
Introduction to
MATLAB for
Engineers and
Scientists

Solutions for Numerical Computation
and Modeling
—
Sandeep Nagar

Introduction to
MATLAB for

Engineers and
Scientists

Solutions for Numerical
Computation and Modeling

Sandeep Nagar

Introduction to MATLAB for Engineers and Scientists: Solutions for
Numerical Computation and Modeling

ISBN-13 (pbk): 978-1-4842-3188-3 ISBN-13 (electronic): 978-1-4842-3189-0
https://doi.org/10.1007/978-1-4842-3189-0

Library of Congress Control Number: 2017960835

Copyright © 2017 by Sandeep Nagar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484231883.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Sandeep Nagar
New York, USA

https://doi.org/10.1007/978-1-4842-3189-0

Dedicated to my wife Rashmi and my daughter Aliya

v

Table of Contents

Chapter 1: Introduction to MATLAB ��1

1.1 Introduction to Numerical Computing ...1

1.2 Tools for Numerical Computing ...2

1.2.1 The Need for Specialized Software ..2

1.2.2 The History of MATLAB ...3

1.3 Installation Requirements ...3

1.4 Workspace ..4

1.4.1 The REPL Principle ..5

1.4.2 Calculator ...6

1.4.3 Predefined Constants ...7

1.4.4 Common Mathematical Functions ..7

1.5 Self Learning and Getting Help ...9

1.6 Variables ...10

1.6.1 Data Types ..11

1.6.2 Naming Conventions for Variables ..12

1.6.3 List of Variables ..14

1.6.4 Global and Local Variables ..15

1.6.5 The clear Command ..15

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

vi

1.7 Summary...19

1.8 Bibliography ..19

Chapter 2: Array Based Computing ��21

2.1 Introduction ...21

2.2 Arrays and Vectors ..22

2.3 Creating Arrays from Other Arrays ..24

2.3.1 Appending Rows and Columns ...27

2.3.2 Deleting a Row and/or Column of a Matrix ...29

2.3.3 Concatenation Along a Dimension ..30

2.3.4 Selecting the Data Type of Elements ..31

2.4 Arithmetic Operations on Arrays ...34

2.5 Built-In Functions ..35

2.6 Matrix Algebra ...38

2.6.1 Algebraic Operations on Matrices...38

2.6.2 Matrix Operations on Matrices ...40

2.6.3 trace() ...47

2.6.4 Polynomials and Arrays ..50

2.7 Random Matrix ..53

2.7.1 Matrix Manipulations ..57

2.7.2 Flipping a Matrix ...58

2.7.3 Rotating a Matrix ..58

2.7.4 Reshaping a Matrix ...59

2.7.5 Sorting ..60

2.7.6 Upper and Lower Triangular Matrix ..61

2.7.7 Ones and Zeros Matrix ...62

Table of ConTenTsTable of ConTenTs

vii

2.8 Indexing ..62

2.8.1 Using Indices to Create a New Vector ...64

2.9 Slicing ...65

2.10 Automatic Generation of Arrays ..71

2.10.1 The : Operator ...71

2.10.2 Linearly Spaced Vectors ...74

2.10.3 logspace ...75

2.11 Solving a System of Equations ..76

2.12 Eigen Values and Eigen Vectors ..78

2.13 Structure Arrays ..79

2.13.1 Defining a New Structure Element Within a Structure Array81

2.13.2 Adding and Removing Fields ..83

2.13.3 struct() ..85

2.14 Getting Data from a Structure Array ..86

2.15 Cell Arrays ...87

2.15.1 Creating Cell Arrays ..88

2.15.2 The celldisp() and cellplot() Functions ..90

2.15.3 The cell2struct(), num2cell(), and struct2cell() Functions91

2.16 Summary...91

Chapter 3: Plotting ��93

3.1 Introduction ...93

3.1.1 2D Plotting ..94

3.1.2 The bar(), barh(), and hist() Commands ..100

3.1.3 3D Plotting ..111

3.2 Summary...116

3.3 Bibliography ..116

Table of ConTenTsTable of ConTenTs

viii

Chapter 4: Input and Output ���117

4.1 Introduction ...117

4.2 Interactive Input from a Keyboard ...118

4.2.1 input() ...118

4.2.2 keyboard()...121

4.2.3 menu() ..123

4.3 File Path ..126

4.4 File Operations ..128

4.4.1 Users ..128

4.4.2 File Path ..128

4.4.3 Creating and Saving Files ...130

4.4.4 Using the Diary and History Commands ...133

4.4.5 Opening and Closing Files ..134

4.4.6 Reading and Writing Binary Files ...135

4.4.7 Working with Excel Files ...136

4.5 Reading Data from the Internet...138

4.6 Printing and Saving Plots ..139

4.6.1 The print Command ..139

4.6.2 The saveas Function ...140

4.7 Summary...140

Chapter 5: Functions and Loops ���141

5.1 Introduction ...141

5.2 Loops ..142

5.2.1 The while Loop ...142

5.2.2 The do-until Loop ..143

5.2.3 The for Loop ..145

5.2.4 The if-elseif-else Loop ..146

Table of ConTenTsTable of ConTenTs

ix

5.3 Functions ..147

5.3.1 The function Function ...147

5.3.2 The inline Function ...150

5.3.3 Anonymous Functions ..150

5.4 Summary...152

Chapter 6: Numerical Computing Formalism �����������������������������������153

6.1 Introduction ...153

6.2 Physical Problems ...154

6.3 Defining a Model ...154

6.4 Example: Polynomials ...158

6.4.1 polyval() ..159

6.4.2 roots() ...161

6.4.3 Addition and Subtraction of Polynomials ..163

6.4.4 Polynomial Multiplication ...163

6.4.5 Polynomial Division ..164

6.4.6 Polynomial Differentiation ..166

6.4.7 Polynomial Integration ..167

6.4.8 Polynomial Curve Fitting ...167

6.5 Summary...169

Chapter 7: Approximate answers in numerical computation �����������171

7.1 Numerical Approximations ..171

7.2 Tolerance ...172

7.3 Taylor Series ..173

7.4 Taylor Polynomials ..173

7.4.1 Maclaurin Series for sin(x) and cos(x) ..175

7.4.2 The Maclaurin Series for ex ..183

Table of ConTenTsTable of ConTenTs

x

7.5 Computational Errors ..189

7.5.1 Significant Digits ..190

7.6 Challenges in Real Number to Floating Point Number Conversion191

7.6.1 Overflow ...191

7.6.2 Underflow ...193

7.7 Actual Conversions of Real Numbers to Floating Point Numbers194

7.8 Alternatives to MATLAB ...195

7.9 Summary...196

7.10 Bibliography ..196

Chapter 8: Symbolic Computation ��199

8.1 Introduction ...199

8.2 Defining a Symbolic Variable ..199

8.3 Defining a Symbolic Equation ...200

8.4 Performing Symbolic Computations ...201

8.4.1 Arithmetic Expressions ...202

8.4.2 Trigonometric Expressions ...203

8.4.3 Expanding and Factorizing an Expression ..204

8.5 Summary...208

Index ���209

Table of ConTenTsTable of ConTenTs

xi

About the Author

Sandeep Nagar, PhD (Material Science. KTH,

Sweden), teaches and consults on the use

of MATLAB for numerical computing and

other open source software. In addition to

teaching at universities, he frequently gives

workshops covering open source software

and is interested in developing hardware for

scientific experiments.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experience in security, web/mobile

development, cloud and IT architecture. His

true IT passions are security and Android.

He has been programming and teaching

others how to program with Android, Perl,

PHP, Java, VB, Python, C/C++, and MySQL for

more than 20 years.

He holds a Master of Science degree in

Computing Science from the University of

Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/SCADA

auditor, and senior lead IT security/cloud/SCADA architect for many years.

Massimo's technical skills include: Security, Android, Cloud, Java,

MySQL, Drupal, Cobol, Perl, web and mobile development, MongoDB, D3,

Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,

and Scratch.

He currently works as the Chief Information Security Officer (CISO) for

Cargotec Oyj.

He was a visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (in the PKI, SIP, SAML, and

Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing

companies and he is the co-author of Pro Android Games (Apress, 2015).

xv

Acknowledgments

I wish to thank Steve, Mark, and the whole team at Apress for bringing

this book to fruition. I also wish to thank the scientific community for

answering questions on forums, which helped me learn some difficult

concepts with ease.

1© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_1

CHAPTER 1

Introduction to
MATLAB

1.1 Introduction to Numerical Computing
With the advent of computers in the post World War II era, the need

to simulate physical problems using this new tool led to the invention

of numerical computing. Whereas analytical computation required

pen, paper, and the human mind, numerical computation required a

calculating device too. Successful implementation of computing devices

to solve problems (especially involving repeated tasks) over a large array

of data points was observed in many fields of science and engineering.

For example, breaking enemy’s secret codes, simulating nuclear reactions

before nuclear explosions, etc. The scope further expanded to civilian

purposes, such as designing and simulating waterways, dams, electric

power stations, town planning, etc. All of these applications need to use

an equation or systems of equation for a physical model representing

a physical problem. There are two ways that one can approach these

equations—using analytical and numerical techniques. We concentrate

only on the numerical methods of solving equations using MATLAB in this

book.

2

As time progressed, various schemes to define mathematical

functions—differentiation, integration, trigonometric, etc.—were

written for digital computers. This involved digitization, which certainly

introduces errors. Knowledge of errors and their proper nullification could

yield valuable information quicker than analytical results. Thus, it became

one of the most actively researched fields of science and continues to be

one. The search for faster and more accurate algorithms continues to drive

innovation in the field of numerical computing and enables humanity to

simulate otherwise impossible tasks.

1.2 Tools for Numerical Computing
As the numerical methods progressed as an alternative to analytical

methods, computer programming languages were increasingly being used

to codify them for programmed investigations of simulations. A number

of options [1] exist to perform numerical computation. Programming

languages written to handle mathematical functions like FORTRAN, C,

Python, Java, and Julia, to name a few, can be used to write algorithms for

numerical computation.

1.2.1 The Need for Specialized Software
While all problems can be coded in programming languages, it’s necessary

to change the approach to computing, file management, etc. when the

microprocessor platform or operating system changes. This hinders

interoperability. Modern programming languages address some of these

issues, but the need for specialized software for numerical computing—

where predefined tools of numerical methods can be simply called as and

when required and customized tools can be developed—was being felt in

academia. A number of attempts were made in this direction.

Chapter 1 IntroduCtIon to MatLaB

3

1.2.2 The History of MATLAB
MATLAB was one such program and it was developed by Cleve Moler [2],

who was a math professor at the University of New Mexico, teaching

numerical analysis and matrix theory. As a PhD student, he initially

wrote a lot of code in FORTRAN to solve systems of simultaneous

linear equations involving matrix algebra, which ultimately he called

MATrixLABoratory (MATLAB). As a professor he wished his students could

use the new packages without writing FORTRAN programs.

