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CHAPTER 2

Array Based 
Computing

2.1  Introduction
Matrices have become an integrated part of numerical computation 

for dealing with large quantities of data. For a two-dimensional matrix, 

elements have unique row and column indices through which you can 

access them. Rows and columns can be attributed to different properties 

under study. For example, if you measure the temperature and pressure at 

four corners of the square, the x, y coordinates associated with the corner 

points can be assigned to row and column numbers. Now the experimental 

data can be simply represented as a matrix. In this way, you can fit data 

for two properties as a matrix and then use these matrices for numerical 

calculations.

As an example, suppose an element of a row is defined as 1 if a 

compound is a conductor, it’s 2 if it is a semiconductor, and it’s 3 if it is an 

insulator. Then, a row vector (a matrix composed of only one row) [1 0 0 

3 2 1 3 0 1 0 3 2 1] has information about 13 compounds. In electrical 

conductivity experiments, this row vector (a 13×1 matrix) can be utilized 

as input. In this way, you need to model the system in terms of matrix 

formulation to be solved using MATLAB.
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MATLAB defines a data object for dealing with matrices. They are 

called arrays. Using different properties of this object, you can define 

various kinds of matrices. Built-in functions for matrix operations make it 

easier for a programmer to deal with large amounts of data by arranging 

it as a matrix in the desired format and performing array operations. This 

chapter explores the various options for defining and manipulating arrays.

Since MATLAB was made for matrix manipulation, it has a large set 

of built-in functions and a robust environment to define and work with 

matrices.

2.2  Arrays and Vectors
Instead of just pointing to a single number, a variable name can also point 

to a sequential set of numbers, called an array. The following example 

shows how this can be achieved:

 1  >> a = [1,2,3,4,5]

 2  a =

 3

 4  1   2   3   4   5

 5

 6  >> a1 = [10,11,12,13,14]

 7  a1 =

 8

 9  10   11    12   13    14

10  >> matrix22 = [1,2;3,4]

11  matrix22 =

12

13  1     2

14  3     4
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15  >> matrix33 = [1,2,3;4,5,6;7,8,9]

16  matrix33 =

17

18  1     2     3

19  4     5     6

20  7     8     9

21  >> size(a)

22  ans =

23

24  1   5

25

26  >> size(matrix22)

27  ans =

28

29  2   2

30

31  >> size(matrix33)

32  ans =

33

34  3   3

As seen in the example code, an array can be understood as a matrix 

consisting of rows and columns. Thus, you can make a desired sized 

matrix. For example, matrix22 is a 2×2 and matrix33 is a 3×3 matrix, 

whereas a is a 1×5 matrix. The first number listed while defining the size 

indicates the number of rows, whereas the second number indicates 

the number of columns. It is also important to note that the comma (,) 

operator operates by defining the next element in the same row, whereas 

the semicolon (;) operator defines the numbers in the next line/row. 

A matrix is defined within the brackets of the type [] (commonly called 

square brackets).
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If the number of elements in each row/column do not match, you get 

an error message:

 1  >> right33 = [1,2,3;4,5,6;7,8,9]

 2  right33 =

 3

 4  1   2   3

 5  4   5   6

 6  7   8   9

 7

 8  >> wrong33 = [2,3;4,5,6;7,8,9]

 9  Dimensions of matrices being concatenated are

10  not consistent.

11  >> wrong33 = [1,2,3;4,5,6;8,9]

12  Dimensions of matrices being concatenated are

13  not consistent.

2.3  Creating Arrays from Other Arrays
Multi-dimensional arrays can be created from other multi-dimensional 

arrays too, as explained here:

 1  >> a = [1,2,3;4,5,6]

 2

 3  a =

 4

 5  1     2      3

 6  4     5      6

 7

 8  >> B = [(1:3);(4:6);(7:9)]

 9
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10  B =

11

12  1     2     3

13  4     5     6

14  7     8     9

15

16  >> c = [a;B]

17

18  c =

19

20  1     2     3

21  4     5     6

22  1     2     3

23  4     5     6

24  7     8     9

25

26  >>>c = [a,B]

27

28  Error using horzcat

29  Dimensions of matrices being concatenated are not

30  consistent.

Here, the matrix a has elements 1, 2, 3 in the first row. Then a row 

separator (;) defines the next row of elements as 4, 5, 6. Similarly, matrix B 

has the rows defined by these commands:

• (1 : 3) results in (1, 2, 3)

• (4 : 6) results in (4, 5, 6)

• (7 : 9) results in (178, 9)

Note the MATLAB variable names are case sensitive, so a is not the 

same as A. A new matrix called c is created by vertically concatenating the 
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matrices a and B. The resultant matrix c is made of elements of a stacked 

on top of elements of B. The c=[a, B] command yields an error because 

the dimensions of a and B are not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the 

following ways in this example:

 1  >> a = 1:3

 2

 3  a =

 4

 5  1     2     3

 6

 7  >> A = [a,a]

 8

 9  A =

10

11  1     2     3     1     2     3

For multidimensional arrays, use this code:

 1  >> a = 1:4

 2

 3  a =

 4

 5  1     2     3     4

 6

 7  >> A = [a;a]

 8

 9  A =

10

11  1     2     3     4

12  1     2     3     4

13
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14  >> AA = [A,A]

15

16  AA =

17

18  1     2     3     4     1     2     3     4

19  1     2     3     4     1     2     3     4

2.3.1  Appending Rows and Columns
When an entire row or column of a matrix needs to be appended, you must 

consider only one thing—the size of new matrix must match the row and 

column requirements. As an example, define an array A, B, D with sizes 

(2×2), (1×2), and (2×1), respectively. The row matrix B can be inserted as 

a row of A and the column matrix D can be inserted as a row of A, as shown 

here:

 1  >> A = [1,2;3,4]

 2

 3  A =

 4

 5  1     2

 6  3     4

 7

 8  >> B = [5,6]

 9

10  B =

11

12  5     6

13

14  >> size(A)

15
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16  ans =

17

18  2     2

19

20  >> size(B)

21

22  ans =

23

24  1     2

25

26  >> C = [A;B]

27

28  C =

29

30  1     2

31  3     4

32  5     6

33

34  >> size(C)

35

36  ans =

37

38  3     2

39

40  >> D = [5;6]

41

42  D =

43

44  5

45  6

46
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47  >> size(D)

48

49  ans =

50

51  2     1

52

53  >> E = [A,D]

54

55  E =

56

57  1     2     5

58  3     4     6

59

60  >> size(E)

61

62  ans =

63

64  2     3

2.3.2  Deleting a Row and/or Column of a Matrix
Rows and columns can be deleted by assigning null matrices [] to them. 

For example, (1,:)=[] deletes the first row and (:,1)=[] deletes the first 

column of a matrix, as shown here:

 1  >> A = rand(3,3)

 2

 3  A =

 4

 5  0.8147    0.9134     0.2785

 6  0.9058    0.6324     0.5469

 7  0.1270    0.0975     0.9575

 8
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 9  >> A(1,:) =[]

