaction type resOUrCe_LOCaL

provider org.eclipse.persistence.jpa.persistenceprovider

Class List once for each table in your database. so there

should be two class elements: model.Bhuser and

model.Bhpost

exclude Unlisted Classes False

Java.persistence.jdbc.url jdbc:oracle:thin:@localhost:1521:ora1

javax.persistence.jdbc.user system

javax.persistence.jdbc.

password

password

javax.persistence.jdbc.driver oracle.jdbc.OracleDriver

Chapter 7 the DaO/repOsitOry

37

Listing 7-6 shows the full persistence.xml file.

Listing 7-6. Example persistence.xml File That Details All the JPA

Settings

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1" xmlns=

"http://xmlns.jcp.org/xml/ns/persistence" xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=

"http://xmlns.jcp.org/xml/ns/persistence http://xmlns.jcp.org/

xml/ns/persistence/

persistence_2_1.xsd">

<persistence-unit name="Bullhorn"

transaction-type="RESOURCE_LOCAL">

<provider>

org.eclipse.persistence.jpa.PersistenceProvider

</provider>

<class>model.Bhpost</class>

<class>model.Bhuser</class>

<exclude-unlisted-classes>

False

</exclude-unlisted-classes>

<properties>

<property name="javax.persistence.jdbc.url"

value="jdbc:oracle:thin:@localhost:1521:ora1"/>

<property name="javax.persistence.jdbc.user" value="system"/>

<property name="javax.persistence.jdbc.driver" value="oracle.

jdbc.OracleDriver"/>

Chapter 7 the DaO/repOsitOry

38

<property name="javax.persistence.jdbc.password"

value="password"/>

</properties>

</persistence-unit></persistence>

Remember the peristence.xml file belongs in the META-INF
directory found below the src directory. this location is required.

Once you have your persistence.xml file set up, you are ready to

let Eclipse automatically generate the entities from the tables in your

database. To do this, right-click on the project name and select “New.”

Then, navigate to the JPA menu for JPA Entities from Tables. The resulting

dialog box will use the information in your persistence.xml file to

connect to the database and generate a Java class for each table. Your

program will use these Java classes (and the persistence.xml file) to find,

add, edit, and delete records in the database.

 The JPA Entities
package model;

import java.io.Serializable;

import javax.persistence.*;

import java.util.Date;

import java.util.List;

@Entity

@NamedQuery(name="Bhuser.findAll", query="SELECT b FROM Bhuser b")

public class Bhuser implements Serializable {

 private static final long serialVersionUID = 1L;

Chapter 7 the DaO/repOsitOry

39

 @Id

 @GeneratedValue(strategy=GenerationType.IDENTITY)

 private long bhuserid;

 @Temporal(TemporalType.DATE)

 private Date joindate;

 private String motto;

 private String useremail;

 private String username;

 private String userpassword;

 //bi-directional many-to-one association to Bhpost

 @OneToMany(mappedBy="bhuser")

 private List<Bhpost> bhposts;

 public Bhuser() {

 }

 public long getBhuserid() {

 return this.bhuserid;

 }

 public void setBhuserid(long bhuserid) {

 this.bhuserid = bhuserid;

 }

 public Date getJoindate() {

 return this.joindate;

 }

 public void setJoindate(Date joindate) {

 this.joindate = joindate;

 }

 public String getMotto() {

 return this.motto;

 }

Chapter 7 the DaO/repOsitOry

40

 public void setMotto(String motto) {

 this.motto = motto;

 }

 public String getUseremail() {

 return this.useremail;

 }

 public void setUseremail(String useremail) {

 this.useremail = useremail;

 }

 public String getUsername() {

 return this.username;

 }

 public void setUsername(String username) {

 this.username = username;

 }

 public String getUserpassword() {

 return this.userpassword;

 }

 public void setUserpassword(String userpassword) {

 this.userpassword = userpassword;

 }

 public List<Bhpost> getBhposts() {

 return this.bhposts;

 }

 public void setBhposts(List<Bhpost> bhposts) {

 this.bhposts = bhposts;

 }

 public Bhpost addBhpost(Bhpost bhpost) {

 getBhposts().add(bhpost);

 bhpost.setBhuser(this);

 return bhpost;

Chapter 7 the DaO/repOsitOry

41

 }

 public Bhpost removeBhpost(Bhpost bhpost) {

 getBhposts().remove(bhpost);

 bhpost.setBhuser(null);

 return bhpost;

 }

}

package model;

import java.io.Serializable;

import javax.persistence.*;

import java.math.BigDecimal;

import java.util.Date;

@Entity

@NamedQuery(name="Bhpost.findAll",

 query="SELECT b FROM Bhpost b")

public class Bhpost implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy=GenerationType.IDENTITY)

 private long postid;

 @Temporal(TemporalType.DATE)

 private Date postdate;

 private String posttext;

 //bi-directional many-to-one association to Bhuser

 @ManyToOne

 @JoinColumn(name="BHUSERID")

 private Bhuser bhuser;

 public Bhpost() {

 }

Chapter 7 the DaO/repOsitOry

42

 public long getPostid() {

 return this.postid;

 }

 public void setPostid(long postid) {

 this.postid = postid;

 }

 public Date getPostdate() {

 return this.postdate;

 }

 public void setPostdate(Date postdate) {

 this.postdate = postdate;

 }

 public String getPosttext() {

 return this.posttext;

 }

 public void setPosttext(String posttext) {

 this.posttext = posttext;

 }

 public Bhuser getBhuser() {

 return this.bhuser;

 }

 public void setBhuser(Bhuser bhuser) {

 this.bhuser = bhuser;

 }

}

Chapter 7 the DaO/repOsitOry

43© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_8

CHAPTER 8

The Service Layer
Your application will interact with the DAO through the service layer.

 Create a DbUtilities Class
Every time your application connects to the database, it will execute the

same code. You can make your application more efficient by creating a

class of reusable methods that you can call as needed. Create a class called

DbUtilities. This will allow you to simplify calling the Entity Manager

when you need to read or write to the database. This class will be static

(no instantiation required). It will have one method, getFactory().

It will return an instance of EntityManagerFactory as identified in the

persistence.xml. See Listing 8-1.

Listing 8-1. The code listing for the DbUtilities Class

//DbUtil.java

package service;

import javax.persistence.EntityManager;

import javax.persistence.Persistence;

public class DbUtil {

 public static EntityManager getEntityManager(String s)

{

44

 return

Persistence.createEntityManagerFactory(s).

createEntityManager();

 }

}

//End of DbUtil.java

 Create the DbUser Class
The DbUser class contains methods for working with the user. DbPost

contains methods for working with the posts. Both classes are very similar,

so only select methods from DbUser are shown here.

//DbUser.java

package service;

import javax.persistence.EntityManager;

import javax.persistence.EntityTransaction;

import javax.persistence.NoResultException;

import javax.persistence.TypedQuery;

import service.util.MD5Util;

import model.Bhuser;

/**

 * @author djw

 * DbUser class contains helper methods for working with Bhusers

 *

 */

public class DbUser {

/**

 * Gets a Bhuser from the database

 * @param userID - primary key from database. Must be type long

 * @return Bhuser

 */

Chapter 8 the ServiCe Layer

45

 public static Bhuser getUser(long userID)

 {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 Bhuser user = em.find(Bhuser.class, userID);

 return user;

 }

 public static void insert(Bhuser bhUser) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 EntityTransaction trans = em.getTransaction();

 try {

 trans.begin();

 em.persist(bhUser);

 trans.commit();

 } catch (Exception e) {

 e.printStackTrace();

 trans.rollback();

 } finally {

 em.close();

 }

 }

 /**

 * Gets a Gravatar URL given the email and size

 * In accordance with Gravatar's requirements the email

will be hashed

 * with the MD5 hash and returned as part of the url

 * The url will also include the s=xx attribute to

request a Gravatar of a

 * particular size.

 * References: <a href="http://www.gravatar.

com">http://www.gravatar.com</>

Chapter 8 the ServiCe Layer

46

 * @param email - email of the user who's gravatar

you want

 * @param size - indicates pixel height of the image to

be returned. Height and Width are same.

 * @return - the gravatar URL. You can test it in a

browser.

 */

 public static String getGravatarURL(String email,

Integer size){

 StringBuilder url = new StringBuilder();

 url.append("http://www.gravatar.com/avatar/");

 url.append(MD5Util.md5Hex(email));

 url.append("?s=" + size.toString());

 return url.toString();

 }

 /**

 * Updates the data in a Bhuser

 * Pass the method a Bhuser with all the values set to

your liking and

 * this method will update the database with these

values.

 * This method doesn't actually return anything but the

good feeling

 * that your update has been completed. If it can't be

completed then

 * it won't tell you. Sounds like something needs to be

added in the future. Hmmm.

 * @param bhUser

 */

 public static void update(Bhuser bhUser) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

Chapter 8 the ServiCe Layer

47

 EntityTransaction trans = em.getTransaction();

 try {

 trans.begin();

 em.merge(bhUser);

 trans.commit();

 } catch (Exception e) {

 System.out.println(e);

 trans.rollback();

 } finally {

 em.close();

 }

 }

 /**

 * Removes a Bhuser from the database.

 * Not sure why you'd want to delete a Bhuser from the

database but this

 * method will do it for you. This method does not

explicitly remove the user's

 * posts, but most likely you've set up the database

with cascading deletes, which

 * will take care of that. Gives no feedback.

 * @param bhUser that you never want to see again

 */

 public static void delete(Bhuser bhUser) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 EntityTransaction trans = em.getTransaction();

 try {

 trans.begin();

 em.remove(em.merge(bhUser));

 trans.commit();

Chapter 8 the ServiCe Layer

48

 } catch (Exception e) {

 System.out.println(e);

 trans.rollback();

 } finally {

 em.close();

 }

 }

 /**

 * Gets a user given their email address.

 * You've got the email when they log in but you really

need the

 * user and all its related information. This method

will find the user

 * matching that email. The database should ensure that

you can't have two users

 * with the same email. Otherwise there's no telling

what you'd get.

 * @param email

 * @return Bhuser with that unique email address

 */

 public static Bhuser getUserByEmail(String email)

 {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 String qString = "Select u from Bhuser u "

 + "where u.useremail

=:useremail";

 TypedQuery<Bhuser> q = em.createQuery(qString,

Bhuser.class);

 q.setParameter("useremail", email);

 Bhuser user = null;

Chapter 8 the ServiCe Layer

49

 try {

 System.out.println("Getting single user");

 user = q.getSingleResult();

 System.out.println(user.getUsername());

 }catch (NoResultException e){

 System.out.println(e);

 }finally{

 em.close();

 }

 return user;

 }

 /**

 * Is this user valid? This method has the answer for

you.

 * Checks the database and counts the number of users

with this

 * username and password. If it returns 0 then either

the username

 * or password don't exist in the database. If it

returns 1 then you have found

 * the user with that username and password. If it

returns >1 then you need to

 * fix your database.

