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CHAPTER 6

Numerical Computing 
Formalism

6.1  �Introduction
Numerical computation enables you to compute solutions to numerical 

problems, provided you can frame them into a proper format. This 

requires certain considerations. For example, if you digitize continuous 

functions, then you are going to introduce certain errors due to the 

sampling at a finite frequency. Hence, a very accurate result would require 

very a fast sampling rate. When a large data set needs to be computed, it 

becomes a computationally intensive and time consuming task. Also you 

must understand that the numerical solutions are an approximation at 

best, compared to analytical solutions. The onus of finding their physical 

meaning and significance lies on you. The art of discarding solutions that 

do not have meaning in real world scenarios is something that a scientist/

engineer develops over the years. Also, a computational device is only as 

intelligent as its operator. The law of GIGO (garbage-in-garbage-out) is 

followed very strictly in this domain.

This chapter attempts to explain some of the important steps you must 

consider in order to solve a physical problem using numerical computations. 

Defining a problem in the proper terms is just the first step. Making the right 

model and then using the right method to solve (solver) the issue is the 

difference between a naive and an experienced scientist/engineer.
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6.2  �Physical Problems
Everything in our physical world is governed by physical laws. Owing 

to men and women of science who toiled under difficult circumstances 

and came up with fine solutions to the things happening around us, 

we obtained mathematical theories for physical laws. To test these 

mathematical formalisms of physical laws, we use numerical computations. 

If it yields the same results as that of a real experiment, they validate each 

other. Numerical simulations can remove the need to do an experiment 

altogether, provided you have a well tested mathematical formalism. For 

example, nuclear powers of our times need not test nuclear bombs for real 

any more. The data related to nuclear explosion, which was obtained during 

real nuclear explosions, enables scientists to model these physical systems 

quite accurately, thus eliminating the need to do real testing.

Apart from applications like simulating a real experiment, modeling 

physical problems are good educational exercises. While modeling, 

hands-on exercises enable students to explore the subject in depth and 

give proper meaning to the topic under study. Solving numerical problems 

and visualizing results makes the learning permanent and also elucidates 

any flaws in the mathematical theory, which ultimately leads to new 

discoveries.

6.3  �Defining a Model
Modeling means writing equations for a physical system. As the name 

suggests, an equation is about equating two sides. An equation is written 

using an equals (=) sign, where terms on the left side are equal to terms on 

the right side. The terms on either side of an equation can be numbers or 

expressions. For example:

	 3 4 9 10x y z+ + = 	
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This equation has the term 3x + 4y + 9z on the left hand side (LHS) 

and the term 10 on the right hand side (RHS). Note that whereas LHS is an 

algebraic term, RHS is a number.

Expressions are written using functions, which is simply a relationship 

between two domains. Like f (x) = y is a relationship from y to x using the 

rules of algebra. Mathematics has a rich library of functions, which you can 

use to make expressions.

Choosing the proper functions depends on the problem. Some 

functions describe some situations best. For example, the oscillatory 

behavior can be described in a reasonable manner using trigonometric 

functions like sin(x), cos(x), etc. Objects moving in straight lines can be 

described well using linear equations like y = mx + c, where x is the present 

position, m is the constant rate of change of x, and c is the offset position. 

Objects moving in a curved fashion can be described by various non-linear 

functions (where the power of the dependent variable is not 1).

In real life, you can have situations that are a mixture of these 

scenarios. An object can oscillate and move in a curved fashion at the 

same time. In that case, you write an expression using a mixture of 

functions or find new functions that can explain the behavior of the object. 

Verifying the functions is done by finding solutions to equations describing 

the behavior and matching it with observations of the object. If they match 

perfectly, you have a perfect solution. In most cases, an exact solution 

might be difficult to obtain. In these cases, you get an “approximate” 

solution. If the errors involved while obtaining an approximate solution 

are within tolerable limits, the models can be acceptable.

As discussed, physical situations can be analytically solved by writing 

mathematical expressions in terms of functions involving dependent 

variables. The simplest problems have simple functions between 

dependent variables with a single equation. There can be situations where 

multiple equations are needed to explain a physical behavior. In case of 

multiple equations being solved, the theory of the matrix comes in handy.
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Suppose the following equations define the physical behavior of a 

system:

	 - + =x y3 4 	 (Equation 6-1)

	 2 4 3x y- = - 	 (Equation 6-2)

Then this system of two equations can be represented by a matrix 

equation, as follows:
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Now using matrix algebra, values of variables x and y can be found 

such that they satisfy the equations. Those values are called roots of these 

equations. These roots are the point in 2D space (because there are two 

dependent variables) where the system will find stability for that physical 

problem. In this way, you can predict the behavior of system without 

actually doing an experiment.

Mathematical concepts of differentiation and integration become very 

important when you need to work with dynamic systems. When the system 

is constantly changing the values of its dependent variables to produce 

a scenario, it’s important to know the rate of change of these variables. 

When these variables are independent of each other, you can use simple 

derivatives to define their rate of change. When they are not independent 

of each other, you must use partial derivatives for the same.

