CHAPTER 2

Array Based
Computing

2.1 Introduction

Matrices have become an integrated part of numerical computation

for dealing with large quantities of data. For a two-dimensional matrix,
elements have unique row and column indices through which you can
access them. Rows and columns can be attributed to different properties
under study. For example, if you measure the temperature and pressure at
four corners of the square, the x, y coordinates associated with the corner
points can be assigned to row and column numbers. Now the experimental
data can be simply represented as a matrix. In this way, you can fit data

for two properties as a matrix and then use these matrices for numerical
calculations.

As an example, suppose an element of a row is defined as 1 ifa
compound is a conductor, it’s 2 if it is a semiconductor, and it’s 3 if it is an
insulator. Then, a row vector (a matrix composed of only one row) [1 0 0
3213010 32 1] hasinformation about 13 compounds. In electrical
conductivity experiments, this row vector (a 13x1 matrix) can be utilized
as input. In this way, you need to model the system in terms of matrix
formulation to be solved using MATLAB.
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MATLAB defines a data object for dealing with matrices. They are
called arrays. Using different properties of this object, you can define
various kinds of matrices. Built-in functions for matrix operations make it
easier for a programmer to deal with large amounts of data by arranging
it as a matrix in the desired format and performing array operations. This
chapter explores the various options for defining and manipulating arrays.

Since MATLAB was made for matrix manipulation, it has a large set
of built-in functions and a robust environment to define and work with
matrices.

2.2 Arrays and Vectors

Instead of just pointing to a single number, a variable name can also point
to a sequential set of numbers, called an array. The following example
shows how this can be achieved:

>> a = [1:2:3)4’5]

1
2
3
4
5
6 > al = [10,11,12,13,14]
7 a1l =

8

9 10 11 12 13 14
10 >> matrix22 = [1,2;3,4]
11 matrix22 =

12

13 1 2

14

22
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34
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>> matrix33 = [1,2,3;4,5,6;7,8,9]

matrix33 =

1 2 3

4 5 6

7 8 9

>> size(a)

ans =

1 5

>> size(matrix22)

ans =
2 2
>> size(matrix33)

ans =

3 3

ARRAY BASED COMPUTING

As seen in the example code, an array can be understood as a matrix

consisting of rows and columns. Thus, you can make a desired sized

matrix. For example, matrix22 is a 2x2 and matrix33 is a 3x3 matrix,

whereas a is a 1x5 matrix. The first number listed while defining the size

indicates the number of rows, whereas the second number indicates

the number of columns. It is also important to note that the comma (, )

operator operates by defining the next element in the same row, whereas

the semicolon (;) operator defines the numbers in the next line/row.

A matrix is defined within the brackets of the type [ ] (commonly called

square brackets).
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If the number of elements in each row/column do not match, you get

an error message:

1 >> right33 = [1,2,3;4,5,6;7,8,9]

2 right33 =

3

4 1 2 3

5 4 6

6 7

7

8 >> wrong33 = [2,3;4,5,6;7,8,9]

9 Dimensions of matrices being concatenated are

10 not consistent.

11 >> wrong33 = [1,2,3;4,5,6;8,9]

12 Dimensions of matrices being concatenated are
13 not consistent.

2.3 Creating Arrays from Other Arrays

Multi-dimensional arrays can be created from other multi-dimensional

arrays too, as explained here:

1 > a-=[1,2,3;4,5,6]

2

3 a=

4

5 1 2 3

6 4 5 6

7

8 > B =[(21:3);(4:6);(7:9)]
9
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10 B =

11

12 1 2 3
13 4 5

14 7

15

16 >> c = [a;B]
17

18 c =

19
20
21
22
23
24
25
26 >>>c = [a,B]

27

28 Error using horzcat

29 Dimensions of matrices being concatenated are not

N B P B R
(-, TN IR T N}
O oW o W

30 consistent.

Here, the matrix a has elements 1, 2, 3 in the first row. Then a row
separator (; ) defines the next row of elements as 4, 5, 6. Similarly, matrix B
has the rows defined by these commands:

e (1:3)resultsin (1,2, 3)
e (4:6)resultsin (4, 5, 6)
e (7:9)resultsin (178, 9)

Note the MATLAB variable names are case sensitive, so a is not the
same as A. A new matrix called c is created by vertically concatenating the
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matrices a and B. The resultant matrix c is made of elements of a stacked
on top of elements of B. The c=[a, B] command yields an error because
the dimensions of a and B are not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the
following ways in this example:

1 > a=1:3
2
3
4
5 1 2 3
6
7
8
9

10
11 1 2 3 1 2 3

For multidimensional arrays, use this code:

> a =1:4

A =
10
11 1 4
12 1 2 4
13

26
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14 >> AA
15

16 AA =
17

18 1 2 3 4 1 2 3 4
19 1 2 3 4 1 2 3 4

]
—
p=
-
>
[h—

2.3.1 Appending Rows and Columns

When an entire row or column of a matrix needs to be appended, you must
consider only one thing—the size of new matrix must match the row and
column requirements. As an example, define an array A, B, D with sizes
(2x2), (1x2), and (2x1), respectively. The row matrix B can be inserted as
arow of A and the column matrix D can be inserted as a row of A, as shown
here:

>> A = [1,2;3,4]

3 4

>> B = [5,6]
10 B =
11
12 5 6
13
14 >> size(A)
15
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

28

ans =
2 2
>> size(B)
ans =
1 2
>> C = [A;B]
C =

2

4

6
>> size(()
ans =
3 2
>> D = [5;6]
D =
5
6
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47 >> size(D)
48

49 ans =

50

51 2 1

52

53 >> E = [A,D]
54

5 E =

56

57 1 2 5
58 3 4

59

60 >> size(E)
61

62 ans =

63

64 2 3

2.3.2 Deleting a Row and/or Column of a Matrix

Rows and columns can be deleted by assigning null matrices [ ] to them.
For example, (1, :)=[] deletes the first row and (:,1)=[] deletes the first
column of a matrix, as shown here:

>> A = rand(3,3)
A =
0.8147 0.9134 0.2785

0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

O N O V1T bW N R
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9 > A(1,:) =[]
10
11 A =
12
13 0.9058 0.6324 0.5469
14 0.1270 0.0975 0.9575
15
16 >> A(:,1) =[]
17
18 A =
19
20 0.6324 0.5469
21 0.0975 0.9575

2.3.3 Concatenation Along a Dimension

Concatenation of two matrices along a dimension can be obtained using
cat(dim, A, B, ...), where dim presents the dimension and A and B are
the input matrices. Its usage is shown here:

1 > A= [1,2;3,4]
2 A=

3 1 2

4 4

5 > B=1[5,6;7,8]
6 B =

7 5 6

8 7 8

9 >> cat(1,A,B)

10 ans =

1 1 2

12 3 4

30



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

5 6

7 8

>> cat(2,A,B)

ans =

1 2 5 6
3 4 7 8
>> C = cat(3,A,B)

ans(:,:,1) =
1 2

3 4
ans(:,:,2) =
5 6

7 8

>>> size(C)
ans =

2 2 2
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When cat(1,A,B) is entered at the command prompt, A and B are

concatenated row-wise and cat(2,A,B) performs concatenation column-

wise. In case of cat(3,A,B), a new matrix is created whose first element of

the third dimension is the matrix A and the second element is the matrix B.

