
1© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_1

CHAPTER 1

Introduction to
MATLAB

1.1 Introduction to Numerical Computing
With the advent of computers in the post World War II era, the need

to simulate physical problems using this new tool led to the invention

of numerical computing. Whereas analytical computation required

pen, paper, and the human mind, numerical computation required a

calculating device too. Successful implementation of computing devices

to solve problems (especially involving repeated tasks) over a large array

of data points was observed in many fields of science and engineering.

For example, breaking enemy’s secret codes, simulating nuclear reactions

before nuclear explosions, etc. The scope further expanded to civilian

purposes, such as designing and simulating waterways, dams, electric

power stations, town planning, etc. All of these applications need to use

an equation or systems of equation for a physical model representing

a physical problem. There are two ways that one can approach these

equations—using analytical and numerical techniques. We concentrate

only on the numerical methods of solving equations using MATLAB in this

book.

https://doi.org/10.1007/978-1-4842-3189-0_1

2

As time progressed, various schemes to define mathematical

functions—differentiation, integration, trigonometric, etc.—were

written for digital computers. This involved digitization, which certainly

introduces errors. Knowledge of errors and their proper nullification could

yield valuable information quicker than analytical results. Thus, it became

one of the most actively researched fields of science and continues to be

one. The search for faster and more accurate algorithms continues to drive

innovation in the field of numerical computing and enables humanity to

simulate otherwise impossible tasks.

1.2 Tools for Numerical Computing
As the numerical methods progressed as an alternative to analytical

methods, computer programming languages were increasingly being used

to codify them for programmed investigations of simulations. A number

of options [1] exist to perform numerical computation. Programming

languages written to handle mathematical functions like FORTRAN, C,

Python, Java, and Julia, to name a few, can be used to write algorithms for

numerical computation.

1.2.1 The Need for Specialized Software
While all problems can be coded in programming languages, it’s necessary

to change the approach to computing, file management, etc. when the

microprocessor platform or operating system changes. This hinders

interoperability. Modern programming languages address some of these

issues, but the need for specialized software for numerical computing—

where predefined tools of numerical methods can be simply called as and

when required and customized tools can be developed—was being felt in

academia. A number of attempts were made in this direction.

Chapter 1 IntroduCtIon to MatLaB

3

1.2.2 The History of MATLAB
MATLAB was one such program and it was developed by Cleve Moler [2],

who was a math professor at the University of New Mexico, teaching

numerical analysis and matrix theory. As a PhD student, he initially

wrote a lot of code in FORTRAN to solve systems of simultaneous

linear equations involving matrix algebra, which ultimately he called

MATrixLABoratory (MATLAB). As a professor he wished his students could

use the new packages without writing FORTRAN programs.

Hence, in late 1970s, the first version of MATLAB came out (written

in FORTRAN). There were 80 functions for performing calculations

involving linear algebra problems. Further down the line, Jack Little and

Steve Bangert reprogrammed MATLAB in C with additional features for

producing a commercial version of the software. Together, all three of

them founded The MathWorks [3] in California in 1984, which develops,

maintains, and distributes MATLAB and its products worldwide. MATLAB

has proven to be an excellent tool for numerical methods [4].

Over a period of time, so many tools and features have been added

to the base package of MATLAB that, along with this rich set of libraries,

the installation requirements run it is many GBs of data. MATLAB

became tremendously popular in the scientific community. It is used by

more than 5,000 universities worldwide. It is sometimes rightly termed

the “language of engineering”. Cheap availability of digital computing

resources propelled its usage in industry and academia to such an extent

that virtually every lab needs MATLAB now.

1.3 Installation Requirements
MATLAB should be purchased from the official web site of MathWorks [3]

or from an official distributer. The computer system requirements depend

on the type and number of optional tools [5] installed with the base

Chapter 1 IntroduCtIon to MatLaB

4

MATLAB package. This book discusses the usage of the base MATLAB

package. Hence, to have a good experience with your MATLAB software,

use a laptop or workstation with 1GB RAM and any of operating systems—

Windows, Linux, or MacOSX. Installation instructions are given with the

product. The MATLAB environment is similar on all systems, so you need

not worry about this while practicing with the book. This book has been

tested for MATLAB R2017a version on the MacOSX 10.12 operating system.