Hence, in late 1970s, the first version of MATLAB came out (written

in FORTRAN). There were 80 functions for performing calculations

involving linear algebra problems. Further down the line, Jack Little and

Steve Bangert reprogrammed MATLAB in C with additional features for

producing a commercial version of the software. Together, all three of

them founded The MathWorks [3] in California in 1984, which develops,

maintains, and distributes MATLAB and its products worldwide. MATLAB

has proven to be an excellent tool for numerical methods [4].

Over a period of time, so many tools and features have been added

to the base package of MATLAB that, along with this rich set of libraries,

the installation requirements run it is many GBs of data. MATLAB

became tremendously popular in the scientific community. It is used by

more than 5,000 universities worldwide. It is sometimes rightly termed

the “language of engineering”. Cheap availability of digital computing

resources propelled its usage in industry and academia to such an extent

that virtually every lab needs MATLAB now.

1.3 Installation Requirements
MATLAB should be purchased from the official web site of MathWorks [3]

or from an official distributer. The computer system requirements depend

on the type and number of optional tools [5] installed with the base

Chapter 1 IntroduCtIon to MatLaB

4

MATLAB package. This book discusses the usage of the base MATLAB

package. Hence, to have a good experience with your MATLAB software,

use a laptop or workstation with 1GB RAM and any of operating systems—

Windows, Linux, or MacOSX. Installation instructions are given with the

product. The MATLAB environment is similar on all systems, so you need

not worry about this while practicing with the book. This book has been

tested for MATLAB R2017a version on the MacOSX 10.12 operating system.

1.4 Workspace
There are two ways to work within MATLAB. The first way is to work at the

command line by writing one command at a time. The second method is

to write a script (an .m file having a set of commands in a sequence) and

run it from the command line by simply typing its name. For example,

to run the a.m script file, you simply write the following at the command

prompt:

1 >>a

The command prompt is represented by the symbol >> by default. You

enter a command at the command prompt and then press the Enter key to

execute the command. See Figure 1-1.

Chapter 1 IntroduCtIon to MatLaB

5

1.4.1 The REPL Principle
The MATLAB command line works on the principle of REPL, which stands

for Read-Evaluates-Prints-Loop. When input is fed into the MATLAB

command prompt, the Julia language:

• Reads what the user types

• Evaluates what it reads

• Prints out the return value after evaluation

• Loops back and does it all over again

All MATLAB commands are treated as expressions to be evaluated

at REPL. Many programming environments, such as Python’s interactive

shell as well as the Jupyter notebook format, share the same approach. The

new language called Julia also has a REPL and works in a similar fashion.

Figure 1-1. MATLAB in action

Chapter 1 IntroduCtIon to MatLaB

6

1.4.2 Calculator
In the simplest view, MATLAB works as a calculator with mathematical

operators like multiplication (*), division (/), addition (+), subtraction (-),

and exponentiation (^):

 1 >> 3 + 5

 2 ans = 8

 3 >> 2 – 3

 4 ans = –1

 5 >> 3.0 * 5

 6 ans = 15

 7 >> 2 / 3

 8 ans = 0.6667

 9 >> format long

10 >> 2 / 3

11 ans = 0.666666666666667

12 >> format short

13 >> 2 / 3

14 ans = 0.6667

15 >> 2 % 3

16 ans = 2

17 >> 2 ^ 3

18 ans = 8

As seen in the previous example, when a command is fed into the

command prompt >>, it is executed and an answer is given by displaying

the results in the next line as ans =. To display more decimal digits in the

result, you can use the format long command. By default, MATLAB works

with the format short command.

Chapter 1 IntroduCtIon to MatLaB

7

1.4.3 Predefined Constants
1 >> pi

2 ans = 3.1416

3 >> i

4 ans = 0.0000 + 1.0000i

5 >> j

6 ans = 0.0000 + 1.0000i

7 >> Inf/Inf

8 ans = NaN

A number of physical constants are defined: pi, e (Euler’s number),

i and j (the imaginary number -1), inf (Infinity), NaN (Not a Number,

which results from undefined operations, such as Inf/Inf).

1.4.4 Common Mathematical Functions
 1 >> abs(–10.034)

 2 ans = 10.034

 3 >> log10(10)

 4 ans = 1

 5 >> sin(10)

 6 ans = −0.5440
 7 >> cos(10)

 8 ans = −0.8391
 9 >> tan(10)

10 ans = 0.6484

11 >> asin(1)

12 ans = 1.5708

13 >> asin(10)

14 ans = 1.5708 + 2.9932i

15 >> acos(1)

Chapter 1 IntroduCtIon to MatLaB

8

16 ans = 0

17 >> acos(10)

18 ans = 0.0000 - 2.9932i

19 >> atan(1)

20 ans = 0.78540

21 >> atan(10)

22 ans = 1.4711

A number of predefined mathematical functions exist in MATLAB,

including:

• Absolute value: abs()

• Logarithm: Natural logarithm log() and Base-10

logarithm log10()

• Trigonometric functions: sin(), cos(), and tan().

Arguments are taken in radians.

• Inverse-trigonometric functions: asin(), acos(), and

atan()

When one works on the command prompt, it is often convenient to

have a clear screen by getting rid of the previous command written at the

command prompt. This is done using the command clc, which clears the

screen by removing all inputs and outputs.

Complex calculations involving these functions and operations can be

performed with ease, like the following

sin cos10 10
2 2() + ()

and

sin

cos

10

10

()
()

Chapter 1 IntroduCtIon to MatLaB

9

1 >> sqrt(((sin(10))^2)+(cos(10))^2)

2 ans = 1

3 >> sin(10)/sqrt(cos(10))

4 ans = 0.0000 + 0.5939i

1.5 Self Learning and Getting Help
Covering all the functions available with MATLAB is beyond the scope of

this book (or any other book!). To understand how a particular function

needs to be used, you can use the help and doc commands. For example,

typing help exp gives you detailed information about how this function

should be used, whereas doc exp opens the official documentation page

for the built-in function, exp.

1 >> help exp

2 exp Exponential.

3 exp(X) is the exponential of the elements of X, e to the X.

4 For complex Z = X+i*Y, exp(Z) = exp(X)*(COS(Y)+i*SIN(Y)).

5

6 See also expm1, log, log10, expm, expint.

7

8 Reference page for exp

Whereas help is typically used by programmers to get a quick

overview of usage for a particular built-in command, the doc is used to

learn about MATLAB structures. The doc provides detailed descriptions

of usage as well as useful examples. For example, typing doc exp on the

MATLAB command prompt will open a new window, which will show the

documentation for using the exp facility.

Chapter 1 IntroduCtIon to MatLaB

10

1.6 Variables
To store values temporarily, we use variables that store the value at a

particular memory location and address it with a symbol or a set of

symbols (called strings). For example, you can store the value of 1/10 * pi

as a variable a and then use it in an equation like this:

 a a2 10+

To perform this calculation:

 p p2 10+

1 >> a=1/10* pi

2 a = 0.3142

3 >> a^2 + 10* sqrt(a)

4 ans = 5.7037

Hence, the symbol = works as an assignment operator. It assigns the

value on the right side to the variable named on the left side. Multiple

assignments can be performed by using the comma (,) operator. Also, if

you don’t want to produce the results on-screen, you can suppress this by

using the ; operator.

 1 >> a1 = 1, a2 = 10, a3 = 100

 2 a1 = 1

 3 a2 = 10

 4 a3 = 100

 5 >> a1 = 1, a2 = 10, a3 = 100;

 6 a1 = 1

 7 a2 = 10

 8 >> a1 = 1; a2 = 10; a3 = 100;

 9 >> a1

Chapter 1 IntroduCtIon to MatLaB

11

10 a1 = 1

11 >> a2

12 a2 = 10

13 >> a3

14 a3 = 100

1.6.1 Data Types
While assigning data to a variable, it is important to understand that data

can be defined as a variety of objects defined by their data types, as follows:

• logical: This type of data stores Boolean values 1 or 0,

which can be operated by Boolean operators like AND,

OR, XOR, etc.

• char: This type of data stores alphabetic characters and

strings (groups of characters written in a sequence).

• int8, int16, int32, and int64: This type of data is

stored as integers within 8 bits, 10 bits, 32 bits, and 64

bits, respectively. The size of the integer is given by its

bit counts.

Both logical and char are one byte (8 bits) wide.

• uint8, uint16, uint32, and uint64: This type of data

stores unsigned integer data in 8, 16, 32 and 64 bits,

respectively.

• double and single: This type of data is stored as

double and single precision floating types, respectively.

Decimal numbers are represented by floating point

data types. Single precision occupies 4 bytes (32 bits)

and double precision occupies 8 bytes (64 bits) to store

the floating point numbers.

Chapter 1 IntroduCtIon to MatLaB

12

In the single precision system, 23 bits store the

fraction bits (i.e., the numbers after the decimal

point), 8 bits store the exponent (i.e., the numbers

before the decimal point), and the 32nd bit is

reserved for storing the sign.

In a double precision system, 52 bits store the

fraction bits (i.e., the numbers after the decimal

point), 11 bits store the exponent (i.e., the numbers

before the decimal point), and the 64th bit is

reserved for storing the sign.

Single and double precision matters when the

precision of the result matters. In cases like GPS

positioning for a projectile flying at high speeds,

the results must be as precise as possible for greater

accuracy of hit.

• double complex and single complex: Complex

numbers have real and imaginary parts, which are

stored separately. These numbers can be stored as single

or double precision numbers using these data types.

1.6.2 Naming Conventions for Variables
There are some naming conventions for variables names, which must be

respected to avoid errors.

• Names should not start with a number; however,

numbers can be used anywhere afterward.

• Variable names are case sensitive.

• Keywords cannot be used as names.

• Names can include underscores (_).

Chapter 1 IntroduCtIon to MatLaB

13

While naming a variable, if you need to check that the name given is a

keyword first, you can use the built-in function called iskeyword(name).

Simply typing iskeyword() produces a list of keywords, as shown here:

 1 >> iskeyword()

 2 ans =

 3

 4 20x1 cell array

 5

 6 'break'

 7 'case'

 8 'catch'

 9 'classdef'

10 'continue'

11 'else'

12 'elseif'

13 'end'

14 'for'

15 'function'

16 'global'

17 'if'

18 'otherwise'

19 'parfor'

20 'persistent'

21 'return'

22 'spmd'

23 'switch'

24 'try'

25 'while'

Chapter 1 IntroduCtIon to MatLaB

14

1.6.3 List of Variables
While working on a project, it is useful to keep track of all the variables

used in the project to avoid errors due to duplication of names. You can

obtain a list of all variables by using the who and whos commands. Whereas

the command who simply presents the list of variables in the workspace,

whos presents the same with more information, like the size of the variable,

the number of bytes used to store the variable, and the variable type.

