
153© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_6

CHAPTER 6

Numerical Computing
Formalism

6.1  �Introduction
Numerical computation enables you to compute solutions to numerical

problems, provided you can frame them into a proper format. This

requires certain considerations. For example, if you digitize continuous

functions, then you are going to introduce certain errors due to the

sampling at a finite frequency. Hence, a very accurate result would require

very a fast sampling rate. When a large data set needs to be computed, it

becomes a computationally intensive and time consuming task. Also you

must understand that the numerical solutions are an approximation at

best, compared to analytical solutions. The onus of finding their physical

meaning and significance lies on you. The art of discarding solutions that

do not have meaning in real world scenarios is something that a scientist/

engineer develops over the years. Also, a computational device is only as

intelligent as its operator. The law of GIGO (garbage-in-garbage-out) is

followed very strictly in this domain.

This chapter attempts to explain some of the important steps you must

consider in order to solve a physical problem using numerical computations.

Defining a problem in the proper terms is just the first step. Making the right

model and then using the right method to solve (solver) the issue is the

difference between a naive and an experienced scientist/engineer.

https://doi.org/10.1007/978-1-4842-3189-0_6

154

6.2  �Physical Problems
Everything in our physical world is governed by physical laws. Owing

to men and women of science who toiled under difficult circumstances

and came up with fine solutions to the things happening around us,

we obtained mathematical theories for physical laws. To test these

mathematical formalisms of physical laws, we use numerical computations.

If it yields the same results as that of a real experiment, they validate each

other. Numerical simulations can remove the need to do an experiment

altogether, provided you have a well tested mathematical formalism. For

example, nuclear powers of our times need not test nuclear bombs for real

any more. The data related to nuclear explosion, which was obtained during

real nuclear explosions, enables scientists to model these physical systems

quite accurately, thus eliminating the need to do real testing.

Apart from applications like simulating a real experiment, modeling

physical problems are good educational exercises. While modeling,

hands-on exercises enable students to explore the subject in depth and

give proper meaning to the topic under study. Solving numerical problems

and visualizing results makes the learning permanent and also elucidates

any flaws in the mathematical theory, which ultimately leads to new

discoveries.

6.3  �Defining a Model
Modeling means writing equations for a physical system. As the name

suggests, an equation is about equating two sides. An equation is written

using an equals (=) sign, where terms on the left side are equal to terms on

the right side. The terms on either side of an equation can be numbers or

expressions. For example:

	 3 4 9 10x y z+ + = 	

Chapter 6 Numerical Computing Formalism

155

This equation has the term 3x + 4y + 9z on the left hand side (LHS)

and the term 10 on the right hand side (RHS). Note that whereas LHS is an

algebraic term, RHS is a number.

Expressions are written using functions, which is simply a relationship

between two domains. Like f (x) = y is a relationship from y to x using the

rules of algebra. Mathematics has a rich library of functions, which you can

use to make expressions.

Choosing the proper functions depends on the problem. Some

functions describe some situations best. For example, the oscillatory

behavior can be described in a reasonable manner using trigonometric

functions like sin(x), cos(x), etc. Objects moving in straight lines can be

described well using linear equations like y = mx + c, where x is the present

position, m is the constant rate of change of x, and c is the offset position.

Objects moving in a curved fashion can be described by various non-linear

functions (where the power of the dependent variable is not 1).

In real life, you can have situations that are a mixture of these

scenarios. An object can oscillate and move in a curved fashion at the

same time. In that case, you write an expression using a mixture of

functions or find new functions that can explain the behavior of the object.

Verifying the functions is done by finding solutions to equations describing

the behavior and matching it with observations of the object. If they match

perfectly, you have a perfect solution. In most cases, an exact solution

might be difficult to obtain. In these cases, you get an “approximate”

solution. If the errors involved while obtaining an approximate solution

are within tolerable limits, the models can be acceptable.