10

11  A =

12

13  0.9058    0.6324     0.5469

14  0.1270    0.0975     0.9575

15

16  >> A(:,1) =[]

17

18  A =

19

20  0.6324    0.5469

21  0.0975    0.9575

2.3.3  Concatenation Along a Dimension
Concatenation of two matrices along a dimension can be obtained using 

cat(dim, A, B, ...), where dim presents the dimension and A and B are 

the input matrices. Its usage is shown here:

 1  >> A = [1,2;3,4]

 2  A =

 3  1    2

 4  3    4

 5  >> B = [5,6;7,8]

 6  B =

 7  5    6

 8  7    8

 9  >> cat(1,A,B)

10  ans =

11  1    2

12  3    4
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13  5    6

14  7    8

15  >> cat(2,A,B)

16  ans =

17  1    2    5    6

18  3    4    7    8

19  >> C = cat(3,A,B)

20  ans(:,:,1) =

21  1    2

22  3    4

23  ans(:,:,2) =

24  5    6

25  7    8

26  >>> size(C)

27  ans =

28  2    2    2

When cat(1,A,B) is entered at the command prompt, A and B are 

concatenated row-wise and cat(2,A,B) performs concatenation column- 

wise. In case of cat(3,A,B), a new matrix is created whose first element of 

the third dimension is the matrix A and the second element is the matrix B.

2.3.4  Selecting the Data Type of Elements
Elements of an array can be any data type, as explained in Chapter 1. 

All elements of an array can be set to a particular data type using the 

commands shown here:

 1  >> x = uint32([1,65535])

 2  x =

 3

 4  1x2 uint32 row vector

 5
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 6  1   65535

 7

 8  >> x = uint64([1,65535])

 9  x =

10

11  1x2 uint64 row vector

12

13  1   65535

14

15  >> x = int16([1,65535])

16  x =

17

18  1x2 int6 row vector

19

20  1   32767

21

22  >> x = int32([1,65535])

23  x =

24

25  1x2 int32 row vector

26

27  1   65535

28

29  >> x = int64([1,65535])

30  x =

31

32  1x2 int64 row vector

33

34  1   65535

35
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36  >> x = single([1,65535])

37  x =

38

39  1x2 single row vector

40

41  1       65535

42

43  >> x = double([1,65535])

44  x =

45

46  1       65535

47

48  >> x = single([1.0,65535e10])

49  x =

50

51  1x2 single row vector

52

53  1.0e+14*

54

55  0.0000    6.5535

56

57  >> x = double([1.0,65535e10])

58  x =

59

60  1.0e+14*

61

62  0.0000    6.5535

Line 15 shows that if the element is set to int16, then it can store a 

maximum value of 32767, regardless of being commanded to store a value 

bigger than that. Hence, it becomes supremely important to understand 
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the data type of the elements beforehand, in order to avoid errors in 

numerical calculations. Keep in mind that storing very small numbers 

in larger numbers of bits is a waste of memory. (Line 46 displays that the 

number 1, which is stored as a double precision floating point number, 

occupies 64 bits, where essentially 63 bits except the last one are all zeros!)

2.4  Arithmetic Operations on Arrays
Operating on arrays involves two aspects:

• Operating on two or more arrays

• Element-wise operations

All arithmetic operators (such as +, -, *, /, %, ^, etc.) can be used in 

both cases. When you need to do element-wise operation, then a . (dot) is 

placed before the operator. The element-wise operators become .+, .-, .*, 

./, .%, and .^. This will become more clear in following example.

 1  >> a = [1,2;3,4]

 2  a =

 3

 4  1    2

 5  3    4

 6

 7  >> b = [5,6;7,8]

 8  b =

 9

10  5    6

11  7    8

12
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13  >> a+b

14  ans =

15

16  6    8

17  10   12

18

19  >> 2.+a

20  ans =

21

22  3    4

23  5    6

24

25  >> –10.+b

26  ans =

27

28  –5   –4

29  –3   –2

When a and b are matrices to be added/subtracted, their elements are 

added/subtracted to elements in the same position. For this reason, the 

size of the two matrices should be same. On the other hand, when you 

write 2.+a, you add the number 2 to each of the elements individually. 

This can be done regardless of the size and is implemented uniformly on 

all the elements of the matrix.

2.5  Built-In Functions
A host of built-in functions provide facilities to calculate properties of 

arrays for quick computation. This includes:

• Summing all elements using sum() function.

• Finding the product of all elements of an array using 

prod().
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• Finding the length of array using length().

• Finding the mean of array elements using the mean() 

function.

• Finding the maximum and minimum amongst an 

element of an array using max() and min() of an array.

• Finding a particular element as per a logical expression 

using the find() function.

• The rounding elements are as follows:

 – Rounding the elements of an array to the nearest 

integer toward zero using the fix() function.

 – Rounding the elements of an array to the nearest 

integer toward −• using the floor() function.

 – Rounding the elements of an array to the nearest 

integer toward +• using the ceil() function.

 – Rounding the elements of an array to the nearest 

integer using the rounding() function.

• Sorting the elements of an array using sort() in 

ascending or descending order.

Their usage is demonstrated here:

 1  >> A = 1:5

 2  A =

 3  1     2     3     4     5

 4  >> sum(A)

 5  ans =

 6  15

 7  >> prod(A)

 8  ans =

 9  120
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10  >> length(A)

11  ans =

12  5

13  >> mean(A)

14  ans =

15  3

16  >> max(A)

17  ans =

18  5

19  >> min(A)

20  ans =

21  1

22  >> find(A>4)

23  ans =

24  5

25  >> find(A<4)

26  ans =

27  1     2     3

28  >> A= –1.1:0.5:1.1

29  A =

30  –1.1000   –0.6000   –0.1000   0.4000   0.9000

31  >> fix(A)

32  ans =

33  –1     0     0     0     0

34  >> floor(A)

35  ans =

36  –2    –1    –1     0     0

37  >> ceil(A)

38  ans =

39  –1    0      0     1     1
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40  >> round(A)

41  ans =

42  –1   –1      0     0     1

43  >> A = [2,4.4,2,7,0,–2]

44  A =

45  2.0000    4.4000    2.0000    7.0000         0    –2.0000

46  >> sort(A,'ascend')

47  ans =

48  –2.0000        0    2.0000    2.0000    4.4000     7.0000

49  >> sort(A,'descend')

50  ans =

51  7.0000     4.4000   2.0000    2.0000         0    –2.0000

2.6  Matrix Algebra
Arithmetic on matrices can be placed into two classes:

• Algebraic operations (covered in Chapter 2)

• Matrix operations

2.6.1  Algebraic Operations on Matrices
Algebraic operations on matrices involve element-wise operations. For 

example:

 1  >> a = [1,2;3,4;5,6]

 2  a =

 3  1     2

 4  3     4

 5  5     6

Chapter 2  array Based Computing

https://doi.org/10.1007/978-1-4842-3189-0_2


39

 6  >> a+2

 7  ans =

 8  3     4

 9  5     6

10  7     8

Note that a defines a 3×2 matrix so the a+2 command performs 

element-wise addition of a with a number 2. Computationally, this is done 

by creating a 3×2 matrix with all its elements as the number 2 and adding 

them.