 1 >> who

 2 Your variables are:

 3

 4 a a1 a2 a3 ans

 5

 6 >> whos

 7 Name Size Bytes Class Attributes

 8

 9 a 1x1 8 double

10 a1 1x1 8 double

11 a2 1x1 8 double

12 a3 1x1 8 double

13 ans 20x1 2462 cell

Note that the list of variables produced in this example represents the

present state on my computer. If you have been working on projects other

than practicing from the present book, all the variables defined in the

present session will get reflected when you type who or whos. By using who

and whos, you can keep track of memory requirements. Remember that

judicious use of memory resources is important, especially on Raspberry

Pi based systems. To wipe off the stored variables, you can use the clear

command. It is also important to note that the variables list is session

dependent. When you exit the session by closing MATLAB using the icon

or using exit, the list of variables is erased from memory.

Chapter 1 IntroduCtIon to MatLaB

15

1.6.4 Global and Local Variables
A variable declared globally (i.e., within the main program) is known as

a global variable, whereas a variable declared locally within a function

(explained in later chapters) is known as a local variable. To define a

global variable, you use the global declaration statement. Once defined, it

remains the same irrespective of any new definition, unless you issue the

clear command to clear the variable names and values from memory.

As seen, a = 1 stays the same irrespective of the next definition, a = 2.

When the command clear is issued at the command prompt, all variable

names and values are flushed out of memory and the variable name can

be used again. This time, if it is not defined as a global variable, its value

can be changed repeatedly. The isglobal() command lets one check if a

variable name has been defined as a global variable.

Global variables are used to define constants during numerical

calculations. Suppose you want certain variables to change values, so you

could make those unchanging values be global variables by giving the

name of your choice. The predefined variables, like pi, e, etc., are defined

in a similar manner.

1.6.5 The clear Command
As seen in the previous section, the clear command flushes out the

variable names and their values from memory. It proves to be much more

useful than that. Whereas clear all is the same as clear, it can also be

used to selectively wipe out variables and their values. Simply type help

clear to see a detailed view of its use, as shown in Listing 1-1.

Chapter 1 IntroduCtIon to MatLaB

16

Listing 1-1. The help clear Command

 1 >> help clear

 2 clear Clear variables and functions from memory.

 3 clear removes all variables from the workspace.

 4 clear VARIABLES does the same thing.

 5 clear GLOBAL removes all global variables.

 6 clear FUNCTIONS removes all compiled MATLAB and

MEX–functions.

 7 Calling clear FUNCTIONS decreases code performance and is

usually unnecessary.

 8 For more information, see the clear Reference page.

 9

10 clear ALL removes all variables, globals, functions and MEX

links.

11 clear ALL at the command prompt also clears the base import

list.

12 Calling clear ALL decreases code performance and is usually

unnecessary.

13 For more information, see the clear Reference page.

14

15 clear IMPORT clears the base import list. It can only be

issued at the

16 command prompt. It cannot be used in a function or a

script.

17

18 clear CLASSES is the same as clear ALL except that class

definitions

19 are also cleared. If any objects exist outside the

workspace (say in

20 userdata or persistent in a locked program file) a warning

will be

Chapter 1 IntroduCtIon to MatLaB

17

21 issued and the class definition will not be cleared.

22 Calling clear CLASSES decreases code per formance and is

usually unnecessary.

23 If you modify a class definition, MATLAB automatically

updates it.

24 For more information, see the clear Reference page.

25

26 clear JAVA is the same as clear ALL except that java

classes on the

27 dynamic java path (defined using JAVACLASSPATH) are also

cleared.

28

29 clear VAR1 VAR2 ... clears the variables specified. The

wildcard

30 character '*' can be used to clear variables that match a

pattern. For

31 instance, clear X* clears all the variables in the current

workspace

32 that start with X.

33

34 clear –REGEXP PAT1 PAT2 can be used to match all patterns

using regular

35 expressions. This option only clears variables. For more

information on

36 using regular expressions, type "doc regexp" at the command

prompt.

37

38 If X is global, clear X removes X from the current

workspace, but

39 leaves it accessible to any functions declaring it global.

40 clear GLOBAL –REGEXP PAT removes global variables that

match regular

Chapter 1 IntroduCtIon to MatLaB

18

41 expression patterns.

42 Note that to clear specific global variables, the GLOBAL

option must

43 come first. Otherwise, all global variables will be cleared.

44

45 clear FUN clears the function specified. If FUN has been

locked by

46 MLOCK it will remain in memory. If FUN is a script or

function that

47 is currently executing, then it is not cleared. Use a

partial path

48 (see PARTIALPATH) to distinguish between different

overloaded versions

49 of FUN. For instance, 'clear inline/display' clears only

the INLINE

50 method for DISPLAY, leaving any other implementations in

memory.

51

52 Examples for pattern matching:

53 clear a* % Clear variables starting with "a"

54 clear –regexp ^b\d2{3} $ % Clear variables starting with

"b" and % followed by 3

digits

55

56 clear –regexp \d % Clear variables containing any

digits

57

58 See also clearvars, who, whos, mlock, munlock, persistent,

import.

59

60 Reference page for clear

61 >>

Chapter 1 IntroduCtIon to MatLaB

19

Judicious use of the clear command proves to be a very powerful tool

in managing memory requirements for a memory intensive numerical

calculation.

1.7 Summary
MATLAB is a high performance language for technical computing.

By using MATLAB as a simple calculator (using numbers and basic

operations) as well as a complex calculator (using variables with complex

functions), you can perform numerical calculations with ease. The

learning curve for MATLAB is quite flat, owing to its simple and intuitive

syntax. Whenever you become confused, the documentation for the

particular commands can be easily accessed using the help command.

The MATLAB GUI (Graphic User Interface) also provides an integrated

environment for working with many different kinds of computational

tasks, as shall be explored in upcoming chapters.

1.8 Bibliography

 [1] https://en.wikipedia.org/wiki/List_of_

numerical_analysis_software

 [2] https://mathworks.com/company/newsletters/

articles/the- origins- of-matlab.html

 [3] https://www.mathworks.com

 [4] https://in.mathworks.com/discovery/

numerical-analysis.html

 [5] https://mathworks.com/products/

Chapter 1 IntroduCtIon to MatLaB

https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://www.mathworks.com
https://in.mathworks.com/discovery/numerical-analysis.html
https://in.mathworks.com/discovery/numerical-analysis.html
https://mathworks.com/products/

21© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_2

CHAPTER 2

Array Based
Computing

2.1 Introduction
Matrices have become an integrated part of numerical computation

for dealing with large quantities of data. For a two-dimensional matrix,

elements have unique row and column indices through which you can

access them. Rows and columns can be attributed to different properties

under study. For example, if you measure the temperature and pressure at

four corners of the square, the x, y coordinates associated with the corner

points can be assigned to row and column numbers. Now the experimental

data can be simply represented as a matrix. In this way, you can fit data

for two properties as a matrix and then use these matrices for numerical

calculations.

As an example, suppose an element of a row is defined as 1 if a

compound is a conductor, it’s 2 if it is a semiconductor, and it’s 3 if it is an

insulator. Then, a row vector (a matrix composed of only one row) [1 0 0

3 2 1 3 0 1 0 3 2 1] has information about 13 compounds. In electrical

conductivity experiments, this row vector (a 13×1 matrix) can be utilized

as input. In this way, you need to model the system in terms of matrix

formulation to be solved using MATLAB.

22

MATLAB defines a data object for dealing with matrices. They are

called arrays. Using different properties of this object, you can define

various kinds of matrices. Built-in functions for matrix operations make it

easier for a programmer to deal with large amounts of data by arranging

it as a matrix in the desired format and performing array operations. This

chapter explores the various options for defining and manipulating arrays.

Since MATLAB was made for matrix manipulation, it has a large set

of built-in functions and a robust environment to define and work with

matrices.

2.2 Arrays and Vectors
Instead of just pointing to a single number, a variable name can also point

to a sequential set of numbers, called an array. The following example

shows how this can be achieved:

 1 >> a = [1,2,3,4,5]

 2 a =

 3

 4 1 2 3 4 5

 5

 6 >> a1 = [10,11,12,13,14]

 7 a1 =

 8

 9 10 11 12 13 14

10 >> matrix22 = [1,2;3,4]

11 matrix22 =

12

13 1 2

14 3 4

Chapter 2 array Based Computing

23

15 >> matrix33 = [1,2,3;4,5,6;7,8,9]

16 matrix33 =

17

18 1 2 3

19 4 5 6

20 7 8 9

21 >> size(a)

22 ans =

23

24 1 5

25

26 >> size(matrix22)

27 ans =

28

29 2 2

30

31 >> size(matrix33)

32 ans =

33

34 3 3

As seen in the example code, an array can be understood as a matrix

consisting of rows and columns. Thus, you can make a desired sized

matrix. For example, matrix22 is a 2×2 and matrix33 is a 3×3 matrix,

whereas a is a 1×5 matrix. The first number listed while defining the size

indicates the number of rows, whereas the second number indicates

the number of columns. It is also important to note that the comma (,)

operator operates by defining the next element in the same row, whereas

the semicolon (;) operator defines the numbers in the next line/row.

A matrix is defined within the brackets of the type [] (commonly called

square brackets).

Chapter 2 array Based Computing

24

If the number of elements in each row/column do not match, you get

an error message:

 1 >> right33 = [1,2,3;4,5,6;7,8,9]

 2 right33 =

 3

 4 1 2 3

 5 4 5 6

 6 7 8 9

 7

 8 >> wrong33 = [2,3;4,5,6;7,8,9]

 9 Dimensions of matrices being concatenated are

10 not consistent.

11 >> wrong33 = [1,2,3;4,5,6;8,9]

12 Dimensions of matrices being concatenated are

13 not consistent.

2.3 Creating Arrays from Other Arrays
Multi-dimensional arrays can be created from other multi-dimensional

arrays too, as explained here:

 1 >> a = [1,2,3;4,5,6]

 2

 3 a =

 4

 5 1 2 3

 6 4 5 6

 7

 8 >> B = [(1:3);(4:6);(7:9)]

 9

Chapter 2 array Based Computing

25

10 B =

11

12 1 2 3

13 4 5 6

14 7 8 9

15

16 >> c = [a;B]

17

18 c =

19

20 1 2 3

21 4 5 6

22 1 2 3

23 4 5 6

24 7 8 9

25

26 >>>c = [a,B]

27

28 Error using horzcat

29 Dimensions of matrices being concatenated are not

30 consistent.