2.3.4 Selecting the Data Type of Elements

Elements of an array can be any data type, as explained in Chapter 1.

All elements of an array can be set to a particular data type using the

commands shown here:

1
2
3
4
5

>> X = uint32([1,65535])

X =

1x2 uint32 row vector

31
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6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

32

1 65535

>> X = uint64([1,65535])
X =

1x2 uint64 row vector
1 65535

>> x = int16([1,65535])
X =

1x2 int6 row vector
1 32767

>> x = int32([1,65535])
X =

1x2 int32 row vector
1 65535

>> x = int64([1,65535])
X:

1x2 int64 row vector

1 65535



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
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62
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>> x = single([1,65535])
X =

1x2 single row vector

1 65535

>> x = double([1,65535])
X =

1 65535

>> x = single([1.0,65535e10])
X =

1x2 single row vector
1.0e+14*

0.0000 6.5535

>> x = double([1.0,65535e10])
X =

1.0e+14%*

0.0000 6.5535

ARRAY BASED COMPUTING

Line 15 shows that if the element is set to int16, then it can store a

maximum value of 32767, regardless of being commanded to store a value

bigger than that. Hence, it becomes supremely important to understand
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the data type of the elements beforehand, in order to avoid errors in
numerical calculations. Keep in mind that storing very small numbers

in larger numbers of bits is a waste of memory. (Line 46 displays that the
number 1, which is stored as a double precision floating point number,
occupies 64 bits, where essentially 63 bits except the last one are all zeros!)

2.4 Arithmetic Operations on Arrays

Operating on arrays involves two aspects:
e Operating on two or more arrays
o Element-wise operations

All arithmetic operators (such as +, -, *, /, %, *, etc.) can be used in
both cases. When you need to do element-wise operation, then a . (dot) is
placed before the operator. The element-wise operators become .+, .-, . %,
./, .%, and .". This will become more clear in following example.

1 > a = [1,2;3,4]
2 a-=

3

4 1 2

5 4

6

7 > b=1[5,6;7,8]
8 b=

9

10 6

11 8

12

34



CHAPTER 2  ARRAY BASED COMPUTING

13 >> a+b
14 ans =
15

16 6 8
17 10 12
18

19 >> 2.+a
20 ans =
21

22 3 4
23 5 6
24

25 >> -10.+b
26 ans =
27

28 -5 -4
29 -3 -2

When a and b are matrices to be added/subtracted, their elements are
added/subtracted to elements in the same position. For this reason, the
size of the two matrices should be same. On the other hand, when you
write 2.+a, you add the number 2 to each of the elements individually.
This can be done regardless of the size and is implemented uniformly on
all the elements of the matrix.

2.5 Built-In Functions

A host of built-in functions provide facilities to calculate properties of
arrays for quick computation. This includes:

e Summing all elements using sum() function.

o Finding the product of all elements of an array using
prod().
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O 0N O U1 & W N -

w
»

Finding the length of array using length().

Finding the mean of array elements using the mean()

function.

Finding the maximum and minimum amongst an

element of an array using max() and min() of an array.

Finding a particular element as per a logical expression

using the find () function.

The rounding elements are as follows:

Rounding the elements of an array to the nearest
integer toward zero using the fix() function.

Rounding the elements of an array to the nearest
integer toward —e using the floor () function.

Rounding the elements of an array to the nearest
integer toward +oo using the ceil() function.

Rounding the elements of an array to the nearest
integer using the rounding() function.

Sorting the elements of an array using sort() in

ascending or descending order.

Their usage is demonstrated here:

>> A = 1:5

A =
1

2

>> sum(A)

ans
15

>> prod(A)

ans
120



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

>> length(A)
ans =

5

>> mean(A)

ans =

3

>> max(A)

ans =

5

>> min(A)

ans =

1

>> find(A>4)
ans =

5

>> find(A<4)
ans =

1 2 3
>> A= -1.1:0.5:1.1
A =

-1.1000 -0.6000
>> fix(A)

ans =

-1 0 0
>> floor(A)
ans =

-2 -1 -1
>> ceil(A)

ans =

-1 0 0

-0.1000

CHAPTER 2  ARRAY BASED COMPUTING

0.4000

0.9000
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40
41
42
43
44
45
46
47
48
49
50
51

>> round(A)

ans =

-1 -1 0 0 1
>> A = [2,4.4,2,7,0,-2]

A =

2.0000 4.4000 2.0000
>> sort(A,"ascend")

ans =

-2.0000 0 2.0000
>> sort(A, "'descend")

ans =

7.0000 4.4000 2.0000

2.6 Matrix Algebra

Arithmetic on matrices can be placed into two classes:

7.0000

2.0000

2.0000

4.4000

o Algebraic operations (covered in Chapter 2)

e Matrix operations

2.6.1 Algebraic Operations on Matrices

-2.0000

7.0000

-2.0000

Algebraic operations on matrices involve element-wise operations. For

example:

1

2
3
4
5

38
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6 >> a+2
7 ans =
8 3 4
9 5 6
10 7 8

Note that a defines a 3x2 matrix so the a+2 command performs
element-wise addition of a with a number 2. Computationally, this is done
by creating a 3x2 matrix with all its elements as the number 2 and adding
them.