 * @param userEmail and userPassword

 * @return true or false indicating the user exists or

doesn't

 */

 public static boolean isValidUser(String userEmail,

String userPassword)

 {

Chapter 8 the ServiCe Layer

50

 EntityManager em =

 DbUtil.

getEntityManager("Bullhorn");

 String qString = "Select count(b.bhuserid) from

Bhuser b "

 + "where b.useremail = :useremail and

b.userpassword = :userpass";

 TypedQuery<Long> q =

em.createQuery(qString,Long.class);

 boolean result = false;

 q.setParameter("useremail", userEmail);

 q.setParameter("userpass", userPassword);

 try{

 long userId = q.getSingleResult();

 if (userId > 0)

 {

 result = true;

 }

 }catch (Exception e){

 result = false;

 }

 finally{

 em.close();

 }

 return result;

 }

}

//End of DbUser.java

Chapter 8 the ServiCe Layer

51

 Create the DbPost Class
//DbPost.java

package service;

import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.EntityTransaction;

import javax.persistence.TypedQuery;

import model.Bhpost;

public class DbPost {

 public static void insert(Bhpost bhPost) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 EntityTransaction trans = em.getTransaction();

 try {

 trans.begin();

 em.persist(bhPost);

 trans.commit();

 } catch (Exception e) {

 System.out.println(e.getMessage());

 trans.rollback();

 } finally {

 em.close();

 }

 }

 public static void update(Bhpost bhPost) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 EntityTransaction trans = em.getTransaction();

Chapter 8 the ServiCe Layer

52

 try {

 trans.begin();

 em.merge(bhPost);

 trans.commit();

 } catch (Exception e) {

 trans.rollback();

 } finally {

 em.close();

 }

 }

 public static void delete(Bhpost bhPost) {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 EntityTransaction trans = em.getTransaction();

 try {

 trans.begin();

 em.remove(em.merge(bhPost));

 trans.commit();

 } catch (Exception e) {

 System.out.println(e);

 trans.rollback();

 } finally {

 em.close();

 }

 }

 public static List<Bhpost> bhPost (){

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 String qString = "select b from Bhpost b";

 List<Bhpost> posts = null;

 try{

Chapter 8 the ServiCe Layer

53

 T ypedQuery<Bhpost> query = em.create

Query(qString,Bhpost.class);

 posts = query.getResultList();

 }catch (Exception e){

 e.printStackTrace();

 }

 finally{

 em.close();

 }

 return posts;

 }

 public static List<Bhpost> postsofUser(long userid)

 {

 EntityManager em = DbUtil.getEntityManager("Bul

lhorn");

 List<Bhpost> userposts = null;

 String qString = "select b from Bhpost b where

b.bhuser.bhuserid = :userid";

 try{

 TypedQuery<Bhpost> query = em.create

Query(qString,Bhpost.class);

 query.setParameter("userid", userid);

 userposts = query.getResultList();

 }catch (Exception e){

 e.printStackTrace();

 }

 finally{

 em.close();

 }

 return userposts;

 }

Chapter 8 the ServiCe Layer

54

 public static List<Bhpost> postsofUser(String useremail)

 {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 List<Bhpost> userposts = null;

 String qString = "select b from Bhpost b "

 + "where b.bhuser.useremail =

:useremail";

 try{

 TypedQuery<Bhpost> query = em.create

Query(qString,Bhpost.class);

 query.setParameter("useremail",

useremail);

 userposts = query.getResultList();

 }catch (Exception e){

 e.printStackTrace();

 }

 finally{

 em.close();

 }

 return userposts;

 }

 public static List<Bhpost> searchPosts (String search)

 {

 EntityManager em = DbUtil.getEntityManager

("Bullhorn");

 List<Bhpost> searchposts = null;

 String qString = "select b from Bhpost b "

 + "where b.posttext like

:search";

Chapter 8 the ServiCe Layer

55

 try{

 TypedQuery<Bhpost> query = em.create

Query(qString,Bhpost.class);

 query.setParameter("search", "%" +

search + "%");

 searchposts = query.getResultList();

 }catch (Exception e){

 e.printStackTrace();

 }finally{

 em.close();

 }return searchposts;

 }

}

//End of DbPost.java

Chapter 8 the ServiCe Layer

57© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_9

CHAPTER 9

The Controller
The controller layer in our application contains code to handle

application-specific logic. This includes concerns such as receiving data

from web pages, sending data to the classes in the service layer, and

sending the user the next servlet or JSP as appropriate. The controller does

not access the database directly. The controller finds out what needs to be

done, then finds the right class in the service layer or presentation layer

and calls on that class to do its work. In our application, most of the code

for the controller resides in Java servlets.

 What Is a Servlet?
Servlets are Java classes that respond to incoming HTTP requests. The

request is sent by the browser whenever you browse to a URL or submit

a form. Servlets reside within the web server—Tomcat—and listen for

requests. Then, they spring into action and process the request. Think of

“operators are standing by!” When you create a servlet you are actually

extending the functionality of the servlet container, Tomcat. Think of

Tomcat as a web server that knows how to work with servlets and JSP files

in addition to HTML.

The URL (web address) of your servlet will look something like

http://localhost:8080/webTest/SimpleServlet, where localhost is

the name representing your computer, 8080 is the port number, webTest is

the application (or project) name, and SimpleServlet is the servlet URL as

indicated in the servlet’s @WebServlet annotation.

58

The servlet code in Listing 9-1 features a servlet that can be found

at the SimpleServlet URL as specified in the @WebServlet attribute. It

contains no code to process a request, only showing the structure. A servlet

contains two methods, doGet and doPost. Each corresponds to the get or

post method of a form. When the form is submitted, the method attribute

of the form tag should be set to GET if you are only using the form values to

retrieve read-only data such as another web page. If the web form is using

GET, the data is transferred within the URL. You can see the parameter and

its values in the URL following a ? symbol. This allows the user to copy and

paste a link and get the same results again.

When submitting data to the server for entry into the database, you

should use the POST method. POST does not use the URL to submit data.

The parameters and values are transferred to the server in a package of

data. This has several advantages, including the fact that the form and its

submitted data cannot be bookmarked. Using POST also allows a form to

submit larger quantities of data.

Listing 9-1. A Simple Web Servlet (Excluding Import Statements)

@WebServlet("/SimpleServlet")

public class SimpleServlet

 extends HttpServlet {

 protected void doGet(

 HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 //code to handle GET requests goes here

 }

 protected void doPost(

 HttpServletRequest request,

 HttpServletResponse response)

Chapter 9 the Controller

59

 throws ServletException, IOException {

 //code to handle POST requests goes here

 }

}

 Getting the Form Data into the Servlet
When the user clicks the Submit button, the data from the form gets sent

to the servlet in the request object. The web server takes care of this. The

servlet container, Tomcat, will make the request object available to your

servlet. Your input, named userName, will contain the name that the user

has typed. The servlet can read that name by using the following code:

//set a variable with the value from the request

String userEmail = request.getParameter("userEmail");

 Sending the Data to the Next Page
You can add any data (including objects such as ArrayLists) to the

request or session. These will be available to the next page the servlet calls.

Note that the request packet from the incoming request will not remain in

scope, so it’s necessary to put the data back into a new request packet.

//put the value back in the servlet's request

request.setAttribute("userEmail", userEmail);

Now the servlet has the data in a variable called userEmail. You’re just

writing Java code now, so you can work with it however you see fit. We’ll

use the userEmail and userPassword variables to hold the data and then

validate that they match our expectations. At first we’ll just create a method

to validate known values. Later, we’ll use the database to store the valid

data and create Java code to query the database to check the results.

Chapter 9 the Controller

60

Once the servlet validates the user they will be redirected to the home

page. If they entered an invalid password they will be redirected back to

the login page.

 How the Servlet Finds the Next Page
After the servlet has validated and processed all the incoming data, you

want to tell it to take the user to the next page.

The last line in your servlet’s doPost or doGet methods will handle

that. When the servlet comes to this line of code it will send the user to the

correct page.

//redirect to next page as indicated by the value of the

nextURL variable

String nextURL = "home.jsp";

getServletContext().getRequestDispatcher(nextURL)

 .forward(request,response);

 How to Set Values on Your Output Page
Create a jsp page called home.jsp. Add the following code to your page

so it will read the values of the parameters from the servlet. The notation

${userEmail} will read the parameter from the request packet. You set that

in the servlet.

<html>

 <head>

 <title>The results of my form</title>

 </head>

<body>

 <h1>Using GET Method to Read Form Data</h1>

Chapter 9 the Controller

61

 <p>First Name: ${firstName} </p>

 <p>Last Name: ${lastName} </p>

</body>

</html>

 How the Log Out Button Works
When the user wants to log out, you simply end their session. That makes

logging out easy. Most users won’t click the Log Out button. For them, the

session ends when the session timeout is reached. You can set the session

timeout property or use the default of 20 minutes.

Create a form that will pass a parameter called action with a value of

logout to your login servlet. To pass that parameter, you’ll create a hidden

input and give it a name and ID of action with a value of logout.

The form’s action will be the name of the login servlet. When the

servlet receives the parameter it will invalidate the session and redirect

the user to the login page. The Java code to end a session is session.

invalidate();.

 The Login Servlet Code

Listing 9-2. The Code for the Login Servlet

//LoginServlet.java

package controller;

/*

 * the login servlet processes login.jsp. The servlet has one

job

Chapter 9 the Controller

62

 * which is to validate the user and add them to the session so

 * that user will be available to all pages. If the user is not

valid

 * then the login servlet will redirect back to the login page.

 */

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import service.DbUser;

import model.Bhuser;

@WebServlet("/LoginServlet")

public class LoginServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public LoginServlet() {

 super();

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 //this page does not require user to be

logged in

 String useremail = request.getParameter

("email");

 String userpassword = request.getParameter

("password");

Chapter 9 the Controller

63

 String action = request.getParameter("action");

 //String remember = request.getParameter

("remember");

 String nextURL = "/error.jsp";

 //get an instance of the session so we can set

attributes to it

 //the JSP and NavBar will read from the session

 //The session is one of the primary ways we

maintain state

 //in an otherwise stateless web application

 HttpSession session = request.getSession();

 //create an instance of the user and put it in

the session

 //only add the user to the session if the user

if valid.

 //The presence of the user is used to determine

who

 //owns the site and will be used to connect to

the database

 if (action.equals("logout")){

 session.invalidate();

 nextURL = "/login.jsp";

 }else{

 if (DbUser.isValidUser(useremail,

userpassword)){

 Bhuser user = DbUser.

getUserByEmail(useremail);

 session.setAttribute

("user", user);

 int gravatarImageWidth = 30;

Chapter 9 the Controller

64

 String gravatarURL =

 DbUser.getGravatarURL

(useremail,

gravatarImageWidth);

 session.setAttribute

("gravatarURL", gravatarURL);

 nextURL = "/home.jsp";

 }else{

 nextURL = "/login.jsp";

 }

 }

 //redirect to next page as indicated by the

value of the nextURL variable

 getServletContext().getRequest

Dispatcher(nextURL).forward(request,response);

 }

}

//End of LoginServlet.java

 The News Feed Servlet Code
Listing 9-3. The Code for the News Feed Servlet

//Newsfeed.java

package controller;

import java.io.IOException;

import java.util.List;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

Chapter 9 the Controller

65

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import model.Bhpost;

import service.DbPost;

@WebServlet("/Newsfeed")

public class Newsfeed extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public Newsfeed() {

 super();

 }

 protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 //users can get to this servlet through a get

request so handle it here

 //With a get request the parameters are part of

the url.

 //We already handle everything in doPost so

just call that.

 doPost(request,response);

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 long filterByUserID = 0;

 String searchtext = "";

 //set the value of the next page. It should

change in the code below.

Chapter 9 the Controller

66

 String nextURL = "/error.jsp";

 //get user out of session.

 //If they don't exist then send them back to

the login page.

 //kill the session while you're at it.