Here, the matrix a has elements 1, 2, 3 in the first row. Then a row

separator (;) defines the next row of elements as 4, 5, 6. Similarly, matrix B

has the rows defined by these commands:

• (1 : 3) results in (1, 2, 3)

• (4 : 6) results in (4, 5, 6)

• (7 : 9) results in (178, 9)

Note the MATLAB variable names are case sensitive, so a is not the

same as A. A new matrix called c is created by vertically concatenating the

Chapter 2 array Based Computing

26

matrices a and B. The resultant matrix c is made of elements of a stacked

on top of elements of B. The c=[a, B] command yields an error because

the dimensions of a and B are not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the

following ways in this example:

 1 >> a = 1:3

 2

 3 a =

 4

 5 1 2 3

 6

 7 >> A = [a,a]

 8

 9 A =

10

11 1 2 3 1 2 3

For multidimensional arrays, use this code:

 1 >> a = 1:4

 2

 3 a =

 4

 5 1 2 3 4

 6

 7 >> A = [a;a]

 8

 9 A =

10

11 1 2 3 4

12 1 2 3 4

13

Chapter 2 array Based Computing

27

14 >> AA = [A,A]

15

16 AA =

17

18 1 2 3 4 1 2 3 4

19 1 2 3 4 1 2 3 4

2.3.1 Appending Rows and Columns
When an entire row or column of a matrix needs to be appended, you must

consider only one thing—the size of new matrix must match the row and

column requirements. As an example, define an array A, B, D with sizes

(2×2), (1×2), and (2×1), respectively. The row matrix B can be inserted as

a row of A and the column matrix D can be inserted as a row of A, as shown

here:

 1 >> A = [1,2;3,4]

 2

 3 A =

 4

 5 1 2

 6 3 4

 7

 8 >> B = [5,6]

 9

10 B =

11

12 5 6

13

14 >> size(A)

15

Chapter 2 array Based Computing

28

16 ans =

17

18 2 2

19

20 >> size(B)

21

22 ans =

23

24 1 2

25

26 >> C = [A;B]

27

28 C =

29

30 1 2

31 3 4

32 5 6

33

34 >> size(C)

35

36 ans =

37

38 3 2

39

40 >> D = [5;6]

41

42 D =

43

44 5

45 6

46

Chapter 2 array Based Computing

29

47 >> size(D)

48

49 ans =

50

51 2 1

52

53 >> E = [A,D]

54

55 E =

56

57 1 2 5

58 3 4 6

59

60 >> size(E)

61

62 ans =

63

64 2 3

2.3.2 Deleting a Row and/or Column of a Matrix
Rows and columns can be deleted by assigning null matrices [] to them.

For example, (1,:)=[] deletes the first row and (:,1)=[] deletes the first

column of a matrix, as shown here:

 1 >> A = rand(3,3)

 2

 3 A =

 4

 5 0.8147 0.9134 0.2785

 6 0.9058 0.6324 0.5469

 7 0.1270 0.0975 0.9575

 8

Chapter 2 array Based Computing

30

 9 >> A(1,:) =[]

10

11 A =

12

13 0.9058 0.6324 0.5469

14 0.1270 0.0975 0.9575

15

16 >> A(:,1) =[]

17

18 A =

19

20 0.6324 0.5469

21 0.0975 0.9575

2.3.3 Concatenation Along a Dimension
Concatenation of two matrices along a dimension can be obtained using

cat(dim, A, B, ...), where dim presents the dimension and A and B are

the input matrices. Its usage is shown here:

 1 >> A = [1,2;3,4]

 2 A =

 3 1 2

 4 3 4

 5 >> B = [5,6;7,8]

 6 B =

 7 5 6

 8 7 8

 9 >> cat(1,A,B)

10 ans =

11 1 2

12 3 4

Chapter 2 array Based Computing

31

13 5 6

14 7 8

15 >> cat(2,A,B)

16 ans =

17 1 2 5 6

18 3 4 7 8

19 >> C = cat(3,A,B)

20 ans(:,:,1) =

21 1 2

22 3 4

23 ans(:,:,2) =

24 5 6

25 7 8

26 >>> size(C)

27 ans =

28 2 2 2

When cat(1,A,B) is entered at the command prompt, A and B are

concatenated row-wise and cat(2,A,B) performs concatenation column-

wise. In case of cat(3,A,B), a new matrix is created whose first element of

the third dimension is the matrix A and the second element is the matrix B.

2.3.4 Selecting the Data Type of Elements
Elements of an array can be any data type, as explained in Chapter 1.

All elements of an array can be set to a particular data type using the

commands shown here:

 1 >> x = uint32([1,65535])

 2 x =

 3

 4 1x2 uint32 row vector

 5

Chapter 2 array Based Computing

32

 6 1 65535

 7

 8 >> x = uint64([1,65535])

 9 x =

10

11 1x2 uint64 row vector

12

13 1 65535

14

15 >> x = int16([1,65535])

16 x =

17

18 1x2 int6 row vector

19

20 1 32767

21

22 >> x = int32([1,65535])

23 x =

24

25 1x2 int32 row vector

26

27 1 65535

28

29 >> x = int64([1,65535])

30 x =

31

32 1x2 int64 row vector

33

34 1 65535

35

Chapter 2 array Based Computing

33

36 >> x = single([1,65535])

37 x =

38

39 1x2 single row vector

40

41 1 65535

42

43 >> x = double([1,65535])

44 x =

45

46 1 65535

47

48 >> x = single([1.0,65535e10])

49 x =

50

51 1x2 single row vector

52

53 1.0e+14*

54

55 0.0000 6.5535

56

57 >> x = double([1.0,65535e10])

58 x =

59

60 1.0e+14*

61

62 0.0000 6.5535

Line 15 shows that if the element is set to int16, then it can store a

maximum value of 32767, regardless of being commanded to store a value

bigger than that. Hence, it becomes supremely important to understand

Chapter 2 array Based Computing

34

the data type of the elements beforehand, in order to avoid errors in

numerical calculations. Keep in mind that storing very small numbers

in larger numbers of bits is a waste of memory. (Line 46 displays that the

number 1, which is stored as a double precision floating point number,

occupies 64 bits, where essentially 63 bits except the last one are all zeros!)

2.4 Arithmetic Operations on Arrays
Operating on arrays involves two aspects:

• Operating on two or more arrays

• Element-wise operations

All arithmetic operators (such as +, -, *, /, %, ^, etc.) can be used in

both cases. When you need to do element-wise operation, then a . (dot) is

placed before the operator. The element-wise operators become .+, .-, .*,

./, .%, and .^. This will become more clear in following example.

 1 >> a = [1,2;3,4]

 2 a =

 3

 4 1 2

 5 3 4

 6

 7 >> b = [5,6;7,8]

 8 b =

 9

10 5 6

11 7 8

12

Chapter 2 array Based Computing

35

13 >> a+b

14 ans =

15

16 6 8

17 10 12

18

19 >> 2.+a

20 ans =

21

22 3 4

23 5 6

24

25 >> –10.+b

26 ans =

27

28 –5 –4

29 –3 –2

When a and b are matrices to be added/subtracted, their elements are

added/subtracted to elements in the same position. For this reason, the

size of the two matrices should be same. On the other hand, when you

write 2.+a, you add the number 2 to each of the elements individually.

This can be done regardless of the size and is implemented uniformly on

all the elements of the matrix.

2.5 Built-In Functions
A host of built-in functions provide facilities to calculate properties of

arrays for quick computation. This includes:

• Summing all elements using sum() function.

• Finding the product of all elements of an array using

prod().

Chapter 2 array Based Computing

36

• Finding the length of array using length().

• Finding the mean of array elements using the mean()

function.

• Finding the maximum and minimum amongst an

element of an array using max() and min() of an array.

• Finding a particular element as per a logical expression

using the find() function.

• The rounding elements are as follows:

 – Rounding the elements of an array to the nearest

integer toward zero using the fix() function.

 – Rounding the elements of an array to the nearest

integer toward −• using the floor() function.

 – Rounding the elements of an array to the nearest

integer toward +• using the ceil() function.

 – Rounding the elements of an array to the nearest

integer using the rounding() function.

• Sorting the elements of an array using sort() in

ascending or descending order.

Their usage is demonstrated here:

 1 >> A = 1:5

 2 A =

 3 1 2 3 4 5

 4 >> sum(A)

 5 ans =

 6 15

 7 >> prod(A)

 8 ans =

 9 120

Chapter 2 array Based Computing

37

10 >> length(A)

11 ans =

12 5

13 >> mean(A)

14 ans =

15 3

16 >> max(A)

17 ans =

18 5

19 >> min(A)

20 ans =

21 1

22 >> find(A>4)

23 ans =

24 5

25 >> find(A<4)

26 ans =

27 1 2 3

28 >> A= –1.1:0.5:1.1

29 A =

30 –1.1000 –0.6000 –0.1000 0.4000 0.9000

31 >> fix(A)

32 ans =

33 –1 0 0 0 0

34 >> floor(A)

35 ans =

36 –2 –1 –1 0 0

37 >> ceil(A)

38 ans =

39 –1 0 0 1 1

Chapter 2 array Based Computing

38

40 >> round(A)

41 ans =

42 –1 –1 0 0 1

43 >> A = [2,4.4,2,7,0,–2]

44 A =

45 2.0000 4.4000 2.0000 7.0000 0 –2.0000

46 >> sort(A,'ascend')

47 ans =

48 –2.0000 0 2.0000 2.0000 4.4000 7.0000

49 >> sort(A,'descend')

50 ans =

51 7.0000 4.4000 2.0000 2.0000 0 –2.0000

2.6 Matrix Algebra
Arithmetic on matrices can be placed into two classes:

• Algebraic operations (covered in Chapter 2)

• Matrix operations

2.6.1 Algebraic Operations on Matrices
Algebraic operations on matrices involve element-wise operations. For

example:

 1 >> a = [1,2;3,4;5,6]

 2 a =

 3 1 2

 4 3 4

 5 5 6

Chapter 2 array Based Computing

39

 6 >> a+2

 7 ans =

 8 3 4

 9 5 6

10 7 8

Note that a defines a 3×2 matrix so the a+2 command performs

element-wise addition of a with a number 2. Computationally, this is done

by creating a 3×2 matrix with all its elements as the number 2 and adding

them.

Similarly, some other operations are shown here:

 1 >> 2*a

 2 ans =

 3 2 4

 4 6 8

 5 10 12

 6 >> 2–a

 7 ans =

 8 1 0

 9 –1 –2

10 –3 –4

11 >> a–2

12 ans =

13 –1 0

14 1 2

15 3 4

16 >> a/2

17 ans =

18 0.5000 1.0000

19 1.5000 2.0000

20 2.5000 3.0000

Chapter 2 array Based Computing

40

The problem starts with other arithmetic operations. For example,

when we want to calculate a2, this would mean multiplying a with itself,

i.e., matrix multiplication. This requires either a square matrix or the inner

dimensions to be similar because a matrix of dimension n×m can only be

multiplied with m×t and the resultant matrix is of the dimension

n×t. Hence, the command a^(2) will result in an error message, as shown

here:

1 >> a^2

2 Error using ^

3 Input s must be a scalar and a square matrix.

4 To compute elementwise POWER, use POWER (.^) instead.

If we wanted to calculate element-wise squares of matrix a then the last

line of the error message comes to the rescue. Adding a dot operator to

a power operator (.^) will direct MATLAB to perform the same operation

element-wise.

1 >> a.^2

2 ans =

3 1 4

4 9 16

5 25 36

On the other hand, multiplication of two matrices is the domain of

matrix algebra, discussed next.

2.6.2 Matrix Operations on Matrices
Those who are familiar with matrix algebra know that matrix

multiplication and division are not straightforward tasks. A m×n matrix

can only be multiplied by a n×t matrix, which results in a×c matrix. This is

performed by multiplying elements of rows with elements of columns to

get new elements.

