
117© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_4

CHAPTER 4

Input and Output

4.1  �Introduction
The fundamental data type for MATLAB is an array. Most of numerical

computations for scientific and engineering purposes involve dealing with

data in various file formats. Scientific devices and computer programs

themselves generate data as files. These files are then read and converted

into arrays (mostly). These arrays can be manipulated as per mathematical

requirements by the files of matrix algebra. The results generate a new set

of arrays. These arrays are further converted into files for visualization.

Using the information in Chapters 2 and 3 (arrays and plotting), you

can now formulate physical problems in terms of numerical computations

and solve them on a digital computer. This process has some requirements

such as:

•	 The data should be in a digital form (a digital file).

•	 The computer program should be able to read the file

and make arrays from it without errors. If errors occur,

a mechanism to check those errors and warning the

user should be in place. If possible, a mechanism for

correcting them should also be in place.

•	 The data should be stored as an array in the proper data

type and should be displayed on demand in the proper

format.

https://doi.org/10.1007/978-1-4842-3189-0_4
https://doi.org/10.1007/978-1-4842-3189-0_2
https://doi.org/10.1007/978-1-4842-3189-0_3

118

•	 Array operations on data will result in memory usage in

terms of reading and writing data on disk. This should

be facilitated by the system. Users should be able to

check the status of memory as and when required.

•	 Post-processing tasks include displaying data in various

formats—as a printout from a printer, on a terminal, as

a graph on a terminal or printer/plotter, etc.

•	 If a report for a particular experiment has input

parameters, processing the data and output as a file or

graph will make the user’s task easier.

MATLAB has some features for each of these steps. This chapter

discusses them in brief.

4.2  �Interactive Input from a Keyboard
A user interacts with MATLAB using a keyboard. Keyboards generate ASCII

or Unicode strings for specific characters. These are fed into MATLAB,

which then interprets them to perform a specific task. For an interactive

session with MATLAB during the course of programming, MATLAB offers

the functions discussed in the following sections.

4.2.1  �input()
input("Text") displays the Text string at the MATLAB prompt (the

default symbol is >>>) and waits for the user to input a value and press

Enter. Users may enter any type of data. The input is treated as a MATLAB

expression and it is evaluated in the current workspace. If the input()

function is used for an assignment operation, then the data is assigned to

a variable appropriately. If the user presses the Enter key without entering

anything, then the input returns an empty matrix. When the user enters an

Chapter 4 Input and Output

119

invalid expression into the prompt, a relevant error message is displayed at

the prompt. When a character or a string of character vectors needs to be

fed into input(), the user must define them as a string. Otherwise, 's' is

used as a second argument and then input is treated as a string. The usage

is demonstrated in this code.

 1 >> prompt = 'What is your name:';

 2 >> name = input(prompt)

 3 What is your name:Sandeep

 4 Error using input

 5 Undefined function or variable 'Sandeep'.

 6

 7 What is your name:'Sandeep'

 8

 9 name =

10

11 'Sandeep'

12

13 >> name = input(prompt,'s')

14 What is your name:Sandeep

15

16 name =

17

18 'Sandeep'

19

While dealing with numerical values, a single value or an array must

be used, but with valid MATLAB syntax. For example, in the following

code, the user can type a single value of r (storing the radius of a circle) or

multiple values as arrays. This information can then be used to find the

circumference (= 2πr) and area (= πr2).

Chapter 4 Input and Output

120

 1 >> r = input('Enter value of radius:');

 2 Enter value of radius:2

 3 >> circumference = 2*pi*r

 4

 5 circumference =

 6

 7 12.5664

 8

 9 >> area = pi*rˆ2
10

11 area =

12

13 12.5664

14

15 >> r = input('Enter value of radius:');

16 Enter value of radius:[1 2 3]

17 >> r

18

19 r =

20

21 1 2 3

22

23 >> circumference = 2*pi*r

24

25 circumference =

26

27 6.2832 12.5664 18.8496

28

29 >> area = pi*r.ˆ2
30

Chapter 4 Input and Output

121

31 area =

32

33 3.1416 12.5664 28.2743

34

4.2.2  �keyboard()
The keyboard keyword gives control to the user while running a program

so that user can enter data or additional MATLAB commands, if required.