1.4 Workspace
There are two ways to work within MATLAB. The first way is to work at the

command line by writing one command at a time. The second method is

to write a script (an .m file having a set of commands in a sequence) and

run it from the command line by simply typing its name. For example,

to run the a.m script file, you simply write the following at the command

prompt:

1 >>a

The command prompt is represented by the symbol >> by default. You

enter a command at the command prompt and then press the Enter key to

execute the command. See Figure 1-1.

Chapter 1 IntroduCtIon to MatLaB

5

1.4.1 The REPL Principle
The MATLAB command line works on the principle of REPL, which stands

for Read-Evaluates-Prints-Loop. When input is fed into the MATLAB

command prompt, the Julia language:

• Reads what the user types

• Evaluates what it reads

• Prints out the return value after evaluation

• Loops back and does it all over again

All MATLAB commands are treated as expressions to be evaluated

at REPL. Many programming environments, such as Python’s interactive

shell as well as the Jupyter notebook format, share the same approach. The

new language called Julia also has a REPL and works in a similar fashion.

Figure 1-1. MATLAB in action

Chapter 1 IntroduCtIon to MatLaB

6

1.4.2 Calculator
In the simplest view, MATLAB works as a calculator with mathematical

operators like multiplication (*), division (/), addition (+), subtraction (-),

and exponentiation (^):

 1 >> 3 + 5

 2 ans = 8

 3 >> 2 – 3

 4 ans = –1

 5 >> 3.0 * 5

 6 ans = 15

 7 >> 2 / 3

 8 ans = 0.6667

 9 >> format long

10 >> 2 / 3

11 ans = 0.666666666666667

12 >> format short

13 >> 2 / 3

14 ans = 0.6667

15 >> 2 % 3

16 ans = 2

17 >> 2 ^ 3

18 ans = 8

As seen in the previous example, when a command is fed into the

command prompt >>, it is executed and an answer is given by displaying

the results in the next line as ans =. To display more decimal digits in the

result, you can use the format long command. By default, MATLAB works

with the format short command.

Chapter 1 IntroduCtIon to MatLaB

7

1.4.3 Predefined Constants
1 >> pi

2 ans = 3.1416

3 >> i

4 ans = 0.0000 + 1.0000i

5 >> j

6 ans = 0.0000 + 1.0000i

7 >> Inf/Inf

8 ans = NaN

A number of physical constants are defined: pi, e (Euler’s number),

i and j (the imaginary number -1), inf (Infinity), NaN (Not a Number,

which results from undefined operations, such as Inf/Inf).

1.4.4 Common Mathematical Functions
 1 >> abs(–10.034)

 2 ans = 10.034

 3 >> log10(10)

 4 ans = 1

 5 >> sin(10)

 6 ans = −0.5440
 7 >> cos(10)

 8 ans = −0.8391
 9 >> tan(10)

10 ans = 0.6484

11 >> asin(1)

12 ans = 1.5708

13 >> asin(10)

14 ans = 1.5708 + 2.9932i

15 >> acos(1)

Chapter 1 IntroduCtIon to MatLaB

8

16 ans = 0

17 >> acos(10)

18 ans = 0.0000 - 2.9932i

19 >> atan(1)

20 ans = 0.78540

21 >> atan(10)

22 ans = 1.4711

A number of predefined mathematical functions exist in MATLAB,

including:

• Absolute value: abs()

• Logarithm: Natural logarithm log() and Base-10

logarithm log10()

• Trigonometric functions: sin(), cos(), and tan().

Arguments are taken in radians.

• Inverse-trigonometric functions: asin(), acos(), and

atan()

When one works on the command prompt, it is often convenient to

have a clear screen by getting rid of the previous command written at the

command prompt. This is done using the command clc, which clears the

screen by removing all inputs and outputs.