As discussed, physical situations can be analytically solved by writing

mathematical expressions in terms of functions involving dependent

variables. The simplest problems have simple functions between

dependent variables with a single equation. There can be situations where

multiple equations are needed to explain a physical behavior. In case of

multiple equations being solved, the theory of the matrix comes in handy.

Chapter 6 Numerical Computing Formalism

156

Suppose the following equations define the physical behavior of a

system:

	 - + =x y3 4 	 (Equation 6-1)

	 2 4 3x y- = - 	 (Equation 6-2)

Then this system of two equations can be represented by a matrix

equation, as follows:

	
-

-
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú

1 3

2 4

4

3

x

y
	

Now using matrix algebra, values of variables x and y can be found

such that they satisfy the equations. Those values are called roots of these

equations. These roots are the point in 2D space (because there are two

dependent variables) where the system will find stability for that physical

problem. In this way, you can predict the behavior of system without

actually doing an experiment.

Mathematical concepts of differentiation and integration become very

important when you need to work with dynamic systems. When the system

is constantly changing the values of its dependent variables to produce

a scenario, it’s important to know the rate of change of these variables.

When these variables are independent of each other, you can use simple

derivatives to define their rate of change. When they are not independent

of each other, you must use partial derivatives for the same.

For example, Newton’s second law of motion says that the rate of

change of velocity of an object is directly proportional to the force applied

on it. Mathematically:

	 F
dy

dx
a 	 (Equation 6-3)

Chapter 6 Numerical Computing Formalism

157

The proportionality is turned into equality by substituting for a

constant of multiplication m such that:

	 F m
dy

dx
= ´ 	 (Equation 6-4)

If you know values or expressions for F, this equation can be solved

analytically and solutions can be found to this equation. But in some cases,

the analytical solution may be too difficult to obtain. In those cases, you

can digitize the system and find a numerical solution.

There are many methods to digitize and numerically solve a given

function. Programs used to implement a particular method to solve a

function numerically are called solvers. A lot of solvers exist to solve a

function. The choice of solver is critical to successfully obtain a solution.

For example, Equation 6-4 is a differential equation. It is a first order

ordinary differential equation. A number of solvers exist to solve such

problems, like Euler, Runge-Kutta, etc. The choice of the particular solver

depends on the accuracy of its solution, the time taken for obtaining a

solution, and the amount of memory used during the process. The last

point is especially important when memory is not an freely expendable

commodity, such as when you’re using micro-computers with limited

memory storage.

The advantage of using MATLAB to perform numerical computations

lies in the fact that it has a very rich library of functions to perform the

various tasks required. The predefined functions have been optimized

for speed and accuracy (in some cases, accuracy can be predefined). This

enables you to rapidly prototype the problem instead of concentrating

on writing functions to do basic tasks and optimizing them for speed,

accuracy, and memory usage.

Chapter 6 Numerical Computing Formalism

158

6.4  �Example: Polynomials
The coefficients of a vector are defined as elements of a vector. In this

manner, a coefficient is defined for numerical computing. For example,

consider defining two arrays, p1 and p2, as shown:

 1 >> p1 = [1 0 3 2]

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2 =[3 4 0 5]

 8

 9 p2 =

10

11 3 4 0 5

The corresponding polynomial for p1 is p1(s) = s3 + 3s − 2 = 0 and for p2,

it’s p2(s) = 3s3 + 4s2 − 5 = 0. See Figure 6-1.

Chapter 6 Numerical Computing Formalism

159

6.4.1  �polyval()
Polynomials can be evaluated for a single value or multiple values using

the polyval() function. Consider the polynomials defined in p1 and p2.

Let’s calculate the values for p1(5) and p_{2}(-2).