This process can be effectively used by the user to check the program. It is

called debugging.

When this is done, the MATLAB prompt changes from >>> to k>. The

keyboard mode is terminated by executing the command dbcont. dbquit

can also be used to exit keyboard mode, but in this case the invoking

MATLAB code file is terminated. Control returns to the invoking MATLAB

code file.

A valid MATLAB expression must be entered here. This keyword

can be used to change values of variables in the middle of programs very

effectively. Its usage is shown in the sample code in Listing 4-1.

Listing 4-1.  The keyboardCommand.m Program

1 %program to demonstrate

2 %usage of keyboard command

3

4 x = 10;

5 y = 12;

6 keyboard %change value of x here

7 answer = xˆ2

Chapter 4 Input and Output

122

When this is executed, you’ll see the following session:

 1 >> keyboardCommand

 2 K>> x=2.5

 3

 4 x =

 5

 6 2.5000

 7

 8 K>> dbcont

 9

10 answer =

11

12 6.2500

13

14 >> x=2.5

15

16 x =

17

18 2.5000

19

20 >> x.ˆ2
21

22 ans =

23

24 6.2500

25

When the keyboard keyword is encountered, the MATLAB session

goes into debug mode and the user then alters the values of x=2.5. Typing

dbcont continues the execution of the program. The answer is calculated

as per the new assignment of value.

Chapter 4 Input and Output

123

4.2.3  �menu()
A graphical way of inputting values can be performed using the menu()

command, where a title and a set of options are given as inputs (separated

by commas). This works if the user has a computer terminal with graphics

capabilities. Otherwise, a list of options is presented at the command

prompt. The user is presented with a graphical window and can use a

mouse or keyboard to select an option. The options return a scalar value,

which can be stored in a variable. The options are numbered internally.

Let’s look at the usage with an example. Create a menu with the title

“Even or Odd Numbers” and two options—Even and Odd. Store this value

in the variable I. When this command is executed, the graphical window

shown in Figure 4-1 appears. The following outputs are possible:

•	 If the user closes the window without entering a value,

the output is 0.

•	 If the user clicks on Even, the output is 1.

•	 If the user clicks on Odd, the output is 2.

Figure 4-1.  The Menu window output

Chapter 4 Input and Output

124

This is shown in the following code:

 1 >> I = menu('Even or Odd Numbers','Even','Odd')

 2

 3 I =

 4

 5 0

 6

 7 >> I = menu('Even or Odd numbers','Even','Odd')

 8

 9 I =

10

11 1

12

13 >> I = menu('Even or Odd numbers','Even','Odd')

14

15 I =

16

17 2

18

•	 pause(): If you want to temporarily halt the program,

you can use the pause() command. Press any key to

continue the program execution. To understand its

usage, consider an example. Suppose you have an 3×3

matrix of random numbers. Then MATLAB program

pauseCommand.m will show its rank, transpose, and

size. Each item is shown if the user presses a key. See

Listing 4-2.

Chapter 4 Input and Output

125

Listing 4-2.  The pauseCommand.m Program

 1 %Program to show usage

 2 %of pause command
 3

 4 x = rand(3,3);

 5 r = rank(x);

 6 t = x';

 7 s = size(x);

 8 disp('Given matrix is:')

 9 disp(x)

10 disp('To continue checking its rank, press any key')

11 pause

12 disp('Rank of matrix is:')

13 disp(r)

14 pause

15 disp('To continue checking its transpose, press any key')

16 pause

17 disp('Transpose of matrix is:')

18 disp(t)

19 pause

20 disp('To continue checking its size, press any key')

21 pause

22 disp('Size of matrix is:')

23 disp(s)

24 pause

The output for running pauseCommand.m is shown here:

 1 >> pauseCommand

 2 Given matrix is:

 3 0.8147 0.9134 0.2785

 4 0.9058 0.6324 0.5469

 5 0.1270 0.0975 0.9575

Chapter 4 Input and Output

126

 6

 7 To continue checking its rank, press any key

 8 Rank of matrix is:

 9 3

10

11 To continue checking its transpose, press any key

12 Transpose of matrix is:

13 0.8147 0.9058 0.1270

14 0.9134 0.6324 0.0975

15 0.2785 0.5469 0.9575

16

17 To continue checking its size, press any key

18 Size of matrix is:

19 3 3

20

4.3  �File Path
A MATLAB session starts from a default folder, which depends on the

installation of a particular operating system. Usually a dedicated folder

is created at the time of installation and it is generally named MATLAB by

default. This folder’s path can be viewed by typing pwd at the command

prompt.