Similarly, some other operations are shown here:

 1  >> 2*a

 2  ans =

 3  2     4

 4  6     8

 5  10    12

 6  >> 2–a

 7  ans =

 8  1     0

 9  –1    –2

10  –3    –4

11  >> a–2

12  ans =

13  –1    0

14  1     2

15  3     4

16  >> a/2

17  ans =

18  0.5000    1.0000

19  1.5000    2.0000

20  2.5000    3.0000
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The problem starts with other arithmetic operations. For example, 

when we want to calculate a2, this would mean multiplying a with itself, 

i.e., matrix multiplication. This requires either a square matrix or the inner 

dimensions to be similar because a matrix of dimension n×m can only be 

multiplied with m×t and the resultant matrix is of the dimension  

n×t. Hence, the command a^(2) will result in an error message, as shown 

here:

1  >> a^2

2  Error using ^

3  Input s must be a scalar and a square matrix.

4  To compute elementwise POWER, use POWER (.^) instead.

If we wanted to calculate element-wise squares of matrix a then the last 

line of the error message comes to the rescue. Adding a dot operator to 

a power operator (.^) will direct MATLAB to perform the same operation 

element-wise.

1  >> a.^2

2  ans =

3  1    4

4  9   16

5  25  36

On the other hand, multiplication of two matrices is the domain of 

matrix algebra, discussed next.

2.6.2  Matrix Operations on Matrices
Those who are familiar with matrix algebra know that matrix 

multiplication and division are not straightforward tasks. A m×n matrix 

can only be multiplied by a n×t matrix, which results in a×c matrix. This is 

performed by multiplying elements of rows with elements of columns to 

get new elements.
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 1  >> a = rand(2,3)

 2

 3  a =

 4

 5  0.8147     0.1270    0.6324

 6  0.9058     0.9134    0.0975

 7

 8  >> b = rand(3,4)

 9

10  b =

11

12  0.2785     0.9649    0.9572    0.1419

13  0.5469     0.1576    0.4854    0.4218

14  0.9575     0.9706    0.8003    0.9157

15  >> c = rand(2,3)

16

17  c =

18

19  0.7922     0.6557    0.8491

20  0.9595     0.0357    0.9340

21

22  >> a.*c

23

24  ans =

25

26  0.6454     0.0833    0.5370

27  0.8691     0.0326    0.0911

Here, the matrices a, b, and c are defined using the rand function 

(which generates uniformly distributed random numbers between 0 and 1). 
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Now, a*b performs matrix multiplication, whereas a.*c performs element-

wise multiplication. The requirements for both are as follows:

• For matrix multiplication, the inner dimensions must 

match.

• For element-wise multiplication, all dimensions must 

match.

Transpose

A single hash mark ('), also called an apostrophe, transposes a matrix 

(rows become columns and vice versa). Performing division on a matrix 

involves matrix inversion.

 1  >> a

 2

 3  a =

 4

 5  1    2

 6  3    4

 7  5    6

 8  >> pinv(a)

 9  ans =

10

11  –1.3333    –0.3333    0.6667

12  1.0833     0.3333   –0.4167

13  >> b

14

15  b =

16

17  5    6

18  7    8
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19  >> pinv(b)

20

21  ans =

22

23  –4.0000    3.0000

24  3.5000   –2.5000

 Inverse

The inverse of a matrix a, denoted by a−1, is a matrix such that

a * a−1 = I

where I is an identity matrix. If the given matrix is a square matrix, then 

the function inv() can be used; otherwise, the function pinv() is used. 

Examples are given here:

 1  >> a = [1,2;3,4;5,6]

 2

 3  a =

 4

 5  1     2

 6  3     4

 7  5     6

 8

 9  >> pinv(a)

10

11  ans =

12

13  –1.3333      –0.3333      0.6667

14  1.0833       0.3333     –0.4167

15
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16  >> pinv(a)*a

17

18  ans =

19

20  1.0000     0.0000

21  –0.0000    1.0000

22

23  >> a = rand(5,5)

24

25  a =

26

27  0.9649    0.8003    0.9595    0.6787    0.1712

28  0.1576    0.1419    0.6557    0.7577    0.7060

29  0.9706    0.4218    0.0357    0.7431    0.0318

30  0.9572    0.9157    0.8491    0.3922    0.2769

31  0.4854    0.7922    0.9340    0.6555    0.0462

32

33  >> inv(a)

34

35  ans =

36

37   2.5545    –0.3119    –0.0173    –0.4492   –1.9962

38  –4.9167    –0.1095     0.8740     2.7919    2.5562

39   3.3797    –0.1001    –1.3938    –1.5253   –0.8910

40  –0.6203     0.4252     0.9340    –1.0120    1.2230

41  –2.0554     1.1445     0.1203     2.0420   –0.5531

42

43  >> a_pinv(a)

44
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45  ans =

46

47   1.0000   –0.0000    0.0000   –0.0000   –0.0000

48   0.0000    1.0000   –0.0000   –0.0000    0.0000

49  –0.0000    0.0000    1.0000    0.0000    0.0000

50   0.0000   –0.0000   –0.0000    1.0000   –0.0000

51  –0.0000    0.0000    0.0000    0.0000    1.0000

I is called an identity matrix because all its diagonal elements are 1 

and all its non-diagonal elements are zero, which makes its determinant 

1. The determinant of a matrix a is calculated using the command det(a). 

Automatic generation of an identity matrix is done using the command 

eye(a,b), where a and b are values of the numbers of rows and columns.

 1  >> eye(2,2)

 2  ans =

 3

 4  1    0

 5  0    1

 6  >> det(eye(2,2))

 7  ans =

 8

 9  1

10  >> eye(4,5)

11  ans =

12

13  1    0    0    0    0

14  0    1    0    0    0

15  0    0    1    0    0

16  0    0    0    1    0
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 rank()

The rank of a matrix, i.e., the number of linearly independent rows or 

columns, can be determined by the built-in rank() function.

 1  a = ones(5,3)
 2

 3  a =
 4

 5  1    1    1

 6  1    1    1

 7  1    1    1

 8  1    1    1

 9  1    1    1

10

11  >> rank(a)

12

13  ans =

14

15  1
16

17  >> a = rand(3,2)
18

19  a =
20

21  0.4456    0.7547

22  0.6463    0.2760

23  0.7094    0.6797
24

25  >> rank(a)

26

27  ans =

28

29  2
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2.6.3  trace()
The sum of the diagonal elements of a matrix is called the trace of the 

matrix. This is given by the built-in trace() function, as follows:

 1  >> a = ones(4,4)

 2

 3  a =

 4

 5  1    1    1    1

 6  1    1    1    1

 7  1    1    1    1

 8  1    1    1    1

 9

10  >> trace(a)

11

12  ans =

13

14  4

 norm()

The norm() function calculates the 2-norm of a matrix, which is equal to 

the Euclidean length of the vector.