Similarly, some other operations are shown here:

>> 2*3
ans =
2 4

O 60 N O U1 B W N -
=
o
=
N

L O O S =
o D W N R O
W oRr Y Vv
R S Vv W
wn

o

T

N
F N I
S

>> a/2
ans =
0.5000 1.0000
1.5000 2.0000
2.5000 3.0000

N B R R
© VW
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The problem starts with other arithmetic operations. For example,
when we want to calculate @? this would mean multiplying a with itself,
i.e., matrix multiplication. This requires either a square matrix or the inner
dimensions to be similar because a matrix of dimension nxm can only be
multiplied with mxt and the resultant matrix is of the dimension
nxt. Hence, the command a”(2) will result in an error message, as shown

here:

1 > a™2

2 Error using "

3 Input s must be a scalar and a square matrix.

4 To compute elementwise POWER, use POWER (.”) instead.

If we wanted to calculate element-wise squares of matrix a then the last
line of the error message comes to the rescue. Adding a dot operator to
a power operator (.") will direct MATLAB to perform the same operation
element-wise.

1 > a.™2
2 ans =

3 1 4

4 9 16

5 25 36

On the other hand, multiplication of two matrices is the domain of
matrix algebra, discussed next.

2.6.2 Matrix Operations on Matrices

Those who are familiar with matrix algebra know that matrix
multiplication and division are not straightforward tasks. A mxn matrix
can only be multiplied by a nxt matrix, which results in axc matrix. This is
performed by multiplying elements of rows with elements of columns to
get new elements.

40



>> a =

0.8147
0.9058

>> b =

O 60N O U1 & W N P

b =

[ S Y
N R O

0.2785
0.5469
0.9575
>» c

T O = N =\
N O U W
N
I
I

=
e}

0.7922
0.9595

NN
= O

>> a.*c

NN
w N

ans =

N NN
[o) W Up B S

0.6454
0.8691

N
~

rand(2,3)

0.1270
0.9134

rand(3,4)

0.9649

0.1576

0.9706
rand(2,3)

0.6557
0.0357

0.0833
0.0326

0.6324
0.0975

0.9572
0.4854
0.8003

0.8491
0.9340

0.5370
0.0911

CHAPTER 2

0.1419
0.4218
0.9157

ARRAY BASED COMPUTING

Here, the matrices a, b, and c are defined using the rand function

(which generates uniformly distributed random numbers between 0 and 1).
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Now, a*b performs matrix multiplication, whereas a. *c performs element-
wise multiplication. The requirements for both are as follows:

o For matrix multiplication, the inner dimensions must
match.

o For element-wise multiplication, all dimensions must
match.

Transpose

A single hash mark ('), also called an apostrophe, transposes a matrix
(rows become columns and vice versa). Performing division on a matrix
involves matrix inversion.

1 > a

2

3 a-=

4

51 2

6 3 4

7 5 6

8 >> pinv(a)

9 ans =

10

11 -1.3333 -0.3333 0.6667
12 1.0833 0.3333 -0.4167
13 > b

14

15 b =

16

17 6

18 8
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19 >> pinv(b)

20

21 ans =

22

23 -4.0000 3.0000
24 3.5000 -2.5000

Inverse

The inverse of a matrix a, denoted by a™!, is a matrix such that

a*a'=1
where I is an identity matrix. If the given matrix is a square matrix, then

the function inv() can be used; otherwise, the function pinv() is used.
Examples are given here:

1 > a-=[1,2;3,4;5,6]

2

3 a-=

4

5 1 2

6 4

7 6

8

9 >> pinv(a)

10

11 ans =

12

13 -1.3333 -0.3333 0.6667
14 1.0833 0.3333 -0.4167
15
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

44

>> pinv(a)*a

ans =
1.0000 0.0000
-0.0000 1.0000
>> a = rand(5,5)
ad =
0.9649 0.8003
0.1576 0.1419
0.9706 0.4218
0.9572 0.9157
0.4854 0.7922
>> inv(a)
ans =
2.5545 -0.3119
-4.9167 -0.1095
3.3797 -0.1001
-0.6203 0.4252
-2.0554 1.1445

>> a_pinv(a)

o O O O O

-9595
.6557
.0357
.8491
9340

-0.0173
0.8740
-1.3938
0.9340
0.1203

0.6787
0.7577
0.7431
0.3922
0.6555

-0.4492
2.7919
-1.5253
-1.0120
2.0420

0.1712
0.7060
0.0318
0.2769
0.0462

-1.9962
2.5562
-0.8910
1.2230
-0.5531
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45 ans =

46

47 1.0000 -0.0000 0.0000 -0.0000 -0.0000
48  0.0000 1.0000 -0.0000 -0.0000 0.0000
49 -0.0000 0.0000 1.0000 0.0000 0.0000
50 0.0000 -0.0000 -0.0000 1.0000 -0.0000
51 -0.0000 0.0000 0.0000 0.0000 1.0000

Iis called an identity matrix because all its diagonal elements are 1
and all its non-diagonal elements are zero, which makes its determinant
1. The determinant of a matrix a is calculated using the command det(a).
Automatic generation of an identity matrix is done using the command

eye(a,b), where a and b are values of the numbers of rows and columns.

1 > eye(2,2)

2 ans =

3

4 1 0

5 0 1

6 >> det(eye(2,2))

7 ans =

8

9 1
10 >> eye(4,5)
11 ans =
12
13 1 0 0 0 0
14 0 1 0 0 0
15 0 0 1 0 0
16 0 0 0 1 0
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rank()

The rank of a matrix, i.e., the number of linearly independent rows or
columns, can be determined by the built-in rank () function.

1 a = ones(5,3)

2

3 a-=

4

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 1 1

10

11 >> rank(a)

12

13 ans =

14

15 1

16

17 >> a = rand(3,2)
18

19 a =

20

21 0.4456 0.7547
22 0.6463 0.2760
23 0.7094 0.6797
24

25 >> rank(a)

26

27 ans =

28

29 2

S
»



2.6.3 trace()

The sum of the diagonal elements of a matrix is called the trace of the

CHAPTER 2  ARRAY BASED COMPUTING

matrix. This is given by the built-in trace() function, as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

>> a = ones(4,4)

[ N = N =Y
[ = N =Y
[ = O =Y
[ = N =N

>> trace(a)

ans =

norm()

The norm() function calculates the 2-norm of a matrix, which is equal to

the Euclidean length of the vector.

0O N OO U1 AW N R

>> A = [1,2;3,4;5,6]

A =
1 2
4
6
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9 >> norm(A)

10

11 ans =

12

13 9.5255

14

15 >> A = [1,2,3]
16

17 A =

18

19 1 2 3
20

21 >> norm(A)

22

23 ans =

24

25 3.7417

Logical Operations

Two matrices can be compared to each other element-wise.

