
21© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_2

CHAPTER 2

Array Based
Computing

2.1 Introduction
Matrices have become an integrated part of numerical computation

for dealing with large quantities of data. For a two-dimensional matrix,

elements have unique row and column indices through which you can

access them. Rows and columns can be attributed to different properties

under study. For example, if you measure the temperature and pressure at

four corners of the square, the x, y coordinates associated with the corner

points can be assigned to row and column numbers. Now the experimental

data can be simply represented as a matrix. In this way, you can fit data

for two properties as a matrix and then use these matrices for numerical

calculations.

As an example, suppose an element of a row is defined as 1 if a

compound is a conductor, it’s 2 if it is a semiconductor, and it’s 3 if it is an

insulator. Then, a row vector (a matrix composed of only one row) [1 0 0

3 2 1 3 0 1 0 3 2 1] has information about 13 compounds. In electrical

conductivity experiments, this row vector (a 13×1 matrix) can be utilized

as input. In this way, you need to model the system in terms of matrix

formulation to be solved using MATLAB.

https://doi.org/10.1007/978-1-4842-3189-0_2

22

MATLAB defines a data object for dealing with matrices. They are

called arrays. Using different properties of this object, you can define

various kinds of matrices. Built-in functions for matrix operations make it

easier for a programmer to deal with large amounts of data by arranging

it as a matrix in the desired format and performing array operations. This

chapter explores the various options for defining and manipulating arrays.

Since MATLAB was made for matrix manipulation, it has a large set

of built-in functions and a robust environment to define and work with

matrices.

2.2 Arrays and Vectors
Instead of just pointing to a single number, a variable name can also point

to a sequential set of numbers, called an array. The following example

shows how this can be achieved:

 1 >> a = [1,2,3,4,5]

 2 a =

 3

 4 1 2 3 4 5

 5

 6 >> a1 = [10,11,12,13,14]

 7 a1 =

 8

 9 10 11 12 13 14

10 >> matrix22 = [1,2;3,4]

11 matrix22 =

12

13 1 2

14 3 4

Chapter 2 array Based Computing

23

15 >> matrix33 = [1,2,3;4,5,6;7,8,9]

16 matrix33 =

17

18 1 2 3

19 4 5 6

20 7 8 9

21 >> size(a)

22 ans =

23

24 1 5

25

26 >> size(matrix22)

27 ans =

28

29 2 2

30

31 >> size(matrix33)

32 ans =

33

34 3 3

As seen in the example code, an array can be understood as a matrix

consisting of rows and columns. Thus, you can make a desired sized

matrix. For example, matrix22 is a 2×2 and matrix33 is a 3×3 matrix,

whereas a is a 1×5 matrix. The first number listed while defining the size

indicates the number of rows, whereas the second number indicates

the number of columns. It is also important to note that the comma (,)

operator operates by defining the next element in the same row, whereas

the semicolon (;) operator defines the numbers in the next line/row.

A matrix is defined within the brackets of the type [] (commonly called

square brackets).

Chapter 2 array Based Computing

24

If the number of elements in each row/column do not match, you get

an error message:

 1 >> right33 = [1,2,3;4,5,6;7,8,9]

 2 right33 =

 3

 4 1 2 3

 5 4 5 6

 6 7 8 9

 7

 8 >> wrong33 = [2,3;4,5,6;7,8,9]

 9 Dimensions of matrices being concatenated are

10 not consistent.

11 >> wrong33 = [1,2,3;4,5,6;8,9]

12 Dimensions of matrices being concatenated are

13 not consistent.

2.3 Creating Arrays from Other Arrays
Multi-dimensional arrays can be created from other multi-dimensional

arrays too, as explained here:

 1 >> a = [1,2,3;4,5,6]

 2

 3 a =

 4

 5 1 2 3

 6 4 5 6

 7

 8 >> B = [(1:3);(4:6);(7:9)]

 9

Chapter 2 array Based Computing

25

10 B =

11

12 1 2 3

13 4 5 6

14 7 8 9

15

16 >> c = [a;B]

17

18 c =

19

20 1 2 3

21 4 5 6

22 1 2 3

23 4 5 6

24 7 8 9

25

26 >>>c = [a,B]

27

28 Error using horzcat

29 Dimensions of matrices being concatenated are not

30 consistent.

Here, the matrix a has elements 1, 2, 3 in the first row. Then a row

separator (;) defines the next row of elements as 4, 5, 6. Similarly, matrix B

has the rows defined by these commands:

• (1 : 3) results in (1, 2, 3)

• (4 : 6) results in (4, 5, 6)

• (7 : 9) results in (178, 9)

Note the MATLAB variable names are case sensitive, so a is not the

same as A. A new matrix called c is created by vertically concatenating the

Chapter 2 array Based Computing

26

matrices a and B. The resultant matrix c is made of elements of a stacked

on top of elements of B. The c=[a, B] command yields an error because

the dimensions of a and B are not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the

following ways in this example:

 1 >> a = 1:3

 2

 3 a =

 4

 5 1 2 3

 6

 7 >> A = [a,a]

 8

 9 A =

10

11 1 2 3 1 2 3

For multidimensional arrays, use this code:

 1 >> a = 1:4

 2

 3 a =

 4

 5 1 2 3 4

 6

 7 >> A = [a;a]

 8

 9 A =

10

11 1 2 3 4

12 1 2 3 4

13

Chapter 2 array Based Computing

27

14 >> AA = [A,A]

15

16 AA =

17

18 1 2 3 4 1 2 3 4

19 1 2 3 4 1 2 3 4

2.3.1 Appending Rows and Columns
When an entire row or column of a matrix needs to be appended, you must

consider only one thing—the size of new matrix must match the row and

column requirements. As an example, define an array A, B, D with sizes

(2×2), (1×2), and (2×1), respectively. The row matrix B can be inserted as

a row of A and the column matrix D can be inserted as a row of A, as shown

here:

 1 >> A = [1,2;3,4]

 2

 3 A =

 4

 5 1 2

 6 3 4

 7

 8 >> B = [5,6]

 9

10 B =

11

12 5 6

13

14 >> size(A)

15

Chapter 2 array Based Computing

28

16 ans =

17

18 2 2

19

20 >> size(B)

21

22 ans =

23

24 1 2

25

26 >> C = [A;B]

27

28 C =

29

30 1 2

31 3 4

32 5 6

33

34 >> size(C)

35

36 ans =

37

38 3 2

39

40 >> D = [5;6]

41

42 D =

43

44 5

45 6

46

Chapter 2 array Based Computing

29

47 >> size(D)

48

49 ans =

50

51 2 1

52

53 >> E = [A,D]

54

55 E =

56

57 1 2 5

58 3 4 6

59

60 >> size(E)

61

62 ans =

63

64 2 3

2.3.2 Deleting a Row and/or Column of a Matrix
Rows and columns can be deleted by assigning null matrices [] to them.

For example, (1,:)=[] deletes the first row and (:,1)=[] deletes the first

column of a matrix, as shown here:

 1 >> A = rand(3,3)

 2

 3 A =

 4

 5 0.8147 0.9134 0.2785

 6 0.9058 0.6324 0.5469

 7 0.1270 0.0975 0.9575

 8

Chapter 2 array Based Computing

30

 9 >> A(1,:) =[]