Chapter 2 array Based Computing

41

 1 >> a = rand(2,3)

 2

 3 a =

 4

 5 0.8147 0.1270 0.6324

 6 0.9058 0.9134 0.0975

 7

 8 >> b = rand(3,4)

 9

10 b =

11

12 0.2785 0.9649 0.9572 0.1419

13 0.5469 0.1576 0.4854 0.4218

14 0.9575 0.9706 0.8003 0.9157

15 >> c = rand(2,3)

16

17 c =

18

19 0.7922 0.6557 0.8491

20 0.9595 0.0357 0.9340

21

22 >> a.*c

23

24 ans =

25

26 0.6454 0.0833 0.5370

27 0.8691 0.0326 0.0911

Here, the matrices a, b, and c are defined using the rand function

(which generates uniformly distributed random numbers between 0 and 1).

Chapter 2 array Based Computing

42

Now, a*b performs matrix multiplication, whereas a.*c performs element-

wise multiplication. The requirements for both are as follows:

• For matrix multiplication, the inner dimensions must

match.

• For element-wise multiplication, all dimensions must

match.

Transpose

A single hash mark ('), also called an apostrophe, transposes a matrix

(rows become columns and vice versa). Performing division on a matrix

involves matrix inversion.

 1 >> a

 2

 3 a =

 4

 5 1 2

 6 3 4

 7 5 6

 8 >> pinv(a)

 9 ans =

10

11 –1.3333 –0.3333 0.6667

12 1.0833 0.3333 –0.4167

13 >> b

14

15 b =

16

17 5 6

18 7 8

Chapter 2 array Based Computing

43

19 >> pinv(b)

20

21 ans =

22

23 –4.0000 3.0000

24 3.5000 –2.5000

 Inverse

The inverse of a matrix a, denoted by a−1, is a matrix such that

a * a−1 = I

where I is an identity matrix. If the given matrix is a square matrix, then

the function inv() can be used; otherwise, the function pinv() is used.

Examples are given here:

 1 >> a = [1,2;3,4;5,6]

 2

 3 a =

 4

 5 1 2

 6 3 4

 7 5 6

 8

 9 >> pinv(a)

10

11 ans =

12

13 –1.3333 –0.3333 0.6667

14 1.0833 0.3333 –0.4167

15

Chapter 2 array Based Computing

44

16 >> pinv(a)*a

17

18 ans =

19

20 1.0000 0.0000

21 –0.0000 1.0000

22

23 >> a = rand(5,5)

24

25 a =

26

27 0.9649 0.8003 0.9595 0.6787 0.1712

28 0.1576 0.1419 0.6557 0.7577 0.7060

29 0.9706 0.4218 0.0357 0.7431 0.0318

30 0.9572 0.9157 0.8491 0.3922 0.2769

31 0.4854 0.7922 0.9340 0.6555 0.0462

32

33 >> inv(a)

34

35 ans =

36

37 2.5545 –0.3119 –0.0173 –0.4492 –1.9962

38 –4.9167 –0.1095 0.8740 2.7919 2.5562

39 3.3797 –0.1001 –1.3938 –1.5253 –0.8910

40 –0.6203 0.4252 0.9340 –1.0120 1.2230

41 –2.0554 1.1445 0.1203 2.0420 –0.5531

42

43 >> a_pinv(a)

44

Chapter 2 array Based Computing

45

45 ans =

46

47 1.0000 –0.0000 0.0000 –0.0000 –0.0000

48 0.0000 1.0000 –0.0000 –0.0000 0.0000

49 –0.0000 0.0000 1.0000 0.0000 0.0000

50 0.0000 –0.0000 –0.0000 1.0000 –0.0000

51 –0.0000 0.0000 0.0000 0.0000 1.0000

I is called an identity matrix because all its diagonal elements are 1

and all its non-diagonal elements are zero, which makes its determinant

1. The determinant of a matrix a is calculated using the command det(a).

Automatic generation of an identity matrix is done using the command

eye(a,b), where a and b are values of the numbers of rows and columns.

 1 >> eye(2,2)

 2 ans =

 3

 4 1 0

 5 0 1

 6 >> det(eye(2,2))

 7 ans =

 8

 9 1

10 >> eye(4,5)

11 ans =

12

13 1 0 0 0 0

14 0 1 0 0 0

15 0 0 1 0 0

16 0 0 0 1 0

Chapter 2 array Based Computing

46

 rank()

The rank of a matrix, i.e., the number of linearly independent rows or

columns, can be determined by the built-in rank() function.

 1 a = ones(5,3)
 2

 3 a =
 4

 5 1 1 1

 6 1 1 1

 7 1 1 1

 8 1 1 1

 9 1 1 1

10

11 >> rank(a)

12

13 ans =

14

15 1
16

17 >> a = rand(3,2)
18

19 a =
20

21 0.4456 0.7547

22 0.6463 0.2760

23 0.7094 0.6797
24

25 >> rank(a)

26

27 ans =

28

29 2

Chapter 2 array Based Computing

47

2.6.3 trace()
The sum of the diagonal elements of a matrix is called the trace of the

matrix. This is given by the built-in trace() function, as follows:

 1 >> a = ones(4,4)

 2

 3 a =

 4

 5 1 1 1 1

 6 1 1 1 1

 7 1 1 1 1

 8 1 1 1 1

 9

10 >> trace(a)

11

12 ans =

13

14 4

 norm()

The norm() function calculates the 2-norm of a matrix, which is equal to

the Euclidean length of the vector.

 1 >> A = [1,2;3,4;5,6]

 2

 3 A =

 4

 5 1 2

 6 3 4

 7 5 6

 8

Chapter 2 array Based Computing

48

 9 >> norm(A)

10

11 ans =

12

13 9.5255

14

15 >> A = [1,2,3]

16

17 A =

18

19 1 2 3

20

21 >> norm(A)

22

23 ans =

24

25 3.7417

 Logical Operations

Two matrices can be compared to each other element-wise.

 1 >> a = rand(2,3)

 2

 3 a =

 4

 5 0.6787 0.7431 0.6555

 6 0.7577 0.3922 0.1712

 7

 8 >> b = rand(2,3)

 9

Chapter 2 array Based Computing

49

10 b =

11

12 0.7060 0.2769 0.0971

13 0.0318 0.0462 0.8235

14

15 >> c = (a<b)

16

17 c =

18

19 2x3 logical array

20

21 1 0 0

22 0 0 1

23 >> whos

24 Name Size Bytes Class Attributes

25

26 a 2x3 48 double

27 b 2x3 48 double

28 c 2x3 6 logical

29 >> a+c

30

31 ans =

32

33 1.6787 0.7431 0.6555

34 0.7577 0.3922 1.1712

The matrix c has elements, either 1 or 0, which are assigned by

determining whether the corresponding elements of a are smaller than

b. Note that using whos command, we can probe the variables a, b, and c.

The matrix c contains logical data types, i.e., 1 and 0 represent the boolean

quantities True and False. But performing a+c treats them as numerals.

Chapter 2 array Based Computing

50

This artifact leads to erroneous computations, hence some programming

languages like Python explicitly use True and False representations for

boolean values rather than 1 and 0.

2.6.4 Polynomials and Arrays
Every matrix has a characteristic polynomial associated with it. It can be

found using the poly() function. Let’s look at an example:

 1 >> A1 = [–3 2 0 4]

 2

 3 A1 =

 4

 5 –3 2 0 4

 6

 7 >> B1 = poly(A1)

 8

 9 B1 =

10

11 1 –3 –10 24 0

12

13 >> A2 = [1,2;3,4]

14

15 A2 =

16

17 1 2

18 3 4

19

20 >> B2 = poly(A2)

21

22 B =

23

24 1.0000 –5.0000 –2.0000

Chapter 2 array Based Computing

51

In the first case, the resultant polynomial (given by B1) is

x4 −3x3 −10x2 +24x, whereas in the second case (given by B2),

it’s x2 − 5x − 2. The resultant matrix presents the coefficients of the

characteristic polynomial.

 find()

The built-in function find() returns the row and column indices of

non-zero entries in a matrix. For example, in the 2×2 matrix defined by

A = [1,0;0,2], the non-zero elements exist at A(1,1) and A(2,2). The

information about rows and columns as a vector is demonstrated here:

 1 >> A = [1,0;0,2]

 2

 3 A =

 4

 5 1 0

 6 0 2

 7

 8 >> [row,col,v]=find(A)

 9

10 row =

11

12 1

13 2

14

15

16 col =

17

18 1

19 2

20

21

Chapter 2 array Based Computing

52

22 v =

23

24 1

25 2

 sort()

The built-in function sort() can be used to sort the elements of each

column in a particular order. The order can be specified as a second

argument to the function as a string (ascend or descend).

 1 >> A = [1,–2,3;4,5,–2;0,–2,3]

 2

 3 A =

 4

 5 1 –2 3

 6 4 5 –2

 7 0 –2 3

 8

 9 >> sort(A)

10

11 ans =

12

13 0 –2 –2

14 1 –2 3

15 4 5 3

16

17 >> sort(A,'ascend')

18

19 ans =

20

Chapter 2 array Based Computing

53

21 0 –2 –2

22 1 –2 3

23 4 5 3

24

25 >> sort(A,'descend')

26

27 ans =

28

29 4 5 3

30 1 –2 3

31 0 –2 –2

2.7 Random Matrix
Using random number generators, a random matrix can be created. Use

the rand(a,b) command:

 1 >> rand(4,5)

 2 ans =

 3

 4 Columns 1 through 4

 5

 6 0.8147 0.6324 0.9575 0.9572

 7 0.9058 0.0975 0.9649 0.4854

 8 0.1270 0.2785 0.1576 0.8003

 9 0.9134 0.5469 0.9706 0.1419

10

11 Column 5

12

Chapter 2 array Based Computing

54

13 0.4218

14 0.9157

15 0.7922

16 0.9595

Note that the numbers generated here will be different each time even

on the same machine, since they are supposed to be random in nature.

By default, they are uniformly distributed over the interval (0, 1). A vector

is simply a row vector, so it can be generated randomly using the rand(a)

command. help rand provides a detailed description of various other

features and arguments of the random number generator.

To create random integers, you can use randi() function. You

can also specify a range for these random integers. For example,

randi([1,10],1,5) will create five random integers (an array of 1× 5)

within 1 to 10. On the other hand, randi([1,10],5) will create an array of

random integers (an array of 5×5) within 1 to 10.