 1  >> A = [1,2;3,4;5,6]

 2

 3  A =

 4

 5  1     2

 6  3     4

 7  5     6

 8

Chapter 2  array Based Computing



48

 9  >> norm(A)

10

11  ans =

12

13  9.5255

14

15  >> A = [1,2,3]

16

17  A =

18

19  1     2     3

20

21  >> norm(A)

22

23  ans =

24

25  3.7417

 Logical Operations

Two matrices can be compared to each other element-wise.

 1  >> a = rand(2,3)

 2

 3  a =

 4

 5  0.6787    0.7431    0.6555

 6  0.7577    0.3922    0.1712

 7

 8  >> b = rand(2,3)

 9
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10  b =

11

12  0.7060    0.2769    0.0971

13  0.0318    0.0462    0.8235

14

15  >> c = (a<b)

16

17  c =

18

19  2x3 logical array

20

21  1   0   0

22  0   0   1

23  >> whos

24  Name      Size            Bytes    Class     Attributes

25

26  a         2x3                48    double

27  b         2x3                48    double

28  c         2x3                 6    logical

29  >> a+c

30

31  ans =

32

33  1.6787   0.7431   0.6555

34  0.7577   0.3922   1.1712

The matrix c has elements, either 1 or 0, which are assigned by 

determining whether the corresponding elements of a are smaller than 

b. Note that using whos command, we can probe the variables a, b, and c. 

The matrix c contains logical data types, i.e., 1 and 0 represent the boolean 

quantities True and False. But performing a+c treats them as numerals. 
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This artifact leads to erroneous computations, hence some programming 

languages like Python explicitly use True and False representations for 

boolean values rather than 1 and 0.

2.6.4  Polynomials and Arrays
Every matrix has a characteristic polynomial associated with it. It can be 

found using the poly() function. Let’s look at an example:

 1  >> A1 = [–3 2 0 4]

 2

 3  A1 =

 4

 5  –3     2     0     4

 6

 7  >> B1 = poly(A1)

 8

 9  B1 =

10

11  1    –3    –10    24    0

12

13  >> A2 = [1,2;3,4]

14

15  A2 =

16

17  1    2

18  3    4

19

20  >> B2 = poly(A2)

21

22  B =

23

24  1.0000    –5.0000    –2.0000
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In the first case, the resultant polynomial (given by B1) is  

x4 −3x3 −10x2 +24x, whereas in the second case (given by B2),  

it’s x2 − 5x − 2. The resultant matrix presents the coefficients of the 

characteristic polynomial.

 find()

The built-in function find() returns the row and column indices of 

non-zero entries in a matrix. For example, in the 2×2 matrix defined by 

A = [1,0;0,2], the non-zero elements exist at A(1,1) and A(2,2). The 

information about rows and columns as a vector is demonstrated here:

 1  >> A = [1,0;0,2]

 2

 3  A =

 4

 5  1    0

 6  0    2

 7

 8  >> [row,col,v]=find(A)

 9

10  row =

11

12  1

13  2

14

15

16  col =

17

18  1

19  2

20

21
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22  v =

23

24  1

25  2

 sort()

The built-in function sort() can be used to sort the elements of each 

column in a particular order. The order can be specified as a second 

argument to the function as a string (ascend or descend).

 1  >> A = [1,–2,3;4,5,–2;0,–2,3]

 2

 3  A =

 4

 5  1    –2    3

 6  4     5   –2

 7  0    –2    3

 8

 9  >> sort(A)

10

11  ans =

12

13  0    –2    –2

14  1    –2     3

15  4     5     3

16

17  >> sort(A,'ascend')

18

19  ans =

20
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21  0    –2    –2

22  1    –2     3

23  4     5     3

24

25  >> sort(A,'descend')

26

27  ans =

28

29  4    5    3

30  1   –2    3

31  0   –2   –2

2.7  Random Matrix
Using random number generators, a random matrix can be created. Use 

the rand(a,b) command:

 1  >> rand(4,5)

 2  ans =

 3

 4  Columns 1 through 4

 5

 6  0.8147    0.6324    0.9575    0.9572

 7  0.9058    0.0975    0.9649    0.4854

 8  0.1270    0.2785    0.1576    0.8003

 9  0.9134    0.5469    0.9706    0.1419

10

11  Column 5

12
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13  0.4218

14  0.9157

15  0.7922

16  0.9595

Note that the numbers generated here will be different each time even 

on the same machine, since they are supposed to be random in nature. 

By default, they are uniformly distributed over the interval (0, 1). A vector 

is simply a row vector, so it can be generated randomly using the rand(a) 

command. help rand provides a detailed description of various other 

features and arguments of the random number generator.

To create random integers, you can use randi() function. You 

can also specify a range for these random integers. For example, 

randi([1,10],1,5) will create five random integers (an array of 1× 5) 

within 1 to 10. On the other hand, randi([1,10],5) will create an array of 

random integers (an array of 5×5) within 1 to 10.

 1  >> randi([1,10],5)

 2

 3  ans =

 4

 5  5    3    5    8    10

 6  5    7   10    3     6

 7  7    7    4    6     2

 8  8    2    6    7     2

 9  8    2    3    9     3

10

11  >> randi([1,10],1,5)

12

13  ans =

14

15  9    3    9    3    10
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A random complex number can be generated using the rand 

command, as follows:

 1  >> rand + i* rand

 2

 3  ans =

 4

 5  0.3500 + 0.1966i

 6

 7  >> rand + i* rand

 8

 9  ans =

10

11  0.2511 + 0.6160i

Sometimes, you might want to generate the same set of random 

numbers each time the program executes. This can be done by setting the 

state of the random number function using the rng command, as follows:

 1  >> state 1 = rng;

 2  >> r1 = rand(2,3)

 3

 4  r1 =

 5

 6  0.4733    0.8308    0.5497

 7  0.3517    0.5853    0.9172

 8

 9  >> r12= rand(2,3)

10

11  r12=

12

13  0.2858    0.7537    0.5678

14  0.7572    0.3804    0.0759

15
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16  >> rng(s);

17  Undefined function or variable 's'.

18

19  >> rng(state 1);

20  >> r3= rand(2,3)

21

22  r3=

23

24  0.4733    0.8308    0.5497

25  0.3517    0.5853    0.9172

The state is saved in the state1 variable and then r1 and r2 creates 

two arrays of 2×3 size. They have different elements. But when the state 

is reset using rng(state1), the new array of the same size stored in r3 is 

exactly the same as r1, which was created when the state of the machine 

was saved in the state1 variable.

A normally distributed random number generator is given by the 

function randn(). The random numbers, thus generated, are normally 

distributed around 0. Figure 3-7 in Chapter 3 confirms this fact.