10

11 A =

12

13 0.9058 0.6324 0.5469

14 0.1270 0.0975 0.9575

15

16 >> A(:,1) =[]

17

18 A =

19

20 0.6324 0.5469

21 0.0975 0.9575

2.3.3 Concatenation Along a Dimension
Concatenation of two matrices along a dimension can be obtained using

cat(dim, A, B, ...), where dim presents the dimension and A and B are

the input matrices. Its usage is shown here:

 1 >> A = [1,2;3,4]

 2 A =

 3 1 2

 4 3 4

 5 >> B = [5,6;7,8]

 6 B =

 7 5 6

 8 7 8

 9 >> cat(1,A,B)

10 ans =

11 1 2

12 3 4

Chapter 2 array Based Computing

31

13 5 6

14 7 8

15 >> cat(2,A,B)

16 ans =

17 1 2 5 6

18 3 4 7 8

19 >> C = cat(3,A,B)

20 ans(:,:,1) =

21 1 2

22 3 4

23 ans(:,:,2) =

24 5 6

25 7 8

26 >>> size(C)

27 ans =

28 2 2 2

When cat(1,A,B) is entered at the command prompt, A and B are

concatenated row-wise and cat(2,A,B) performs concatenation column-

wise. In case of cat(3,A,B), a new matrix is created whose first element of

the third dimension is the matrix A and the second element is the matrix B.

2.3.4 Selecting the Data Type of Elements
Elements of an array can be any data type, as explained in Chapter 1.

All elements of an array can be set to a particular data type using the

commands shown here:

 1 >> x = uint32([1,65535])

 2 x =

 3

 4 1x2 uint32 row vector

 5

Chapter 2 array Based Computing

https://doi.org/10.1007/978-1-4842-3189-0_1

32

 6 1 65535

 7

 8 >> x = uint64([1,65535])

 9 x =

10

11 1x2 uint64 row vector

12

13 1 65535

14

15 >> x = int16([1,65535])

16 x =

17

18 1x2 int6 row vector

19

20 1 32767

21

22 >> x = int32([1,65535])

23 x =

24

25 1x2 int32 row vector

26

27 1 65535

28

29 >> x = int64([1,65535])

30 x =

31

32 1x2 int64 row vector

33

34 1 65535

35

Chapter 2 array Based Computing

33

36 >> x = single([1,65535])

37 x =

38

39 1x2 single row vector

40

41 1 65535

42

43 >> x = double([1,65535])

44 x =

45

46 1 65535

47

48 >> x = single([1.0,65535e10])

49 x =

50

51 1x2 single row vector

52

53 1.0e+14*

54

55 0.0000 6.5535

56

57 >> x = double([1.0,65535e10])

58 x =

59

60 1.0e+14*

61

62 0.0000 6.5535

Line 15 shows that if the element is set to int16, then it can store a

maximum value of 32767, regardless of being commanded to store a value

bigger than that. Hence, it becomes supremely important to understand

Chapter 2 array Based Computing

34

the data type of the elements beforehand, in order to avoid errors in

numerical calculations. Keep in mind that storing very small numbers

in larger numbers of bits is a waste of memory. (Line 46 displays that the

number 1, which is stored as a double precision floating point number,

occupies 64 bits, where essentially 63 bits except the last one are all zeros!)

2.4 Arithmetic Operations on Arrays
Operating on arrays involves two aspects:

• Operating on two or more arrays

• Element-wise operations

All arithmetic operators (such as +, -, *, /, %, ^, etc.) can be used in

both cases. When you need to do element-wise operation, then a . (dot) is

placed before the operator. The element-wise operators become .+, .-, .*,

./, .%, and .^. This will become more clear in following example.

 1 >> a = [1,2;3,4]

 2 a =

 3

 4 1 2

 5 3 4

 6

 7 >> b = [5,6;7,8]

 8 b =

 9

10 5 6

11 7 8

12

Chapter 2 array Based Computing

35

13 >> a+b

14 ans =

15

16 6 8

17 10 12

18

19 >> 2.+a

20 ans =

21

22 3 4

23 5 6

24

25 >> –10.+b

26 ans =

27

28 –5 –4

29 –3 –2

When a and b are matrices to be added/subtracted, their elements are

added/subtracted to elements in the same position. For this reason, the

size of the two matrices should be same. On the other hand, when you

write 2.+a, you add the number 2 to each of the elements individually.

This can be done regardless of the size and is implemented uniformly on

all the elements of the matrix.

2.5 Built-In Functions
A host of built-in functions provide facilities to calculate properties of

arrays for quick computation. This includes:

• Summing all elements using sum() function.

• Finding the product of all elements of an array using

prod().

Chapter 2 array Based Computing

36

• Finding the length of array using length().

• Finding the mean of array elements using the mean()

function.

• Finding the maximum and minimum amongst an

element of an array using max() and min() of an array.

• Finding a particular element as per a logical expression

using the find() function.

• The rounding elements are as follows:

 – Rounding the elements of an array to the nearest

integer toward zero using the fix() function.

 – Rounding the elements of an array to the nearest

integer toward −• using the floor() function.

 – Rounding the elements of an array to the nearest

integer toward +• using the ceil() function.

 – Rounding the elements of an array to the nearest

integer using the rounding() function.

• Sorting the elements of an array using sort() in

ascending or descending order.

Their usage is demonstrated here:

 1 >> A = 1:5

 2 A =

 3 1 2 3 4 5

 4 >> sum(A)

 5 ans =

 6 15

 7 >> prod(A)

 8 ans =

 9 120

Chapter 2 array Based Computing

37

10 >> length(A)

11 ans =

12 5

13 >> mean(A)

14 ans =

15 3

16 >> max(A)

17 ans =

18 5

19 >> min(A)

20 ans =

21 1

22 >> find(A>4)

23 ans =

24 5

25 >> find(A<4)

26 ans =

27 1 2 3

28 >> A= –1.1:0.5:1.1

29 A =

30 –1.1000 –0.6000 –0.1000 0.4000 0.9000

31 >> fix(A)

32 ans =

33 –1 0 0 0 0

34 >> floor(A)

35 ans =

36 –2 –1 –1 0 0

37 >> ceil(A)

38 ans =

39 –1 0 0 1 1

Chapter 2 array Based Computing

38

40 >> round(A)

41 ans =

42 –1 –1 0 0 1

43 >> A = [2,4.4,2,7,0,–2]

44 A =

45 2.0000 4.4000 2.0000 7.0000 0 –2.0000

46 >> sort(A,'ascend')

47 ans =

48 –2.0000 0 2.0000 2.0000 4.4000 7.0000

49 >> sort(A,'descend')

50 ans =

51 7.0000 4.4000 2.0000 2.0000 0 –2.0000

2.6 Matrix Algebra
Arithmetic on matrices can be placed into two classes:

• Algebraic operations (covered in Chapter 2)

• Matrix operations

2.6.1 Algebraic Operations on Matrices
Algebraic operations on matrices involve element-wise operations. For

example:

 1 >> a = [1,2;3,4;5,6]

 2 a =

 3 1 2

 4 3 4

 5 5 6

Chapter 2 array Based Computing

https://doi.org/10.1007/978-1-4842-3189-0_2

39

 6 >> a+2

 7 ans =

 8 3 4

 9 5 6

10 7 8

Note that a defines a 3×2 matrix so the a+2 command performs

element-wise addition of a with a number 2. Computationally, this is done

by creating a 3×2 matrix with all its elements as the number 2 and adding

them.

