
199© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_8

CHAPTER 8

Symbolic
Computation

8.1	 �Introduction
Until now, we have been dealing with numeric computation where

variables store numeric values. In Chapter 7, you learned that numerical

computation involves working with approximate solutions. On the other

hand, an analytical solution is not an approximation since one uses

symbols rather than numbers. MATLAB provides the means to perform

symbolic computations, too.

8.2	 �Defining a Symbolic Variable
The keyword syms is used to define single or multiple symbolic variable(s).

The key feature of a symbolic variable is that it just stores a symbol to

perform symbolic calculations.

1 >> syms x y z

2 >>

After executing the command, inspect the Workspace window

(see Figure 8-1) and note that three new variables—x, y, and z—have been

created.

https://doi.org/10.1007/978-1-4842-3189-0_8
https://doi.org/10.1007/978-1-4842-3189-0_7

200

8.3	 �Defining a Symbolic Equation
Once the variables have been defined, you can define an equation:

	 z x y= +2 	 (Equation 8-1)

using these variables as follows:

1 >> z = xˆ2+y
2 z =

3 xˆ2 + y

In the present example, z was predefined as a symbolic variable. The

output variable is created by MATLAB and becomes a symbolic variable by

default. Its inputs have been defined as symbolic variables. For example,

suppose you want to define this equation:

	 a x y z= + +3 2 	 (Equation 8-2)

This results in the creation of a new symbolic variable (which can be

verified by checking the Workspace window). The following MATLAB code

performs this task:

Figure 8-1.  New symbolic variables appearing in the workspace

Chapter 8 Symbolic Computation

201

1 >> syms x y z

2 >> a = xˆ3+yˆ2+z
3 a =

4 xˆ3 + yˆ2 + z

8.4	 �Performing Symbolic Computations
Symbolic computations are same as what we are used to doing by hand on

paper. You define a variable and use mathematical rules of algebra as well

as calculus to perform calculations. For example, two roots (r1 and r2) of a

quadratic equation:

	 y ax bx c= + +2 	 (Equation 8-3)

can be written as follows:

	 r
b b ac

a1

2 4

2
=
- + - 	 (Equation 8-4)

	 r
b b ac

a1

2 4

2
=
- - - 	 (Equation 8-5)

This can be performed using the following MATLAB code:

1 >> syms a b c x

2 >> y = a*(xˆ2)+(b*x)+c
3 y =

4 a*xˆ2 + b*x + c
5 >> solve(y)

6 ans =

7 −(b + (bˆ2 − 4*a*c)ˆ(1/2))/(2*a)
8 −(b − (bˆ2 − 4*a*c)ˆ(1/2))/(2*a)

Chapter 8 Symbolic Computation

202

Similarly, a symbolic mathematical expression can be integrated and

differentiated as follows:

 1 >> syms a b c x

 2 >> y = a*(xˆ2)+(b*x)+c
 3 y =

 4 a*xˆ2 + b*x + c
 5 >> int(y)

 6 ans =

 7 (a*xˆ3)/3 + (b*xˆ2)/2 + c*x
 8 >> diff(y)

 9 ans =

10 b + 2*a*x

This can be verified using paper-based calculation by hand, where we

know the following:

	 y ax bx c= + +2 	 (Equation 8-6)

	 y
ax bx

cx= + +ò
3 2

3 2
	 (Equation 8-7)

	
dy

dx
ax b= +2 	 (Equation 8-8)

8.4.1  Arithmetic Expressions
Simple arithmetic expressions can be dealt with using symbols. For

example, two polynomials can be used to define a new polynomial.

 1 >> syms x y z

 2 >> a1 = xˆ2+2*y+z
 3 a1 =

 4 xˆ2 + 2*y + z

Chapter 8 Symbolic Computation

203

 5 >> a2 = xˆ(−2)−2*y+3*z
 6 a2 =

 7 3*z − 2*y + 1/xˆ2
 8 >> a3 = a1/a2

 9 a3 =

10 (xˆ2 + 2*y + z)/(3*z − 2*y + 1/xˆ2)
11 >> a4 = a1*a2

12 a4 =

13 (xˆ2 + 2*y + z)*(3*z − 2*y+1/xˆ2)

8.4.2  Trigonometric Expressions
Trigonometric variables defined using symbolic variables can also be used

in mathematical calculations, as follows:

	 y x= ()sin 	 (Equation 8-9)

	
dy

dx
x= - ()cos 	 (Equation 8-10)

1 >> syms a b c x

2 >> y = sin(x)

3 y =

4 sin(x)

5 >> int(y)

6 ans =

7 −cos(x)

Even more complicated calculations can be performed by a click of a

button.

1 >> z = cos(xˆ(1/2)) − (sin(y))ˆ(1/3)
2 z =

3 cos(xˆ(1/2)) − sin(y)ˆ(1/3)

Chapter 8 Symbolic Computation

204

4 >> int(z)

5 ans =

6 2*cos(xˆ(1/2)) − x*sin(y)ˆ(1/3) + 2*xˆ(1/2)*sin(xˆ(1/2))
7 >> diff(z)

8 ans =

9 −sin(xˆ(1/2))/(2*xˆ(1/2))

8.4.3  �Expanding and Factorizing an Expression
The expand() function can be used to write equations with individual

terms of expanded polynomials. The most important use of expand()

is the application of the distributivity law to rewrite products of sums as

sums of products. If f represents a symbolic expression, then expand(f) is

calculated using the following set of rules:

•	 x x xa b a b+ = ´

•	 xy x y x y b I
b b b() = ´ " ³ Î, ,0

•	 x xa b a b() = +

It is also important to note that the expand() function will work

recursively on the subexpressions of a given expression.