>> a = rand(2,3)

0.7577 0.3922 0.1712

1
2
3
4
5 0.6787 0.7431 0.6555
6
7
8 >> b = rand(2,3)

9
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

b =

0.7060 0.2769
0.0318 0.0462
>> ¢ = (a<b)

c =

2x3 logical array

1 0 0

0 0 1

>> whos

Name Size
a 2X3

b 2x3

C 2X3
>> a+c

ans =

1.6787 0.7431
0.7577 0.3922

CHAPTER 2 ARRAY BASED COMPUTING
0.0971
0.8235
Bytes Class Attributes
48 double
48 double
6 logical
0.6555
1.1712

The matrix c has elements, either 1 or 0, which are assigned by

determining whether the corresponding elements of a are smaller than

b. Note that using whos command, we can probe the variables a, b, and c.

The matrix c contains logical data types, i.e., 1 and 0 represent the boolean

quantities True and False. But performing a+c treats them as numerals.
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This artifact leads to erroneous computations, hence some programming
languages like Python explicitly use True and False representations for
boolean values rather than 1 and 0.

2.6.4 Polynomials and Arrays

Every matrix has a characteristic polynomial associated with it. It can be
found using the poly() function. Let’s look at an example:

1 > Al =1[-320 4]

Al =

>> Bl

poly(A1)

Bl =

OW 60N O U1 B W N

[N
B O
=
I
w

-10 24 0

=
N

>> A2

=
w

[1,2;3,4]

=
'y

A2 =

N B R R R R
© VW N O WU
=
N

>> B2 = poly(A2)

N N
N R

B =

NN
H w

1.0000 -5.0000 -2.0000

a
o
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In the first case, the resultant polynomial (given by B1) is
x* —3x% —10x* +24x, whereas in the second case (given by B2),
it'’s x> — 5x — 2. The resultant matrix presents the coefficients of the
characteristic polynomial.

find()

The built-in function find() returns the row and column indices of

non-zero entries in a matrix. For example, in the 2x2 matrix defined by
A = [1,0;0,2], the non-zero elements exist at A(1,1) and A(2,2). The
information about rows and columns as a vector is demonstrated here:

>> A = [1,0;0,2]

0

1
2

3
4
5 1
6
7
8 >> [row,col,v]=find(A)
9

10 row =

11

12 1
13

14

15

16 col
17

18 1
19 2
20

21
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22 v =
23

24 1
25 2

sort()

The built-in function sort () can be used to sort the elements of each
column in a particular order. The order can be specified as a second
argument to the function as a string (ascend or descend).

> A = [1)_2)3;4)5)_2;OJ_2)3]

1
2
3
4
5 1 -2 3
6
7
8
9

4 5 -2
0 -2 3
>> sort(A)

10

11 ans =

12

13 0 -2 -2

14 1 -2

15 4 5

16

17 >> sort(A,'ascend")

18

19 ans =

20
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21 O -2
22 1 -2
23 4 5
24

25 >> sort(A,'descend")

26
27 ans =
28
29 4 5
30 1 -2
31 0 -2

2.7 Random Matrix

Using random number generators, a random matrix can be created. Use

the rand(a,b) command:

ans =

0.8147
0.9058
0.1270
0.9134

OW 60N O U1 B W N -

[N
R O

Column 5

=
N

>> rand(4,5)

Columns 1 through 4

0.6324
0.0975
0.2785
0.5469

0.9575
0.9649
0.1576
0.9706

CHAPTER 2

0.9572
0.4854
0.8003
0.1419

ARRAY BASED COMPUTING
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13 0.4218
14 0.9157
15 0.7922
16 0.9595

Note that the numbers generated here will be different each time even
on the same machine, since they are supposed to be random in nature.
By default, they are uniformly distributed over the interval (0, 1). A vector
is simply a row vector, so it can be generated randomly using the rand(a)
command. help rand provides a detailed description of various other
features and arguments of the random number generator.

To create random integers, you can use randi() function. You
can also specify a range for these random integers. For example,
randi([1,10],1,5) will create five random integers (an array of 1x 5)
within 1 to 10. On the other hand, randi([1,10],5) will create an array of
random integers (an array of 5x5) within 1 to 10.

1 >> randi([1,10],5)

2

3 ans =

4

55 3 5 8 10
6 5 7 10 3 6
7 7 7 4 6 2
8 8 2 6 7 2
9 8 2 3 9 3
10

11 >> randi([1,10],1,5)
12

13 ans =

14

15 9 3 9 3 10
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A random complex number can be generated using the rand

command, as follows:

1
2
3
4
5
6
7
8
9

10
11

>> rand + i* rand

ans =

0.3500 + 0.19661

>> rand + i* rand

ans =

0.2511 + 0.61601

Sometimes, you might want to generate the same set of random

numbers each time the program executes. This can be done by setting the

state of the random number function using the rng command, as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

>> state 1 = rng;
>> rl1 = rand(2,3)

rl =

0.4733 0.8308
0.3517 0.5853

>> r12= rand(2,3)
rl12=

0.2858 0.7537
0.7572 0.3804

0.5497
0.9172

0.5678
0.0759
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16 >> rng(s);

17 Undefined function or variable 's'.
18

19 >> rng(state 1);

20 >> r3= rand(2,3)

21

22 13=

23

24 0.4733 0.8308 0.5497

25 0.3517 0.5853 0.9172

The state is saved in the statel variable and then r1 and 12 creates
two arrays of 2x3 size. They have different elements. But when the state
is reset using rng(statel), the new array of the same size stored in 13 is
exactly the same as r1, which was created when the state of the machine
was saved in the statel variable.

A normally distributed random number generator is given by the
function randn(). The random numbers, thus generated, are normally
distributed around 0. Figure 3-7 in Chapter 3 confirms this fact.