Complex calculations involving these functions and operations can be

performed with ease, like the following

sin cos10 10
2 2() + ()

and

sin

cos

10

10

()
()

Chapter 1 IntroduCtIon to MatLaB

9

1 >> sqrt(((sin(10))^2)+(cos(10))^2)

2 ans = 1

3 >> sin(10)/sqrt(cos(10))

4 ans = 0.0000 + 0.5939i

1.5 Self Learning and Getting Help
Covering all the functions available with MATLAB is beyond the scope of

this book (or any other book!). To understand how a particular function

needs to be used, you can use the help and doc commands. For example,

typing help exp gives you detailed information about how this function

should be used, whereas doc exp opens the official documentation page

for the built-in function, exp.

1 >> help exp

2 exp Exponential.

3 exp(X) is the exponential of the elements of X, e to the X.

4 For complex Z = X+i*Y, exp(Z) = exp(X)*(COS(Y)+i*SIN(Y)).

5

6 See also expm1, log, log10, expm, expint.

7

8 Reference page for exp

Whereas help is typically used by programmers to get a quick

overview of usage for a particular built-in command, the doc is used to

learn about MATLAB structures. The doc provides detailed descriptions

of usage as well as useful examples. For example, typing doc exp on the

MATLAB command prompt will open a new window, which will show the

documentation for using the exp facility.

Chapter 1 IntroduCtIon to MatLaB

10

1.6 Variables
To store values temporarily, we use variables that store the value at a

particular memory location and address it with a symbol or a set of

symbols (called strings). For example, you can store the value of 1/10 * pi

as a variable a and then use it in an equation like this:

 a a2 10+

To perform this calculation:

 p p2 10+

1 >> a=1/10* pi

2 a = 0.3142

3 >> a^2 + 10* sqrt(a)

4 ans = 5.7037

Hence, the symbol = works as an assignment operator. It assigns the

value on the right side to the variable named on the left side. Multiple

assignments can be performed by using the comma (,) operator. Also, if

you don’t want to produce the results on-screen, you can suppress this by

using the ; operator.

 1 >> a1 = 1, a2 = 10, a3 = 100

 2 a1 = 1

 3 a2 = 10

 4 a3 = 100

 5 >> a1 = 1, a2 = 10, a3 = 100;

 6 a1 = 1

 7 a2 = 10

 8 >> a1 = 1; a2 = 10; a3 = 100;

 9 >> a1

Chapter 1 IntroduCtIon to MatLaB

11

10 a1 = 1

11 >> a2

12 a2 = 10

13 >> a3

14 a3 = 100

1.6.1 Data Types
While assigning data to a variable, it is important to understand that data

can be defined as a variety of objects defined by their data types, as follows:

• logical: This type of data stores Boolean values 1 or 0,

which can be operated by Boolean operators like AND,

OR, XOR, etc.

• char: This type of data stores alphabetic characters and

strings (groups of characters written in a sequence).

• int8, int16, int32, and int64: This type of data is

stored as integers within 8 bits, 10 bits, 32 bits, and 64

bits, respectively. The size of the integer is given by its

bit counts.

Both logical and char are one byte (8 bits) wide.

• uint8, uint16, uint32, and uint64: This type of data

stores unsigned integer data in 8, 16, 32 and 64 bits,

respectively.

• double and single: This type of data is stored as

double and single precision floating types, respectively.

Decimal numbers are represented by floating point

data types. Single precision occupies 4 bytes (32 bits)

and double precision occupies 8 bytes (64 bits) to store

the floating point numbers.

Chapter 1 IntroduCtIon to MatLaB

12

In the single precision system, 23 bits store the

fraction bits (i.e., the numbers after the decimal

point), 8 bits store the exponent (i.e., the numbers

before the decimal point), and the 32nd bit is

reserved for storing the sign.

In a double precision system, 52 bits store the

fraction bits (i.e., the numbers after the decimal

point), 11 bits store the exponent (i.e., the numbers

before the decimal point), and the 64th bit is

reserved for storing the sign.

Single and double precision matters when the

precision of the result matters. In cases like GPS

positioning for a projectile flying at high speeds,

the results must be as precise as possible for greater

accuracy of hit.

• double complex and single complex: Complex

numbers have real and imaginary parts, which are

stored separately. These numbers can be stored as single

or double precision numbers using these data types.

1.6.2 Naming Conventions for Variables
There are some naming conventions for variables names, which must be

respected to avoid errors.

• Names should not start with a number; however,

numbers can be used anywhere afterward.