A 3D array of random numbers can be generated by inputting an array 

for each dimension. For example, if an array A = [3,2,4] is fed into the 

rand() function, an 3D array of random numbers is created, as shown here:

 1  >> A = [3,2,4];

 2  >> B = rand(A)

 3

 4  B(:,:,1) =

 5

 6  0.7482    0.2290

 7  0.4505    0.9133

 8  0.0838    0.1524

 9

10
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11  B(:,:,2) =

12

13  0.8258    0.0782

14  0.5383    0.4427

15  0.9961    0.1067

16

17

18  B(:,:,3) =

19

20  0.9619    0.8173

21  0.0046    0.8687

22  0.7749    0.0844

23

24

25  B(:,:,4) =

26

27  0.3998    0.4314

28  0.2599    0.9106

29  0.8001    0.1818

30

31  >> size(B)

32

33  ans =

34

35  3    2    4

2.7.1  Matrix Manipulations
Some common matrix manipulations have been written in function form, 

which makes it easier for developers to use them right away, rather than 

invest time in writing optimum code.

Chapter 2  array Based Computing



58

2.7.2  Flipping a Matrix
flipud(A) returns a copy of matrix A with the order of the rows reversed 

along the horizontal axis. flipud stands for flip-up-down. fliplr(A) 

returns a copy of matrix A with the order of the rows reversed from left to 

right. fliplr stands for flip left right.

 1  >> a = [1 2; 3 4; 5 6]

 2  a =

 3

 4  1    2

 5  3    4

 6  5    6

 7

 8  >> fliplr(a)

 9  ans =

10

11  2    1

12  4    3

13  6    5

14

15  >> flipud(a)

16  ans =

17

18  5    6

19  3    4

20  1    2

2.7.3  Rotating a Matrix
Using the command rot90(a,n), you can rotate a matrix a n times by 90 

degrees.
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 1  >> a = [1 2; 3 4; 5 6]

 2  a =

 3

 4  1    2

 5  3    4

 6  5    6

 7

 8  >> rot90(a,1)

 9  ans =

10

11  2    4    6

12  1    3    5

13

14  >> rot90(a,2)

15  ans =

16

17  6    5

18  4    3

19  2    1

20

21  >> rot90(a,4)

22  ans =

23

24  1    2

25  3    4

26  5    6

2.7.4  Reshaping a Matrix
The number of rows and columns in a matrix can be changed provided the 

total number of elements remains the same.
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 1  >> a = [1 2; 3 4; 5 6]

 2  a =

 3

 4  1    2

 5  3    4

 6  5    6

 7

 8  >> reshape(a,6,1)

 9  ans =

10

11  1

12  3

13  5

14  2

15  4

16  6

17  >> reshape(a,4,1)

18  Error using reshape

19  To RESHAPE the number of elements must not change.

2.7.5  Sorting
Numbers can be sorted in increasing order using the sort function:

1  >> a = rand(1,5)

2  a =

3

4  0.7431    0.3922    0.6555    0.1712    0.7060

5
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6  >> sort(a)

7  ans =

8

9  0.1712    0.3922    0.6555    0.7060    0.7431

2.7.6  Upper and Lower Triangular Matrix
The upper triangular matrix is such that only diagonal and elements above 

diagonal are non-zero. Similarly, the lower triangular matrix is such that 

diagonal and elements below diagonal are non-zero.

 1  >> a = rand(3,3)

 2  a =

 3

 4  0.0318    0.0971    0.3171

 5  0.2769    0.8235    0.9502

 6  0.0462    0.6948    0.0344

 7

 8  >> tril(a)

 9  ans =

10

11  0.0318    0         0

12  0.2769    0.8235    0

13  0.0462    0.6948    0.0344

14

15  >> triu(a)

16  ans =

17

18  0.0318    0.0971    0.3171

19  0         0.8235    0.9502

20  0         0         0.0344
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2.7.7  Ones and Zeros Matrix
A matrix having all its numbers as 1 or 0 make up a ones and zeros matrix, 

respectively:

 1  >> ones(3,3)

 2  ans =

 3

 4  1    1    1

 5  1    1    1

 6  1    1    1

 7

 8  >> zeros(3,3)

 9  ans =

10

11  0    0    0

12  0    0    0

13  0    0    0

2.8  Indexing
Each element of the matrix is characterized by two numbers, the row 

number and the column number. This is used to pinpoint an element and 

operate on that.

 1  >> a = rand(2,3)

 2  a =

 3

 4  0.6557    0.8491    0.6787

 5  0.0357    0.9340    0.7577

 6
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 7  >> a(2,3)=1

 8  a =

 9

10  0.6557    0.8491    0.6787

11  0.0357    0.9340    1.0000

12

13  >> a(1,1)=0

14  a =

15

16  0         0.8491    0.6787

17  0.0357    0.9340    1.0000

Note that a(2,3)=1 sets the element at the second row and third 

column, i.e., number 0.3041072 to 1, and a(1,1)=0 sets the element at the 

first row and first column, i.e., number 0.5248873 to 0. To index numbers in 

a vector, you need a single number.

 1  >> a = [1,2,3,4,5,6,7,8,9]

 2  a =

 3

 4  Columns 1 through 7

 5

 6  1    2    3    4    5    6    7

 7

 8  Columns 8 through 9

 9

10  8    9

11

12  >> a(1)

13  ans =

14

15  1
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16  >> a(–1)

17  Subscript indices must either be real

18  positive integers or logicals.

19  >> a(5)

20  ans =

21

22  5

23  >> a(10)

24  Index exceeds matrix dimensions.

It is important to note that, unlike some programming languages 

where indices start at 0, MATLAB starts indices at 1 and does not take 

negative numbers as indices.

2.8.1  Using Indices to Create a New Vector
1  >> a = [10 20 30 40 50 60]

2  a =

3

4  10   20   30   40   50   60

5

6  >> b = a([1 3 6 1])

7  b =

8

9  10   30   60   10

In the previous example, b is a new vector formed from vector a, where 

successive elements are made up of elements taken from an index vector 

[1 3 6 1].

 1  >> a = [11,12,13;40,50,60;17,18,19]

 2  a =

 3
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 4  11    12    13

 5  40    50    60

 6  17    18    19

 7

 8  >> a([1,2], [2,3])

 9  ans =

10

11  12    13

12  50    60

Note that since the use of the comma operator is optional, we will 

define vectors and matrices by simply using whitespace.

2.9  Slicing
Matrices can be sliced to desired portions by using indices and the colon : 

operator.

 1  >> a = [1 2 3 4 1 3 2 4 6 4 5]

 2  a =

 3

 4  Columns 1 through 7

 5

 6  1    2    3    4    1    3    2

 7

 8  Columns 8 through 11

 9

10  4     6     4     5

11
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12  >> b =a(1:5)

13  b =

14

15  1   2   3   4   1

16

17  >> c = a(5:7)

18  c =

19

20  1    3    2

This is an important feature, as most of experimental calculations 

would demand filtering the data. Here, a slice of data will be stored 

separately in a variable and then various mathematical operations can be 

performed on it.