 1 >> s = 5

 2

 3 s =

 4

 5 5

 6

 7 >> polyval(p1,s)

 8

3500

3000

2500

2000

1500

1000

500

0
1 2 3 4 5 6 7 8 9 10

Figure 6-1.  Plot for equation p2(s) = 3s3 + 4s2 − 5 = 0

Chapter 6 Numerical Computing Formalism

160

 9 ans =

10

11 142

12

13 >> s=2

14

15 s =

16

17 2

18

19 >> polyval(p2,s)

20

21 ans =

22

23 45

If a polynomial needs to be calculated on multiple values, say from 1

to 10 for p1, then an array 1:10 can be fed to the s variable and this can be

used in the polyval() function.

1 >> s = 1:10;

2 >> polyval(p2,s)

3

4 ans =

5

6 12 45 122 261 480 797

 1230 1797 2516 3405

This facility can be used to plot polynomials easily. The plot()

command can be fed s and polyval() output as the x and y axes to

visualize a plot.

Chapter 6 Numerical Computing Formalism

161

6.4.2  �roots()
The roots of a polynomial are the numerical values where the evaluated

polynomial is valued at zero. Roots can be found easily using the roots()

function. Here’s an example using the previously defined polynomials,

p1 and p2.

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> roots(p1)

14

15 ans =

16

17 0.2980 + 1.8073i

18 0.2980 − 1.8073i
19 −0.5961 + 0.0000i
20

21 >> roots(p2)

22

23 ans =

24

Chapter 6 Numerical Computing Formalism

162

25 −1.8307 + 0.0000i
26 0.2487 + 0.9212i

27 0.2487 − 0.9212i
28

29 >> polyval(p1,roots(p1))

30

31 ans =

32

33 1.0e−14*
34

35 −0.1776 − 0.2720i
36 −0.1776 + 0.2720i
37 0.0888 + 0.0000i

38

39 >> polyval(p2,roots(p2))

40

41 ans =

42

43 1.0e−13*
44

45 −0.2753 + 0.0000i
46 −0.0089 − 0.0111i
47 −0.0089 + 0.0111i

As per the definition of a root, the polynomial should be valued at zero

at its roots, but the value for roots(p1,roots(p1)) is not zero. Instead, it’s

a very small number in the order of 10−14. This is due to errors introduced

in the numerical approximations for calculating the roots.

Chapter 6 Numerical Computing Formalism

163

6.4.3  �Addition and Subtraction of Polynomials
Two polynomials are added by adding their coefficients. Since they are

defined as arrays in MATLAB, polynomial addition and subtraction is

simply an element-wise operation.

 1 >> p1+p2

 2

 3 ans =

 4

 5 4 4 3 7

 6

 7 >> p1−p2
 8

 9 ans =

10

11 −2 −4 3 −3

This effectively means that:

	 p s s s1
3 3 2 0() = + - = 	 (Equation 6-5)

	 p s s s2
3 23 4 5 0() = + - = 	 (Equation 6-6)

	 p s p s s s s1 2
3 24 4 3 7()+ () = + + + 	 (Equation 6-7)

	 p s p s s s1 2
3 22 4 3 3()- () = - - + - 	 (Equation 6-8)

6.4.4  �Polynomial Multiplication
The product of two polynomials can be found using a convolution

operation, which is provided using the conv() function in MATLAB.

Chapter 6 Numerical Computing Formalism

164

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> conv(p1,p2)

14

15 ans =

16

17 3 4 9 23 8 15 10

	 p s s s1
3 3 2 0() = + - = 	 (Equation 6-9)

	 p s s s2
3 23 4 5 0() = + - = 	 (Equation 6-10)

P a p a s s s s s x1 2
6 5 4 3 23 4 9 23 8 15 10 0()´ () = + + + + + + = 	 (Equation 6-11)

6.4.5  �Polynomial Division
Polynomial division is performed by using deconvolving operations, which

are provided by the deconv() function. It gives two outputs—a quotient

and a remainder.