Similarly, some other operations are shown here:

 1 >> 2*a

 2 ans =

 3 2 4

 4 6 8

 5 10 12

 6 >> 2–a

 7 ans =

 8 1 0

 9 –1 –2

10 –3 –4

11 >> a–2

12 ans =

13 –1 0

14 1 2

15 3 4

16 >> a/2

17 ans =

18 0.5000 1.0000

19 1.5000 2.0000

20 2.5000 3.0000

Chapter 2 array Based Computing

40

The problem starts with other arithmetic operations. For example,

when we want to calculate a2, this would mean multiplying a with itself,

i.e., matrix multiplication. This requires either a square matrix or the inner

dimensions to be similar because a matrix of dimension n×m can only be

multiplied with m×t and the resultant matrix is of the dimension

n×t. Hence, the command a^(2) will result in an error message, as shown

here:

1 >> a^2

2 Error using ^

3 Input s must be a scalar and a square matrix.

4 To compute elementwise POWER, use POWER (.^) instead.

If we wanted to calculate element-wise squares of matrix a then the last

line of the error message comes to the rescue. Adding a dot operator to

a power operator (.^) will direct MATLAB to perform the same operation

element-wise.

1 >> a.^2

2 ans =

3 1 4

4 9 16

5 25 36

On the other hand, multiplication of two matrices is the domain of

matrix algebra, discussed next.

2.6.2 Matrix Operations on Matrices
Those who are familiar with matrix algebra know that matrix

multiplication and division are not straightforward tasks. A m×n matrix

can only be multiplied by a n×t matrix, which results in a×c matrix. This is

performed by multiplying elements of rows with elements of columns to

get new elements.

Chapter 2 array Based Computing

41

 1 >> a = rand(2,3)

 2

 3 a =

 4

 5 0.8147 0.1270 0.6324

 6 0.9058 0.9134 0.0975

 7

 8 >> b = rand(3,4)

 9

10 b =

11

12 0.2785 0.9649 0.9572 0.1419

13 0.5469 0.1576 0.4854 0.4218

14 0.9575 0.9706 0.8003 0.9157

15 >> c = rand(2,3)

16

17 c =

18

19 0.7922 0.6557 0.8491

20 0.9595 0.0357 0.9340

21

22 >> a.*c

23

24 ans =

25

26 0.6454 0.0833 0.5370

27 0.8691 0.0326 0.0911

Here, the matrices a, b, and c are defined using the rand function

(which generates uniformly distributed random numbers between 0 and 1).

Chapter 2 array Based Computing

42

Now, a*b performs matrix multiplication, whereas a.*c performs element-

wise multiplication. The requirements for both are as follows:

• For matrix multiplication, the inner dimensions must

match.

• For element-wise multiplication, all dimensions must

match.

Transpose

A single hash mark ('), also called an apostrophe, transposes a matrix

(rows become columns and vice versa). Performing division on a matrix

involves matrix inversion.

 1 >> a

 2

 3 a =

 4

 5 1 2

 6 3 4

 7 5 6

 8 >> pinv(a)

 9 ans =

10

11 –1.3333 –0.3333 0.6667

12 1.0833 0.3333 –0.4167

13 >> b

14

15 b =

16

17 5 6

18 7 8

Chapter 2 array Based Computing

43

19 >> pinv(b)

20

21 ans =

22

23 –4.0000 3.0000

24 3.5000 –2.5000

 Inverse

The inverse of a matrix a, denoted by a−1, is a matrix such that

a * a−1 = I

where I is an identity matrix. If the given matrix is a square matrix, then

the function inv() can be used; otherwise, the function pinv() is used.

Examples are given here:

 1 >> a = [1,2;3,4;5,6]

 2

 3 a =

 4

 5 1 2

 6 3 4

 7 5 6

 8

 9 >> pinv(a)

10

11 ans =

12

13 –1.3333 –0.3333 0.6667

14 1.0833 0.3333 –0.4167

15

Chapter 2 array Based Computing

44

16 >> pinv(a)*a

17

18 ans =

19

20 1.0000 0.0000

21 –0.0000 1.0000

22

23 >> a = rand(5,5)

24

25 a =

26

27 0.9649 0.8003 0.9595 0.6787 0.1712

28 0.1576 0.1419 0.6557 0.7577 0.7060

29 0.9706 0.4218 0.0357 0.7431 0.0318

30 0.9572 0.9157 0.8491 0.3922 0.2769

31 0.4854 0.7922 0.9340 0.6555 0.0462

32

33 >> inv(a)

34

35 ans =

36

37 2.5545 –0.3119 –0.0173 –0.4492 –1.9962

38 –4.9167 –0.1095 0.8740 2.7919 2.5562

39 3.3797 –0.1001 –1.3938 –1.5253 –0.8910

40 –0.6203 0.4252 0.9340 –1.0120 1.2230

41 –2.0554 1.1445 0.1203 2.0420 –0.5531

42

43 >> a_pinv(a)

44

Chapter 2 array Based Computing

45

45 ans =

46

47 1.0000 –0.0000 0.0000 –0.0000 –0.0000

48 0.0000 1.0000 –0.0000 –0.0000 0.0000

49 –0.0000 0.0000 1.0000 0.0000 0.0000

50 0.0000 –0.0000 –0.0000 1.0000 –0.0000

51 –0.0000 0.0000 0.0000 0.0000 1.0000

I is called an identity matrix because all its diagonal elements are 1

and all its non-diagonal elements are zero, which makes its determinant

1. The determinant of a matrix a is calculated using the command det(a).

Automatic generation of an identity matrix is done using the command

eye(a,b), where a and b are values of the numbers of rows and columns.

 1 >> eye(2,2)

 2 ans =

 3

 4 1 0

 5 0 1

 6 >> det(eye(2,2))

 7 ans =

 8

 9 1

10 >> eye(4,5)

11 ans =

12

13 1 0 0 0 0

14 0 1 0 0 0

15 0 0 1 0 0

16 0 0 0 1 0

Chapter 2 array Based Computing

46

 rank()

The rank of a matrix, i.e., the number of linearly independent rows or

columns, can be determined by the built-in rank() function.

 1 a = ones(5,3)
 2

 3 a =
 4

 5 1 1 1

 6 1 1 1

 7 1 1 1

 8 1 1 1

 9 1 1 1

10

11 >> rank(a)

12

13 ans =

14

15 1
16

17 >> a = rand(3,2)
18

19 a =
20

21 0.4456 0.7547

22 0.6463 0.2760

23 0.7094 0.6797
24

25 >> rank(a)

26

27 ans =

28

29 2

Chapter 2 array Based Computing

47

2.6.3 trace()
The sum of the diagonal elements of a matrix is called the trace of the

matrix. This is given by the built-in trace() function, as follows:

 1 >> a = ones(4,4)

 2

 3 a =

 4

 5 1 1 1 1

 6 1 1 1 1

 7 1 1 1 1

 8 1 1 1 1

 9

10 >> trace(a)

11

12 ans =

13

14 4

 norm()

The norm() function calculates the 2-norm of a matrix, which is equal to

the Euclidean length of the vector.