1 >> pwd

2

3 ans =

4

5 '/Users/.../MATLAB'

Note that the path may be different on your computer and the three

dots are used to represent a generalized representation of the path.

Chapter 4 Input and Output

127

When you want to run a MATLAB’s .m file, the file is searched first in

the default folder. If it is not there, you must change the working directory

to the one where the file is stored. This can be initiated by typing pathtool

at MATLAB’s command prompt (see Figure 4-2).

You can simply add the directory to the list of directories for the

session or save it. You can also choose to set the directory as the default

for future MATLAB sessions. This is a good option if you will be working

on a project for a long time and are sure that the directory will be used on

a daily basis. It is strongly suggested that you keep all the files in either the

default directory of the installed MATLAB program or make your working

directory the default one.

Figure 4-2.  Setting the path of working directory using the pathtool
command

Chapter 4 Input and Output

128

4.4  �File Operations
File operations constitute an important part of computation. It is

important to note that the file system is OS (Operating System) dependent.

Just like most scientific programs, MATLAB works with UNIX-like systems,

so it works on Linux-based and MacOS X equally well with the same set

of commands. On Windows, you use the same commands as the Linux

version for dealing with files within the MATLAB environment. The code

examples in this book were written and tested on Windows 8, MacOSX 10.10,

and Ubuntu 14.04 systems.

4.4.1  �Users
A computing system is accessed by different users. Each user defines

a workspace to avoid damaging each other’s work. After login, a user’s

workspace becomes active for that user. The workspace is made up of

various files and folders. Some files are essential for the OS to define the

workspace and its properties, hence they should not be altered. This is

ensured by giving permissions to various users.

Reading and writing a file is restricted by permission. The

administrator (fondly called the admin) is also called the superuser

and has all privileges and permission to edit any file/folder. You must

understand the defined user types for a computer system and then issue

those commands accordingly. If you are not permitted to access certain

folders and the input data you need is placed inside those files/folders, you

will always get an error (unless the admin changes your permissions).

4.4.2  �File Path
Directories/folders can contain sub-directories/sub-folders and files

again. This can go to any level if this process if not restricted by the

administrator.

Chapter 4 Input and Output

129

The pwd command stands for print working directory. On the MATLAB

terminal, typing pwd displays the path of the present working directory, as

shown in this example:

1 >> pwd

2 ans = /home/sandeep

The user’s /home directory contains another directory named /sandeep.

This is the present working space. When pwd is typed into the terminal, a

variable name named ans stores this data (file path). A variable name of

your choice can be assigned to store the filename as a string.

A file/folder is accessed by typing the file path into the terminal.

Consider this small exercise to understand this process. To create a new

directory, you use mkdir name as follows:

 1 >> mkdir matlab−practice
 2 ans = 1

 3 >> ls

 4 Downloads Music

 5 R

 6 Templates

 7 matplab−practice
 8 Videos

 9 Desktop software

10 Work

11 Documents Library

12 Pictures

13 >> cd matplab−practice
14 >>

Chapter 4 Input and Output

130

At line 1, mkdir matplab-practice creates a directory named

matplab-practice. To see the contents of the present directory, you can

use the ls command, as is done at line 3, which stands for list. To change

the directory, you can use the cd file path command, as shown in line 13.

I suggest that you work in this directory for rest of the book.

4.4.3  �Creating and Saving Files
The save and load commands allow you to write and read data to memory.

 1 >> matrix = rand(3,3);

 2 >> save MyFirstFile.mat matrix

 3 >> ls

 4 MyFirstFile.mat

 5 >> load MyFirstFile.mat

 6 >> matrix

 7 matrix =

 8

 9 0.467414 0.610273 0.429941

10 0.568490 0.037898 0.734682

11 0.547370 0.275421 0.539650

12

13 >>

At line 1, A variable named matrix is created first, which stores a

random-value 3×3 matrix. At line 2, this data is stored as a .mat file named

MyFirstFile.mat, which is passed the variable name as the argument.