A 3D array of random numbers can be generated by inputting an array
for each dimension. For example, if an array A = [3,2,4] is fed into the
rand() function, an 3D array of random numbers is created, as shown here:

1 > A= [3,2,4];
2 >> B = rand(A)

3

4 B(:,:,1) =

5

6 0.7482 0.2290
7 0.4505 0.9133
8 0.0838 0.1524
9
10

(o
»


https://doi.org/10.1007/978-1-4842-3189-0_3

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2.7.1 Matrix Manipulations

B(:,:,2) =
0.8258 0.0782
0.5383 0.4427
0.9961 0.1067
B(:):JS) =
0.9619 0.8173
0.0046 0.8687
0.7749 0.0844
B(:):)4) =
0.3998 0.4314
0.2599 0.9106
0.8001 0.1818
>> size(B)

ans =

3 2 4

CHAPTER 2  ARRAY BASED COMPUTING

Some common matrix manipulations have been written in function form,

which makes it easier for developers to use them right away, rather than

invest time in writing optimum code.
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2.7.2 Flipping a Matrix

flipud(A) returns a copy of matrix A with the order of the rows reversed
along the horizontal axis. f1ipud stands for flip-up-down. fliplr(A)
returns a copy of matrix A with the order of the rows reversed from left to
right. fliplr stands for flip left right.

1 > a=1[12;34;56]
2 a-=

3

4 1 2

5 3 4

6 6

7

8 >> fliplr(a)
9 ans =

10

11 2 1

12 4

13 6

14

15 >> flipud(a)
16 ans =

17

18 5 6

19

20 1 2

2.7.3 Rotating a Matrix

Using the command rot90(a,n), you can rotate a matrixa n times by 90
degrees.
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1 > a=1[12;34;56]
2 a-=

3

4 1 2

5 4

6 6

7

8 >> rot9o(a,1)
9 ans =
10
11 2 6
12 1 3
13
14 >> rot9o(a,2)
15 ans =
16
17
18 3
19 2
20
21 >> rot9o(a,4)
22 ans =
23
24 1 2
25 4
26 6

2.7.4 Reshaping a Matrix

The number of rows and columns in a matrix can be changed provided the
total number of elements remains the same.
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1 > a=1[12;34;56]
2 a=

3

4 1 2

5 3 4

6 6

7

8 >> reshape(a,6,1)
9 ans =

10

11 1

12 3

13 5

14 2

15 4

16 6

17 >> reshape(a,4,1)
18 Error using reshape
19 To RESHAPE the number of elements must not change.

2.7.5 Sorting

Numbers can be sorted in increasing order using the sort function:

>> a = rand(1,5)
ad =

1
2
3
4 0.7431 0.3922 0.6555 0.1712 0.7060
5
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6 >> sort(a)
7 ans =

9 0.1712 0.3922 0.6555 0.7060 0.7431

2.7.6 Upper and Lower Triangular Matrix

The upper triangular matrix is such that only diagonal and elements above
diagonal are non-zero. Similarly, the lower triangular matrix is such that
diagonal and elements below diagonal are non-zero.

1 >> a = rand(3,3)

2 a-=

3

4 0.0318 0.0971 0.3171
5 0.2769 0.8235 0.9502
6 0.0462 0.6948 0.0344
7

8 »>> tril(a)

9 ans =
10

11 0.0318 0

12 0.2769 0.8235

13 0.0462 0.6948 0.0344
14

15 >> triu(a)

16 ans =

17

18 0.0318 0.0971 0.3171
19 O 0.8235 0.9502
20 O 0 0.0344
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2.7.7 Ones and Zeros Matrix

A matrix having all its numbers as 1 or 0 make up a ones and zeros matrix,

respectively:
1 >> ones(3,3)
2 ans =
3
4 1 1 1
5 1
6 1 1 1
7
8 >> zeros(3,3)
9 ans =

10

11

12

13 0 0 0

2.8 Indexing

Each element of the matrix is characterized by two numbers, the row
number and the column number. This is used to pinpoint an element and

operate on that.

>> a = rand(2,3)
ad =

1

2

3

4 0.6557 0.8491 0.6787
5 0.0357 0.9340 0.7577
6
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7 > a(2,3)=1
a =

10 0.6557 0.8491 0.6787
11  0.0357 0.9340 1.0000
12

13 »>> a(1,1)=0

14 a =

15

16 0 0.8491 0.6787
17 0.0357 0.9340 1.0000

ARRAY BASED COMPUTING

Note that a(2,3)=1 sets the element at the second row and third
column, i.e., number 0.3041072 to 1, and a(1,1)=0 sets the element at the
first row and first column, i.e., number 0.5248873 to 0. To index numbers in

avector, you need a single number.

1 > a-=[1,2,3,4,5,6,7,8,9]
2 a-=

3

4 Columns 1 through 7

5

6 1 2 3 4 5 6
7

8 Columns 8 through 9

9

10 8 9

11

12 >> a(1)

13 ans =

14

15 1
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16 >> a(-1)
17 Subscript indices must either be real
18 positive integers or logicals.

19 >> a(5)
20 ans =

21

22 5

23 »> a(10)

24 Index exceeds matrix dimensions.

It is important to note that, unlike some programming languages
where indices start at 0, MATLAB starts indices at 1 and does not take

negative numbers as indices.

2.8.1 Using Indices to Create a New Vector

>> a = [10 20 30 40 50 60]
ad =

10 20 30 40 50 60

>>b =a([1361])
b =

OW 60N O LT B W N -

10 30 60 10

In the previous example, b is a new vector formed from vector a, where
successive elements are made up of elements taken from an index vector
[136 1]

1 > a=[11,12,13;40,50,60;17,18,19]
2 a-=
3

64



CHAPTER 2  ARRAY BASED COMPUTI

4 11 12 13
5 40 50 60
6 17 18 19
7
8 »> a([1,2], [2,3])
9 ans =
10
11 12 13
12 50 60

Note that since the use of the comma operator is optional, we will
define vectors and matrices by simply using whitespace.

2.9 Slicing

NG

Matrices can be sliced to desired portions by using indices and the colon :

operator.

1 >a=[12341324645]
2 a-=

3

4 Columns 1 through 7

5

6 1 2 3 4 1 3 2
7

8 Columns 8 through 11

9

10 4 6 4 5

11
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12 >> b =a(1:5)

13 b =

14

15 1 2 3 4 1
16

17 > ¢ = a(5:7)

18 ¢ =

19

20 1 3 2

This is an important feature, as most of experimental calculations
would demand filtering the data. Here, a slice of data will be stored
separately in a variable and then various mathematical operations can be
performed on it.

Now let’s try to access slices of a multidimensional array. A matrix a is
defined to be a 5x5 matrix.