Chapter 6 Numerical Computing Formalism

165

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> [q,r] = deconv(p1,p2)

14

15 q =

16

17 0.3333

18

19

20 r =

21

22 0 −1.3333 3.0000 0.3333
23

24 >> [q,r] = deconv(p2,p1)

25

26 q =

27

28 3

29

30

Chapter 6 Numerical Computing Formalism

166

31 r =

32

33 0 4 −9 −1

This means that if:

	 p s s s1
3 3 2 0() = + - = 	 (Equation 6-12)

	 p s s s2
3 23 4 5 0() = + - = 	 (Equation 6-13)

Then:

	
p

p
q r s s1

2

20 333 1 3333 3 0 3333® = = - + +. , . . 	 (Equation 6-14)

	
p

p
q r s s2

1

23 4 9 1 0® = = - - - =, 	 (Equation 6-15)

6.4.6  �Polynomial Differentiation
Polynomial differentiation can be accomplished using the polyder()

function. For example, say you have a polynomial y(x) = x3 − 2x2 + 4x − 5 = 0.

That means:

	
dy

dx
x x= - + =3 4 4 02 	

This can be calculated by MATLAB as follows.

 1 >> y = [1 −2 4 −5]
 2

 3 y =

 4

 5 1 −2 4 −5
 6

Chapter 6 Numerical Computing Formalism

167

 7 >> dydx = polyder(y)

 8

 9 dydx =

10

11 3 −4 4

6.4.7  �Polynomial Integration
Just as with differentiation, you can define integration of polynomials

using the polyint() function. For example, say you have a polynomial

y(x) = x3 − 2x2 + 4x − 5 = 0. Then:

	 y x dx x x x x() = =- + -ò 0 25 0 6667 2 5 04 3 2. . 	

 1 >>>> y = [1 −2 4 −5]
 2

 3 y =

 4

 5 1 −2 4 −5
 6

 7 >> integration =vpolyint(y)

 8

 9 integrationv=

10

11 0.2500 −0.6667 2.0000 −5.0000 0

6.4.8  �Polynomial Curve Fitting
Suppose you are given some data and need to find a polynomial that fits

the data. This task can be performed using the polyfit() function. For

example, suppose you want to fit the data given here:

Chapter 6 Numerical Computing Formalism

168

x 1 2 3 4 5 6

y 10 11 21 2 3 7

 1 >> x = [1,2,3,4,5,6]

 2

 3 x =

 4

 5 1 2 3 4 5 6

 6

 7 >> y = [10,11,21,2,3,7]

 8

 9 y =

10

11 10 11 21 2 3 7

12

13 >> polyfit(x,y,2)

14

15 ans =

16

17 −0.3750 0.9679 11.3000
18

19 >> polyfit(x,y,3)

20

21 ans =

22

23 1.0833 −11.7500 35.3095 −16.0000

Second and third degree polynomials that fit the data are −0.375x2 +

0.9679x + 11.3 = 0 and 1.0833x3 − 11.75x2 + 35.3095x − 16 = 0, respectively.

Chapter 6 Numerical Computing Formalism

169

6.5  �Summary
Almost all branches of science and engineering require you to perform

numerical computations. MATLAB is one of the alternatives for doing so.

MATLAB has a library of optimized functions for general computation. It

also has a variety of packages that perform specialized jobs. This makes

it an ideal choice for prototyping a numerical computation problem

efficiently. This chapter summarized various issues related to errors

generated during numerical computation and various methods to

obtain their value or order of magnitude. These quantities are important

to measure, since in real life, you will need these values to define the

accuracy of the final product.

Chapter 6 Numerical Computing Formalism

	Chapter 6: Numerical Computing Formalism
	6.1 Introduction
	6.2 Physical Problems
	6.3 Defining a Model
	6.4 Example: Polynomials
	6.4.1 polyval()
	6.4.2 roots()
	6.4.3 Addition and Subtraction of Polynomials
	6.4.4 Polynomial Multiplication
	6.4.5 Polynomial Division
	6.4.6 Polynomial Differentiation
	6.4.7 Polynomial Integration
	6.4.8 Polynomial Curve Fitting

	6.5 Summary