• Variable names are case sensitive.

• Keywords cannot be used as names.

• Names can include underscores (_).

Chapter 1 IntroduCtIon to MatLaB

13

While naming a variable, if you need to check that the name given is a

keyword first, you can use the built-in function called iskeyword(name).

Simply typing iskeyword() produces a list of keywords, as shown here:

 1 >> iskeyword()

 2 ans =

 3

 4 20x1 cell array

 5

 6 'break'

 7 'case'

 8 'catch'

 9 'classdef'

10 'continue'

11 'else'

12 'elseif'

13 'end'

14 'for'

15 'function'

16 'global'

17 'if'

18 'otherwise'

19 'parfor'

20 'persistent'

21 'return'

22 'spmd'

23 'switch'

24 'try'

25 'while'

Chapter 1 IntroduCtIon to MatLaB

14

1.6.3 List of Variables
While working on a project, it is useful to keep track of all the variables

used in the project to avoid errors due to duplication of names. You can

obtain a list of all variables by using the who and whos commands. Whereas

the command who simply presents the list of variables in the workspace,

whos presents the same with more information, like the size of the variable,

the number of bytes used to store the variable, and the variable type.

 1 >> who

 2 Your variables are:

 3

 4 a a1 a2 a3 ans

 5

 6 >> whos

 7 Name Size Bytes Class Attributes

 8

 9 a 1x1 8 double

10 a1 1x1 8 double

11 a2 1x1 8 double

12 a3 1x1 8 double

13 ans 20x1 2462 cell

Note that the list of variables produced in this example represents the

present state on my computer. If you have been working on projects other

than practicing from the present book, all the variables defined in the

present session will get reflected when you type who or whos. By using who

and whos, you can keep track of memory requirements. Remember that

judicious use of memory resources is important, especially on Raspberry

Pi based systems. To wipe off the stored variables, you can use the clear

command. It is also important to note that the variables list is session

dependent. When you exit the session by closing MATLAB using the icon

or using exit, the list of variables is erased from memory.

Chapter 1 IntroduCtIon to MatLaB

15

1.6.4 Global and Local Variables
A variable declared globally (i.e., within the main program) is known as

a global variable, whereas a variable declared locally within a function

(explained in later chapters) is known as a local variable. To define a

global variable, you use the global declaration statement. Once defined, it

remains the same irrespective of any new definition, unless you issue the

clear command to clear the variable names and values from memory.

As seen, a = 1 stays the same irrespective of the next definition, a = 2.

When the command clear is issued at the command prompt, all variable

names and values are flushed out of memory and the variable name can

be used again. This time, if it is not defined as a global variable, its value

can be changed repeatedly. The isglobal() command lets one check if a

variable name has been defined as a global variable.

Global variables are used to define constants during numerical

calculations. Suppose you want certain variables to change values, so you

could make those unchanging values be global variables by giving the

name of your choice. The predefined variables, like pi, e, etc., are defined

in a similar manner.

1.6.5 The clear Command
As seen in the previous section, the clear command flushes out the

variable names and their values from memory. It proves to be much more

useful than that. Whereas clear all is the same as clear, it can also be

used to selectively wipe out variables and their values. Simply type help

clear to see a detailed view of its use, as shown in Listing 1-1.

Chapter 1 IntroduCtIon to MatLaB

16

Listing 1-1. The help clear Command

 1 >> help clear

 2 clear Clear variables and functions from memory.

 3 clear removes all variables from the workspace.

 4 clear VARIABLES does the same thing.

 5 clear GLOBAL removes all global variables.

 6 clear FUNCTIONS removes all compiled MATLAB and

MEX–functions.

 7 Calling clear FUNCTIONS decreases code performance and is

usually unnecessary.

 8 For more information, see the clear Reference page.

 9

10 clear ALL removes all variables, globals, functions and MEX

links.

11 clear ALL at the command prompt also clears the base import

list.

12 Calling clear ALL decreases code performance and is usually

unnecessary.

13 For more information, see the clear Reference page.

14

15 clear IMPORT clears the base import list. It can only be

issued at the

16 command prompt. It cannot be used in a function or a

script.