 HttpSession session = request.getSession();

 if (session.getAttribute("user")==null){

 nextURL = "/login.jsp";

 session.invalidate();

 response.sendRedirect(request.

getContextPath() + nextURL);

 return;//return prevents an error

 }

 //get posts based on parameters; if no

parameters then get all posts

 List<Bhpost> posts = null;

 if (request.getParameter("userid")!=null

 && !request.getParameter

("userid").isEmpty()){

 filterByUserID = Integer.parseInt

(request.getParameter("userid"));

 posts = DbPost.postsofUser

(filterByUserID);

 }else if (request.getParameter("searchtext")!=

null

 && !request.getParameter

("searchtext").isEmpty()){

 searchtext = request.getParameter

("searchtext").toString();

 posts = DbPost.searchPosts(searchtext);

Chapter 9 the Controller

67

 }else{

 posts = DbPost.bhPost();

 }

 //add posts to request

 request.setAttribute("posts", posts);

 //display posts in newsfeed.jsp

 nextURL = "/newsfeed.jsp";

 //redirect to next page as indicated by the

value of the nextURL variable

 getServletContext().getRequestDispatcher

(nextURL).forward(request,response);

 }

}

//end of Newsfeed.java

 The PostServ Servlet Code
Listing 9-4. The Code for the PostServ Servlet

//PostServ.java

package controller;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import java.util.Calendar;

Chapter 9 the Controller

68

import java.util.Date;

import model.Bhpost;

import model.Bhuser;

import service.DbPost;

@WebServlet("/PostServ")

public class PostServ extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public PostServ() {

 super();

 }

 protected void doPost(HttpServletRequest request,

 HttpServletResponse

response)

 throws

ServletException,

IOException {

 String posttext = request.getParameter

("posttext");

 String nextURL = "/error.jsp";

 //Get user out of session. If they don't exist then

 //end the session and send them back to the

login page.

 HttpSession session = request.getSession();

 if (session.getAttribute("user")==null){

 nextURL = "/login.jsp";

 session.invalidate();

 } else {

Chapter 9 the Controller

69

 //Get the user out of the session

 Bhuser bhuser = (Bhuser)session.getAttribute

("user");

 //insert the post

 Bhpost bhPost = new Bhpost();

 bhPost.setBhuser(bhuser);

 Date postdate = Calendar.getInstance().

getTime();//today's date

 bhPost.setPostdate(postdate);

 bhPost.setPosttext(posttext);

 DbPost.insert(bhPost);

 nextURL = "/Newsfeed";//go to newsfeed servlet

to show all posts

 }

 / /the value of nextURL will be newsfeed, login,

or error

 getServletContext().getRequestDispatcher(nextURL)

 .forward(request, response);

 }

}

//end of PostServ.java

 The Profile Servlet Code
Listing 9-5. The Code for the Profile Servlet

//ProfileServlet.java

package controller;

Chapter 9 the Controller

70

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import java.text.SimpleDateFormat;

import service.DbUser;

import model.Bhuser;

@WebServlet("/ProfileServlet")

public class ProfileServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public ProfileServlet() {

 super();

 }

 protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 doPost(request,response);

 }

 protected void doPost(HttpServletRequest request,

HttpServletResponse response) throws ServletException,

IOException {

 /*

 * simplify this so that it always requires two

parameters, userid and action

 * action is view or edit. If edit then the

userID of the session(user) must be same as

userID for profile

Chapter 9 the Controller

71

 * since you can only edit your own.

 * all urls coming to this page must contain

both parameters or get error.

 */

 HttpSession session = request.getSession();

 String nextURL = "/error.jsp";

 long userid = 0;

 String action = "";

 Bhuser profileUser = null;

 Bhuser loggedInUser = null;

 //get user out of session. If they don't exist

then send them back to the login page.

 //kill the session while you're at it.

 if (session.getAttribute("user")==null){

 nextURL = "/login.jsp";

 session.invalidate();

 response.sendRedirect(request.

getContextPath() + nextURL);

 return;//return prevents an error

 }

 try{

 userid = Long.parseLong(request.getParameter

("userid"));

 action = request.getParameter("action");

 //update profile for user in request variable

if action = updateprofile

 if (request.getParameter("action").

equals("updateprofile")){

 long uid = Long.parseLong

(request.getParameter("userid"));

Chapter 9 the Controller

72

 String userEmail = request.getParameter

("useremail");

 String userMotto = request.getParameter

("usermotto");

 Bhuser updateUser = DbUser.getUser(uid);

 updateUser.setMotto(userMotto);

 updateUser.setUseremail(userEmail);

 DbUser.update(updateUser);

 }

 //get the user from the parameter

 profileUser = DbUser.getUser(userid);

 //get the current user out of the session

 loggedInUser = (Bhuser) session.getAttribute

("user");

 if (profileUser.getBhuserid()==loggedInUser.get

Bhuserid()){

 //display profile as form

 //the session variable editProfile is

used by the JSP to

 //display the profile in edit mode

 session.setAttribute("editProfile",

true);

 }else{

 //display profile read-only

 //the session variable editProfile is

used by the JSP to

 //display the profile in read-only mode

 session.setAttribute("editProfile",

false);

 }

Chapter 9 the Controller

73

 //populate the data in the attributes

 int imgSize = 120;

 SimpleDateFormat sdf = new SimpleDateFormat

("MMM d, yyyy");

 String joindate = sdf.format(profileUser.

getJoindate());

 request.setAttribute("userid", profileUser.

getBhuserid());

 request.setAttribute("userimage",

 DbUser.getGravatarURL

(profileUser.getUseremail(),

imgSize));

 request.setAttribute("username", profileUser.

getUsername());

 request.setAttribute("useremail", profileUser.

getUseremail());

 request.setAttribute("usermotto", profileUser.

getMotto());

 request.setAttribute("userjoindate", joindate);

 nextURL = "/profile.jsp";

 }catch(Exception e){

 //print the exception so we can see it

while testing the application

 //in production it isn't a good idea to

print to the console since it

 //consumes resources and will not be seen

 System.out.println(e);

 }

 //redirect to next page as indicated by the

value of the nextURL variable

Chapter 9 the Controller

74

 getServletContext().getRequestDispatcher

(nextURL)

 .forward(request,response);

 }

}

//ProfileServlet.java

 The AddUser Servlet Code
Listing 9-6. The Code for the AddUser Servlet

//AddUser.java

package controller;

import java.io.IOException;

import java.util.Calendar;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import model.Bhuser;

import service.DbUser;

@WebServlet("/AddUser")

public class AddUser extends HttpServlet {

 private static final long serialVersionUID = 1L;

 public AddUser() {

Chapter 9 the Controller

75

 super();

 }

 protected void doPost(HttpServletRequest request,

 HttpServletResponse response) throws

ServletException, IOException {

 HttpSession session = request.getSession();

 //This page does not require user to be logged in

 String userName = request.getParameter

("userName");

 String userEmail = request.getParameter

("userEmail");

 String userPassword = request.getParameter

("userPassword");

 S tring userMotto = request.getParameter

("userMotto");

 String nextURL = "/error.jsp";

 //check if user exists (by email)

 Bhuser user = DbUser.getUserByEmail(userEmail);

 //create user and add them if they don't exit

 if (user == null){

 user = new Bhuser();

 user.setUsername(userName);

 user.setUseremail(userEmail);

 user.setUserpassword(userPassword);

 Date joindate = Calendar.getInstance().

getTime();

 user.setJoindate(joindate);

 user.setMotto(userMotto);

Chapter 9 the Controller

76

 DbUser.insert(user);

 nextURL = "/home.jsp";

 }else{

 String message = "You have an

account - ";

 request.setAttribute("message",

message);

 nextURL = "/login.jsp";

 }

 //add the user to the session

 session.setAttribute("user", user);

 //redirect to next page as indicated by the

value of the nextURL variable

 getServletContext().getRequestDispatcher(nextURL)

 .forward(request,response);

 }

}

// end of AddUser.java

Chapter 9 the Controller

77© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_10

CHAPTER 10

The Presentation/View
Users interact with your application through their web browser. The role of

the web browser is to display the HTML, JavaScript, and images. Each web

document contains a section we call the head and a section we call the

body.

The head contains the title tag, link tag, and script tag. The link and

script tags allow the page to include external files for style sheets and

JavaScript, respectively. Our application will contain links to style sheets

and JavaScript for Bootstrap.

The body of the document has more information. The body is where

the content seen in the browser will go. This includes the form, text

displayed to the user, links, and images. All the content in the body will be

marked up with tags, which determine how the content will render.

You can include comments in your web page that won’t show to the

user. They help you document your page layout.

79© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_11

CHAPTER 11

Designing Web Pages
with HTML
HTML (hypertext markup language) is a markup language for creating web

documents (web pages). The main function of a browser is to receive the

web page as HTML from the web server and display it. The browser applies

all fonts, styles, and layouts specified by the HTML tags and CSS property

values. This content can be further manipulated by using JavaScript, the

programming language of the browser.

The document object model (DOM) is a representation of your HTML

document as a tree structure. The DOM sees each node as an object

representing a part of the document. The objects can be manipulated

programmatically by JavaScript, allowing your page to interact with the user.

Here’s all you need to know about HTML:

• HTML documents are composed of elements

called tags.

• The collection of HTML elements in a web page

document is called the DOM (document object model).

• Tags are used to identify document content and

structure.

• Tags often contain attributes that provide parameters

for the element.

80

• The HTML document, which contains content and tags,

is rendered by the browser to display the formatted

version of the web page.

• The latest version of HTML is called HTML5.

Chapter 11 Designing Web pages With htML

81© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_12

CHAPTER 12

HTML5 Tags
A tag is created by putting the tag names in angle brackets, like this: <tag>.

The word in brackets, in this case tag, is the tag name. Tags contain an

opening tag and a closing tag. An opening tag contains only the tag name

in angle brackets. A closing tag precedes the tag name with a forward slash.

For example: <table></table>. If a tag contains no data, then the opening

and closing tags can be combined, as in
.

Tags can contain attributes that give further information about them.

HTML5 attributes are created using a name-value pair and are usually put

alongside the tag name. In this chapter, we’ll discuss attributes and then

look at some of the tags we’ll use for developing Bullhorn.

Name-value pairs are represented by a set of text strings in which

name="value" and are usually separated by commas, semicolons, or space

or newline characters. HTML5 attributes are written inside the element’s

tag and separated by spaces. See Listing 12-1.

Listing 12-1. An Example Input Tag from an HTML Form

<input type="text" id="email"

 name = "email" value="user@domain.com"/>

In this code, the attributes are type, id, name, and value, and their

values are always in quotes following the equal sign. Attributes provide

extra information about an element. We now know, for example, the

preceding input element is a text box, is identified by the name/id email,

and contains a default value of user@domain.com. The id attribute is a

82

unique identifier for the element. The id is used by CSS and JavaScript.

The name attribute specifies a name for an element. We use the name when

retrieving the element’s value in the servlet. Use name attributes for form

controls (such as <input>). Name is the identifier used in the POST or GET

call that happens on form submission. Use the id attribute to identify a

particular HTML element with CSS of JavaScript. It’s possible to look up

elements by name but simpler to use id.

 Explanation of Common Tags
• <!DOCTYPE html> Identifies the document as an

HTML5 document. This makes sure the document will

be parsed the same way by different browsers.

• <head></head> All data in the head section of an HTML

document is considered metadata, meaning data about

data. The information in this section is not normally

displayed directly. Instead, elements such as style affect

the appearance of other elements in the document.

Some items in the head section may be used by

programs such as search engines to learn more about

the page for reference purposes.