 1 >> A = [1,2;3,4;5,6]

 2

 3 A =

 4

 5 1 2

 6 3 4

 7 5 6

 8

Chapter 2 array Based Computing

48

 9 >> norm(A)

10

11 ans =

12

13 9.5255

14

15 >> A = [1,2,3]

16

17 A =

18

19 1 2 3

20

21 >> norm(A)

22

23 ans =

24

25 3.7417

 Logical Operations

Two matrices can be compared to each other element-wise.

 1 >> a = rand(2,3)

 2

 3 a =

 4

 5 0.6787 0.7431 0.6555

 6 0.7577 0.3922 0.1712

 7

 8 >> b = rand(2,3)

 9

Chapter 2 array Based Computing

49

10 b =

11

12 0.7060 0.2769 0.0971

13 0.0318 0.0462 0.8235

14

15 >> c = (a<b)

16

17 c =

18

19 2x3 logical array

20

21 1 0 0

22 0 0 1

23 >> whos

24 Name Size Bytes Class Attributes

25

26 a 2x3 48 double

27 b 2x3 48 double

28 c 2x3 6 logical

29 >> a+c

30

31 ans =

32

33 1.6787 0.7431 0.6555

34 0.7577 0.3922 1.1712

The matrix c has elements, either 1 or 0, which are assigned by

determining whether the corresponding elements of a are smaller than

b. Note that using whos command, we can probe the variables a, b, and c.

The matrix c contains logical data types, i.e., 1 and 0 represent the boolean

quantities True and False. But performing a+c treats them as numerals.

Chapter 2 array Based Computing

50

This artifact leads to erroneous computations, hence some programming

languages like Python explicitly use True and False representations for

boolean values rather than 1 and 0.

2.6.4 Polynomials and Arrays
Every matrix has a characteristic polynomial associated with it. It can be

found using the poly() function. Let’s look at an example:

 1 >> A1 = [–3 2 0 4]

 2

 3 A1 =

 4

 5 –3 2 0 4

 6

 7 >> B1 = poly(A1)

 8

 9 B1 =

10

11 1 –3 –10 24 0

12

13 >> A2 = [1,2;3,4]

14

15 A2 =

16

17 1 2

18 3 4

19

20 >> B2 = poly(A2)

21

22 B =

23

24 1.0000 –5.0000 –2.0000

Chapter 2 array Based Computing

51

In the first case, the resultant polynomial (given by B1) is

x4 −3x3 −10x2 +24x, whereas in the second case (given by B2),

it’s x2 − 5x − 2. The resultant matrix presents the coefficients of the

characteristic polynomial.

 find()

The built-in function find() returns the row and column indices of

non-zero entries in a matrix. For example, in the 2×2 matrix defined by

A = [1,0;0,2], the non-zero elements exist at A(1,1) and A(2,2). The

information about rows and columns as a vector is demonstrated here:

 1 >> A = [1,0;0,2]

 2

 3 A =

 4

 5 1 0

 6 0 2

 7

 8 >> [row,col,v]=find(A)

 9

10 row =

11

12 1

13 2

14

15

16 col =

17

18 1

19 2

20

21

Chapter 2 array Based Computing

52

22 v =

23

24 1

25 2

 sort()

The built-in function sort() can be used to sort the elements of each

column in a particular order. The order can be specified as a second

argument to the function as a string (ascend or descend).

 1 >> A = [1,–2,3;4,5,–2;0,–2,3]

 2

 3 A =

 4

 5 1 –2 3

 6 4 5 –2

 7 0 –2 3

 8

 9 >> sort(A)

10

11 ans =

12

13 0 –2 –2

14 1 –2 3

15 4 5 3

16

17 >> sort(A,'ascend')

18

19 ans =

20

Chapter 2 array Based Computing

53

21 0 –2 –2

22 1 –2 3

23 4 5 3

24

25 >> sort(A,'descend')

26

27 ans =

28

29 4 5 3

30 1 –2 3

31 0 –2 –2

2.7 Random Matrix
Using random number generators, a random matrix can be created. Use

the rand(a,b) command:

 1 >> rand(4,5)

 2 ans =

 3

 4 Columns 1 through 4

 5

 6 0.8147 0.6324 0.9575 0.9572

 7 0.9058 0.0975 0.9649 0.4854

 8 0.1270 0.2785 0.1576 0.8003

 9 0.9134 0.5469 0.9706 0.1419

10

11 Column 5

12

Chapter 2 array Based Computing

54

13 0.4218

14 0.9157

15 0.7922

16 0.9595

Note that the numbers generated here will be different each time even

on the same machine, since they are supposed to be random in nature.

By default, they are uniformly distributed over the interval (0, 1). A vector

is simply a row vector, so it can be generated randomly using the rand(a)

command. help rand provides a detailed description of various other

features and arguments of the random number generator.

To create random integers, you can use randi() function. You

can also specify a range for these random integers. For example,

randi([1,10],1,5) will create five random integers (an array of 1× 5)

within 1 to 10. On the other hand, randi([1,10],5) will create an array of

random integers (an array of 5×5) within 1 to 10.

 1 >> randi([1,10],5)

 2

 3 ans =

 4

 5 5 3 5 8 10

 6 5 7 10 3 6

 7 7 7 4 6 2

 8 8 2 6 7 2

 9 8 2 3 9 3

10

11 >> randi([1,10],1,5)

12

13 ans =

14

15 9 3 9 3 10

Chapter 2 array Based Computing

55

A random complex number can be generated using the rand

command, as follows:

 1 >> rand + i* rand

 2

 3 ans =

 4

 5 0.3500 + 0.1966i

 6

 7 >> rand + i* rand

 8

 9 ans =

10

11 0.2511 + 0.6160i

Sometimes, you might want to generate the same set of random

numbers each time the program executes. This can be done by setting the

state of the random number function using the rng command, as follows:

 1 >> state 1 = rng;

 2 >> r1 = rand(2,3)

 3

 4 r1 =

 5

 6 0.4733 0.8308 0.5497

 7 0.3517 0.5853 0.9172

 8

 9 >> r12= rand(2,3)

10

11 r12=

12

13 0.2858 0.7537 0.5678

14 0.7572 0.3804 0.0759

15

Chapter 2 array Based Computing

56

16 >> rng(s);

17 Undefined function or variable 's'.

18

19 >> rng(state 1);

20 >> r3= rand(2,3)

21

22 r3=

23

24 0.4733 0.8308 0.5497

25 0.3517 0.5853 0.9172

The state is saved in the state1 variable and then r1 and r2 creates

two arrays of 2×3 size. They have different elements. But when the state

is reset using rng(state1), the new array of the same size stored in r3 is

exactly the same as r1, which was created when the state of the machine

was saved in the state1 variable.

A normally distributed random number generator is given by the

function randn(). The random numbers, thus generated, are normally

distributed around 0. Figure 3-7 in Chapter 3 confirms this fact.