 1 >> syms x y z

 2 >> a1 = xˆ2+2*y+z
 3 a1 =

 4 xˆ2 + 2*y + z
 5 >> a2 = xˆ(−2)−2*y+3*z
 6 a2 =

 7 3*z − 2*y + 1/xˆ2
 8 >> a3 = a1/a2

 9 a3 =

10 (xˆ2 + 2*y + z)/(3*z − 2*y + 1/xˆ2)

Chapter 8 Symbolic Computation

205

11 >> a4 = a1*a2

12 a4 =

13 (xˆ2 + 2*y + z)*(3*z − 2*y + 1/xˆ2)
14 >> a5 = expand(a3)

15 a5 =

16 �(2*y)/(3*z − 2*y + 1/xˆ2) + z/(3*z − 2*y + 1/xˆ2) + xˆ2/
(3*z − 2*y + 1/xˆ2)

17 >> a6 = expand(a4)

18 a6 =

19 �4*y*z + (2*y)/xˆ2 − 2*xˆ2*y + z/xˆ2 + 3*xˆ2*z − 4*yˆ2 +
3*zˆ2 + 1

The function named factor produces factors of an expression such

that multiplying all factors results in the final expression. Let’s try to

factorize the values stored in symbolic variable a5 and a6.

1 >> a7 = factor(a5)

2 a7 =

3 [−1,x,x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]
4 >> a8 = factor(a5)

5 a8 =

6 [−1,x,x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]

The factors are present as elements of an array, which can be accessed

using their index. This comes in handy when extracting a factor and its

usage in mathematical analysis.

1 >> a7[2] = x

2 >> a7[4] = xˆ2 + 2*y + z
3 >> a8[3:5] = [x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]

Chapter 8 Symbolic Computation

206

In the previous example, a7[2] extracts the second element of variable

a7, a7[4] extracts the fourth element of variable a7, and a8[3:5] extracts

all elements from the third to fifth element and stores them as a list of

symbolic expressions.

When an expression is written as a power of another expression,

expand() works just like mathematical rules. For example, consider the

case when an expression:
a xy z y= +()

is defined. Its expansion is given as:

x y yy z´ ´

Each term is clearly a factor of the expression. This can be verified with

the following MATLAB code:

 1 >> syms x y z

 2 >> a = x*yˆ(z+y)
 3 a =

 4 x*yˆ(y + z)
 5 >> b = expand(a)

 6 b =

 7 x*yˆy*yˆz
 8 >> c = factor(b)

 9 c =

10 [x,yˆy,yˆz]

When an expression is powered by another expression, the expand()

function works recursively.

1 >> a=((x+y)ˆ(x+z+2))
2 a =

3 (x + y)ˆ(x + z + 2)
4 >> expand(a)

Chapter 8 Symbolic Computation

207

5 ans =

6 �xˆ2*(x + y)ˆx*(x + y)ˆz + yˆ2*(x + y)ˆx*(x + y)ˆz + 2*x*y*
(x + y)ˆx*

 (x + y)ˆz

It can be used to check out trigonometric identities:

 1 >> expand(sin(x+y))

 2 ans =

 3 cos(x)*sin(y) + cos(y)*sin(x)

 4 >> expand(cos(x+y))

 5 ans =

 6 cos(x)*cos(y) − sin(x)*sin(y)
 7 >> expand(tan(x+y))

 8 ans =

 9 −(tan(x) + tan(y))/(tan(x)*tan(y) − 1)
10 >> expand(sec(x+y))

11 ans =

12 1/(cos(x)*cos(y) − sin(x)*sin(y))
13 >> a = cosh(x+y)

14 a =

15 cosh(x+y)

16 >> expand(a)

17 ans =

18 cosh(x)*cosh(y) + sinh(x)*sinh(y)

19 >> a = cosh(2*x)

20 a =

21 cosh(2*x)

22 >> expand(a)

23 ans =

24 2*cosh(x)ˆ2 − 1

Chapter 8 Symbolic Computation

208

25 >> a = coth(x+y)

26 a =

27 coth(x + y)

28 >> expand(a)

29 ans =

30 (coth(x)*coth(y) + 1)/(coth(x) + coth(y))

8.5	 �Summary
This chapter illustrated the usage of symbols to solve mathematical

equations. Symbolic computation proves useful when error-prone

numerical computing is not acceptable, but it has its limits. A limited set

of built-in functions must be appended by user-defined functions, and

this requires experience with writing MATLAB packages. But it is definitely

worth exploring.

This book has illustrated the use of MATLAB as a tool for efficient

scientific computing. It first illustrated the basic usage using single-line

commands and then illustrated writing multi-line commands as an .m

file. Arrays for the fundamental blocks of scientific computing and thus

matrix-based calculations can be performed using arrays. Plotting graphs

is simplified to the extent that even a beginner can easily plot a equation

to visualize a graph. Using loops and functions, programs can be made

modular and information flow can be controlled in an efficient fashion.

You also saw some basic examples of numerical computing. The book

should enable any beginner to enter the world of scientific computing with

ease. Its widely popular usage has rightly coined the phrase “MATLAB is

the language of engineering”.

Chapter 8 Symbolic Computation

	Chapter 8: Symbolic Computation
	8.1	 Introduction
	8.2	 Defining a Symbolic Variable
	8.3	 Defining a Symbolic Equation
	8.4	 Performing Symbolic Computations
	8.4.1 Arithmetic Expressions
	8.4.2 Trigonometric Expressions
	8.4.3 Expanding and Factorizing an Expression

	8.5	 Summary