• <title></title> Belongs in the head section of the

document and sets the title that is displayed in the

browser tab.

• <body></body> The entire document body is contained

within these two tags.

• <h1></h1> Any text contained within these tags is often

displayed as a large bold font heading, but the actual

formatting is up to the browser. There are six heading

tags, h1 (largest) to h6 (smallest).

Chapter 12 htML5 tags

83

• <p></p> Any content with the paragraph tags is

considered a paragraph. You can add an attribute such

as style to the paragraph tags to control which styles

impact the text within the paragraph tags.

• The image tag is used to display images.

It has two attributes you need to use: src and alt.

The src attribute contains the path to the image file.

The path can be either a filename or a URL. The alt

attribute contains the alternate text to be displayed

when the images don’t show or can’t be seen. It is

also used by screen readers to describe the image.

A complete image tag would look like this: <img

src="path/to/filename.png" alt="Picture of

my cat"/>

An HTML form allows the user to submit data to the web server. The

data from the form will be sent in the request packet to the servlet. The

servlet will receive the data and can use it to either query the database or

choose another page to send the user to. See Listing 12-2. Notice that every

tag has a closing tag (or contains /> to indicate it is self-closing).

Listing 12-2. Example HTML Form

<form action="PostServ" method="post">

<label for="posttext">Create New Post (141 char):</label>

<textarea name="posttext" id="posttext" rows="2"

maxlength="141"></textarea>

<input type="submit" value="Submit" id="submit"/>

<input type="reset" value="Clear"/>

</form>

Chapter 12 htML5 tags

84

• <form></form> The form tag contains all the elements

of a user input form that gets data from the user

and sends it to the servlet. The form tag contains

two required attributes, method and action. The

method attribute can be either "get" or "post", and

it determines how the data is sent to the servlet. The

action attribute contains the URL of the servlet that

processes the form data.

• <input></input> The purpose of a form is to get input

from the user and display data that will be sent to the

server. The way you get input from the user is with the

input tag. It will create a text box on the web page.

The contents of the input tag will be sent to the servlet

when the Submit button is clicked. Submit itself is an

input. An input tag becomes a Submit button when the

type attribute is set to "submit".

Some example input tags:

• <input id="email" name="email" type="text"

value=""/> An input tag that displays as a text box and

collects the email address of the user

• <input type="submit" value="Submit"

id="submit"/> An input tag that displays as a button

and calls the form’s action when clicked

• <input type="reset" value="Clear"/> An input tag

that displays as a button with a label that says Clear and

causes all the form’s input boxes to clear

• <textarea></textarea> An input that contains

multiple rows:<textarea name="posttext"

id="posttext" rows="2" maxlength="141">

</textarea>

Chapter 12 htML5 tags

85

 HTML Tables
A table starts with <table> and ends with </table>.

Each table is made of table rows, which start with <tr> and end with

</tr>.

Each row is made up of cells of table data, which start with <td> and

end with </td>.

The first row of a table can be used as the header row. In this case,

change the <td> tags to <th> for the first row. You can change the style of

the header row to make it appear different from the other table rows.

<caption>...</caption> is useful for defining or describing the

content of the table. Captions are optional. To add a caption to a table, add

the caption element after the opening table tag, with the text of the caption

inside the element. Captions are usually displayed outside the border of

the table, at the top. The exact appearance and placement of captions is

subject to CSS styling. See Listing 12-3 and Figure 12-1.

Listing 12-3. Minimal HTML Table Example

<table border="1">

 <caption>Formulas and Results</caption>

 <tr><th>Formula</th><th>Result</th></tr>

 <tr><td>1 + 1</td><td>2</td></tr>

 <tr><td>3 * 5</td><td>15</td></tr>

</table>

Figure 12-1. The table generated from the preceding code

Chapter 12 htML5 tags

86

 A Basic HTML5 and JSP Document
A JSP (JavaServer Pages) page is a dynamic HTML page. It contains both

HTML and JSP tags. The content can change depending on the data the

user is viewing.

A JSP is still a text document. It also contains HTML tags just like

an HTML document. But there’s more. The JSP can receive and display

data sent by the servlet. Now you can personalize your site for each user,

whereas an HTML page displays the same for every user. JSTL allows

you to embed logic within a JSP page without using Java code directly.

Using standardized tags is not only more secure, but it also allows code

to be more maintainable and keeps the Java code separate from the user

interface. This template would be saved as a text document with a .jsp

extension. See Listing 12-4.

Listing 12-4. The Structure of a Basic HTML/JSP Page

<%@ page language="java" contentType="text/html; charset=UTF-8"

pageEncoding="UTF-8"%>

<%@ taglib prefix="c"

 uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt"

 uri="http://java.sun.com/jsp/jstl/fmt" %>

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; UTF-8">

<title>Insert title here</title>

</head>

<body>

<h1>This is a sample heading</h1>

Chapter 12 htML5 tags

87

<h2>This is a sub heading</h2>

<p>This is paragraph text</p>

</body>

</html>

 JSP Standard Tag Library (JSTL)
The JSP Standard Tag Library (JSTL) is a collection of useful tags you can

add to your JSP pages. These tags add functionality common to many

JSP applications. JSTL adds support for common structural tasks, such as

iteration and conditionals. They also add support for properly escaping

HTML or XML code in your pages. This prevents the tags from being

evaluated and potentially executing malicious code.

EL (expression language) is a subset of JSTL that makes it easy to

use Java classes (called beans) in your JSP. Expression language has a

compact syntax and allows you to access the nested properties of objects.

For example, a post object contains a user. Expression language allows

your JSP to access the getUsername() method of the user with the relaxed

syntax of ${user.username}. Expression language can also retrieve

the values of scalar variables set from the servlet using syntax such as

${message}.

To include JSTL in your JSP, add the directives shown in the following

code listing (Listing 12-5) to the top of your page. Exact placement isn’t

important, but just above the <html> tag is a good place. JSTL is composed

of libraries that add functionality for tasks such as looping and if/else

statements, as well as formatting numbers, dates, and times. Since we

know we want to include looping and if/else functionality in our JSP, and

we want to also format dates, we’ll include both the core library and the

formatting library. See Listing 12-5.

Chapter 12 htML5 tags

88

Listing 12-5. JSTL Directives Which Should Be Included Just Above

the <HTML> Tag on Your Page. The C Prefix Includes Tags from the

Core Library. The FMT Prefix Includes Tags from the Formatting

Library.

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

HOW TO USE JSTL TAGS IN YOUR JSP

 1. Copy the following two Java archive (jar) files from the files

included with this book to the WEB-INF/lib folder of a

dynamic web application.

i. taglibs-standard-impl-1.2.5.jar

ii. javax.servlet.jsp.jstl-api-1.2.1.jar

 2. Add the following directives to include the core and

formatting libraries for JSTL to the top of the page:

<%@ taglib prefix="c" uri="http://java.sun.

com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.

sun.com/jsp/jstl/fmt" %>

You can now use any of the JstL tags discussed next.

Chapter 12 htML5 tags

89

 What Can You Do with JSTL?

 Prevent Cross-site Scripting Attacks
Cross-site scripting (XSS) is a computer security vulnerability that occurs

when malicious users input scripts or other code into your website through

the text boxes on your web pages. The JSTL core out tag prevents cross-

site scripting attacks. The c:out escapes any input from the user so it is no

longer executable. If a user entered malicious JavaScript in a text box on

your website, that JavaScript would be executed and could compromise

the data. The c:out JSTL tag reduces this vulnerability.

 Loop Through a Collection
The JSTL forEach tag provides a mechanism to loop through the items

in a collection. The collection can be set in the servlet, and the JSTL code

in your JSP will loop through it and repeat the code between the forEach

open and closing tags. Any HTML in between those tags will also be

repeated for each item in the collection. You can see an example of the

forEach tag in the newsfeed.jsp page. See also Listing 12-6.

Listing 12-6. The JSTL forEach Tag Allows You to Loop Through a

Collection of Posts

<c:forEach var="post" items="${posts}">

 <c:out value="${post.user.username}"/>

 <c:out value="${post.posttext}"/>

</c:forEach>

Chapter 12 htML5 tags

90

 Set a Value
The code in Listing 12-7 shows how to set the value of a variable called

number. You can then refer to the variable later in the page or even the

session. To refer to the variable only on the current page, set the scope

to "request". To refer to the variable on other pages in your application,

set the scope to "session", which applies just to a single user, or

"application", which applies to all users. You can then use the variable

with a c:out tag later in your page or application. In the example here we

simply set the value to some random value, say, 10.

Listing 12-7. Using the set Tag of the JSTL Core Library

<c:set var="number" scope="session" value="10"/>

<c:out value="${number}"/>

 Test a Condition
JSTL allows you to include or exclude code based on a condition. In the

example in Listing 12-8, the value of the variable called number determines

if the content between the JSTL if tags will be displayed or not.

Listing 12-8. JSTL Allows You to Show or Hide Code Based on a

Condition

<c:set var="number" scope="session" value="10"/>

<c:if test="${number<100}">

<c:out value=

 "this line will print if number is less than 100">

</c:out>

<p>Any content between the if tags will

 display when the condition if true</p>

</c:if>

Chapter 12 htML5 tags

91

 Repeat Content a Fixed Number of Times
The JSTL core library forEach tag will repeat content a fixed number of

times. The content is whatever you have specified in between the opening

and closing forEach tags. The content will be repeated the number of

times indicated by the begin and end attributes, inclusively. In the code in

Listing 12-9, the numbers 5 6 7 8 9 10 will be displayed in the browser.

Listing 12-9. JSTL Allows You to Repeat Content a Fixed Number of

Times

<c:forEach var="number" begin="5" end="10">

 <c:out value="${number}"></c:out>

</c:forEach>

 Test a Condition and Choose an Alternative
JSTL does not feature an else clause to go with the if statement. However,

the JSTL core when and otherwise tags work like an if-else statement when

placed inside the JSTL core choose tag. You can have any number of when

tags but only one otherwise tag. See Listing 12-10.

Listing 12-10. The JSTL choose, when, and otherwise Tags Allow

You to Simulate an if/else Condition

<c:choose>

 <c:when test="${number % 2==0}">

 <p>

 <c:out value="The number is an even number">

 </c:out>

 </p>

 </c:when>

 <c:otherwise>

 <p>

Chapter 12 htML5 tags

92

 <c:out value="The number is an odd number">

 </c:out></p>

 </c:otherwise>

</c:choose>

 Determine If a String Is Null or Empty
JSTL will allow your code to test a value and determine if the value is null

or empty. As shown in the code in Listing 12-11, you pass the variable,

which can be set in the servlet or from a collection you’re looping through.

Then, if the string is null or empty, the code between the c:if statements

will execute. If HTML code is between the c:if tags then it will be

displayed in the browser when the condition is true. You can negate the

condition by placing the word not prior to the word empty.

Listing 12-11. Test If a Variable Is Null or Empty

<c:if test="${empty var1}">

<h2>var1 is empty or null.</h2>

</c:if>

 Formatting Dates
JSTL will allow you to display dates in a format you specify. We use this

in Bullhorn when we display the post date. We only want to see the date

as the year followed by the month abbreviation and then the day. The

value of the date should be a Date object, java.util.Date. If your date is

a String object, then you should convert it first. The JSTL formatDate tag

will format a date according to the specified pattern. See Listing 12-12.