A 3D array of random numbers can be generated by inputting an array

for each dimension. For example, if an array A = [3,2,4] is fed into the

rand() function, an 3D array of random numbers is created, as shown here:

 1 >> A = [3,2,4];

 2 >> B = rand(A)

 3

 4 B(:,:,1) =

 5

 6 0.7482 0.2290

 7 0.4505 0.9133

 8 0.0838 0.1524

 9

10

Chapter 2 array Based Computing

https://doi.org/10.1007/978-1-4842-3189-0_3

57

11 B(:,:,2) =

12

13 0.8258 0.0782

14 0.5383 0.4427

15 0.9961 0.1067

16

17

18 B(:,:,3) =

19

20 0.9619 0.8173

21 0.0046 0.8687

22 0.7749 0.0844

23

24

25 B(:,:,4) =

26

27 0.3998 0.4314

28 0.2599 0.9106

29 0.8001 0.1818

30

31 >> size(B)

32

33 ans =

34

35 3 2 4

2.7.1 Matrix Manipulations
Some common matrix manipulations have been written in function form,

which makes it easier for developers to use them right away, rather than

invest time in writing optimum code.

Chapter 2 array Based Computing

58

2.7.2 Flipping a Matrix
flipud(A) returns a copy of matrix A with the order of the rows reversed

along the horizontal axis. flipud stands for flip-up-down. fliplr(A)

returns a copy of matrix A with the order of the rows reversed from left to

right. fliplr stands for flip left right.

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> fliplr(a)

 9 ans =

10

11 2 1

12 4 3

13 6 5

14

15 >> flipud(a)

16 ans =

17

18 5 6

19 3 4

20 1 2

2.7.3 Rotating a Matrix
Using the command rot90(a,n), you can rotate a matrix a n times by 90

degrees.

Chapter 2 array Based Computing

59

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> rot90(a,1)

 9 ans =

10

11 2 4 6

12 1 3 5

13

14 >> rot90(a,2)

15 ans =

16

17 6 5

18 4 3

19 2 1

20

21 >> rot90(a,4)

22 ans =

23

24 1 2

25 3 4

26 5 6

2.7.4 Reshaping a Matrix
The number of rows and columns in a matrix can be changed provided the

total number of elements remains the same.

Chapter 2 array Based Computing

60

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> reshape(a,6,1)

 9 ans =

10

11 1

12 3

13 5

14 2

15 4

16 6

17 >> reshape(a,4,1)

18 Error using reshape

19 To RESHAPE the number of elements must not change.

2.7.5 Sorting
Numbers can be sorted in increasing order using the sort function:

1 >> a = rand(1,5)

2 a =

3

4 0.7431 0.3922 0.6555 0.1712 0.7060

5

Chapter 2 array Based Computing

61

6 >> sort(a)

7 ans =

8

9 0.1712 0.3922 0.6555 0.7060 0.7431

2.7.6 Upper and Lower Triangular Matrix
The upper triangular matrix is such that only diagonal and elements above

diagonal are non-zero. Similarly, the lower triangular matrix is such that

diagonal and elements below diagonal are non-zero.

 1 >> a = rand(3,3)

 2 a =

 3

 4 0.0318 0.0971 0.3171

 5 0.2769 0.8235 0.9502

 6 0.0462 0.6948 0.0344

 7

 8 >> tril(a)

 9 ans =

10

11 0.0318 0 0

12 0.2769 0.8235 0

13 0.0462 0.6948 0.0344

14

15 >> triu(a)

16 ans =

17

18 0.0318 0.0971 0.3171

19 0 0.8235 0.9502

20 0 0 0.0344

Chapter 2 array Based Computing

62

2.7.7 Ones and Zeros Matrix
A matrix having all its numbers as 1 or 0 make up a ones and zeros matrix,

respectively:

 1 >> ones(3,3)

 2 ans =

 3

 4 1 1 1

 5 1 1 1

 6 1 1 1

 7

 8 >> zeros(3,3)

 9 ans =

10

11 0 0 0

12 0 0 0

13 0 0 0

2.8 Indexing
Each element of the matrix is characterized by two numbers, the row

number and the column number. This is used to pinpoint an element and

operate on that.

 1 >> a = rand(2,3)

 2 a =

 3

 4 0.6557 0.8491 0.6787

 5 0.0357 0.9340 0.7577

 6

Chapter 2 array Based Computing

63

 7 >> a(2,3)=1

 8 a =

 9

10 0.6557 0.8491 0.6787

11 0.0357 0.9340 1.0000

12

13 >> a(1,1)=0

14 a =

15

16 0 0.8491 0.6787

17 0.0357 0.9340 1.0000

Note that a(2,3)=1 sets the element at the second row and third

column, i.e., number 0.3041072 to 1, and a(1,1)=0 sets the element at the

first row and first column, i.e., number 0.5248873 to 0. To index numbers in

a vector, you need a single number.

 1 >> a = [1,2,3,4,5,6,7,8,9]

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 9

 9

10 8 9

11

12 >> a(1)

13 ans =

14

15 1

Chapter 2 array Based Computing

64

16 >> a(–1)

17 Subscript indices must either be real

18 positive integers or logicals.

19 >> a(5)

20 ans =

21

22 5

23 >> a(10)

24 Index exceeds matrix dimensions.

It is important to note that, unlike some programming languages

where indices start at 0, MATLAB starts indices at 1 and does not take

negative numbers as indices.

2.8.1 Using Indices to Create a New Vector
1 >> a = [10 20 30 40 50 60]

2 a =

3

4 10 20 30 40 50 60

5

6 >> b = a([1 3 6 1])

7 b =

8

9 10 30 60 10

In the previous example, b is a new vector formed from vector a, where

successive elements are made up of elements taken from an index vector

[1 3 6 1].

 1 >> a = [11,12,13;40,50,60;17,18,19]

 2 a =

 3

Chapter 2 array Based Computing

65

 4 11 12 13

 5 40 50 60

 6 17 18 19

 7

 8 >> a([1,2], [2,3])

 9 ans =

10

11 12 13

12 50 60

Note that since the use of the comma operator is optional, we will

define vectors and matrices by simply using whitespace.

2.9 Slicing
Matrices can be sliced to desired portions by using indices and the colon :

operator.

 1 >> a = [1 2 3 4 1 3 2 4 6 4 5]

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 1 3 2

 7

 8 Columns 8 through 11

 9

10 4 6 4 5

11

Chapter 2 array Based Computing

66

12 >> b =a(1:5)

13 b =

14

15 1 2 3 4 1

16

17 >> c = a(5:7)

18 c =

19

20 1 3 2

This is an important feature, as most of experimental calculations

would demand filtering the data. Here, a slice of data will be stored

separately in a variable and then various mathematical operations can be

performed on it.

Now let’s try to access slices of a multidimensional array. A matrix a is

defined to be a 5×5 matrix.