When required, this file can be loaded in the workspace using the load

MyFirstFile.mat command and then by calling the variable named

matrix. The random numbers recorded when the file was saved are

loaded as the data for the 3×3 matrix. Note that this data does need not be

numbers. It can be anything that a digital computer can handle, including

pictures, videos, strings, and characters, just to name a few.

Chapter 4 Input and Output

131

Multiple variables can be stored in the same file by passing the name of

the variables at the time of saving.

 1 >> matrix1 = rand(4,4);

 2 >> matrix2 = rand(2,3);

 3 >> matrix3 = rand(2,2);

 4 �>> save�("SavingMultipleVariables.mat","matrix1","matrix2",

"matrix3")

 5 >> load SavingMultipleVariables.mat

 6 >> matrix1

 7 matrix1 =

 8

 9 0.8598130 0.0118250 0.9803720 0.3044413

10 0.6676748 0.0056845 0.1101545 0.2183920

11 0.2547204 0.8192626 0.8056112 0.6961116

12 0.7924558 0.9130480 0.1976146 0.4635055

13

14 >> matrix2

15 matrix2 =

16

17 0.35215 0.55770 0.66650

18 0.98515 0.98677 0.45513

19

20 >> matrix3

21 matrix3 =

22

23 0.097693 0.540354

24 0.923853 0.329501

25

26 >>>> save −binary SavedAsBinary m*
27 >> ls

28 MyFirstFile.mat SavedAsBinary SavingMultipleVariables.mat

Chapter 4 Input and Output

132

The help save and help load commands provide very useful

instructions about using save and load. Using the options, you can save the

file in a specific format. For example, on line 26, all variables names starting

with m are saved as binary data inside a binary file named SavedAsBinary.

This is particularly important when data generated from MATLAB-based

numerical computations is used in other software programs. You can also

specify the precision of saved data using options. You can also compresses

a big file using the -zip command. This is very useful when the data

generated by MATLAB is large in size and needs to be transmitted.

The load function follows the same logic as the save function. Data

can be unzipped and loaded from a particular formatted file as an array.

The array, thus populated, can be used for computation and the resultant

files can be made by using the save function again (if required). Elaborate

computations require this procedure to be repeated successively many

times, thus the functions have been optimized to locate and load the

required data in a short time.

Delimited numeric data files (numerical data values separated by a

delimiter) can be read and written using dlmread() and dlmwrite(). The

functions produce ASCII-delimited files. To illustrate this, the following

MATLAB code performs the following task:

•	 Stores a 3×3 matrix in variable A.

•	 Using the dlmwrite() function, a file named

randomNumbers.txt is written, which takes its inputs

from the matrix stored in A.

–– The delimiter is defined to;

–– �You can check the file in the working directory and
open it with an appropriate text editor or spread-
sheet software.

•	 A new variable named B is initialized to be an empty

matrix.

Chapter 4 Input and Output

133

•	 Using the function dlmread(), this file is read. It is

important to define the delimiter used during the

creation of the file. The results are stored in B and found

to be exactly same as that of A.

 1 >> A = randn(3,3)

 2

 3 A =

 4

 5 0.3252 −1.7115 0.3192
 6 −0.7549 −0.1022 0.3129
 7 1.3703 −0.2414 −0.8649
 8

 9 >> dlmwrite('randomNumbers.txt',A,';')

10 >> B = []

11 >> B = dlmread('randomNumbers.txt',';')

12

13 B =

14

15 0.3252 −1.7115 0.3192
16 −0.7549 −0.1022 0.3129
17 1.3703 −0.2414 −0.8649

4.4.4  �Using the Diary and History Commands
A MATLAB session can be recorded in a file by using the command diary.

Type help diary to see information about its use. Writing help filename

allows recording the session in a file with given filename. The commands

and their outputs are continuously updated using this function.

You can use the history command to display a list of executed

commands. Various options are available to see this history in particular

formats.