Listing 12-12. Using the JSTL Format Library to Format a Date

<fmt:formatDate value="${post.postdate}"

 pattern="yy-MMM-dd"/>

Chapter 12 htML5 tags

93

 How to Display Form Data
Java web applications typically contain forms that collect user input and

pass it to a servlet for processing. The servlet can then communicate with

the database and do something with the data. Once the servlet is finished

working with the data it will send a new web page to the browser with the

results of the form. All this happens in an instant on the server and out of

the sight of the user.

 Create an HTML Login Form
HTML forms allow users to submit data to your servlet.

We want to enable the user to log in with their email and a password.

So, we need to create a web page with an HTML login form.

The form should contain two text boxes—one for username and one

for password. The form needs a Submit button. The text boxes and button

must be contained within the tags that declare the form so they will be

submitted to the URL of the login servlet indicated in the action attribute

of the form tag.

All attribute values must be in quotes and in the format of

attribute="value". These values will be used by the web server to

determine how the form is processed.

The form will not work until we create the servlet. The servlet is a

container that can run Java code and process our form. It will receive the

values from the inputs. Then, we can write Java code to do something with

the inputs.

<!DOCTYPE html>

<html>

<body>

 <h1>Login</h1>

 <!--the action will be set to the same value as

Chapter 12 htML5 tags

94

 the servlet's @WebServlet annotation -->

 <form action="LoginServlet" method="post">

 Email Address:

 <input type="text" name="email">

 Password:

 <input type="password" name="password">

 <input type="submit" value="Submit">

 </form>

</body>

</html>

The resulting web form can be seen in Figure 12-2.

Figure 12-2. If you click the Submit button, the form’s data will be
sent to a servlet called LoginServlet.java, which contains an
@WebServlet annotation at the top of the code set to 'loginServlet'.

Be sure to set the action attribute of your form to match your
servlet’s @Webservlet annotation.

Chapter 12 htML5 tags

95

 Create a Page to Display the Output of Your Form
Next, we will create a JSP to display the output of the form. The form will

send its data to the servlet, and the servlet will send the data to the output

JSP. While it’s possible to bypass the servlet, there’s no good reason to do so

since any application of significance will use the servlet to perform some

processing. The page to display the output will be called, simply enough,

output.jsp. See Listing 12-13. The page will not display anything since

there is not HTML code in the body.

Listing 12-13. A Simple JSP Page, output.jsp

<%@ page language="java"

 contentType="text/html;

 charset=UTF-8"

 pageEncoding="UTF-8"%>

<!DOCTYPE html

 PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type"

 content="text/html; charset=UTF-8">

Page

</head>

<body>

</body>

</html>

Chapter 12 htML5 tags

96

 How to Allow the User to Navigate Between
Web Pages
Links are found in nearly all web pages. Links allow users to click their way

from page to page. HTML links are called hyperlinks. They are defined with

the <a> tag:

link text

A hyperlink is text or an image you can click on to jump to another

document. For example:

Visit Some Site

A local link (link to the same website) is specified with a relative URL

(without http://www....):

My other page

 Reusing JSP Code
Writing code is fun. Writing the same code repetitively is . . . repetitive.

And not fun. Java Server Pages allow you to reuse code by creating include

files. An include file is simply a JSP or fragment of a JSP (or HTML) that you

include in your existing page. The advantage of including some fragment

of code in one page is that you can then include that same fragment in

other pages, saving you valuable time from rewriting the same code. The

code for the navigation bar for Bullhorn goes at the top of every page, just

below the opening body tag. I could copy that code to every page. Then,

if I choose to modify it, I could open every page and modify every page. A

better idea is to put the code for the navigation bar in one JSP file and add

an include tag at the location where I want the navigation bar to appear

(see Listings 12-14 to 12-16). Now I only need to change or update the

navigation bar in one place. Nice!

Chapter 12 htML5 tags

97

Listing 12-14. The include Directive That Goes in Every Page to

Include the navbar on Bullhorn

<jsp:include page="navbar.jsp"></jsp:include>

Listing 12-15. The First Two Lines of navbar.jsp (you can view the

entire file in the source code that accompanies this book)

<nav class="navbar navbar-default">

 <div class="container-fluid">

Listing 12-16. The Last Three Lines of navbar.jsp (you can view the

entire file in the source code that accompanies this book)

 </div><!-- /.navbar-collapse -->

 </div><!-- /.container-fluid -->

</nav>

 Customizing Your Errors
While you are developing your application, you probably won’t want to

implement custom error pages. The Tomcat error pages are exactly what

you need, with all the information you could want in one place.

Once you are ready to deploy your application, the default error pages

lack . . . polish . . . and can be a sign of an unprofessional application.

There are two kinds of errors that you are going to want your

application to be able to handle: HTML errors and Java exceptions.

The main HTML errors you need to handle are the 404 error (page not

found) and the 500 error (server error).

As for Java exceptions, we can build a general page that handles

them all.

Chapter 12 htML5 tags

98

HOW TO ADD A CUSTOM ERROR PAGE

the easiest way to handle custom errors is to add entries to the web.xml file.

By default, the web.xml file is not available, so to add it you need to do the

following:

 1. right-click your dynamic web project.

 2. select Java ee tools ➤ generate Deployment Descriptor stub.

 3. Double-click the web.xml file in WebContent/WEB-INF.

 4. add an extra line before </web-app> and insert the following:

<error-page>

 <error-code>404</error-code>

 <location>/error_404.jsp</location>

</error-page>

 5. then, create a corresponding Jsp with the proper message.

If you run your application and try to navigate to a page that doesn’t exist, you

should now get your new custom error page.

To create your own attractive page for handling ALL Java exceptions,

add the following to your web.xml file:

<error-page>

 <location>/error_java.jsp</location>

</error-page>

Then, put something like the following in your error_java.jsp:

Chapter 12 htML5 tags

99

<h1>Error</h1>

<p>Sorry, Java has thrown an exception.</p>

<p>To continue, click the Back button.</p>

<h2>Details</h2>

<p>Type: ${pageContext.exception["class"]}</p>

<p>Message: ${pageContext.exception.message}</p>

Chapter 12 htML5 tags

101© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_13

CHAPTER 13

The Stateless Nature
of the Web
A web application does not maintain state. It has no memory. Each request

to the web server is an independent event. Each request does not know

about previous requests. When you send your username and password,

the web server views this as an independent event. It does not keep track of

what you’re logging in to. The information is simply sent to the server.

When you submit a form, all the information about what to do with the

form data must be sent along with the form. Why? Because each request is

an independent transaction.

In real life this is what it would be like if you went to the bank and

got a new teller after each question. And the tellers don’t talk to each

other—only to you. And each teller would want to see your ID and check

your balance and do everything the other teller had already done. To make

such a situation easier, you could keep a running log of each transaction

that each teller could use to verify what has been done.

So, how does a web application maintain state? The answer is by using

either session variables or passing information known as parameters from

the previous transaction. Parameters are sent between the client

(web browser) and the server via either the URL or as other information

sent to the server as part of the request. This is called the request packet;

we have touched on this already in our discussion of servlets.

102

Session variables exist in the memory of the web server. Each request

includes a session ID. The session ID links the request to the session data

for that user. The session ID is automatically passed between requests. You

don’t have to do anything. It’s always there.

Since there is one session per user, you can store variables in each

user’s session. This is a space in memory that holds data while the user is

using the site. Since Java always knows the session ID, it has access to any

data in the session.

So, it’s the request packet and the session that tie the room together.

And you thought it was the rug! (Not funny? Watch The Big Lebowski

again). A session makes it easy for the server to connect one request to

another.

 The Process of Passing Data
The following list is a summary of the steps that are followed for data to be

sent from a web form to a JSP using a servlet:

 1. The form passes the request.

 2. Servlet receives the request.

 3. The servlet processes the request with

request.getParameter().

 4. The servlet generates a response based on the data

in the request.

 5. The servlet constructs a response in an object that

will be sent to the JSP.

 6. The JSP contains an attribute ${user}.

Chapter 13 the StateleSS Nature of the Web

103

 7. The servlet sets the attribute request.setAttribute

("user",myUser);.

 8. The servlet sends the JSP back to the originating

browser by calling getServletContext().

getRequestDispatcher(url).forward(request,

response);.

Chapter 13 the StateleSS Nature of the Web

105© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_14

CHAPTER 14

Users and Sessions
The user first accesses your site through the login page. The user’s email

and password are validated against the database in the login servlet. A user

email with the correct matching password is presumed to be a valid user.

The valid user is retrieved from the database and stored in the User object.

Recall that the User object is generated by the “JPA Generate Entities from

Tables” option.

A User object that is stored in the session is easily available to every

servlet or JSP in your site. The login servlet validated the user and sent

them to the next page, but the next page doesn’t know anything about the

user. We put the user in the session, and the next page, as well as other

pages in our application, can access the session and therefore the user. See

Listing 14-1.

Listing 14-1. The Private Member Variables of the User Class

Correspond with the User Table

@Entity

@NamedQuery(name="Bhuser.findAll",

 query="SELECT b FROM Bhuser b")

public class Bhuser

 implements Serializable {

 @Id

 @GeneratedValue(

 strategy=GenerationType.IDENTITY)

106

 private long bhuserid;

 @Temporal(TemporalType.DATE)

 private Date joindate;

 private String motto;

 private String useremail;

 private String username;

 private String userpassword;

Each user can create many posts. Each post in the database contains

the user ID pointing back to the user. The user table keeps track of the

posts by placing all the posts in a list. Therefore, the User object contains a

list of all the posts for that user, not just the PostId. See Listing 14-2.

Listing 14-2. The Private Member Variable for the Posts

Corresponds to the Posts Table. The User Contains Posts So the

Posts Are Implemented as a List.

@OneToMany(mappedBy="bhuser")

private List<Bhpost> bhposts;

The user class is a POJO—Plain Old Java Object. It contains getters

and setters for each private member variable. The getter and setter for

the user ID are shown in Listing 14-3. The naming convention is: always

the word get or set followed by the capitalized private member variable

name. You’ll see later when we are accessing the variable in the JSP pages

that the word get or set can be eliminated and the JSP will still find the

correct value. You don’t have to program this behavior—it’s part of the Java

Standard Tag Library.

Listing 14-3. Getter and Setter for the User Class

public long getBhuserid() {

 return this.bhuserid;

}

Chapter 14 Users and sessions

107

public void setBhuserid(long bhuserid) {

 this.bhuserid = bhuserid;

}

The session allows every page to display the user’s name, email, and

Gravatar. Java servlets provide a variable called HttpSession that we use

to identify a user across multiple page requests. Sessions persist for twenty

minutes (by default) after they are last used.

Your program obtains a reference to the HttpSession object by calling

the getSession() method of HttpServletRequest. The request is stored in

a variable called request and is managed by Tomcat, the servlet container.

See Listing 14-4.

Listing 14-4. By Adding This line of Code, Any Servlet in the

Application Can Access Objects Stored in the Session.

javax.servlet.http.HttpSession session =

 request.getSession();

Think of a session as the memory common to all your application’s

servlets and JSPs. It works like the Windows clipboard. One servlet puts

data into the session, and another JSP can access a copy of it.

 Adding Objects to the Session
Objects stored in the session can be accessed by different pages in the

application. Add objects to the session in the login servlet as soon as you

validate the user. The object is then available for use on other pages of the

application. See Listing 14-5.

Chapter 14 Users and sessions

108

Listing 14-5. Adding a User to the Session. This Code Can Be Found

in the Login Servlet

User user = new User();

user.setUserName("Larry");

user.setEmail("larry12345@domain.com");

//add the user to the session

session.setAttribute("user", user);

 To Read a Value from the Session
The user is stored in the session as an object. When you retrieve the user

from the session, you need to cast it to the User object and assign it to a

variable so you can work with it. See Listing 14-6.