>> a = rand(5,5)

1
2

3

4

5 0.6948  0.3816 0.4456 0.6797 0.9597
6 0.3171  0.7655 0.6463 0.6551 0.3404
7 0.9502 0.7952 0.7094  0.1626 0.5853
8 0.0344  0.1869 0.7547 0.1190  0.2238
9 0.4387 0.4898 0.2760  0.4984  0.7513
10

11 >> b = a(1,1)

12

13 b =

14

15 0.6948
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O O O O O O O O o o o o

.6948
.3171
.9502
.0344
.4387
.3816
.7655
. 7952
.1869
.4898
.4456
.6463

0.3816

= a(:,1)

0.4456

CHAPTER 2  ARRAY BASED COMPUTING

0.6797

0.9597
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47 0.7094
48 0.7547
49 0.2760
50 0.6797
51 0.6551
52 0.1626
53 0.1190
54 0.4984
55 0.9597
56 0.3404
57 0.5853
58 0.2238
59 0.7513
60 > f = a(:,[1,3])
61

62 f =

63

64 0.6948 0.4456

65 0.3171 0.6463

66 0.9502 0.7094

67 0.0344 0.7547

68 0.4387 0.2760

69 >> g= a([1,3],:)

70

71 g =

72

73 0.6948 0.3816 0.4456 0.6797 0.9597
74 0.9502 0.7952 0.7094 0.1626 0.5853

o To access a single element, we use the index value of
the row and column, For example, b = a(1,1) accesses
the element within the first row and first column.
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To access all elements of a row or column, you can
use the : operator. Hence, ¢ = a(1,:) accesses all
elements of the first row. Similarly, >> d = a(:,1)
accesses all elements of the first column. A simple way
to remember in words is to read the colon (:) as all
elements for and then the words n" row/column, where

n is a given value.

Using a(:), you can create a new column matrix that
has all the elements.

A sub-matrix can be accessed by defining all elements
for column/row and then defining indices in square
brackets. For example, f = a(:,[1,3]) defines a new
matrix where elements are composed of all elements of
the first and third columns. Similarly, a([1,3], :) uses
all elements of first and third rows.

You can compose complex sub-matrices using this powerful way of

defining your choice of elements.

O 60N O U1 & W N -

BoR R
N RO

>> a = rand(5,6)

ad =

0.3510 0.1233 0.9027 0.9001 0.2417 0.9561
0.5132 0.1839 0.9448 0.3692 0.4039 0.5752
0.4018 0.2400 0.4909 0.1112 0.0965 0.0598
0.0760 0.4173 0.4893 0.7803 0.1320 0.2348
0.2399 0.0497 0.3377 0.3897 0.9421 0.3532
>> b = a([2,5],1:3)
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

a([2,5],1:3), which says that from the second and third row, take elements
a(2:5,[1,3]) creates
a matrix using this logic: from the first and fifth column, take elements from the

from the first column to the third column. Similarly, c

second row to the third row. Now you can easily guess whata([2,5],[1,3])

70

b =

0.5132
0.2399
>» C

0.5132
0.4018
0.0760
0.2399
> d =

d=

0.5132
0.2399
>e =

0.5132
0.4018
0.0760
0.2399

0.1839 0.9448

0.0497 0.3377
a(2:5,[1,3])

0.9448

0.4909

0.4893

0.3377
a([2,51,[1,3])

0.9448

0.3377
a(2:5,1:3)

0.1839 0.9448

0.2400 0.4909

0.4173 0.4893

0.0497 0.3377

We define a new 5x5 matrix a and then define a subset of this matrix using
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and a(2:5,1:3) should do. It’s a good idea to practice slicing of arrays
rigorously, as this is one of the most sought-after skills in data cleaning and
data analysis in general.

2.10 Automatic Generation of Arrays

MATLAB presents a variety of ways to generate arrays of numbers
automatically according to a specified rule. Three methods are discussed
in the following sections.

2.10.1 The : Operator

One of the most useful operators in MATLAB, the : operator can be
mastered easily. You have already seen its usage in selecting a sub-matrix

in Chapter 2.
1 >> help:
2 : Colon.

3 J:K is the same as [J,J+1,...,J+m], where m = fix(K-J). In the

4 case where both J and K are integers, this is simply
[3,341,...,K].

5 This syntax returns an empty matrix if J1>K.

J:1:K is the same as [J,J+I,...,J+m_I], where

m = fix((K-3)/I).

8 This syntax returns an empty matrix when I == 0,
I>0 and 1>K, or

9 I<0 and J<K.

10

11 colon (J,K) is the same as J:K and colon (J,I,K) is the
same as J:I:K.

12

71
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13

14
15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30
31

72

The colon notation can be used to pick out selected rows,
columns

and elements of vectors, matrices, and arrays. A(:) is all the
elements of A, regarded as a single column. On the left
side of an

assignment statement, A(:) fills A, preserving its shape
from before.

A(:,3) is the J-th column of A. A(J:K) is
[A(T),A(3+1),...,A(K)].

A(:,3:K) is [A(:,3),A(:,I+1),...,A(:,K)] and so on.

The colon notation can be used with acellar ray to produce
a comma-

separated list. C{:} is the same as Cfig,Cf2g,...,Cfendg.
The comma separated list syntax is valid inside () for
function calls, [] for

concatenation and function return arguments, and inside fg
to produce

a cell array. Expressions such as S(:). name produce the
comma

separated 1list S(1).name,S(2).name,...,S(end). name for the
structure S.

For the use of the colon in the FOR statement, See FOR.
For the use of the colon in a comma separated list, See
VARARGIN.

Reference page for colon
Other functions named colon
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You can generate a series of numbers and store them as arrays by using

the start:step:stop command.

O 60N O U1 &~ W N -

N N P R R R R R R R R R
P O VW 0w ~N O U N W N B O

>> a=1:1:10

a=

Columns 1 through 7

1 2 3 4 5 6 7
Columns 8 through 10

8 9 10

>> a =[1:1:10]

a=

Columns 1 through 7

Columns 8 through 10

8 9 10

Note that brackets ([ ]) are optional here. If a step is not defined, then it

is taken as 1.

1
2
3
4
5

>> a=1:10
ad =

Columns 1 through 7
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6 1 2 3 4 5 6 7
7

8 Columns 8 through 10

9

10 8 9 10

11

12 >> a=1:2:10

13

14 a =

15

16 1 3 5 7 9

2.10.2 Linearly Spaced Vectors

The linspace(start, stop, n) command produces an array starting at
the first number and stopping at the second one with a total of n numbers.
Hence, they are linearly spaced.