Chapter 4 Input and Output

134

4.4.5  �Opening and Closing Files
To read and write data files, they must be opened and defined as readable

and/or writable. The fopen function returns a pointer to an open file that is

ready to be read or written to. This is defined by the following options: r as

readable, w as writable, r+ as readable and writable, a for appending

(i.e., writing new content at the end of the file), and a+ for reading, writing,

and appending. The opening mode can be set to t for text mode or b for

binary mode. z enables opening a gzipped file for reading and writing.

Once all the data has been read from or written to, the opened file

should be closed. The fclose function does this.

1 MyFile = fopen("a.dat","r");

A variable MyFile is created which is used to store the contents of

the file a.dat. This file is opened in reading mode only in the sense

that it cannot be edited. This is important if the author of the file wants

the information to remain unchanged while sharing it. This might be

necessary for files containing constants or important pieces of code that

should not be changed.

The freport() command prints a list of opened files and whether they

are opened for reading, writing, or both. For example:

1 >> freport

2

3 number mode arch name

4 −−−−− −−−− −−−− −−−−
5 0 r ieee−le stdin
6 1 w ieee−le stdout
7 2 w ieee−le stderr
8

9 >>

Chapter 4 Input and Output

135

4.4.6  �Reading and Writing Binary Files
A binary file is computer readable file. They are simply sequence of bytes.

They are the same as the C functions fread and fwrite, which can read

and write binary data from a file.

4.4.6.1  The csvread and csvwrite Functions

The csvread and csvwrite functions are used to read data from .csv files,

which stands for comma separated values. Suppose the following data

needs to be stored as a .csv file.

1 2 3 4

5 6 7 8

8 7 6 5

4 3 2 1

The following code creates an array using csvwrite to create a file

named csvTestData.dat containing the matrix values. You can check this

by simply opening this newly created file in a text editor. At line 3, a new

file named csvTestData1.dat is created with an offset defined at row 1

and column 2.

 1 >> a = [1,2,3,4;5,6,7,8;8,7,6,5;4,3,2,1];

 2 >> a

 3 a =

 4

 5 1 2 3 4

 6 5 6 7 8

 7 8 7 6 5

 8 4 3 2 1

 9 >> csvwrite('csvTestData.dat',a)

10 >> csvwrite('csvTestData1.dat',a,1,2)

11 >> a1 = csvread('csvTestData.dat')

Chapter 4 Input and Output

136

12 a 1 =

13

14 1 2 3 4

15 5 6 7 8

16 8 7 6 5

17 4 3 2 1

18

19 >> a1 = csvread('csvTestData.dat',1,2)

20 a1 =

21

22 7 8

23 6 5

24 2 1

25

26 >>

Now the csvread function can be used to create matrices with desired

offsets just as the csvwrite function.

Note A number of other functions to read and write files exist, but
the present section focuses on some of the most commonly used
ones. You can access the documentation to learn about using these
specialized functions, if required.

4.4.7  �Working with Excel Files
A lot of data is presented on the Internet in the form of Excel files. Note that

one must be connected to the Internet in this case.

The xlsopen, xlswrite, xlsclose, odsopen, odswrite, and odsclose

commands open, write, and close.xls and .ods files, respectively.

Chapter 4 Input and Output

137

While .xls files are generated using Microsoft Excel, .ods files are

generated using Open/Libre Office software, which is the open source

equivalent of Microsoft Excel. The process of opening, reading, and writing

data is as follows:

•	 xlsopen('Filename.xls')

•	 a = xlsread ('Filename.xls', '3rd_sheet',

'B3:AA10');

Numeric data from the Filename.xls worksheet

named 3rd sheet will be read from cell B3 to AA10.

This data is stored as an array named a.

•	 [Array, Text, Raw, limits] = xlsread ('a.xls',

'hello');

The file a.xls is read from the worksheet named

hello, and the whole numeric data is fed into an

array named Array. The text data is fed into array

named Text, the raw cell data into cell array named

Raw, and the ranges where the actual data came in is

saved in limits.

•	 xlswrite('new.xls',a) writes the data in an array

named a into an .xls formatted Excel sheet named

new.xls.