Listing 14-6. Retrieving a Value from the Session

User user = (User) session.getAttribute("user");

//now we can get values out of the class

String username = user.getUserName();

String email = user.getEmail();

Chapter 14 Users and sessions

109© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_15

CHAPTER 15

How to Create
Database Tables
for Bullhorn
Scripts for creating the database tables are included with the source code

for Bullhorn. I usually recommend saving SQL scripts in a folder within

your project called SQL Scripts so you can easily recreate the database on

other systems.

To create a table in a database, you code the table name followed by

the field names and data types, as shown in Listing 15-1. The POSTID and

BHUSERID fields in the code listing are generated by the database.

You can create the tables by running the scripts found in the SQL

Scripts folder of Bullhorn. Copy the code to SQL Developer and press F5 to

run the scripts.

Listing 15-1. Code for Creating BHPOST and BHUSER Tables

CREATE TABLE BHPOST

 (POSTID NUMBER

 GENERATED BY DEFAULT ON NULL AS IDENTITY,

 POSTDATE DATE DEFAULT NULL,

 POSTTEXT VARCHAR2(141 BYTE) DEFAULT NULL,

 BHUSERID NUMBER DEFAULT NULL

) ;

110

CREATE TABLE BHUSER

 (BHUSERID NUMBER

 GENERATED BY DEFAULT ON NULL AS IDENTITY,

 USERNAME VARCHAR2(50 BYTE),

 USERPASSWORD VARCHAR2(50 BYTE),

 MOTTO VARCHAR2(100 BYTE) DEFAULT NULL,

 USEREMAIL VARCHAR2(100 BYTE),

 JOINDATE DATE DEFAULT NULL

);

Chapter 15 how to Create Database tables for bullhorn

111© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_16

CHAPTER 16

Make Web Pages Do
Something Using
JavaScript
JavaScript is the language of the browser. It is an object-oriented

programming language. Although JavaScript looks much like Java

(because both were based on C and C++), it is not at all related. JavaScript

is often used to programmatically interact with an HTML page. It does

this by interacting with the DOM (document object model. JavaScript is

supported by all major browsers).

Include JavaScript in your web page by putting the script between

<script> and </script> tags. You can place the script tags in the head

section or at the bottom of page. If you place the JavaScript on top of

your page or between the <head> tags, the user may see a blank page for

a few seconds. However, once the page is loaded, everything will be fully

functional from the first second. If you place the JavaScript at the bottom

of the page, the page will seem to load faster, but the JavaScript will not

run until the page (and script) is fully loaded. JavaScript may also be saved

in a text file (no script tags are needed in this case) and referenced in the

head section of your page. This allows you to reuse the same JavaScript on

multiple pages. Using linked files is better from a maintenance perspective

since all the JavaScript resides in only one location, making updates easy.

112

Because many developers find JavaScript challenging to work with,

various libraries have been developed over the years to simplify the routine

tasks of working with JavaScript. JQuery (http://www.jquery.com) works

across all browsers that support JavaScript and makes working with

JavaScript much more consistent. JQuery is used extensively in BootStrap.

We will look at BootStrap shortly; it makes working with JQuery, HTML,

and CSS even more fun.

Note Manipulating the DOM is one of JavaScript’s more powerful
uses. With DOM, you can navigate through and modify an entire page,
ranging from simply adding an element to rearranging several areas
on the page. DOM breaks up a document into a tree of nodes.

 Validate a Form Using JavaScript
The form in Listing 16-1 is used to submit a post to Bullhorn. The post

should be validated before the user attempts to submit it. JavaScript allows

us to do this at the browser. The JavaScript method to validate the form is

shown in the listing and contains one method, validate(). The JavaScript

should be placed between <script>...</script> tags at the bottom

of the page just before the closing body tag, </body>. Placing the script

after the elements it references ensures the elements have been created

by the DOM before the script is executed. The validate method looks at

the element with an ID of posttext and returns false if the length of this

text box is 0 (empty post). A false return will prevent the form from being

submitted.

Chapter 16 Make Web pageS DO SOMething USing JavaSCript

http://www.jquery.com/

113

Listing 16-1. A JavaScript Function to Validate the Form Can Go

Between Script Tags at the Bottom of the Web Page, Just Before the

Closing Body Tag

function validate() {

 valid = true;

 if ($('#posttext').val().length==0){

 alert("You may not submit an empty post.");

 valid = false;

 }

return valid;

}

The HTML form that will use the preceding validation script goes

on your web page within the <body>...</body> tags and before your

JavaScript. This form will call the script when the Submit button is clicked.

If the validate method returns false then the form will not be submitted.

See Listing 16-2. The onsubmit attribute of the form tag calls the JavaScript

function to validate the form.

Listing 16-2. Form for Submitting a Post

<form role="form"

 action="PostServ" method="post"

onsubmit="return validate();">

<label for="post">Create New Post (141 char):</label>

<textarea name="posttext" id="posttext"

 Maxlength="141"></textarea>

<div id="textarea_feedback"></div>

<input type="submit" value="Submit" id="submit"/>

<input type="reset" value="Clear"/>

</form>

Chapter 16 Make Web pageS DO SOMething USing JavaSCript

114

 Display Number of Characters in Text Box
We can also use JavaScript to count the number of characters remaining

and update the web page dynamically as the user types. This is an

excellent example of the power of JavaScript. It shows that it can be used

to manipulate the web page at the browser. This JavaScript function will

load when the document is ready. The document is ready after it has been

fully rendered and all the DOM has been downloaded from the web server

to the browser. Then the function will be created. This function will set the

HTML property of the element with the ID of textarea_feedback to “XX

characters remaining,” where XX is the number of remaining characters

from the max length of 141. Within document.ready, the keyup event of the

element with an ID of posttext is modified to include another function

that counts the number of remaining characters and displays them in the

textarea_feedback element. See Listing 16-3.

Listing 16-3. JavaScript to Return the Number of Characters

Remaining in the Text Box

$(document).ready(function() {

var text_max = 141;

$('#textarea_feedback').html

 (text_max + ' characters remaining');

 $('#posttext').keyup(function() {

 var text_length = $('#posttext').val().length;

 var text_remaining = text_max - text_length;

 $('#textarea_feedback').html(text_remaining + '

 characters remaining');

 });

});

Chapter 16 Make Web pageS DO SOMething USing JavaSCript

115© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_17

CHAPTER 17

Cascading Style
Sheets (CSS)
Cascading Style Sheets (CSS) allow you to specify the visual style and

presentation your web application. CSS allows you to separate the style

from the structure. This means you are looking through less code when

working with your page. The separation of style from structure and

content also increases maintainability. Cascading Style Sheets are a set

of programmable rules to define how your web pages display content.

The styles described by CSS include the colors, fonts, layout, and other

presentation aspects of a document, including variations in display for

different devices and screen sizes. A single CSS file can describe a common

style applicable to many documents.

Typically, an element in an HTML file has a “cascade” of CSS style rules

that can be applied to it. The styles cascade based on the location of the

definition. If you define a style in multiple locations, then the last definition

is applied. You can place your CSS between the <head>...</head> tags of a

document, in an external style sheet (on your server or on another server),

or as a style attribute of an element on your page.

An external style sheet is generally recommended. To link an external

style sheet to your document, add a link to the style sheet between the

<head>...</head> tags of the document. Keeping the style definitions

separate from your HTML content minimizes duplication and makes your

site easier to maintain.

116

When you create a style sheet, you create a rule for each element by

name, class, or ID. These values are set as attributes of the element. The

browser will apply the CSS rule when the page is rendered. Each rule has

two parts: a selector and a group of one or more declarations surrounded

by braces. Each declaration consists of a property name and value pair.

There can be several declarations in one rule. See Listing 17-1, which

shows an example CSS rule to be applied to all span tags for a document.

This rule can be placed in the head section of your web page between

<style>...</style> tags or in a separate file.

Listing 17-1. Example CSS Rule

span {

font-weight: bold;

color: yellow;

background-color: black;

}

If you wish to include your CSS rules in a separate file, just add a link to

that file in the head section of your web page. See Listing 17-2.

Listing 17-2. Example Link to a Style Sheet

<link href="styles/bullhorn.css" rel="stylesheet">

 Span and Div Tags
Span and div are container tags that define parts of your document. Use

span and div to apply styles to a section of a JSP or HTML page. Your page

is more organized when you divide it into parts such as header, body, and

footer.

Chapter 17 CasCading style sheets (Css)

117

The <div> tag is used to divide your HTML page into sections and

therefore encapsulates various elements. The tag is used to group

inline elements in a document. The <div> and tags provide no

visual change on their own. These tags provide a way to control the style

of part of your document when each tag includes a style, class, or ID

attribute. The difference between an ID and a class is that an ID can be

used to identify one element while a class can be used to identify multiple

elements. When you wish to apply a style to multiple elements, specify

the style as a class, since only one element can have an ID attribute with a

particular value, but many elements can share the same value in their class

attribute. The and <div> tags have no required attributes. The most

common attributes used are:

• style specifies a style that applies to all content and

elements up to the corresponding end tag.

• class specifies a CSS class that applies to all content

and elements up to the end tag. The value of the class

attribute is a CSS class specified in the style sheet file.

In the style sheet, the class name is preceded by a

period.

• id identifies the tag so you can select it with jQuery or

JavaScript. The id attribute for any element must be

unique. In the style sheet, the ID name is preceded by a

hash character.

Listing 17-3. Example HTML Code to Which Styles from Your Style

Sheet Will Be Applied

<p>This text will be highlighted</p>

<p name="intro">This text will be red</p>

Chapter 17 CasCading style sheets (Css)

118

Listing 17-4. Example style sheet that can be placed either between

<style> tags in the head section of your JSP page or in a separate file

with the link placed within the head section

.highlight {

 background-color: yellow;

}

#intro {

 color: red;

}

Chapter 17 CasCading style sheets (Css)

119© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_18

CHAPTER 18

Making Pages Work
on All Screen Sizes
Responsive web design (RWD) refers to the approach of developing a web

application such that it displays well on any size screen, from desktop

computer to mobile phone. A computer, phone, or tablet screen is composed

of pixels. A popular screen resolution for a computer is 1366 × 768. That

means the screen is 1366 pixels wide and 768 pixels high. Screen resolution

determines the clarity with which text and images are displayed. Items

appear sharper at higher resolutions. They also appear smaller, which

enables more items to fit on screen. When viewed on a tablet the screen may

only have 1024 pixels across. A phone has maybe 480 pixels across. Creating

a web page so that it displays nicely on different devices is known as making

your web page responsive. In the past, developers actually created multiple

websites for different devices.

BootStrap (http://getbootstrap.com) is a library for developing

responsive web applications. It allows you to quickly develop an

application interface without spending lots of time learning HTML, CSS,

or JavaScript. BootStrap requires jQuery to function. You can implement

BootStrap by adding the following to your project:

BootStrap makes its code available via a content delivery network

(CDN). That means the latest version of BootStrap is stored on servers

scattered around the world. Your page can retrieve the latest version by

including a link to the BootStrap CDN in the HEAD section of your page.

http://getbootstrap.com/

120

 Working with BootStrap
Developers like yourself create code. Designers make the interface look

nice. But not every project has a designer. Sometimes that job is also yours.

Congratulations!