1 >> a = linspace(1,2,5)
2 a-=

3

4 Columns 1 through 4

5

6 1.0000 1.2500 1.5000 1.7500
7

8 Column 5

9

10 2.0000

11

12 >> a = linspace(1,2,10)
13 a =

14
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15 Columns 1 through 4

16

17 1.0000 1.1111 1.2222 1.3333
18

19 Columns 5 through 8

20

21 1.4444 1.5556 1.6667 1.7778
22

23 Columns 9 through 10

24

25 1.8889 2.0000

2.10.3 logspace

Similar to the linspace command, logspace(start, stop, n) produces
nnumbers from start to stop, which are linearly spaced in logarithmic
nature.

1 >>> help logspace

logspace Logarithmically spaced vector.

logspace(X1,X2) generates a row vector of 50
logarithmically

equally spaced points between decades 10”X1 and 10"X2. If X2
is pi, then the points are between 107X1 and pi.

w N

logspace(X1,X2,N) generates N points.
For N = 1, logspace returns 10"X2.

O 60 N O U1 B~

10 Class support for inputs X1,X2:
11 float:double, single
12
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13 See also linspace, colon.

14

15 Reference page for logspace

16 >>>logspace (1,5,10)

17

18 ans =

19

20 1.0e+05 *

21

22 Columns 1 through 4

23

24 0.0001 0.0003 0.0008 0.0022
25

26 Columns 5 through 8

27

28 0.0060 0.0167 0.0464 0.1292
29

30 Columns 9 through 10

31

32 0.3594 1.0000

2.11 Solving a System of Equations

Solving a system of equations in one line simply involves the \ operator.
Suppose the following system of equations needs to be solved:

2x-2y=4 (Equation 2-1)

-3x+4y=9 (Equation 2-2)
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You can define this problem in a matrix, as follows:

2 =2 X ~ 4 .
{—3 4 }( L}} B {9} (Equation 2-3)

Suppose:
a2 2 _
3 4 (Equation 2-4)
X
X= y (Equation 2-5)
4 .
B= [9} (Equation 2-6)

In this way, you can write the following:

AxX=B (Equation 2-7)

The solution is given by X = A~'B. You can find the inverse of A (using
the inv() or pinv()) function) and then multiply the resultant matrix with
the matrix given by B to find a solution. Alternatively, you can accomplish
this task in just one command, as A\B:

>> A = [2,-2;-3,4]

1
2
3
4
5 2 =2
6
7
8
9
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10 B =

11

12 4 9

13

14 >> C = A/B
15

16 ans =

17

18 17.0000

19 15.0000

Hence, the solution is x = 17 and y = 15. Since the elements of the C
matrix are solutions, this is often called a solution matrix.

2.12 Eigen Values and Eigen Vectors

The eigenvalue problem is to determine the solution to the equation

Av = v, where A is an n x n matrix, v is a column vector of length n, and

A1is a scalar. The values of A that satisfy the equation are the eigenvalues.
The corresponding values of v that satisfy the equation are the right
eigenvectors. The left eigenvectors, w, satisfy the equation w'A=Aw'. The
MATLAB function eig( ) returns the eigenvalues and eigenvectors. It also
gives the matrix D (diagonal matrix D of eigenvalues), which is related to W
and Aas WA=DW":

>> A = rand(3,3)
A =
0.6551 0.4984 0.5853

0.1626 0.9597 0.2238
0.1190 0.3404 0.7513

O N O U1 A W N R

~
co
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9 > [V,D,W] = eig(A)

10

11 V =

12

13 -0.7284 -0.9532 0.8945

14 -0.5300 0.2997 -0.4178
15 -0.4341 0.0411 0.1590

16

17

18 D =

19

20 1.3665 0 0
21 O 0.4732 0
22 0 0 0.5264
23

24

25 W=

26

27 -0.2724 -0.3066 -0.1266
28 -0.7915 -0.3145 -0.5186
29 -0.5471 0.8984 0.8456

2.13 Structure Arrays

Arrays stores elements of the same data types, whereas structure arrays
can store data of different data types. Structures are collections of data
organized by named fields. For example, one field may contain textual
data, another a number, and a third may be an array, etc. A single structure
is a 1-by-1 structure array. Let’s understand how to create them by using
an example. Let’s create a structure array for this book and name this

array book. Now, various fields can be added using the dot operator, such
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as name, author, pages, and chapter. The book array is a 1-by-1 structure
with four fields. This is demonstrated here.

>> book.name = 'Introducing MATLAB'

book =

1

2

3

4

5 struct with fields:
6

7 name:'Introducing MATLAB'

8

9 >> book.author = 'Sandeep Nagar'
10

11 book =

12

13 struct with fields:

14

15 name:'Introducing MATLAB'

16 author:'Sandeep Nagar'

17

18 >> book.pages = '175'

19

20 book =

21

22 struct with fields:

23

24 name:'Introducing MATLAB'

25 author:'Sandeep Nagar'

26 pages:'175'

27

28 >> book.chapters = [1 23 456 7]
29
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30 book =

31

32 struct with fields:

33

34 name:'Introducing MATLAB'
35 author:'Sandeep Nagar'

36 pages:'175'

37 chapters:[1 23456 7]

2.13.1 Defining a New Structure Element
Within a Structure Array

A new structure element can be defined within an existing structure array
(book, in this example) using index values in the following manner.

[N

>> book(2).name = 'Introducing SCILAB'
book =
1x2 struct array with fields:

name
author
pages
chapters

O 60N O U1 B W N

[ S S Y
N P O

>> book(2).author = 'Sandeep Nagar'

=
w

book =

[ G Y
SRGEES

1x2 struct array with fields:

=
~
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18 name

19 author

20 pages

21 chapters

22

23 >> book(2).pages = 175

24

25 book =

26

27 1x2 struct array with fields:
28

29 name

30 author

31 pages

32 chapters

33

34 >> book(2).chapters = [1 23456 7 8 9]
35

36 book =

37

38 1x2 struct array with fields:
39

40 name

41 author

42 pages

43 chapters

In this way, the book is now a 1x2 structure array. All structures in a
structure array have the same number of fields and all fields have the same
number of field names. When the name of the structure array is entered at
the command prompt, the summary of information and fields is displayed.

82



CHAPTER 2  ARRAY BASED COMPUTI

The fieldnames() function can be used to get a cell array having
information about the fields. This is demonstrated in the following code.