Now let’s try to access slices of a multidimensional array. A matrix a is 

defined to be a 5×5 matrix.

 1  >> a = rand(5,5)

 2

 3  a =

 4

 5  0.6948    0.3816    0.4456    0.6797    0.9597

 6  0.3171    0.7655    0.6463    0.6551    0.3404

 7  0.9502    0.7952    0.7094    0.1626    0.5853

 8  0.0344    0.1869    0.7547    0.1190    0.2238

 9  0.4387    0.4898    0.2760    0.4984    0.7513

10

11  >> b = a(1,1)

12

13  b =

14

15  0.6948
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16  >> c = a(1,:)

17

18  c =

19

20  0.6948    0.3816    0.4456    0.6797    0.9597

21

22  >> d = a(:,1)

23

24  d =

25

26  0.6948

27  0.3171

28  0.9502

29  0.0344

30  0.4387

31  >> e = a(:)

32

33  e =

34

35  0.6948

36  0.3171

37  0.9502

38  0.0344

39  0.4387

40  0.3816

41  0.7655

42  0.7952

43  0.1869

44  0.4898

45  0.4456

46  0.6463
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47  0.7094

48  0.7547

49  0.2760

50  0.6797

51  0.6551

52  0.1626

53  0.1190

54  0.4984

55  0.9597

56  0.3404

57  0.5853

58  0.2238

59  0.7513

60  >> f = a(:,[1,3])

61

62  f =

63

64  0.6948    0.4456

65  0.3171    0.6463

66  0.9502    0.7094

67  0.0344    0.7547

68  0.4387    0.2760

69  >> g= a([1,3],:)

70

71  g =

72

73  0.6948    0.3816    0.4456    0.6797    0.9597

74  0.9502    0.7952    0.7094    0.1626    0.5853

• To access a single element, we use the index value of 

the row and column, For example, b = a(1,1) accesses 

the element within the first row and first column.
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• To access all elements of a row or column, you can 

use the : operator. Hence, c = a(1,:) accesses all 

elements of the first row. Similarly, >> d = a(:,1) 

accesses all elements of the first column. A simple way 

to remember in words is to read the colon (:) as all 

elements for and then the words nth row/column, where 

n is a given value.

• Using a(:), you can create a new column matrix that 

has all the elements.

• A sub-matrix can be accessed by defining all elements 

for column/row and then defining indices in square 

brackets. For example, f = a(:,[1,3]) defines a new 

matrix where elements are composed of all elements of 

the first and third columns. Similarly, a([1,3],:) uses 

all elements of first and third rows.

You can compose complex sub-matrices using this powerful way of 

defining your choice of elements.

 1  >> a = rand(5,6)

 2

 3  a =

 4

 5  0.3510    0.1233    0.9027    0.9001    0.2417    0.9561

 6  0.5132    0.1839    0.9448    0.3692    0.4039    0.5752

 7  0.4018    0.2400    0.4909    0.1112    0.0965    0.0598

 8  0.0760    0.4173    0.4893    0.7803    0.1320    0.2348

 9  0.2399    0.0497    0.3377    0.3897    0.9421    0.3532

10

11  >> b = a([2,5],1:3)

12
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13  b =

14

15  0.5132    0.1839    0.9448

16  0.2399    0.0497    0.3377

17  >> c = a(2:5,[1,3])

18

19  c =

20

21  0.5132    0.9448

22  0.4018    0.4909

23  0.0760    0.4893

24  0.2399    0.3377

25  >> d = a([2,5],[1,3])

26

27  d =

28

29  0.5132    0.9448

30  0.2399    0.3377

31  >>e = a(2:5,1:3)

32

33  e=

34

35  0.5132    0.1839    0.9448

36  0.4018    0.2400    0.4909

37  0.0760    0.4173    0.4893

38  0.2399    0.0497    0.3377

We define a new 5×5 matrix a and then define a subset of this matrix using 

a([2,5],1:3), which says that from the second and third row, take elements 

from the first column to the third column. Similarly, c = a(2:5,[1,3]) creates 

a matrix using this logic: from the first and fifth column, take elements from the 

second row to the third row. Now you can easily guess what a([2,5],[1,3]) 
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and a(2:5,1:3) should do. It’s a good idea to practice slicing of arrays 

rigorously, as this is one of the most sought-after skills in data cleaning and 

data analysis in general.

2.10  Automatic Generation of Arrays
MATLAB presents a variety of ways to generate arrays of numbers 

automatically according to a specified rule. Three methods are discussed 

in the following sections.

2.10.1  The : Operator
One of the most useful operators in MATLAB, the : operator can be 

mastered easily. You have already seen its usage in selecting a sub-matrix 

in Chapter 2.

 1  >> help:

 2  :  Colon.

 3  J:K is the same as [J,J+1,...,J+m], where m = fix(K–J). In the

 4   case where both J and K are integers, this is simply 

[J,J+1,...,K].

 5  This syntax returns an empty matrix if J>K.

 6

 7   J:I:K is the same as [J,J+I,...,J+m_I], where  

m = fix((K–J)/I).

 8   This syntax returns an empty matrix when I == 0,  

I>0 and J>K, or

 9  I<0 and J<K.

10

11   colon (J,K) is the same as J:K and colon (J,I,K) is the 

same as J:I:K.

12
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13   The colon notation can be used to pick out selected rows, 

columns

14  and elements of vectors, matrices, and arrays. A(:) is all the

15   elements of A, regarded as a single column. On the left 

side of an

16   assignment statement, A(:) fills A, preserving its shape 

from before.

17   A(:,J) is the J–th column of A. A(J:K) is 

[A(J),A(J+1),...,A(K)].

18  A(:,J:K) is [A(:,J),A(:,J+1),...,A(:,K)] and so on.

19

20   The colon notation can be used with acellar ray to produce 

a comma–

21  separated list. C{:} is the same as Cf1g,Cf2g,...,Cfendg.

22   The comma separated list syntax is valid inside () for 

function calls, [] for

23   concatenation and function return arguments, and inside fg 

to produce

24   a cell array. Expressions such as S(:). name produce the 

comma

25   separated list S(1).name,S(2).name,...,S(end). name for the 

structure S.

26

27   For the use of the colon in the FOR statement, See FOR.

28   For the use of the colon in a comma separated list, See 

VARARGIN.

29

30  Reference page for colon

31  Other functions named colon
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You can generate a series of numbers and store them as arrays by using 

the start:step:stop command.

 1  >> a=1:1:10

 2  a =

 3

 4  Columns 1 through 7

 5

 6  1    2    3    4    5    6    7

 7

 8  Columns 8 through 10

 9

10  8    9    10

11

12  >> a =[1:1:10]

13  a =

14

15  Columns 1 through 7

16

17  1    2    3    4    5    6    7

18

19  Columns 8 through 10

20

21  8    9    10

Note that brackets ([]) are optional here. If a step is not defined, then it 

is taken as 1.