 1 >> randi([1,10],5)

 2

 3 ans =

 4

 5 5 3 5 8 10

 6 5 7 10 3 6

 7 7 7 4 6 2

 8 8 2 6 7 2

 9 8 2 3 9 3

10

11 >> randi([1,10],1,5)

12

13 ans =

14

15 9 3 9 3 10

Chapter 2 array Based Computing

55

A random complex number can be generated using the rand

command, as follows:

 1 >> rand + i* rand

 2

 3 ans =

 4

 5 0.3500 + 0.1966i

 6

 7 >> rand + i* rand

 8

 9 ans =

10

11 0.2511 + 0.6160i

Sometimes, you might want to generate the same set of random

numbers each time the program executes. This can be done by setting the

state of the random number function using the rng command, as follows:

 1 >> state 1 = rng;

 2 >> r1 = rand(2,3)

 3

 4 r1 =

 5

 6 0.4733 0.8308 0.5497

 7 0.3517 0.5853 0.9172

 8

 9 >> r12= rand(2,3)

10

11 r12=

12

13 0.2858 0.7537 0.5678

14 0.7572 0.3804 0.0759

15

Chapter 2 array Based Computing

56

16 >> rng(s);

17 Undefined function or variable 's'.

18

19 >> rng(state 1);

20 >> r3= rand(2,3)

21

22 r3=

23

24 0.4733 0.8308 0.5497

25 0.3517 0.5853 0.9172

The state is saved in the state1 variable and then r1 and r2 creates

two arrays of 2×3 size. They have different elements. But when the state

is reset using rng(state1), the new array of the same size stored in r3 is

exactly the same as r1, which was created when the state of the machine

was saved in the state1 variable.

A normally distributed random number generator is given by the

function randn(). The random numbers, thus generated, are normally

distributed around 0. Figure 3-7 in Chapter 3 confirms this fact.

A 3D array of random numbers can be generated by inputting an array

for each dimension. For example, if an array A = [3,2,4] is fed into the

rand() function, an 3D array of random numbers is created, as shown here:

 1 >> A = [3,2,4];

 2 >> B = rand(A)

 3

 4 B(:,:,1) =

 5

 6 0.7482 0.2290

 7 0.4505 0.9133

 8 0.0838 0.1524

 9

10

Chapter 2 array Based Computing

57

11 B(:,:,2) =

12

13 0.8258 0.0782

14 0.5383 0.4427

15 0.9961 0.1067

16

17

18 B(:,:,3) =

19

20 0.9619 0.8173

21 0.0046 0.8687

22 0.7749 0.0844

23

24

25 B(:,:,4) =

26

27 0.3998 0.4314

28 0.2599 0.9106

29 0.8001 0.1818

30

31 >> size(B)

32

33 ans =

34

35 3 2 4

2.7.1 Matrix Manipulations
Some common matrix manipulations have been written in function form,

which makes it easier for developers to use them right away, rather than

invest time in writing optimum code.

Chapter 2 array Based Computing

58

2.7.2 Flipping a Matrix
flipud(A) returns a copy of matrix A with the order of the rows reversed

along the horizontal axis. flipud stands for flip-up-down. fliplr(A)

returns a copy of matrix A with the order of the rows reversed from left to

right. fliplr stands for flip left right.

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> fliplr(a)

 9 ans =

10

11 2 1

12 4 3

13 6 5

14

15 >> flipud(a)

16 ans =

17

18 5 6

19 3 4

20 1 2

2.7.3 Rotating a Matrix
Using the command rot90(a,n), you can rotate a matrix a n times by 90

degrees.

Chapter 2 array Based Computing

59

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> rot90(a,1)

 9 ans =

10

11 2 4 6

12 1 3 5

13

14 >> rot90(a,2)

15 ans =

16

17 6 5

18 4 3

19 2 1

20

21 >> rot90(a,4)

22 ans =

23

24 1 2

25 3 4

26 5 6

2.7.4 Reshaping a Matrix
The number of rows and columns in a matrix can be changed provided the

total number of elements remains the same.

Chapter 2 array Based Computing

60

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> reshape(a,6,1)

 9 ans =

10

11 1

12 3

13 5

14 2

15 4

16 6

17 >> reshape(a,4,1)

18 Error using reshape

19 To RESHAPE the number of elements must not change.

2.7.5 Sorting
Numbers can be sorted in increasing order using the sort function:

1 >> a = rand(1,5)

2 a =

3

4 0.7431 0.3922 0.6555 0.1712 0.7060

5

Chapter 2 array Based Computing

61

6 >> sort(a)

7 ans =

8

9 0.1712 0.3922 0.6555 0.7060 0.7431

2.7.6 Upper and Lower Triangular Matrix
The upper triangular matrix is such that only diagonal and elements above

diagonal are non-zero. Similarly, the lower triangular matrix is such that

diagonal and elements below diagonal are non-zero.

 1 >> a = rand(3,3)

 2 a =

 3

 4 0.0318 0.0971 0.3171

 5 0.2769 0.8235 0.9502

 6 0.0462 0.6948 0.0344

 7

 8 >> tril(a)

 9 ans =

10

11 0.0318 0 0

12 0.2769 0.8235 0

13 0.0462 0.6948 0.0344

14

15 >> triu(a)

16 ans =

17

18 0.0318 0.0971 0.3171

19 0 0.8235 0.9502

20 0 0 0.0344

Chapter 2 array Based Computing

62

2.7.7 Ones and Zeros Matrix
A matrix having all its numbers as 1 or 0 make up a ones and zeros matrix,

respectively:

 1 >> ones(3,3)

 2 ans =

 3

 4 1 1 1

 5 1 1 1

 6 1 1 1

 7

 8 >> zeros(3,3)

 9 ans =

10

11 0 0 0

12 0 0 0

13 0 0 0

2.8 Indexing
Each element of the matrix is characterized by two numbers, the row

number and the column number. This is used to pinpoint an element and

operate on that.

 1 >> a = rand(2,3)

 2 a =

 3

 4 0.6557 0.8491 0.6787

 5 0.0357 0.9340 0.7577

 6

Chapter 2 array Based Computing

63

 7 >> a(2,3)=1

 8 a =

 9

10 0.6557 0.8491 0.6787

11 0.0357 0.9340 1.0000

12

13 >> a(1,1)=0

14 a =

15

16 0 0.8491 0.6787

17 0.0357 0.9340 1.0000

Note that a(2,3)=1 sets the element at the second row and third

column, i.e., number 0.3041072 to 1, and a(1,1)=0 sets the element at the

first row and first column, i.e., number 0.5248873 to 0. To index numbers in

a vector, you need a single number.

 1 >> a = [1,2,3,4,5,6,7,8,9]

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 9

 9

10 8 9

11

12 >> a(1)

13 ans =

14

15 1

Chapter 2 array Based Computing

64

16 >> a(–1)

17 Subscript indices must either be real

18 positive integers or logicals.

19 >> a(5)

20 ans =

21

22 5

23 >> a(10)

24 Index exceeds matrix dimensions.

It is important to note that, unlike some programming languages

where indices start at 0, MATLAB starts indices at 1 and does not take

negative numbers as indices.

2.8.1 Using Indices to Create a New Vector
1 >> a = [10 20 30 40 50 60]

2 a =

3

4 10 20 30 40 50 60

5

6 >> b = a([1 3 6 1])

7 b =

8

9 10 30 60 10

In the previous example, b is a new vector formed from vector a, where

successive elements are made up of elements taken from an index vector

[1 3 6 1].

 1 >> a = [11,12,13;40,50,60;17,18,19]

 2 a =

 3

Chapter 2 array Based Computing

65

 4 11 12 13

 5 40 50 60

 6 17 18 19

 7

 8 >> a([1,2], [2,3])

 9 ans =

10

11 12 13

12 50 60

Note that since the use of the comma operator is optional, we will

define vectors and matrices by simply using whitespace.

2.9 Slicing
Matrices can be sliced to desired portions by using indices and the colon :

operator.

 1 >> a = [1 2 3 4 1 3 2 4 6 4 5]

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 1 3 2

 7

 8 Columns 8 through 11

 9

10 4 6 4 5

11

Chapter 2 array Based Computing

66

12 >> b =a(1:5)

13 b =

14

15 1 2 3 4 1

16

17 >> c = a(5:7)

18 c =

19

20 1 3 2

This is an important feature, as most of experimental calculations

would demand filtering the data. Here, a slice of data will be stored

separately in a variable and then various mathematical operations can be

performed on it.

Now let’s try to access slices of a multidimensional array. A matrix a is

defined to be a 5×5 matrix.

 1 >> a = rand(5,5)

 2

 3 a =

 4

 5 0.6948 0.3816 0.4456 0.6797 0.9597

 6 0.3171 0.7655 0.6463 0.6551 0.3404

 7 0.9502 0.7952 0.7094 0.1626 0.5853

 8 0.0344 0.1869 0.7547 0.1190 0.2238

 9 0.4387 0.4898 0.2760 0.4984 0.7513

10

11 >> b = a(1,1)

12

13 b =

14

15 0.6948

Chapter 2 array Based Computing

67

16 >> c = a(1,:)

17

18 c =

19

20 0.6948 0.3816 0.4456 0.6797 0.9597

21

22 >> d = a(:,1)

23

24 d =

25

26 0.6948

27 0.3171

28 0.9502

29 0.0344

30 0.4387

31 >> e = a(:)

32

33 e =

34

35 0.6948

36 0.3171

37 0.9502

38 0.0344

39 0.4387

40 0.3816

41 0.7655

42 0.7952

43 0.1869

44 0.4898

45 0.4456

46 0.6463

Chapter 2 array Based Computing

68

47 0.7094

48 0.7547

49 0.2760

50 0.6797

51 0.6551

52 0.1626

53 0.1190

54 0.4984

55 0.9597

56 0.3404

57 0.5853

58 0.2238

59 0.7513

60 >> f = a(:,[1,3])

61

62 f =

63

64 0.6948 0.4456

65 0.3171 0.6463

66 0.9502 0.7094

67 0.0344 0.7547

68 0.4387 0.2760

69 >> g= a([1,3],:)

70

71 g =

72

73 0.6948 0.3816 0.4456 0.6797 0.9597

74 0.9502 0.7952 0.7094 0.1626 0.5853

• To access a single element, we use the index value of

the row and column, For example, b = a(1,1) accesses

the element within the first row and first column.

Chapter 2 array Based Computing

69

• To access all elements of a row or column, you can

use the : operator. Hence, c = a(1,:) accesses all

elements of the first row. Similarly, >> d = a(:,1)

accesses all elements of the first column. A simple way

to remember in words is to read the colon (:) as all

elements for and then the words nth row/column, where

n is a given value.

• Using a(:), you can create a new column matrix that

has all the elements.

• A sub-matrix can be accessed by defining all elements

for column/row and then defining indices in square

brackets. For example, f = a(:,[1,3]) defines a new

matrix where elements are composed of all elements of

the first and third columns. Similarly, a([1,3],:) uses

all elements of first and third rows.

You can compose complex sub-matrices using this powerful way of

defining your choice of elements.