>> book
book =

1
2
3
4
5 1x2 struct array with fields:
6
7
8
9

name
author
pages

10 chapters

11

12 »>> fieldnames(book)

13

14 ans =

15

16 4x1 cell array

17

18 ‘'name’

19 ‘'author'’

20 ‘'pages'

21 'chapters'

While expanding a structure arrayj, it is not mandatory to fill in all the
fields. Fields that are not associated with values are left empty.

2.13.2 Adding and Removing Fields

A new field can be added at any point to a single structure. For example,
let’s add the field publisher to the structure book, as demonstrated here.

NG
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>> book(2).publisher = 'Apress’

book =

name

1
2
3
4
5 1x2 struct array with fields:
6
7
8 author

9

pages
10 chapters
11 publisher
12
13 >> book
14
15 book =
16
17 1x2 struct array with fields:
18
19 name
20 author
21 pages
22 chapters
23 publisher
24
25 >> book = rmfield(book, 'publisher")
26
27 book =
28
29 1x2 struct array with fields:
30
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31 name
32 author
33 pages

34 chapters

To remove a field, say publisher, from the structure book, you can use
the rmfield() function, as demonstrated.

2.13.3 struct()

The function struct() can also be used to define a structured array with
the syntax shown in the following code:

1 >> bookl = struct('name','Introducing MATLAB', 'author’,
'Sandeep Nagar', 'pages',175, 'chapters',[1, 2, 3, 4, 5, 6, 7])

2

3 book1 =

4

5 struct with fields:

6

7 name:'Introducing MATLAB'

8 author:'Sandeep Nagar'

9 pages:175

10 chapters:[1 23 456 7]

11

12 >> book1(2) = struct('name','Introducing python','author’,
'Sandeep Nagar', 'pages',175, 'chapters’',[1, 2, 3, 4, 5, 6,
7, 8, 9])

13

14 book1 =

15
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16 1x2 struct array with fields:

17

18 name
19 author
20 pages

21 chapters

A new structure named book1 is created where field names and values
are filled in successively. It can be expanded using the index number in a
similar fashion, making it a 1-by-2 structure array.

A structure array may contain another structure or even a structure
array as its fields. These are called nested array. This is demonstrated here,
where book1 (a structure array defined previously) is added as a new field
to the structure array book.

>> book(3).1linked book = book1

book =

name

1
2
3
4
5 1x3 struct array with fields:
6
7
8 author

9

pages
10 chapters
11 linked book

2.14 Getting Data from a Structure Array

Data values can be assigned from a structure array using index numbers,
as demonstrated next. Here, info1l stores the value of the field name for the
second structure (signified by the syntax book(2)). In a similar fashion,
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info2 stores the value of the field name for the first structure (signified by

the syntax book(1)). The variable info3 extracts the third element of the

field chapter from the second structure of the structure array book.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

>> infol = book(2).name()
info1l =

"Introducing SCILAB'

>> info2 = book(1).name()
infol =

"Introducing MATLAB'

info3 = book(2).chapters(3)

info3

2.15 Cell Arrays

Cell arrays are arrays of cells where each cell stores an array. Within a cell,

elements must be the same type (because cells store arrays), but two cells

may have different types. For example, suppose you have three arrays—

array1 (stores numerical values), array2 (stores textual values), and

array?2 (stores numerical values). You can then construct a cell array using

these three arrays. The elements of this cell array store different types of

arrays, but each element stores just one type of data.
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2.15.1 Creating Cell Arrays

The cell(m,n) function makes an empty cell array of the size m — by — n.
By assigning data values to this empty cell array, it can then be constructed
as desired, one cell at a time. Let’s first create an empty cell array,
referenced by a variable, say a. There are two ways to assign the data:

e Cellindexing: Cell indices are mentioned within
parentheses () and cell contents are mentioned within
brackets { } on either side of assignment operator, like so:

>> a = cell(3,3)
a =

1
2
3
4
5 3x3 cell array
6
7
8
9

(1 10 Il

(1 00 [Tl

(1 10 Il
10
11 >> a(1,1) = ([1,2,3]);
12 > a(1,2) = (['a','b']);
13 >> a(1,3) = ("Sandeep");
14 >> a(2,3) = ([1.5,-2]);
15 >> a(2,2) = ([-200]);

16 >> a(2,1)
17 >> a(3,1)
18 >> a(3,2)
19 >
20

21 a =
22

(["Nagar"]);
([-10,-15.5,5.3]);
(["Hello"]);
(["World"])

QU
—~
w

-
w
~
1}
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23 3x3 cell array

24

25 [1x3 double] "ab’ ["Sandeep" ]
26 ["Nagar"] [-200] [1x2 double]
27 [1x3 double] ["Hello"] ["World"]

28

Content indexing: Here, brackets/parentheses are used
in reverse fashion, i.e., () for content and [ ] for indices.

>> a = cell(3,3)

1
2
3
4
5 3x3 cell array
6
7
8
9

10

11 > a {1,1} = ([1,2,3]);
12 >> a {1,2} = (['a','b']);
13 >> a {1,3} = ("Sandeep");
14 >> a {2,3} = ([1.5,-2]);
15 >> a {2,2} = ([-200]);

16 >> a {2,1} = (["Nagar"]);
17 > a {3,1} = ([-10,-15.5,5.3]);
18 >> a {3,2} = (["Hello"]);
19 >> a {3,3} = (["World"])
20

v

\ 24

v
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21 a =

22

23 3x3 cell array

24

25 [1x3 double] "ab' ["Sandeep"]
26 ["Nagar"] [-200] [1x2 double]
27 [1x3 double] ["Hello"] ["World"]

28

2.15.2 The celldisp() and celiplot() Functions

The constructed cell arrays can be displayed by using two functions called
celldisp() and cellplot(). The celldisp() command displays the full
cell contents, whereas cellplot() displays a graphical display of the cell
architecture. See Figure 2-1.

Figure 2-1. Output of cellplot (a)
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2.15.3 The cell2struct(), num2cell(), and
struct2cell() Functions

The cell2struct() command can be used to convert a cell array to a
structure. Similarly, num2cell() can be used to convert a numeric array
into a cell array and struct2cell() can be used to convert a structure into
a cell array.

2.16 Summary

Array based computing lies at the very heart of modern computational
techniques. MATLAB presents a very suitable platform to perform this
technique with ease. A variety of predefined functions enable users to

save time while prototyping a problem. Having flexible methods to define
multidimensional arrays and perform fast computation is the necessity of
our times. Most of the time spent on a simulation is either in loops or in
array operations. Predefined array operations have been optimized with
algorithms for reliability, time savings, and efficient memory management.
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