•	 xlsclose

1 >> a = rand(10,10);

2 >> odswrite('a.ods',a)

3 ans = 1

4 >> ls

5 a.ods

Chapter 4 Input and Output

138

4.5  �Reading Data from the Internet
Most often, large data sets that you need to access are kept on some remote

server. Using urlread(), you can read a remote file. To save data to the

local disk, you use the urlwrite() functions.

 1 �>> a = urlread('http://www.fs.fed.us/land/wfas/fdr_obs.

dat');

 2 >> who

 3 Variables in the current scope:

 4

 5 a ans

 6

 7 >> whos

 8 Variables in the current scope:

 9

10 Attr Name Size Bytes Class

11 ==== ==== ==== ===== =====

12 a 1x147589 147589 char

13 ans 1x1 8 double

14

15 Total is 147590 elements using 147597 bytes

16

17 �>> urlwrite('http://www.fs.fed.us/land/wfas/fdr_obs.

dat','fire.dat')

18 >> ls

19 fire.dat

20 >>

Here, a variable named a stores the data from the data file stored at

http://www.fs.fed.us/land/wfas/fdr_obs.dat. Alternatively, the whole

data is stored as a file named a.dat using the function urlwrite(URL).

Chapter 4 Input and Output

http://www.fs.fed.us/land/wfas/fdr_obs.dat
http://www.fs.fed.us/land/wfas/fdr_obs.dat

139

4.6  �Printing and Saving Plots
Some commands, like print and saveas, exist to save graphs/figures

generated by MATLAB programs, to be saved in desired formats. They are

discussed in the following sections.

4.6.1  �The print Command
The print command prints jobs, including printing using a printer and/

or plotter, printing to a file, etc. This command is very useful if you need to

save a figure automatically by a desired filename in a specified format.

 1 %Saving in svg format

 2 figure(1);

 3 clf();

 4 peaks();

 5 print −dsvg figure1.svg
 6

 7 %Saving in png format

 8 figure(1);

 9 clf();

10 sombrero();

11 print −dpng figure2.png
12

13 %Printing to a HP DeskJet 550C

14 clf();

15 sombrero();

16 print −dcdj550

The clf function clears the current graphic window. A lot of other

options for saving in different formats exist for the print command. To

learn more, type help print into the MATLAB terminal.

Chapter 4 Input and Output

140

4.6.2  �The saveas Function
The saveas function saves a graphic object in a desired format, as follows:

1 clf();

2 a = sombrero();

3 saveas (a,"figure3.png");

The orient(a,orientation) function defines the orientation of

an graphical object a. The valid values for the orientation parameters

are portrait, landscape, and tall. The landscape option changes the

orientation so the plot width is larger than the plot height. The tall option

sets the orientation to portrait and fills the page with the plot, while

leaving a 0.25 inch border. The portrait option (default) changes the

orientation so the plot height is larger than the plot width.

4.7  �Summary
This chapter explained various functions enabling reading and writing

permission as well as taking data to and from a file. This becomes an

essential part of a numerical computation exercise. The data can be

generated in the form of files using software or hardware (an instrument).

MATLAB does not care about its origin. It treats data by its type and by

file type. Determining the appropriate function when using files has to be

done by the user as per the situation.

File operations do provide faculties to trim the data so that only

the useful part is used as an array. Further trimming can be performed

by slicing operations. With the art of handling files under your belt,

you can confidently proceed toward handling sophisticated numerical

computations.

Chapter 4 Input and Output

	Chapter 4: Input and Output
	4.1 Introduction
	4.2 Interactive Input from a Keyboard
	4.2.1 input()
	4.2.2 keyboard()
	4.2.3 menu()

	4.3 File Path
	4.4 File Operations
	4.4.1 Users
	4.4.2 File Path
	4.4.3 Creating and Saving Files
	4.4.4 Using the Diary and History Commands
	4.4.5 Opening and Closing Files
	4.4.6 Reading and Writing Binary Files
	4.4.6.1 The csvread and csvwrite Functions

	4.4.7 Working with Excel Files

	4.5 Reading Data from the Internet
	4.6 Printing and Saving Plots
	4.6.1 The print Command
	4.6.2 The saveas Function

	4.7 Summary