 1 >> a = rand(5,5)

 2

 3 a =

 4

 5 0.6948 0.3816 0.4456 0.6797 0.9597

 6 0.3171 0.7655 0.6463 0.6551 0.3404

 7 0.9502 0.7952 0.7094 0.1626 0.5853

 8 0.0344 0.1869 0.7547 0.1190 0.2238

 9 0.4387 0.4898 0.2760 0.4984 0.7513

10

11 >> b = a(1,1)

12

13 b =

14

15 0.6948

Chapter 2 array Based Computing

67

16 >> c = a(1,:)

17

18 c =

19

20 0.6948 0.3816 0.4456 0.6797 0.9597

21

22 >> d = a(:,1)

23

24 d =

25

26 0.6948

27 0.3171

28 0.9502

29 0.0344

30 0.4387

31 >> e = a(:)

32

33 e =

34

35 0.6948

36 0.3171

37 0.9502

38 0.0344

39 0.4387

40 0.3816

41 0.7655

42 0.7952

43 0.1869

44 0.4898

45 0.4456

46 0.6463

Chapter 2 array Based Computing

68

47 0.7094

48 0.7547

49 0.2760

50 0.6797

51 0.6551

52 0.1626

53 0.1190

54 0.4984

55 0.9597

56 0.3404

57 0.5853

58 0.2238

59 0.7513

60 >> f = a(:,[1,3])

61

62 f =

63

64 0.6948 0.4456

65 0.3171 0.6463

66 0.9502 0.7094

67 0.0344 0.7547

68 0.4387 0.2760

69 >> g= a([1,3],:)

70

71 g =

72

73 0.6948 0.3816 0.4456 0.6797 0.9597

74 0.9502 0.7952 0.7094 0.1626 0.5853

• To access a single element, we use the index value of

the row and column, For example, b = a(1,1) accesses

the element within the first row and first column.

Chapter 2 array Based Computing

69

• To access all elements of a row or column, you can

use the : operator. Hence, c = a(1,:) accesses all

elements of the first row. Similarly, >> d = a(:,1)

accesses all elements of the first column. A simple way

to remember in words is to read the colon (:) as all

elements for and then the words nth row/column, where

n is a given value.

• Using a(:), you can create a new column matrix that

has all the elements.

• A sub-matrix can be accessed by defining all elements

for column/row and then defining indices in square

brackets. For example, f = a(:,[1,3]) defines a new

matrix where elements are composed of all elements of

the first and third columns. Similarly, a([1,3],:) uses

all elements of first and third rows.

You can compose complex sub-matrices using this powerful way of

defining your choice of elements.

 1 >> a = rand(5,6)

 2

 3 a =

 4

 5 0.3510 0.1233 0.9027 0.9001 0.2417 0.9561

 6 0.5132 0.1839 0.9448 0.3692 0.4039 0.5752

 7 0.4018 0.2400 0.4909 0.1112 0.0965 0.0598

 8 0.0760 0.4173 0.4893 0.7803 0.1320 0.2348

 9 0.2399 0.0497 0.3377 0.3897 0.9421 0.3532

10

11 >> b = a([2,5],1:3)

12

Chapter 2 array Based Computing

70

13 b =

14

15 0.5132 0.1839 0.9448

16 0.2399 0.0497 0.3377

17 >> c = a(2:5,[1,3])

18

19 c =

20

21 0.5132 0.9448

22 0.4018 0.4909

23 0.0760 0.4893

24 0.2399 0.3377

25 >> d = a([2,5],[1,3])

26

27 d =

28

29 0.5132 0.9448

30 0.2399 0.3377

31 >>e = a(2:5,1:3)

32

33 e=

34

35 0.5132 0.1839 0.9448

36 0.4018 0.2400 0.4909

37 0.0760 0.4173 0.4893

38 0.2399 0.0497 0.3377

We define a new 5×5 matrix a and then define a subset of this matrix using

a([2,5],1:3), which says that from the second and third row, take elements

from the first column to the third column. Similarly, c = a(2:5,[1,3]) creates

a matrix using this logic: from the first and fifth column, take elements from the

second row to the third row. Now you can easily guess what a([2,5],[1,3])

Chapter 2 array Based Computing

71

and a(2:5,1:3) should do. It’s a good idea to practice slicing of arrays

rigorously, as this is one of the most sought-after skills in data cleaning and

data analysis in general.

2.10 Automatic Generation of Arrays
MATLAB presents a variety of ways to generate arrays of numbers

automatically according to a specified rule. Three methods are discussed

in the following sections.

2.10.1 The : Operator
One of the most useful operators in MATLAB, the : operator can be

mastered easily. You have already seen its usage in selecting a sub-matrix

in Chapter 2.

 1 >> help:

 2 : Colon.

 3 J:K is the same as [J,J+1,...,J+m], where m = fix(K–J). In the

 4 case where both J and K are integers, this is simply

[J,J+1,...,K].

 5 This syntax returns an empty matrix if J>K.

 6

 7 J:I:K is the same as [J,J+I,...,J+m_I], where

m = fix((K–J)/I).

 8 This syntax returns an empty matrix when I == 0,

I>0 and J>K, or

 9 I<0 and J<K.

10

11 colon (J,K) is the same as J:K and colon (J,I,K) is the

same as J:I:K.

12

Chapter 2 array Based Computing

https://doi.org/10.1007/978-1-4842-3189-0_2

72

13 The colon notation can be used to pick out selected rows,

columns

14 and elements of vectors, matrices, and arrays. A(:) is all the

15 elements of A, regarded as a single column. On the left

side of an

16 assignment statement, A(:) fills A, preserving its shape

from before.

17 A(:,J) is the J–th column of A. A(J:K) is

[A(J),A(J+1),...,A(K)].

18 A(:,J:K) is [A(:,J),A(:,J+1),...,A(:,K)] and so on.

19

20 The colon notation can be used with acellar ray to produce

a comma–

21 separated list. C{:} is the same as Cf1g,Cf2g,...,Cfendg.

22 The comma separated list syntax is valid inside () for

function calls, [] for

23 concatenation and function return arguments, and inside fg

to produce

24 a cell array. Expressions such as S(:). name produce the

comma

25 separated list S(1).name,S(2).name,...,S(end). name for the

structure S.

26

27 For the use of the colon in the FOR statement, See FOR.

28 For the use of the colon in a comma separated list, See

VARARGIN.

29

30 Reference page for colon

31 Other functions named colon

Chapter 2 array Based Computing

73

You can generate a series of numbers and store them as arrays by using

the start:step:stop command.

 1 >> a=1:1:10

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 10

 9

10 8 9 10

11

12 >> a =[1:1:10]

13 a =

14

15 Columns 1 through 7

16

17 1 2 3 4 5 6 7

18

19 Columns 8 through 10

20

21 8 9 10

Note that brackets ([]) are optional here. If a step is not defined, then it

is taken as 1.

 1 >> a=1:10

 2 a =

 3

 4 Columns 1 through 7

 5

Chapter 2 array Based Computing

74

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 10

 9

10 8 9 10

11

12 >> a=1:2:10

13

14 a =

15

16 1 3 5 7 9

2.10.2 Linearly Spaced Vectors
The linspace(start, stop, n) command produces an array starting at

the first number and stopping at the second one with a total of n numbers.

Hence, they are linearly spaced.

 1 >> a = linspace(1,2,5)

 2 a =

 3

 4 Columns 1 through 4

 5

 6 1.0000 1.2500 1.5000 1.7500

 7

 8 Column 5

 9

10 2.0000

11

12 >> a = linspace(1,2,10)

13 a =

14

Chapter 2 array Based Computing

75

15 Columns 1 through 4

16

17 1.0000 1.1111 1.2222 1.3333

18

19 Columns 5 through 8

20

21 1.4444 1.5556 1.6667 1.7778

22

23 Columns 9 through 10

24

25 1.8889 2.0000

2.10.3 logspace
Similar to the linspace command, logspace(start, stop, n) produces

n numbers from start to stop, which are linearly spaced in logarithmic

nature.

 1 >>> help logspace

 2 logspace Logarithmically spaced vector.