 1 >> a = rand(5,6)

 2

 3 a =

 4

 5 0.3510 0.1233 0.9027 0.9001 0.2417 0.9561

 6 0.5132 0.1839 0.9448 0.3692 0.4039 0.5752

 7 0.4018 0.2400 0.4909 0.1112 0.0965 0.0598

 8 0.0760 0.4173 0.4893 0.7803 0.1320 0.2348

 9 0.2399 0.0497 0.3377 0.3897 0.9421 0.3532

10

11 >> b = a([2,5],1:3)

12

Chapter 2 array Based Computing

70

13 b =

14

15 0.5132 0.1839 0.9448

16 0.2399 0.0497 0.3377

17 >> c = a(2:5,[1,3])

18

19 c =

20

21 0.5132 0.9448

22 0.4018 0.4909

23 0.0760 0.4893

24 0.2399 0.3377

25 >> d = a([2,5],[1,3])

26

27 d =

28

29 0.5132 0.9448

30 0.2399 0.3377

31 >>e = a(2:5,1:3)

32

33 e=

34

35 0.5132 0.1839 0.9448

36 0.4018 0.2400 0.4909

37 0.0760 0.4173 0.4893

38 0.2399 0.0497 0.3377

We define a new 5×5 matrix a and then define a subset of this matrix using

a([2,5],1:3), which says that from the second and third row, take elements

from the first column to the third column. Similarly, c = a(2:5,[1,3]) creates

a matrix using this logic: from the first and fifth column, take elements from the

second row to the third row. Now you can easily guess what a([2,5],[1,3])

Chapter 2 array Based Computing

71

and a(2:5,1:3) should do. It’s a good idea to practice slicing of arrays

rigorously, as this is one of the most sought-after skills in data cleaning and

data analysis in general.

2.10 Automatic Generation of Arrays
MATLAB presents a variety of ways to generate arrays of numbers

automatically according to a specified rule. Three methods are discussed

in the following sections.

2.10.1 The : Operator
One of the most useful operators in MATLAB, the : operator can be

mastered easily. You have already seen its usage in selecting a sub-matrix

in Chapter 2.

 1 >> help:

 2 : Colon.

 3 J:K is the same as [J,J+1,...,J+m], where m = fix(K–J). In the

 4 case where both J and K are integers, this is simply

[J,J+1,...,K].

 5 This syntax returns an empty matrix if J>K.

 6

 7 J:I:K is the same as [J,J+I,...,J+m_I], where

m = fix((K–J)/I).

 8 This syntax returns an empty matrix when I == 0,

I>0 and J>K, or

 9 I<0 and J<K.

10

11 colon (J,K) is the same as J:K and colon (J,I,K) is the

same as J:I:K.

12

Chapter 2 array Based Computing

72

13 The colon notation can be used to pick out selected rows,

columns

14 and elements of vectors, matrices, and arrays. A(:) is all the

15 elements of A, regarded as a single column. On the left

side of an

16 assignment statement, A(:) fills A, preserving its shape

from before.

17 A(:,J) is the J–th column of A. A(J:K) is

[A(J),A(J+1),...,A(K)].

18 A(:,J:K) is [A(:,J),A(:,J+1),...,A(:,K)] and so on.

19

20 The colon notation can be used with acellar ray to produce

a comma–

21 separated list. C{:} is the same as Cf1g,Cf2g,...,Cfendg.

22 The comma separated list syntax is valid inside () for

function calls, [] for

23 concatenation and function return arguments, and inside fg

to produce

24 a cell array. Expressions such as S(:). name produce the

comma

25 separated list S(1).name,S(2).name,...,S(end). name for the

structure S.

26

27 For the use of the colon in the FOR statement, See FOR.

28 For the use of the colon in a comma separated list, See

VARARGIN.

29

30 Reference page for colon

31 Other functions named colon

Chapter 2 array Based Computing

73

You can generate a series of numbers and store them as arrays by using

the start:step:stop command.

 1 >> a=1:1:10

 2 a =

 3

 4 Columns 1 through 7

 5

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 10

 9

10 8 9 10

11

12 >> a =[1:1:10]

13 a =

14

15 Columns 1 through 7

16

17 1 2 3 4 5 6 7

18

19 Columns 8 through 10

20

21 8 9 10

Note that brackets ([]) are optional here. If a step is not defined, then it

is taken as 1.

 1 >> a=1:10

 2 a =

 3

 4 Columns 1 through 7

 5

Chapter 2 array Based Computing

74

 6 1 2 3 4 5 6 7

 7

 8 Columns 8 through 10

 9

10 8 9 10

11

12 >> a=1:2:10

13

14 a =

15

16 1 3 5 7 9

2.10.2 Linearly Spaced Vectors
The linspace(start, stop, n) command produces an array starting at

the first number and stopping at the second one with a total of n numbers.

Hence, they are linearly spaced.

 1 >> a = linspace(1,2,5)

 2 a =

 3

 4 Columns 1 through 4

 5

 6 1.0000 1.2500 1.5000 1.7500

 7

 8 Column 5

 9

10 2.0000

11

12 >> a = linspace(1,2,10)

13 a =

14

Chapter 2 array Based Computing

75

15 Columns 1 through 4

16

17 1.0000 1.1111 1.2222 1.3333

18

19 Columns 5 through 8

20

21 1.4444 1.5556 1.6667 1.7778

22

23 Columns 9 through 10

24

25 1.8889 2.0000

2.10.3 logspace
Similar to the linspace command, logspace(start, stop, n) produces

n numbers from start to stop, which are linearly spaced in logarithmic

nature.

 1 >>> help logspace

 2 logspace Logarithmically spaced vector.

 3 logspace(X1,X2) generates a row vector of 50

logarithmically

 4 equally spaced points between decades 10^X1 and 10^X2. If X2

 5 is pi, then the points are between 10^X1 and pi.

 6

 7 logspace(X1,X2,N) generates N points.

 8 For N = 1, logspace returns 10^X2.

 9

10 Class support for inputs X1,X2:

11 float:double, single

12

Chapter 2 array Based Computing

76

13 See also linspace, colon.

14

15 Reference page for logspace

16 >>>logspace (1,5,10)

17

18 ans =

19

20 1.0e+05 *

21

22 Columns 1 through 4

23

24 0.0001 0.0003 0.0008 0.0022

25

26 Columns 5 through 8

27

28 0.0060 0.0167 0.0464 0.1292

29

30 Columns 9 through 10

31

32 0.3594 1.0000

2.11 Solving a System of Equations
Solving a system of equations in one line simply involves the \ operator.

Suppose the following system of equations needs to be solved:

 2 2 4x y- = (Equation 2-1)

 - + =3 4 9x y (Equation 2-2)

Chapter 2 array Based Computing

77

You can define this problem in a matrix, as follows:

2 2

3 4

4

9

-
-
é

ë
ê

ù

û
ú´

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú

x

y
 (Equation 2-3)

Suppose:

 A =
-

-
é

ë
ê

ù

û
ú

2 2

3 4
 (Equation 2-4)

 X
x

y
=
é

ë
ê

ù

û
ú (Equation 2-5)

 B =
é

ë
ê
ù

û
ú

4

9
 (Equation 2-6)

In this way, you can write the following:

 A X B´ = (Equation 2-7)

The solution is given by X = A−1B. You can find the inverse of A (using

the inv() or pinv()) function) and then multiply the resultant matrix with

the matrix given by B to find a solution. Alternatively, you can accomplish

this task in just one command, as A\B:

 1 >> A = [2,–2;–3,4]

 2

 3 A =

 4

 5 2 –2

 6 –3 4

 7

 8 >> B = [4;9]

 9

Chapter 2 array Based Computing

78

10 B =

11

12 4 9

13

14 >> C = A/B

15

16 ans =

17

18 17.0000

19 15.0000

Hence, the solution is x = 17 and y = 15. Since the elements of the C

matrix are solutions, this is often called a solution matrix.

2.12 Eigen Values and Eigen Vectors
The eigenvalue problem is to determine the solution to the equation

Av = λv, where A is an n × n matrix, v is a column vector of length n, and

λ is a scalar. The values of λ that satisfy the equation are the eigenvalues.

The corresponding values of v that satisfy the equation are the right

eigenvectors. The left eigenvectors, w, satisfy the equation ¢ ¢=w A wl . The

MATLAB function eig() returns the eigenvalues and eigenvectors. It also

gives the matrix D (diagonal matrix D of eigenvalues), which is related to W

and A as ¢ ¢=WA DW :

 1 >> A = rand(3,3)

 2

 3 A =

 4

 5 0.6551 0.4984 0.5853

 6 0.1626 0.9597 0.2238

 7 0.1190 0.3404 0.7513

 8

Chapter 2 array Based Computing

79

 9 >> [V,D,W] = eig(A)

10

11 V =

12

13 –0.7284 –0.9532 0.8945

14 –0.5300 0.2997 –0.4178

15 –0.4341 0.0411 0.1590

16

17

18 D =

19

20 1.3665 0 0

21 0 0.4732 0

22 0 0 0.5264

23

24

25 W =

26

27 –0.2724 –0.3066 –0.1266

28 –0.7915 –0.3145 –0.5186

29 –0.5471 0.8984 0.8456

2.13 Structure Arrays
Arrays stores elements of the same data types, whereas structure arrays

can store data of different data types. Structures are collections of data

organized by named fields. For example, one field may contain textual

data, another a number, and a third may be an array, etc. A single structure

is a 1-by-1 structure array. Let’s understand how to create them by using

an example. Let’s create a structure array for this book and name this

array book. Now, various fields can be added using the dot operator, such

Chapter 2 array Based Computing

80

as name, author, pages, and chapter. The book array is a 1-by-1 structure

with four fields. This is demonstrated here.

 1 >> book.name = 'Introducing MATLAB'

 2

 3 book =

 4

 5 struct with fields:

 6

 7 name:'Introducing MATLAB'

 8

 9 >> book.author = 'Sandeep Nagar'

10

11 book =

12

13 struct with fields:

14

15 name:'Introducing MATLAB'

16 author:'Sandeep Nagar'

17

18 >> book.pages = '175'

19

20 book =

21

22 struct with fields:

23

24 name:'Introducing MATLAB'

25 author:'Sandeep Nagar'

26 pages:'175'

27

28 >> book.chapters = [1 2 3 4 5 6 7]

29

Chapter 2 array Based Computing

81

30 book =

31

32 struct with fields:

33

34 name:'Introducing MATLAB'

35 author:'Sandeep Nagar'

36 pages:'175'

37 chapters:[1 2 3 4 5 6 7]

2.13.1 Defining a New Structure Element
Within a Structure Array

A new structure element can be defined within an existing structure array

(book, in this example) using index values in the following manner.

 1 >> book(2).name = 'Introducing SCILAB'

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11

12 >> book(2).author = 'Sandeep Nagar'

13

14 book =

15

16 1x2 struct array with fields:

17

Chapter 2 array Based Computing

82

18 name

19 author

20 pages

21 chapters

22

23 >> book(2).pages = 175

24

25 book =

26

27 1x2 struct array with fields:

28

29 name

30 author

31 pages

32 chapters

33

34 >> book(2).chapters = [1 2 3 4 5 6 7 8 9]

35

36 book =

37

38 1x2 struct array with fields:

39

40 name

41 author

42 pages

43 chapters

In this way, the book is now a 1×2 structure array. All structures in a

structure array have the same number of fields and all fields have the same

number of field names. When the name of the structure array is entered at

the command prompt, the summary of information and fields is displayed.