For example, Newton’s second law of motion says that the rate of 

change of velocity of an object is directly proportional to the force applied 

on it. Mathematically:

	 F
dy

dx
a 	 (Equation 6-3)
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The proportionality is turned into equality by substituting for a 

constant of multiplication m such that:

	 F m
dy

dx
= ´ 	 (Equation 6-4)

If you know values or expressions for F, this equation can be solved 

analytically and solutions can be found to this equation. But in some cases, 

the analytical solution may be too difficult to obtain. In those cases, you 

can digitize the system and find a numerical solution.

There are many methods to digitize and numerically solve a given 

function. Programs used to implement a particular method to solve a 

function numerically are called solvers. A lot of solvers exist to solve a 

function. The choice of solver is critical to successfully obtain a solution. 

For example, Equation 6-4 is a differential equation. It is a first order 

ordinary differential equation. A number of solvers exist to solve such 

problems, like Euler, Runge-Kutta, etc. The choice of the particular solver 

depends on the accuracy of its solution, the time taken for obtaining a 

solution, and the amount of memory used during the process. The last 

point is especially important when memory is not an freely expendable 

commodity, such as when you’re using micro-computers with limited 

memory storage.

The advantage of using MATLAB to perform numerical computations 

lies in the fact that it has a very rich library of functions to perform the 

various tasks required. The predefined functions have been optimized 

for speed and accuracy (in some cases, accuracy can be predefined). This 

enables you to rapidly prototype the problem instead of concentrating 

on writing functions to do basic tasks and optimizing them for speed, 

accuracy, and memory usage.
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6.4  �Example: Polynomials
The coefficients of a vector are defined as elements of a vector. In this 

manner, a coefficient is defined for numerical computing. For example, 

consider defining two arrays, p1 and p2, as shown:

 1  >> p1 = [1 0 3 2]

 2

 3  p1 =

 4

 5  1     0     3     2

 6

 7  >> p2 =[3 4 0 5]

 8

 9  p2 =

10

11  3     4     0     5

The corresponding polynomial for p1 is p1(s) = s3 + 3s − 2 = 0 and for p2, 

it’s p2(s) = 3s3 + 4s2 − 5 = 0. See Figure 6-1.
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6.4.1  �polyval()
Polynomials can be evaluated for a single value or multiple values using 

the polyval() function. Consider the polynomials defined in p1 and p2. 

Let’s calculate the values for p1(5) and p_{2}(-2).

 1  >> s = 5

 2

 3  s =

 4

 5  5

 6

 7  >> polyval(p1,s)

 8
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Figure 6-1.  Plot for equation p2(s) = 3s3 + 4s2 − 5 = 0
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 9  ans =

10

11  142

12

13  >> s=2

14

15  s =

16

17  2

18

19  >> polyval(p2,s)

20

21  ans =

22

23  45

If a polynomial needs to be calculated on multiple values, say from 1 

to 10 for p1, then an array 1:10 can be fed to the s variable and this can be 

used in the polyval() function.

1  >> s = 1:10;

2  >> polyval(p2,s)

3

4  ans =

5

6  12     45      122       261       480       797

   1230   1797    2516      3405

This facility can be used to plot polynomials easily. The plot() 

command can be fed s and polyval() output as the x and y axes to 

visualize a plot.
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6.4.2  �roots()
The roots of a polynomial are the numerical values where the evaluated 

polynomial is valued at zero. Roots can be found easily using the roots() 

function. Here’s an example using the previously defined polynomials,  

p1 and p2.

 1  >> p1

 2

 3  p1 =

 4

 5  1     0     3     2

 6

 7  >> p2

 8

 9  p2 =

10

11  3     4     0     5

12

13  >> roots(p1)

14

15  ans =

16

17  0.2980 + 1.8073i

18  0.2980 − 1.8073i
19  −0.5961 + 0.0000i
20

21  >> roots(p2)

22

23  ans =

24
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25  −1.8307 + 0.0000i
26  0.2487 + 0.9212i

27  0.2487 − 0.9212i
28

29  >> polyval(p1,roots(p1))

30

31  ans =

32

33  1.0e−14*
34

35  −0.1776 − 0.2720i
36  −0.1776 + 0.2720i
37  0.0888 + 0.0000i

38

39  >> polyval(p2,roots(p2))

40

41  ans =

42

43  1.0e−13*
44

45  −0.2753 + 0.0000i
46  −0.0089 − 0.0111i
47  −0.0089 + 0.0111i

As per the definition of a root, the polynomial should be valued at zero 

at its roots, but the value for roots(p1,roots(p1)) is not zero. Instead, it’s 

a very small number in the order of 10−14. This is due to errors introduced 

in the numerical approximations for calculating the roots.
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6.4.3  �Addition and Subtraction of Polynomials
Two polynomials are added by adding their coefficients. Since they are 

defined as arrays in MATLAB, polynomial addition and subtraction is 

simply an element-wise operation.