You have a secret weapon. BootStrap is the most popular HTML, CSS,

and JS framework for developing responsive mobile-first projects on the

web. BootStrap is a library. It uses HTML, CSS, and JavaScript. It contains

design templates for typography, forms, buttons, navigation, and other

interface components.

BootStrap allows you to create responsive web pages. Responsive

web pages adapt their layout to different devices. Without responsive

design, you would have to develop different pages for different devices.

BootStrap solves that problem and ends the madness. It is based on a

1170-pixel- wide, 12-column layout. You can set attributes for different

devices (and resolutions) in your HTML tags. Listing 18-1 shows an

example of a three- column layout that would go in the body of your

page. You can easily add additional columns using div tags. Place your

content in the body element.

Listing 18-1. BootStrap Starter Template

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8"/>

 <meta name="viewport"

 content="width=device-width,

 initial-scale=1, shrink-to-fit=no">

 <!-- Bootstrap CSS -->

 <link rel="stylesheet" href=

Chapter 18 Making pages Work on all sCreen sizes

121

"https://maxcdn.bootstrapcdn.com/

 bootstrap/4.0.0-beta/css/bootstrap.min.css">

 </head>

 <body>

 <h1>Hello, world!</h1>

 <script src=

https://code.jquery.com/jquery-3.2.1.slim.min.js/>

 <script src=

"https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.11.0/umd/

popper.min.js">

</script>

 <script src=

"https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-beta/js/

bootstrap.min.js">

</script>

 </body>

</html>

Chapter 18 Making pages Work on all sCreen sizes

123© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_19

CHAPTER 19

Use Gravatar
to Display User’s
Avatars with Posts
An avatar is an image people use for their online identity. Gravatar is a

free service for providing globally unique avatars. Gravatar allows users to

register an account using their email address. Users then upload an image

to be associated with their Gravatar account. When the user uses the same

email address on a website that uses Gravatar, the website retrieves the

user’s avatar from Gravatar by using an image URL based on a hash of the

email address. Websites, including Bullhorn, may freely use Gravatar to

display the user’s image. Bullhorn displays the image next to posts and on

the profile page.

<img src="https://www.gravatar.com/avatar/205e460b479e2e5b48aec

07710c08d50?s=150"/>

To control the size of the image, append the URL with ?s=150 where

150 is the height or width in pixels of the square image to be returned by

the URL. The value of ‘s’ can range from 1 to 2048. Lower values will look

better.

124

If a user does not have a Gravatar set up then a default image will be

displayed:

https://www.gravatar.com/avatar/unknownhash

 Calculating an MD5 Hash with Java
An MD5 hash is a way of encrypting text such that it is not identifiable by

looking at it. The value of MD5 is that the same email address will always

generate the same MD5 hash.

The Gravatar URL is made from an MD5 hash of the user’s email

address. You can create an MD5 hash of an email address using code

provided at the Gravatar website. This code is implemented in Bullhorn in

the MD5Util.java class. The code will return a string containing the MD5

hash given the user’s email address.1

The DbUser class in Bullhorn contains a method that generates the

Gravatar URL. The method takes two parameters, email and image size.

The method then returns the correct URL, which can be used in an image

tag throughout the Bullhorn site. See Listing 19-1.

1 The source code for the MD5 class in Bullhorn is derived from that found at
http://en.gravatar.com/site/implement/images/java.

Chapter 19 Use Gravatar to Display User’s avatars with posts

https://www.gravatar.com/avatar/unknownhash
http://en.gravatar.com/site/implement/images/java

125

Listing 19-1. The Method to Generate a Gravatar URL Based on the

User’s Email Address

public static String getGravatarURL(String email, Integer size)

{

 StringBuilder url = new StringBuilder();

 url.append("http://www.gravatar.com/avatar/");

 url.append(MD5Util.md5Hex(email));

 url.append("?s=" + size.toString());

 return url.toString();

 }

Chapter 19 Use Gravatar to Display User’s avatars with posts

127© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1_20

CHAPTER 20

The Presentation/View
The presentation layer, also known as the view, is the perspective your end

user has of your application. They don’t see all the Java code. They only see

what the browser displays. The view consists mostly of HTML, JavaScript,

and images. In this section, we’ll look at the different JSP files that make up

the view. The JSP files contain other code such as JSTL, but the end result

is that they become HTML files sent to the user’s browser.

To start, the user browses to the site’s URL for the login.jsp page. The

URL for your development environment will be http://localhost:8080/

Bullhorn/login.jsp.

Note To start your application in Eclipse, at the login page simply
right-click on the login page and select the option to Run on Server.
Your site will open in a browser inside the Eclipse environment.

 The Code for the Login Page
<!-- login.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

128

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<jsp:include page="bootstrap.jsp"></jsp:include>

 </head>

 <body>

 <h1>Login</h1>

 <div class="container">

 <form class="form-signin" method="post"

action="LoginServlet">

 <h2 class="form-signin-heading">${message}Please sign

in</h2>

 <label for="inputEmail" class="sr-only">Email address

</label>

 <input name="email" type="email" id="inputEmail"

class="form-control"

 placeholder="Email address" required autofocus>

 <input type="hidden" name="action" id="action"

value="login"/>

 <label for="inputPassword" class="sr-only">Password

</label>

 <input name="password" type="password"

id="inputPassword"

 class="form-control" placeholder="Password" required>

 <button class="btn btn-lg btn-primary btn-block"

type="submit">Sign in</button>

 </form>

 Join

 </div> <!-- /container -->

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

ChapTER 20 ThE pRESEnTaTion/ViEw

129

 The Code for the Home Page
<!-- home.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>Bullhorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

<h1>This is the home page</h1>

<form role="form" action="PostServ" method="post"

onsubmit="return validate(this);">

 <div class="form-group">

 <label for="post">Create New Post (141

char):</label>

 <textarea name= "posttext" id="posttext"

class="form-control" rows="2" placeholder=

"Express yourself!" maxlength="141"></textarea>

 <div id="textarea_feedback"></div>

 </div>

 <div class = "form-group">

 <input type="submit" value="Submit"

id="submit"/>

 <input type="reset" value="Clear"/>

 </div>

 </form>

ChapTER 20 ThE pRESEnTaTion/ViEw

130

<jsp:include page="footer.jsp"></jsp:include>

<script>

$(document).ready(function() {

 var text_max = 141;

 $('#textarea_feedback').html(text_max + ' characters

remaining');

 $('#posttext').keyup(function() {

 var text_length = $('#posttext').val().length;

 var text_remaining = text_max - text_length;

 $('#textarea_feedback').html(text_remaining + '

characters remaining');

 });

});

function validate(form) {

 valid = true;

 if ($('#posttext').val().length==0){

 alert("You may not submit an empty post.");

 valid = false;

 }

 return valid;

}

</script>

</body>

</html>

 The Code for the News Feed Page
<!-- newsfeed.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

ChapTER 20 ThE pRESEnTaTion/ViEw

131

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<fmt:setLocale value="en_US" /><!-- fixes date not displaying

correctly in Eclipse browser -->

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

<h1>This is the news feed page</h1>

<div class="container">

<table class="table table-bordered">

 <thead>

 <tr><th>User</th><th>Post</th><th>Date</th></tr>

 </thead>

 <tbody>

 <c:forEach var="post" items="${posts}">

 <tr><td><a href="ProfileServlet?action=viewprofile&user

id=<c:out value="${post.bhuser.bhuserid}"/>">

<c:out value="${post.bhuser.useremail}"/></td>

 <td><c:out value="${post.posttext}"/></td>

 <td><fmt:formatDate value="${post.postdate}"

pattern="yy-MMM-dd"/></td>

 </tr>

ChapTER 20 ThE pRESEnTaTion/ViEw

132

 </c:forEach>

 </tbody>

 </table>

</div>

<jsp:include page="footer.jsp"></jsp:include>

</body>

 The Code for the Profile Page
</html>

<!-- profile.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

ChapTER 20 ThE pRESEnTaTion/ViEw

133

<c:choose>

 <c:when test="${editProfile==false}">

 <h1><img src="${userimage}" alt=<c:out value="

${username}"/>/> Profile for <c:out

value="${username}"/></h1>

 <h2>Email: <c:out value="${useremail}"/></h2>

 <h2>Motto: <c:out value="${usermotto}"/></h2>

 <h2>Join Date: <c:out

value="${userjoindate}"/></h2>

 </c:when>

 <c:when test="${editProfile==true}">

 <h1> &n

bsp;Edit Profile for ${username}</h1>

 <form action="ProfileServlet" method="post">

 <input type="hidden" name="action"

value="updateprofile">

 <input type="hidden" name="userid"

value="${userid}">

 <h2>Email: <input

type="text" name="useremail"

value="${useremail}"/></h2>

 <h2>Motto: <input

type="text" name="usermotto"

value="${usermotto}"/></h2>

 <h2>Join Date: <c:out

value="${userjoindate}"/></h2>

 <input type="submit" value="Save

Changes"/>

 </form>

 </c:when>

</c:choose>

ChapTER 20 ThE pRESEnTaTion/ViEw

134

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

 The Code for the Add User Page
<!-- adduser.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<fmt:setLocale value="en_US" /><!-- fixes date not displaying

correctly in Eclipse browser -->

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<form action="AddUser" method="post">

 <input type="hidden" name="action" value="addUser">

 <h1>Add New User</h1>

 <h2>Name: <input type="text" name="userName"

value=""/></h2>

 <h2>Email: <input type="text" name="userEmail"

value=""/></h2>

ChapTER 20 ThE pRESEnTaTion/ViEw

135

 <h2>Password: <input type="password"

name="userPassword" value=""/></h2>

 <h2>Motto: <input type="text" name="userMotto"

value=""/></h2>

 <!-- <h2>Join Date: <input type="text" value=""/></h2>-->

 <input type="submit" value="Join Us"/>

</form>

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

 The Code for the Support Page
<!-- support.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

<h1>This is the support page</h1>

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

ChapTER 20 ThE pRESEnTaTion/ViEw

136

 The Code for the Error Page
<!-- error.jsp -->

<%@ page language="java" contentType="text/html;

 charset=UTF-8" pageEncoding="UTF-8"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>

<title>BullHorn</title>

<jsp:include page="bootstrap.jsp"></jsp:include>

</head>

<body>

<jsp:include page="navbar.jsp"></jsp:include>

 <div style="text-align:center">

 <h1>Something's Wrong...</h1>

 </div>

<jsp:include page="footer.jsp"></jsp:include>

</body>

</html>

 The Navbar Include File
<!-- begin navbar -->

<nav class="navbar navbar-default">

 <div class="container-fluid">

 <!-- Brand and toggle get grouped for better mobile

display -->

ChapTER 20 ThE pRESEnTaTion/ViEw

137

 <div class="navbar-header">

 <button type="button" class="navbar-toggle collapsed"

data-toggle="collapse" data-target="#bs-example-navbar-

collapse-1" aria-expanded="false">

 Toggle navigation

 </button>

 <img src="images/bullhornlogo50x50.png" alt="Bullhorn

Logo"/> <h2>Bullhorn</h2>

 </div>

 <!-- Collect the nav links, forms, and other content for

toggling -->

 <div class="collapse navbar-collapse" id="bs-example-

navbar-collapse-1">

 <ul class="nav navbar-nav">

 <li class="active">Home<span

class="sr-only">(current)

 News Feed

 <form class="navbar-form navbar-right" role="search"

action="Newsfeed" method="get">

 <div class="form-group">

 <input type="text" class="form-control"

placeholder="Search" name="searchtext">

 </div>

 <button type="submit" class="btn btn-default">Submit

</button>

 </form>

 <ul class="nav navbar-nav navbar-right">

 <% if (session.getAttribute("user") != null) { %>

ChapTER 20 ThE pRESEnTaTion/ViEw

138

 <a href="ProfileServlet?userid=${user.bhuserid}&act

ion=viewprofile"><img alt="${user.username}" src="${gra

vatarURL}"/> ${user.username}

 <% } %>

 <li class="dropdown">

 <a href="#" class="dropdown-toggle"

data- toggle="dropdown" role="button"

aria-haspopup="true" aria- expanded="false">User

Options

 <ul class="dropdown-menu">

 <!-- Log

out-->

 <!-- Bootstrap allows me to put a form here and

it will show in the navbar.