 1  >> a=1:10

 2  a =

 3

 4  Columns 1 through 7

 5
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 6  1    2    3    4    5    6    7

 7

 8  Columns 8 through 10

 9

10  8    9    10

11

12  >> a=1:2:10

13

14  a =

15

16  1    3    5    7    9

2.10.2  Linearly Spaced Vectors
The linspace(start, stop, n) command produces an array starting at 

the first number and stopping at the second one with a total of n numbers. 

Hence, they are linearly spaced.

 1  >> a = linspace(1,2,5)

 2  a =

 3

 4  Columns 1 through 4

 5

 6  1.0000    1.2500    1.5000    1.7500

 7

 8  Column 5

 9

10  2.0000

11

12  >> a = linspace(1,2,10)

13  a =

14
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15  Columns 1 through 4

16

17  1.0000    1.1111    1.2222    1.3333

18

19  Columns 5 through 8

20

21  1.4444    1.5556    1.6667    1.7778

22

23  Columns 9 through 10

24

25  1.8889    2.0000

2.10.3  logspace
Similar to the linspace command, logspace(start, stop, n) produces 

n numbers from start to stop, which are linearly spaced in logarithmic 

nature.

 1  >>> help logspace

 2  logspace Logarithmically spaced vector.

 3   logspace(X1,X2) generates a row vector of 50 

logarithmically

 4  equally spaced points between decades 10^X1 and 10^X2. If X2

 5  is pi, then the points are between 10^X1 and pi.

 6

 7  logspace(X1,X2,N) generates N points.

 8  For N = 1, logspace returns 10^X2.

 9

10  Class support for inputs X1,X2:

11  float:double, single

12
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13  See also linspace, colon.

14

15  Reference page for logspace

16  >>>logspace (1,5,10)

17

18  ans =

19

20  1.0e+05 *

21

22  Columns 1 through 4

23

24  0.0001    0.0003    0.0008    0.0022

25

26  Columns 5 through 8

27

28  0.0060    0.0167    0.0464    0.1292

29

30  Columns 9 through 10

31

32  0.3594    1.0000

2.11  Solving a System of Equations
Solving a system of equations in one line simply involves the \ operator. 

Suppose the following system of equations needs to be solved:

 2 2 4x y- =  (Equation 2-1)

 - + =3 4 9x y  (Equation 2-2)
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You can define this problem in a matrix, as follows:
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3 4
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é

ë
ê
ù
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 (Equation 2-3)

Suppose:

 A =
-

-
é

ë
ê

ù

û
ú

2 2

3 4
 (Equation 2-4)

 X
x

y
=
é

ë
ê

ù

û
ú  (Equation 2-5)

 B =
é

ë
ê
ù

û
ú

4

9
 (Equation 2-6)

In this way, you can write the following:

 A X B´ =  (Equation 2-7)

The solution is given by X = A−1B. You can find the inverse of A (using 

the inv() or pinv()) function) and then multiply the resultant matrix with 

the matrix given by B to find a solution. Alternatively, you can accomplish 

this task in just one command, as A\B:

 1  >> A = [2,–2;–3,4]

 2

 3  A =

 4

 5  2   –2

 6  –3    4

 7

 8  >> B = [4;9]

 9
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10  B =

11

12  4   9

13

14  >> C = A/B

15

16  ans =

17

18  17.0000

19  15.0000

Hence, the solution is x = 17 and y = 15. Since the elements of the C 

matrix are solutions, this is often called a solution matrix.

2.12  Eigen Values and Eigen Vectors
The eigenvalue problem is to determine the solution to the equation  

Av = λv, where A is an n × n matrix, v is a column vector of length n, and 

λ is a scalar. The values of λ that satisfy the equation are the eigenvalues. 

The corresponding values of v that satisfy the equation are the right 

eigenvectors. The left eigenvectors, w, satisfy the equation ¢ ¢=w A wl . The 

MATLAB function eig() returns the eigenvalues and eigenvectors. It also 

gives the matrix D (diagonal matrix D of eigenvalues), which is related to W 

and A as ¢ ¢=WA DW :

 1  >> A = rand(3,3)

 2

 3  A =

 4

 5  0.6551    0.4984    0.5853

 6  0.1626    0.9597    0.2238

 7  0.1190    0.3404    0.7513

 8
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 9  >> [V,D,W] = eig(A)

10

11  V =

12

13  –0.7284   –0.9532   0.8945

14  –0.5300   0.2997    –0.4178

15  –0.4341   0.0411    0.1590

16

17

18  D =

19

20  1.3665        0             0

21  0             0.4732        0

22  0             0             0.5264

23

24

25  W =

26

27  –0.2724    –0.3066    –0.1266

28  –0.7915    –0.3145    –0.5186

29  –0.5471    0.8984     0.8456

2.13  Structure Arrays
Arrays stores elements of the same data types, whereas structure arrays 

can store data of different data types. Structures are collections of data 

organized by named fields. For example, one field may contain textual 

data, another a number, and a third may be an array, etc. A single structure 

is a 1-by-1 structure array. Let’s understand how to create them by using 

an example. Let’s create a structure array for this book and name this 

array book. Now, various fields can be added using the dot operator, such 
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as name, author, pages, and chapter. The book array is a 1-by-1 structure 

with four fields. This is demonstrated here.

 1  >> book.name = 'Introducing MATLAB'

 2

 3  book =

 4

 5  struct with fields:

 6

 7  name:'Introducing MATLAB'

 8

 9  >> book.author = 'Sandeep Nagar'

10

11  book =

12

13  struct with fields:

14

15  name:'Introducing MATLAB'

16  author:'Sandeep Nagar'

17

18  >> book.pages = '175'

19

20  book =

21

22  struct with fields:

23

24  name:'Introducing MATLAB'

25  author:'Sandeep Nagar'

26  pages:'175'

27

28  >> book.chapters = [1 2 3 4 5 6 7]

29
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30  book =

31

32  struct with fields:

33

34  name:'Introducing MATLAB'

35  author:'Sandeep Nagar'

36  pages:'175'

37  chapters:[1 2 3 4 5 6 7]

2.13.1  Defining a New Structure Element 
Within a Structure Array

A new structure element can be defined within an existing structure array 

(book, in this example) using index values in the following manner.

 1  >> book(2).name = 'Introducing SCILAB'

 2

 3  book =

 4

 5  1x2 struct array with fields:

 6

 7  name

 8  author

 9  pages

10  chapters

11

12  >> book(2).author = 'Sandeep Nagar'

13

14  book =

15

16  1x2 struct array with fields:

17
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18  name

19  author

20  pages

21  chapters

22

23  >> book(2).pages = 175

24

25  book =

26

27  1x2 struct array with fields:

28

29  name

30  author

31  pages

32  chapters

33

34  >> book(2).chapters = [1 2 3 4 5 6 7 8 9]

35

36  book =

37

38  1x2 struct array with fields:

39

40  name

41  author

42  pages

43  chapters

In this way, the book is now a 1×2 structure array. All structures in a 

structure array have the same number of fields and all fields have the same 

number of field names. When the name of the structure array is entered at 

the command prompt, the summary of information and fields is displayed. 
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The fieldnames() function can be used to get a cell array having 

information about the fields. This is demonstrated in the following code.