 1  >> p1+p2

 2

 3  ans =

 4

 5  4     4     3     7

 6

 7  >> p1−p2
 8

 9  ans =

10

11  −2    −4     3     −3

This effectively means that:

	 p s s s1
3 3 2 0( ) = + - = 	 (Equation 6-5)

	 p s s s2
3 23 4 5 0( ) = + - = 	 (Equation 6-6)

	 p s p s s s s1 2
3 24 4 3 7( )+ ( ) = + + + 	 (Equation 6-7)

	 p s p s s s1 2
3 22 4 3 3( )- ( ) = - - + - 	 (Equation 6-8)

6.4.4  �Polynomial Multiplication
The product of two polynomials can be found using a convolution 

operation, which is provided using the conv() function in MATLAB.
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 1  >> p1

 2

 3  p1 =

 4

 5  1     0     3     2

 6

 7  >> p2

 8

 9  p2 =

10

11  3     4     0     5

12

13  >> conv(p1,p2)

14

15  ans =

16

17  3     4     9     23     8     15     10

	 p s s s1
3 3 2 0( ) = + - = 	 (Equation 6-9)

	 p s s s2
3 23 4 5 0( ) = + - = 	 (Equation 6-10)

P a p a s s s s s x1 2
6 5 4 3 23 4 9 23 8 15 10 0( )´ ( ) = + + + + + + = 	 (Equation 6-11)

6.4.5  �Polynomial Division
Polynomial division is performed by using deconvolving operations, which 

are provided by the deconv() function. It gives two outputs—a quotient 

and a remainder.
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 1  >> p1

 2

 3  p1 =

 4

 5  1     0     3     2

 6

 7  >> p2

 8

 9  p2 =

10

11  3     4     0     5

12

13  >> [q,r] = deconv(p1,p2)

14

15  q =

16

17  0.3333

18

19

20  r =

21

22  0     −1.3333     3.0000     0.3333
23

24  >> [q,r] = deconv(p2,p1)

25

26  q =

27

28  3

29

30
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31  r =

32

33  0     4     −9     −1

This means that if: 

	 p s s s1
3 3 2 0( ) = + - = 	 (Equation 6-12)

	 p s s s2
3 23 4 5 0( ) = + - = 	 (Equation 6-13)

Then:

	
p

p
q r s s1

2

20 333 1 3333 3 0 3333® = = - + +. , . . 	 (Equation 6-14)

	
p

p
q r s s2

1

23 4 9 1 0® = = - - - =, 	 (Equation 6-15)

6.4.6  �Polynomial Differentiation
Polynomial differentiation can be accomplished using the polyder() 

function. For example, say you have a polynomial y(x) = x3 − 2x2 + 4x − 5 = 0. 

That means:

	
dy

dx
x x= - + =3 4 4 02 	

This can be calculated by MATLAB as follows.

 1  >> y = [1 −2 4 −5]
 2

 3  y =

 4

 5  1     −2     4     −5
 6
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 7  >> dydx = polyder(y)

 8

 9  dydx =

10

11  3     −4     4

6.4.7  �Polynomial Integration
Just as with differentiation, you can define integration of polynomials  

using the polyint() function. For example, say you have a polynomial  

y(x) = x3 − 2x2 + 4x − 5 = 0. Then:

	 y x dx x x x x( ) = =- + -ò 0 25 0 6667 2 5 04 3 2. . 	

 1  >>>> y = [1 −2 4 −5]
 2

 3  y =

 4

 5  1     −2     4     −5
 6

 7  >> integration =vpolyint(y)

 8

 9  integrationv=

10

11  0.2500     −0.6667     2.0000     −5.0000     0

6.4.8  �Polynomial Curve Fitting
Suppose you are given some data and need to find a polynomial that fits 

the data. This task can be performed using the polyfit() function. For 

example, suppose you want to fit the data given here:
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x 1 2 3 4 5 6

y 10 11 21 2 3 7

 1  >> x = [1,2,3,4,5,6]

 2

 3  x =

 4

 5  1     2     3     4     5     6

 6

 7  >> y = [10,11,21,2,3,7]

 8

 9  y =

10

11  10     11     21     2     3     7

12

13  >> polyfit(x,y,2)

14

15  ans =

16

17  −0.3750     0.9679     11.3000
18

19  >> polyfit(x,y,3)

20

21  ans =

22

23  1.0833     −11.7500     35.3095     −16.0000

Second and third degree polynomials that fit the data are −0.375x2 + 

0.9679x + 11.3 = 0 and 1.0833x3 − 11.75x2 + 35.3095x − 16 = 0, respectively.
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6.5  �Summary
Almost all branches of science and engineering require you to perform 

numerical computations. MATLAB is one of the alternatives for doing so. 

MATLAB has a library of optimized functions for general computation. It 

also has a variety of packages that perform specialized jobs. This makes 

it an ideal choice for prototyping a numerical computation problem 

efficiently. This chapter summarized various issues related to errors 

generated during numerical computation and various methods to 

obtain their value or order of magnitude. These quantities are important 

to measure, since in real life, you will need these values to define the 

accuracy of the final product.
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