 I want to use a form so it can call the

servlet with the Post method.

 -->

 <form class="navbar-form navbar-left"

role="form" action="LoginServlet" method="post">

 <input type="hidden" name="action"

id="action" value="logout"/>

 <button class="btn btn-default"

id="addBookButton">Logout</button>

 </form>

Show my Posts

 <a href="ProfileServlet?userid=${user.bhuserid }

&action=editprofile">Edit Profile

 <li role="separator" class="divider">

 Feedback

ChapTER 20 ThE pRESEnTaTion/ViEw

139

 </div><!-- /.navbar-collapse -->

 </div><!-- /.container-fluid -->

</nav>

<!-- end navbar -->

 The BootStrap Include File
The BootStrap include file contains links for the BootStrap files. These

links come from the BootStrap website. They use a content delivery service

called MaxCDN to host their files. You don’t have to download anything.

Simply include the links from the BootStrap site, and your application will

retrieve the file over the internet.

The BootStrap include file also contains links to some style sheets,

which can be found in the styles folder of your Bullhorn application. The

styles folder lies below the WebContent folder.

<!-- BEGIN Bootstrap -->

<link href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/css/

bootstrap.min.css" rel="stylesheet">

<!-- jQuery (necessary for BootStrap's JavaScript plugins) -->

<script src="https://ajax.googleapis.com/ajax/libs/

jquery/1.11.1/jquery.min.js"></script>

<!-- Include all compiled plugins (below), or include

individual files as needed -->

<script src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.1/js/

bootstrap.min.js"></script>

<link href="styles/cerulean.bootstrap.min.css" rel="stylesheet">

<link href="styles/bullhorn.css" rel="stylesheet">

<!-- END Bootstrap -->

ChapTER 20 ThE pRESEnTaTion/ViEw

140

 The Bootstrap Style Pages
The Bullhorn site contains some style sheets that have been downloaded

from https://bootswatch.com/. This site contains free downloadable

BootStrap themes that you can include in your projects. Simply browse

their collection and include them in your site. Then, from each web page,

you need to include a link to the theme you want to use. This is done in the

BootStrap include file.

 The Footer Include File
<!--footer.jsp-->

 <div id="push"></div>

 <div id="footer">

 <div class="container">

 <p class="text-muted"><span class="glyphicon

glyphicon- volume- up" aria-hidden="true">

Bullhorn © 2016</p>

 </div>

 </div>

<!-- end footer.jsp -->

ChapTER 20 ThE pRESEnTaTion/ViEw

https://bootswatch.com/

141© Dave Wolf, A.J. Henley 2017
D. Wolf and A.J. Henley, Java EE Web Application Primer,
https://doi.org/10.1007/978-1-4842-3195-1

Index

A
AddUser servlet code, 74
American National Standards

Institute (ANSI), 9
Attributes

action, 84
alt, 83
method, 84
name, 82
src, 83
type, 84

Avatar, 123

B
Bhpost table

SQL for
creating, 32

SQL statements, 33
BHPOST table, 109–110
Bhuser table, 109–110

data definition, 31
delete the table, 33
entering data, 32
SQL statements, 32–33

BootStrap, 119
include file, 139
Starter Template, 120–121

style pages, 140
working with, 120

Bullhorn, 112, 123–124
application, 27
DbUser class, 124

Bullhorn components
HTML, 16
JPA classes, 16
JSP, 16
request objects, 16
servlets, 15
sessions, 16
user objects, 16

Bullhorn site
components (see Bullhorn

components)
profile editing, 21

C
Cascading style sheets (CSS), 79,

82, 85, 112, 115, 119–120
rule, 116
span and div tags, 116–118

Code, 23–24
Content delivery

network (CDN), 119
Controller, 23–25, 57
Cross-site scripting (XSS), 89

142

D
Database, 15, 17–19, 22, 105–106

fields, 6
foreign key, 7
index, 7
layer, 23
open SQL developer, 10
primary key, 7
relationship types, 8

many-to-many, 8
one-to-many, 8
one-to-one, 8

working with oracle
databases, 9

Database management system
(DBMS), 6, 8–9

Database tables, 109
Bullhorn, 109
source code, 109

Database
transaction, 5

atomicity, 5
consistency, 5
durability, 6
isolation, 5

Data integrity, 5
DbPost class, 51–55
DbUser class, 44–49
DbUtilities class, 43–44
Document object model

(DOM), 79, 111–112, 114
Dynamic Web

Project, 28–29

E
Eclipse, 28

IDE, 11
installation, 11–12

F
Footer include file, 140

G
Gravatar, 123–124

user’s email address, 125

H
HTML5, 80–82, 86
Hyperlinks, 96
Hypertext markup language

(HTML), 57, 79, 80,
111–115, 117, 119–121

creating web documents, 79
errors, 97
tags, 79
web page, 79

I
Integrated development

environment (IDE), 9

J, K
Java Archive(JAR) files, 29

Index

143

Java exceptions, 97
Java Persistence API (JPA), 34

eclipselink, 35
Eclipse tools, 34
entities, 38–42
JPQL, 35
META-INF, 35–36
POJO, 34

Java Persistence Query Language
(JPQL), 35

JavaScript, 79, 82, 89, 111–112
for Bootstrap, 77
script tags, 113
validating a form, 112–113

submitting post, 113
text box, characters, 114

Java server page (JSP), 27, 57, 86,
89, 95–96, 102, 105–107

JQuery, 112
JSP Standard Tag Library (JSTL),

86–87, 89, 91–92

L
Links, 96
Login servlet, 17
Log Out button, 61

M
MD5, 124
Model, 25
Model-view-controller (MVC), 23

benefits, 23

and Bullhorn service, 24–25
team building, 23

N
Navbar include file, 136–139
Navigation bar, 18–19
News Feed servlet code, 64
Normalization, 8
Null value, 6

O
Object-oriented programming

language, 111
Oracle database, 24
Oracle virtual machine,

Virtualbox Manager, 2

P, Q
Parameters, 79, 101
Passing data process, 102
Persistence.xml file, 36, 38
Plain old Java object

(POJO), 106
PostServ servlet code, 67
Presentation layer, 23, 57

add user page, 134–135
error page, 136
home page, 129–130
news feed page, 130, 132
profile age, 132–134
support page, 135

Profile servlet code, 69

Index

144

R
Referential integrity, 6
Request packet, 101–102
Responsive web design (RWD), 119

S
Service, 25
Service layer, 57
Service layer creation

DbPost class, 51–55
DbUser class, 44–50
DbUtilities class, 43–44

Servlets, 27, 101–102
code, 58

AddUser servlet, 74–76
login servlet, 61–64
News Feed servlet, 64–67
PostServ servlet, 67–69
Profile servlet, 69–74

finding next page, 60
form data into, 59
Java classes, 57
sending data to next page, 59
set values on output page, 60
Tomcat, 57, 59
URL, 57
Web, 58

Software-design pattern, 23
SQL Developer, 109
SQL Scripts, 109
Structured Query

Language (SQL), 8–9

T
Tag

angle brackets, 81
attributes, 81

id, 82
form, 84
head, 82
heading, 82
image, 83
input, 84
paragraph, 83
table, 85
title, 82

Tomcat, 12–13, 97

U
URL, 57–58
Users and sessions

adding objects, 107–108
getter and setter for user

class, 106
HttpSession, 107
object, 105–106
private member

variables, 105–106
retrieving value, 108

V
View, 24
Virtualbox, 1
Virtual machine (VM), 11

Index

145

W, X, Y, Z
Web administrator, 22
Web application, 27, 101

Web browser, 77
Web server, 101–102

Website, 123–124

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Getting Started
	 The Oracle Virtual Machine

	Chapter 2: What Is a Database?
	 Referential Integrity
	 Null Values
	 Primary Keys, Foreign Keys, and Indexes
	 Joining Tables
	 Normalization
	 Structured Query Language (SQL)
	 Working with the Oracle Database
	 How to Open and Use SQL Developer

	Chapter 3: Installing and Running Eclipse
	Chapter 4: Bullhorn Site Overview
	 The Components of Bullhorn
	 What Does Each Page Look Like?
	 Editing a Profile

	Chapter 5: What Is MVC?
	 The Model, View, Controller, and Service in Bullhorn

	Chapter 6: Creating a Web Application
	Chapter 7: The DAO/Repository
	 Implement Java Persistence (JPA)
	 The Persistence.xml File
	 The JPA Entities

	Chapter 8: The Service Layer
	 Create a DbUtilities Class
	 Create the DbUser Class
	 Create the DbPost Class

	Chapter 9: The Controller
	 What Is a Servlet?
	 Getting the Form Data into the Servlet
	 Sending the Data to the Next Page
	 How the Servlet Finds the Next Page
	 How to Set Values on Your Output Page
	 How the Log Out Button Works
	 The Login Servlet Code
	 The News Feed Servlet Code
	 The PostServ Servlet Code
	 The Profile Servlet Code
	 The AddUser Servlet Code

	Chapter 10: The Presentation/View
	Chapter 11: Designing Web Pages with HTML
	Chapter 12: HTML5 Tags
	 Explanation of Common Tags
	 HTML Tables
	 A Basic HTML5 and JSP Document
	 JSP Standard Tag Library (JSTL)
	 What Can You Do with JSTL?
	 Prevent Cross-site Scripting Attacks
	 Loop Through a Collection
	 Set a Value
	 Test a Condition
	 Repeat Content a Fixed Number of Times
	 Test a Condition and Choose an Alternative
	 Determine If a String Is Null or Empty
	 Formatting Dates

	 How to Display Form Data
	 Create an HTML Login Form
	 Create a Page to Display the Output of Your Form
	 How to Allow the User to Navigate Between Web Pages

	 Reusing JSP Code
	 Customizing Your Errors

	Chapter 13: The Stateless Nature of the Web
	 The Process of Passing Data

	Chapter 14: Users and Sessions
	 Adding Objects to the Session
	 To Read a Value from the Session

	Chapter 15: How to Create Database Tables for Bullhorn
	Chapter 16: Make Web Pages Do Something Using JavaScript
	 Validate a Form Using JavaScript
	 Display Number of Characters in Text Box

	Chapter 17: Cascading Style Sheets (CSS)
	 Span and Div Tags

	Chapter 18: Making Pages Work on All Screen Sizes
	 Working with BootStrap

	Chapter 19: Use Gravatar to Display User’s Avatars with Posts
	 Calculating an MD5 Hash with Java

	Chapter 20: The Presentation/View
	 The Code for the Login Page
	 The Code for the Home Page
	 The Code for the News Feed Page
	 The Code for the Profile Page
	 The Code for the Add User Page
	 The Code for the Support Page
	 The Code for the Error Page
	 The Navbar Include File
	 The BootStrap Include File
	 The Bootstrap Style Pages

	 The Footer Include File

	Index