 3 logspace(X1,X2) generates a row vector of 50

logarithmically

 4 equally spaced points between decades 10^X1 and 10^X2. If X2

 5 is pi, then the points are between 10^X1 and pi.

 6

 7 logspace(X1,X2,N) generates N points.

 8 For N = 1, logspace returns 10^X2.

 9

10 Class support for inputs X1,X2:

11 float:double, single

12

Chapter 2 array Based Computing

76

13 See also linspace, colon.

14

15 Reference page for logspace

16 >>>logspace (1,5,10)

17

18 ans =

19

20 1.0e+05 *

21

22 Columns 1 through 4

23

24 0.0001 0.0003 0.0008 0.0022

25

26 Columns 5 through 8

27

28 0.0060 0.0167 0.0464 0.1292

29

30 Columns 9 through 10

31

32 0.3594 1.0000

2.11 Solving a System of Equations
Solving a system of equations in one line simply involves the \ operator.

Suppose the following system of equations needs to be solved:

 2 2 4x y- = (Equation 2-1)

 - + =3 4 9x y (Equation 2-2)

Chapter 2 array Based Computing

77

You can define this problem in a matrix, as follows:

2 2

3 4

4

9

-
-
é

ë
ê

ù

û
ú´

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú

x

y
 (Equation 2-3)

Suppose:

 A =
-

-
é

ë
ê

ù

û
ú

2 2

3 4
 (Equation 2-4)

 X
x

y
=
é

ë
ê

ù

û
ú (Equation 2-5)

 B =
é

ë
ê
ù

û
ú

4

9
 (Equation 2-6)

In this way, you can write the following:

 A X B´ = (Equation 2-7)

The solution is given by X = A−1B. You can find the inverse of A (using

the inv() or pinv()) function) and then multiply the resultant matrix with

the matrix given by B to find a solution. Alternatively, you can accomplish

this task in just one command, as A\B:

 1 >> A = [2,–2;–3,4]

 2

 3 A =

 4

 5 2 –2

 6 –3 4

 7

 8 >> B = [4;9]

 9

Chapter 2 array Based Computing

78

10 B =

11

12 4 9

13

14 >> C = A/B

15

16 ans =

17

18 17.0000

19 15.0000

Hence, the solution is x = 17 and y = 15. Since the elements of the C

matrix are solutions, this is often called a solution matrix.

2.12 Eigen Values and Eigen Vectors
The eigenvalue problem is to determine the solution to the equation

Av = λv, where A is an n × n matrix, v is a column vector of length n, and

λ is a scalar. The values of λ that satisfy the equation are the eigenvalues.

The corresponding values of v that satisfy the equation are the right

eigenvectors. The left eigenvectors, w, satisfy the equation ¢ ¢=w A wl . The

MATLAB function eig() returns the eigenvalues and eigenvectors. It also

gives the matrix D (diagonal matrix D of eigenvalues), which is related to W

and A as ¢ ¢=WA DW :

 1 >> A = rand(3,3)

 2

 3 A =

 4

 5 0.6551 0.4984 0.5853

 6 0.1626 0.9597 0.2238

 7 0.1190 0.3404 0.7513

 8

Chapter 2 array Based Computing

79

 9 >> [V,D,W] = eig(A)

10

11 V =

12

13 –0.7284 –0.9532 0.8945

14 –0.5300 0.2997 –0.4178

15 –0.4341 0.0411 0.1590

16

17

18 D =

19

20 1.3665 0 0

21 0 0.4732 0

22 0 0 0.5264

23

24

25 W =

26

27 –0.2724 –0.3066 –0.1266

28 –0.7915 –0.3145 –0.5186

29 –0.5471 0.8984 0.8456

2.13 Structure Arrays
Arrays stores elements of the same data types, whereas structure arrays

can store data of different data types. Structures are collections of data

organized by named fields. For example, one field may contain textual

data, another a number, and a third may be an array, etc. A single structure

is a 1-by-1 structure array. Let’s understand how to create them by using

an example. Let’s create a structure array for this book and name this

array book. Now, various fields can be added using the dot operator, such

Chapter 2 array Based Computing

80

as name, author, pages, and chapter. The book array is a 1-by-1 structure

with four fields. This is demonstrated here.

 1 >> book.name = 'Introducing MATLAB'

 2

 3 book =

 4

 5 struct with fields:

 6

 7 name:'Introducing MATLAB'

 8

 9 >> book.author = 'Sandeep Nagar'

10

11 book =

12

13 struct with fields:

14

15 name:'Introducing MATLAB'

16 author:'Sandeep Nagar'

17

18 >> book.pages = '175'

19

20 book =

21

22 struct with fields:

23

24 name:'Introducing MATLAB'

25 author:'Sandeep Nagar'

26 pages:'175'

27

28 >> book.chapters = [1 2 3 4 5 6 7]

29

Chapter 2 array Based Computing

81

30 book =

31

32 struct with fields:

33

34 name:'Introducing MATLAB'

35 author:'Sandeep Nagar'

36 pages:'175'

37 chapters:[1 2 3 4 5 6 7]

2.13.1 Defining a New Structure Element
Within a Structure Array

A new structure element can be defined within an existing structure array

(book, in this example) using index values in the following manner.

 1 >> book(2).name = 'Introducing SCILAB'

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11

12 >> book(2).author = 'Sandeep Nagar'

13

14 book =

15

16 1x2 struct array with fields:

17

Chapter 2 array Based Computing

82

18 name

19 author

20 pages

21 chapters

22

23 >> book(2).pages = 175

24

25 book =

26

27 1x2 struct array with fields:

28

29 name

30 author

31 pages

32 chapters

33

34 >> book(2).chapters = [1 2 3 4 5 6 7 8 9]

35

36 book =

37

38 1x2 struct array with fields:

39

40 name

41 author

42 pages

43 chapters

In this way, the book is now a 1×2 structure array. All structures in a

structure array have the same number of fields and all fields have the same

number of field names. When the name of the structure array is entered at

the command prompt, the summary of information and fields is displayed.

Chapter 2 array Based Computing

83

The fieldnames() function can be used to get a cell array having

information about the fields. This is demonstrated in the following code.

 1 >> book

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11

12 >> fieldnames(book)

13

14 ans =

15

16 4x1 cell array

17

18 'name'

19 'author'

20 'pages'

21 'chapters'

While expanding a structure array, it is not mandatory to fill in all the

fields. Fields that are not associated with values are left empty.

2.13.2 Adding and Removing Fields
A new field can be added at any point to a single structure. For example,

let’s add the field publisher to the structure book, as demonstrated here.

Chapter 2 array Based Computing

84

 1 >> book(2).publisher = 'Apress'

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11 publisher

12

13 >> book

14

15 book =

16

17 1x2 struct array with fields:

18

19 name

20 author

21 pages

22 chapters

23 publisher

24

25 >> book = rmfield(book,'publisher')

26

27 book =

28

29 1x2 struct array with fields:

30

Chapter 2 array Based Computing

85

31 name

32 author

33 pages

34 chapters

To remove a field, say publisher, from the structure book, you can use

the rmfield() function, as demonstrated.