 1  >> book

 2

 3  book =

 4

 5  1x2 struct array with fields:

 6

 7  name

 8  author

 9  pages

10  chapters

11

12  >> fieldnames(book)

13

14  ans =

15

16  4x1 cell array

17

18  'name'

19  'author'

20  'pages'

21  'chapters'

While expanding a structure array, it is not mandatory to fill in all the 

fields. Fields that are not associated with values are left empty.

2.13.2  Adding and Removing Fields
A new field can be added at any point to a single structure. For example, 

let’s add the field publisher to the structure book, as demonstrated here.
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 1  >> book(2).publisher = 'Apress'

 2

 3  book =

 4

 5  1x2 struct array with fields:

 6

 7  name

 8  author

 9  pages

10  chapters

11  publisher

12

13  >> book

14

15  book =

16

17  1x2 struct array with fields:

18

19  name

20  author

21  pages

22  chapters

23  publisher

24

25  >> book = rmfield(book,'publisher')

26

27  book =

28

29  1x2 struct array with fields:

30
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31  name

32  author

33  pages

34  chapters

To remove a field, say publisher, from the structure book, you can use 

the rmfield() function, as demonstrated.

2.13.3  struct()
The function struct() can also be used to define a structured array with 

the syntax shown in the following code:

 1   >> book1 = struct('name','Introducing MATLAB','author', 

'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6, 7])

 2

 3  book1 =

 4

 5  struct with fields:

 6

 7  name:'Introducing MATLAB'

 8  author:'Sandeep Nagar'

 9  pages:175

10  chapters:[1 2 3 4 5 6 7]

11

12  >> book1(2) = struct('name','Introducing python','author',

     'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6, 

7, 8, 9])

13

14  book1 =

15
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16  1x2 struct array with fields:

17

18  name

19  author

20  pages

21  chapters

A new structure named book1 is created where field names and values 

are filled in successively. It can be expanded using the index number in a 

similar fashion, making it a 1-by-2 structure array.

A structure array may contain another structure or even a structure 

array as its fields. These are called nested array. This is demonstrated here, 

where book1 (a structure array defined previously) is added as a new field 

to the structure array book.

 1  >> book(3).linked book = book1

 2

 3  book =

 4

 5  1x3 struct array with fields:

 6

 7  name

 8  author

 9  pages

10  chapters

11  linked_book

2.14  Getting Data from a Structure Array
Data values can be assigned from a structure array using index numbers, 

as demonstrated next. Here, info1 stores the value of the field name for the 

second structure (signified by the syntax book(2)). In a similar fashion, 
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info2 stores the value of the field name for the first structure (signified by 

the syntax book(1)). The variable info3 extracts the third element of the 

field chapter from the second structure of the structure array book.

 1  >> info1 = book(2).name()

 2

 3  info1 =

 4

 5  'Introducing SCILAB'

 6

 7  >> info2 = book(1).name()

 8

 9  info1 =

10

11  'Introducing MATLAB'

12

13  info3 = book(2).chapters(3)

14

15  info3 =

16

17  3

2.15  Cell Arrays
Cell arrays are arrays of cells where each cell stores an array. Within a cell, 

elements must be the same type (because cells store arrays), but two cells 

may have different types. For example, suppose you have three arrays—

array1 (stores numerical values), array2 (stores textual values), and 

array2 (stores numerical values). You can then construct a cell array using 

these three arrays. The elements of this cell array store different types of 

arrays, but each element stores just one type of data.
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2.15.1  Creating Cell Arrays
The cell(m,n) function makes an empty cell array of the size m − by − n. 

By assigning data values to this empty cell array, it can then be constructed 

as desired, one cell at a time. Let’s first create an empty cell array, 

referenced by a variable, say a. There are two ways to assign the data:

• Cell indexing: Cell indices are mentioned within 

parentheses () and cell contents are mentioned within 

brackets {} on either side of assignment operator, like so:

 1  >> a = cell(3,3)

 2

 3  a =

 4

 5  3x3 cell array

 6

 7  []    []    []

 8  []    []    []

 9  []    []    []

10

11  >> a(1,1) = ([1,2,3]);

12  >> a(1,2) = (['a','b']);

13  >> a(1,3) = ("Sandeep");

14  >> a(2,3) = ([1.5,–2]);

15  >> a(2,2) = ([–200]);

16  >> a(2,1) = (["Nagar"]);

17  >> a(3,1) = ([–10,–15.5,5.3]);

18  >> a(3,2) = (["Hello"]);

19  >> a(3,3) = (["World"])

20

21  a =

22
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23  3x3 cell array

24

25  [1x3 double]    'ab'           ["Sandeep"]

26  ["Nagar"]       [–200]         [1x2 double]

27  [1x3 double]    ["Hello"]      ["World"]

28

• Content indexing: Here, brackets/parentheses are used 

in reverse fashion, i.e., () for content and [] for indices.

 1  >> a = cell(3,3)

 2

 3  a =

 4

 5  3x3 cell array

 6

 7  []    []    []

 8  []    []    []

 9  []    []    []

10

11  >> a {1,1} = ([1,2,3]);

12  >> a {1,2} = (['a','b']);

13  >> a {1,3} = ("Sandeep");

14  >> a {2,3} = ([1.5,–2]);

15  >> a {2,2} = ([–200]);

16  >> a {2,1} = (["Nagar"]);

17  >> a {3,1} = ([–10,–15.5,5.3]);

18  >> a {3,2} = (["Hello"]);

19  >> a {3,3} = (["World"])

20
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21  a =

22

23  3x3 cell array

24

25  [1x3 double]    'ab'         ["Sandeep"]

26  ["Nagar"]       [–200]       [1x2 double]

27  [1x3 double]    ["Hello"]    ["World"]

28

2.15.2  The celldisp() and cellplot() Functions
The constructed cell arrays can be displayed by using two functions called 

celldisp() and cellplot(). The celldisp() command displays the full 

cell contents, whereas cellplot() displays a graphical display of the cell 

architecture. See Figure 2-1.

ab

-200

Figure 2-1. Output of cellplot (a)
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2.15.3  The cell2struct(), num2cell(), and  
struct2cell() Functions

The cell2struct() command can be used to convert a cell array to a 

structure. Similarly, num2cell() can be used to convert a numeric array 

into a cell array and struct2cell() can be used to convert a structure into 

a cell array.

2.16  Summary
Array based computing lies at the very heart of modern computational 

techniques. MATLAB presents a very suitable platform to perform this 

technique with ease. A variety of predefined functions enable users to 

save time while prototyping a problem. Having flexible methods to define 

multidimensional arrays and perform fast computation is the necessity of 

our times. Most of the time spent on a simulation is either in loops or in 

array operations. Predefined array operations have been optimized with 

algorithms for reliability, time savings, and efficient memory management.
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