17

18 clear CLASSES is the same as clear ALL except that class

definitions

19 are also cleared. If any objects exist outside the

workspace (say in

20 userdata or persistent in a locked program file) a warning

will be

Chapter 1 IntroduCtIon to MatLaB

17

21 issued and the class definition will not be cleared.

22 Calling clear CLASSES decreases code per formance and is

usually unnecessary.

23 If you modify a class definition, MATLAB automatically

updates it.

24 For more information, see the clear Reference page.

25

26 clear JAVA is the same as clear ALL except that java

classes on the

27 dynamic java path (defined using JAVACLASSPATH) are also

cleared.

28

29 clear VAR1 VAR2 ... clears the variables specified. The

wildcard

30 character '*' can be used to clear variables that match a

pattern. For

31 instance, clear X* clears all the variables in the current

workspace

32 that start with X.

33

34 clear –REGEXP PAT1 PAT2 can be used to match all patterns

using regular

35 expressions. This option only clears variables. For more

information on

36 using regular expressions, type "doc regexp" at the command

prompt.

37

38 If X is global, clear X removes X from the current

workspace, but

39 leaves it accessible to any functions declaring it global.

40 clear GLOBAL –REGEXP PAT removes global variables that

match regular

Chapter 1 IntroduCtIon to MatLaB

18

41 expression patterns.

42 Note that to clear specific global variables, the GLOBAL

option must

43 come first. Otherwise, all global variables will be cleared.

44

45 clear FUN clears the function specified. If FUN has been

locked by

46 MLOCK it will remain in memory. If FUN is a script or

function that

47 is currently executing, then it is not cleared. Use a

partial path

48 (see PARTIALPATH) to distinguish between different

overloaded versions

49 of FUN. For instance, 'clear inline/display' clears only

the INLINE

50 method for DISPLAY, leaving any other implementations in

memory.

51

52 Examples for pattern matching:

53 clear a* % Clear variables starting with "a"

54 clear –regexp ^b\d2{3} $ % Clear variables starting with

"b" and % followed by 3

digits

55

56 clear –regexp \d % Clear variables containing any

digits

57

58 See also clearvars, who, whos, mlock, munlock, persistent,

import.

59

60 Reference page for clear

61 >>

Chapter 1 IntroduCtIon to MatLaB

19

Judicious use of the clear command proves to be a very powerful tool

in managing memory requirements for a memory intensive numerical

calculation.

1.7 Summary
MATLAB is a high performance language for technical computing.

By using MATLAB as a simple calculator (using numbers and basic

operations) as well as a complex calculator (using variables with complex

functions), you can perform numerical calculations with ease. The

learning curve for MATLAB is quite flat, owing to its simple and intuitive

syntax. Whenever you become confused, the documentation for the

particular commands can be easily accessed using the help command.

The MATLAB GUI (Graphic User Interface) also provides an integrated

environment for working with many different kinds of computational

tasks, as shall be explored in upcoming chapters.

1.8 Bibliography

 [1] https://en.wikipedia.org/wiki/List_of_

numerical_analysis_software

 [2] https://mathworks.com/company/newsletters/

articles/the- origins- of-matlab.html

 [3] https://www.mathworks.com

 [4] https://in.mathworks.com/discovery/

numerical-analysis.html

 [5] https://mathworks.com/products/

Chapter 1 IntroduCtIon to MatLaB

https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://www.mathworks.com
https://in.mathworks.com/discovery/numerical-analysis.html
https://in.mathworks.com/discovery/numerical-analysis.html
https://mathworks.com/products/

	Chapter 1: Introduction to MATLAB
	1.1 Introduction to Numerical Computing
	1.2 Tools for Numerical Computing
	1.2.1 The Need for Specialized Software
	1.2.2 The History of MATLAB

	1.3 Installation Requirements
	1.4 Workspace
	1.4.1 The REPL Principle
	1.4.2 Calculator
	1.4.3 Predefined Constants
	1.4.4 Common Mathematical Functions

	1.5 Self Learning and Getting Help
	1.6 Variables
	1.6.1 Data Types
	1.6.2 Naming Conventions for Variables
	1.6.3 List of Variables
	1.6.4 Global and Local Variables
	1.6.5 The clear Command

	1.7 Summary
	1.8 Bibliography