2.13.3 struct()
The function struct() can also be used to define a structured array with

the syntax shown in the following code:

 1 >> book1 = struct('name','Introducing MATLAB','author',

'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6, 7])

 2

 3 book1 =

 4

 5 struct with fields:

 6

 7 name:'Introducing MATLAB'

 8 author:'Sandeep Nagar'

 9 pages:175

10 chapters:[1 2 3 4 5 6 7]

11

12 >> book1(2) = struct('name','Introducing python','author',

 'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6,

7, 8, 9])

13

14 book1 =

15

Chapter 2 array Based Computing

86

16 1x2 struct array with fields:

17

18 name

19 author

20 pages

21 chapters

A new structure named book1 is created where field names and values

are filled in successively. It can be expanded using the index number in a

similar fashion, making it a 1-by-2 structure array.

A structure array may contain another structure or even a structure

array as its fields. These are called nested array. This is demonstrated here,

where book1 (a structure array defined previously) is added as a new field

to the structure array book.

 1 >> book(3).linked book = book1

 2

 3 book =

 4

 5 1x3 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11 linked_book

2.14 Getting Data from a Structure Array
Data values can be assigned from a structure array using index numbers,

as demonstrated next. Here, info1 stores the value of the field name for the

second structure (signified by the syntax book(2)). In a similar fashion,

Chapter 2 array Based Computing

87

info2 stores the value of the field name for the first structure (signified by

the syntax book(1)). The variable info3 extracts the third element of the

field chapter from the second structure of the structure array book.

 1 >> info1 = book(2).name()

 2

 3 info1 =

 4

 5 'Introducing SCILAB'

 6

 7 >> info2 = book(1).name()

 8

 9 info1 =

10

11 'Introducing MATLAB'

12

13 info3 = book(2).chapters(3)

14

15 info3 =

16

17 3

2.15 Cell Arrays
Cell arrays are arrays of cells where each cell stores an array. Within a cell,

elements must be the same type (because cells store arrays), but two cells

may have different types. For example, suppose you have three arrays—

array1 (stores numerical values), array2 (stores textual values), and

array2 (stores numerical values). You can then construct a cell array using

these three arrays. The elements of this cell array store different types of

arrays, but each element stores just one type of data.

Chapter 2 array Based Computing

88

2.15.1 Creating Cell Arrays
The cell(m,n) function makes an empty cell array of the size m − by − n.

By assigning data values to this empty cell array, it can then be constructed

as desired, one cell at a time. Let’s first create an empty cell array,

referenced by a variable, say a. There are two ways to assign the data:

• Cell indexing: Cell indices are mentioned within

parentheses () and cell contents are mentioned within

brackets {} on either side of assignment operator, like so:

 1 >> a = cell(3,3)

 2

 3 a =

 4

 5 3x3 cell array

 6

 7 [] [] []

 8 [] [] []

 9 [] [] []

10

11 >> a(1,1) = ([1,2,3]);

12 >> a(1,2) = (['a','b']);

13 >> a(1,3) = ("Sandeep");

14 >> a(2,3) = ([1.5,–2]);

15 >> a(2,2) = ([–200]);

16 >> a(2,1) = (["Nagar"]);

17 >> a(3,1) = ([–10,–15.5,5.3]);

18 >> a(3,2) = (["Hello"]);

19 >> a(3,3) = (["World"])

20

21 a =

22

Chapter 2 array Based Computing

89

23 3x3 cell array

24

25 [1x3 double] 'ab' ["Sandeep"]

26 ["Nagar"] [–200] [1x2 double]

27 [1x3 double] ["Hello"] ["World"]

28

• Content indexing: Here, brackets/parentheses are used

in reverse fashion, i.e., () for content and [] for indices.

 1 >> a = cell(3,3)

 2

 3 a =

 4

 5 3x3 cell array

 6

 7 [] [] []

 8 [] [] []

 9 [] [] []

10

11 >> a {1,1} = ([1,2,3]);

12 >> a {1,2} = (['a','b']);

13 >> a {1,3} = ("Sandeep");

14 >> a {2,3} = ([1.5,–2]);

15 >> a {2,2} = ([–200]);

16 >> a {2,1} = (["Nagar"]);

17 >> a {3,1} = ([–10,–15.5,5.3]);

18 >> a {3,2} = (["Hello"]);

19 >> a {3,3} = (["World"])

20

Chapter 2 array Based Computing

90

21 a =

22

23 3x3 cell array

24

25 [1x3 double] 'ab' ["Sandeep"]

26 ["Nagar"] [–200] [1x2 double]

27 [1x3 double] ["Hello"] ["World"]

28

2.15.2 The celldisp() and cellplot() Functions
The constructed cell arrays can be displayed by using two functions called

celldisp() and cellplot(). The celldisp() command displays the full

cell contents, whereas cellplot() displays a graphical display of the cell

architecture. See Figure 2-1.

ab

-200

Figure 2-1. Output of cellplot (a)

Chapter 2 array Based Computing

91

2.15.3 The cell2struct(), num2cell(), and
struct2cell() Functions

The cell2struct() command can be used to convert a cell array to a

structure. Similarly, num2cell() can be used to convert a numeric array

into a cell array and struct2cell() can be used to convert a structure into

a cell array.

2.16 Summary
Array based computing lies at the very heart of modern computational

techniques. MATLAB presents a very suitable platform to perform this

technique with ease. A variety of predefined functions enable users to

save time while prototyping a problem. Having flexible methods to define

multidimensional arrays and perform fast computation is the necessity of

our times. Most of the time spent on a simulation is either in loops or in

array operations. Predefined array operations have been optimized with

algorithms for reliability, time savings, and efficient memory management.

Chapter 2 array Based Computing

	Chapter 2: Array Based Computing
	2.1 Introduction
	2.2 Arrays and Vectors
	2.3 Creating Arrays from Other Arrays
	2.3.1 Appending Rows and Columns
	2.3.2 Deleting a Row and/or Column of a Matrix
	2.3.3 Concatenation Along a Dimension
	2.3.4 Selecting the Data Type of Elements

	2.4 Arithmetic Operations on Arrays
	2.5 Built-In Functions
	2.6 Matrix Algebra
	2.6.1 Algebraic Operations on Matrices
	2.6.2 Matrix Operations on Matrices
	Transpose
	 Inverse
	 rank()

	2.6.3 trace()
	 norm()
	 Logical Operations

	2.6.4 Polynomials and Arrays
	 find()
	 sort()

	2.7 Random Matrix
	2.7.1 Matrix Manipulations
	2.7.2 Flipping a Matrix
	2.7.3 Rotating a Matrix
	2.7.4 Reshaping a Matrix
	2.7.5 Sorting
	2.7.6 Upper and Lower Triangular Matrix
	2.7.7 Ones and Zeros Matrix

	2.8 Indexing
	2.8.1 Using Indices to Create a New Vector

	2.9 Slicing
	2.10 Automatic Generation of Arrays
	2.10.1 The: Operator
	2.10.2 Linearly Spaced Vectors
	2.10.3 logspace

	2.11 Solving a System of Equations
	2.12 Eigen Values and Eigen Vectors
	2.13 Structure Arrays
	2.13.1 Defining a New Structure Element Within a Structure Array
	2.13.2 Adding and Removing Fields
	2.13.3 struct()

	2.14 Getting Data from a Structure Array
	2.15 Cell Arrays
	2.15.1 Creating Cell Arrays
	2.15.2 The celldisp() and cellplot() Functions
	2.15.3 The cell2struct(), num2cell(), and struct2cell() Functions

	2.16 Summary