Chapter 2 array Based Computing

83

The fieldnames() function can be used to get a cell array having

information about the fields. This is demonstrated in the following code.

 1 >> book

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11

12 >> fieldnames(book)

13

14 ans =

15

16 4x1 cell array

17

18 'name'

19 'author'

20 'pages'

21 'chapters'

While expanding a structure array, it is not mandatory to fill in all the

fields. Fields that are not associated with values are left empty.

2.13.2 Adding and Removing Fields
A new field can be added at any point to a single structure. For example,

let’s add the field publisher to the structure book, as demonstrated here.

Chapter 2 array Based Computing

84

 1 >> book(2).publisher = 'Apress'

 2

 3 book =

 4

 5 1x2 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11 publisher

12

13 >> book

14

15 book =

16

17 1x2 struct array with fields:

18

19 name

20 author

21 pages

22 chapters

23 publisher

24

25 >> book = rmfield(book,'publisher')

26

27 book =

28

29 1x2 struct array with fields:

30

Chapter 2 array Based Computing

85

31 name

32 author

33 pages

34 chapters

To remove a field, say publisher, from the structure book, you can use

the rmfield() function, as demonstrated.

2.13.3 struct()
The function struct() can also be used to define a structured array with

the syntax shown in the following code:

 1 >> book1 = struct('name','Introducing MATLAB','author',

'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6, 7])

 2

 3 book1 =

 4

 5 struct with fields:

 6

 7 name:'Introducing MATLAB'

 8 author:'Sandeep Nagar'

 9 pages:175

10 chapters:[1 2 3 4 5 6 7]

11

12 >> book1(2) = struct('name','Introducing python','author',

 'Sandeep Nagar','pages',175,'chapters',[1, 2, 3, 4, 5, 6,

7, 8, 9])

13

14 book1 =

15

Chapter 2 array Based Computing

86

16 1x2 struct array with fields:

17

18 name

19 author

20 pages

21 chapters

A new structure named book1 is created where field names and values

are filled in successively. It can be expanded using the index number in a

similar fashion, making it a 1-by-2 structure array.

A structure array may contain another structure or even a structure

array as its fields. These are called nested array. This is demonstrated here,

where book1 (a structure array defined previously) is added as a new field

to the structure array book.

 1 >> book(3).linked book = book1

 2

 3 book =

 4

 5 1x3 struct array with fields:

 6

 7 name

 8 author

 9 pages

10 chapters

11 linked_book

2.14 Getting Data from a Structure Array
Data values can be assigned from a structure array using index numbers,

as demonstrated next. Here, info1 stores the value of the field name for the

second structure (signified by the syntax book(2)). In a similar fashion,

Chapter 2 array Based Computing

87

info2 stores the value of the field name for the first structure (signified by

the syntax book(1)). The variable info3 extracts the third element of the

field chapter from the second structure of the structure array book.

 1 >> info1 = book(2).name()

 2

 3 info1 =

 4

 5 'Introducing SCILAB'

 6

 7 >> info2 = book(1).name()

 8

 9 info1 =

10

11 'Introducing MATLAB'

12

13 info3 = book(2).chapters(3)

14

15 info3 =

16

17 3

2.15 Cell Arrays
Cell arrays are arrays of cells where each cell stores an array. Within a cell,

elements must be the same type (because cells store arrays), but two cells

may have different types. For example, suppose you have three arrays—

array1 (stores numerical values), array2 (stores textual values), and

array2 (stores numerical values). You can then construct a cell array using

these three arrays. The elements of this cell array store different types of

arrays, but each element stores just one type of data.

Chapter 2 array Based Computing

88

2.15.1 Creating Cell Arrays
The cell(m,n) function makes an empty cell array of the size m − by − n.

By assigning data values to this empty cell array, it can then be constructed

as desired, one cell at a time. Let’s first create an empty cell array,

referenced by a variable, say a. There are two ways to assign the data:

• Cell indexing: Cell indices are mentioned within

parentheses () and cell contents are mentioned within

brackets {} on either side of assignment operator, like so:

 1 >> a = cell(3,3)

 2

 3 a =

 4

 5 3x3 cell array

 6

 7 [] [] []

 8 [] [] []

 9 [] [] []

10

11 >> a(1,1) = ([1,2,3]);

12 >> a(1,2) = (['a','b']);

13 >> a(1,3) = ("Sandeep");

14 >> a(2,3) = ([1.5,–2]);

15 >> a(2,2) = ([–200]);

16 >> a(2,1) = (["Nagar"]);

17 >> a(3,1) = ([–10,–15.5,5.3]);

18 >> a(3,2) = (["Hello"]);

19 >> a(3,3) = (["World"])

20

21 a =

22

Chapter 2 array Based Computing

89

23 3x3 cell array

24

25 [1x3 double] 'ab' ["Sandeep"]

26 ["Nagar"] [–200] [1x2 double]

27 [1x3 double] ["Hello"] ["World"]

28

• Content indexing: Here, brackets/parentheses are used

in reverse fashion, i.e., () for content and [] for indices.

 1 >> a = cell(3,3)

 2

 3 a =

 4

 5 3x3 cell array

 6

 7 [] [] []

 8 [] [] []

 9 [] [] []

10

11 >> a {1,1} = ([1,2,3]);

12 >> a {1,2} = (['a','b']);

13 >> a {1,3} = ("Sandeep");

14 >> a {2,3} = ([1.5,–2]);

15 >> a {2,2} = ([–200]);

16 >> a {2,1} = (["Nagar"]);

17 >> a {3,1} = ([–10,–15.5,5.3]);

18 >> a {3,2} = (["Hello"]);

19 >> a {3,3} = (["World"])

20

Chapter 2 array Based Computing

90

21 a =

22

23 3x3 cell array

24

25 [1x3 double] 'ab' ["Sandeep"]

26 ["Nagar"] [–200] [1x2 double]

27 [1x3 double] ["Hello"] ["World"]

28

2.15.2 The celldisp() and cellplot() Functions
The constructed cell arrays can be displayed by using two functions called

celldisp() and cellplot(). The celldisp() command displays the full

cell contents, whereas cellplot() displays a graphical display of the cell

architecture. See Figure 2-1.

ab

-200

Figure 2-1. Output of cellplot (a)

Chapter 2 array Based Computing

91

2.15.3 The cell2struct(), num2cell(), and
struct2cell() Functions

The cell2struct() command can be used to convert a cell array to a

structure. Similarly, num2cell() can be used to convert a numeric array

into a cell array and struct2cell() can be used to convert a structure into

a cell array.

2.16 Summary
Array based computing lies at the very heart of modern computational

techniques. MATLAB presents a very suitable platform to perform this

technique with ease. A variety of predefined functions enable users to

save time while prototyping a problem. Having flexible methods to define

multidimensional arrays and perform fast computation is the necessity of

our times. Most of the time spent on a simulation is either in loops or in

array operations. Predefined array operations have been optimized with

algorithms for reliability, time savings, and efficient memory management.

Chapter 2 array Based Computing

93© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_3

CHAPTER 3

Plotting

3.1 Introduction
Without visualization, numerical computations are difficult to judge.

Producing publication quality images of complex plots that provide

meaningful analysis of numerical results has been a challenge for scientists

all over the world. Many commercial software programs have been very

successful in satisfying this need. MATLAB also provides this facility. Its

plotting features include choosing from various types of plots in 2D and 3D,

enhancing plots with additional information like titles, labeled axes, grids,

and labels for data, and writing equations and other important information

about the data. The most important feature is that plots can be defined

in a programmatic manner, i.e., you can enter the data for a plot using a

computer program. This is quite different than entering the data by hand.

One of the advantages is that you can define the data using a variety

of functions. The other advantage is when the data has a huge number of

entries, it can be entered according to the rules that govern the computer

program. The following sections describe these actions in detail.

It is worth mentioning that plotting capabilities are essential

to machine learning experiments, since visual directions from the

progressive steps give you an intuitive understanding of the problem under

consideration.

94

3.1.1 2D Plotting

 plot(x,y)

Since you need data on two axes to be plotted, you first need to create the

plots. Assume for this example that the x axis has 100 linearly spaced data

points on which y = x2 is defined. See Figure 3-1.

1 >> x = linspace(0,100,100);

2 >> y=x.ˆ2;
3 >> plot(x,y)

4 >> xlabel('x')

5 >> ylabel('y=xˆ{2}')
6 >> title('Plot of x versus y=xˆ{2}')

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
0 10 20 30 40 50 60 70 80 90 100

x

y=
x2

Plot of x versus y=x2

Figure 3-1. The y = x2 plot

Chapter 3 plotting

95

First we define a variable x and placed 100 equally spaced data points

from 0 to 100. This create a 1×100 matrix. Using the scalar operation of

exponentiation, we define a variable y as y = x2. Then we use the plot()

function, which takes two arguments as the x-axis and y-axis data points.

Typing help plot on the command prompt gives useful insight into this

wonderful function written to plot two dimensional data.

The x and y axis labels can be placed using the xlabel() and ylabel()

functions, which take a string as input. The string can be formatted with

LATEX commands—for example, x2 can be printed by using the x^{2}

syntax. Similarly, the title can be added for the graph with an appropriate

string.

 area()

The area() function creates a similar plot as plot(), but it also shades the

area under the curve, as shown in Figure 3-2.

1 >> x = linspace(0,100,100);

2 >> y = x.ˆ2;
3 >> area(x,y)

Chapter 3 plotting

96

 Plotting Multiple Plots on the Same Graph

You can plot multiple plots on the same graph by simply supplying x and y

axes vectors, as shown in Listing 3-1. Figure 3-3 shows the result.

Listing 3-1. The multi.m Program

 1 clear all;

 2 clf;

 3 x = linspace(1,100,100);

 4 y1 = x.ˆ2.0;
 5 y2 = x.ˆ2.1;
 6 y3 = x.ˆ2.2;
 7 y4 = x.ˆ2.3;
 8 plot (x,y1,"@12",x,y2,x,y3,"4",x,y4,"+")

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
0 10 20 30 40 50 60 70 80 90 100

Figure 3-2. The y = x2 plot created with the area() function

Chapter 3 plotting

97

 9 grid on

10 legend('xˆ2','xˆ{2.1}','xˆ{2.2}','xˆ{2.3}');
11 xlabel('x−axis')
12 ylabel('y−axis')
13 title('Multiple Graphs')

14

15 %plot y with points of type 2 (displayed as '+')

16 %and color 1 (red), y2 with lines, y3 with lines

17 %of color 4 (magenta) and y4 with points displayed as '+'

40000

30000

20000

10000

0
0 20 40 60 80 100

x-axis

y-
ax

is

Multiple Graphs

x2

x{2.1}

x{2.2}

x{2.3}

Figure 3-3. Multiple plots within the same figure

Chapter 3 plotting

98

Explanations of the line numbers in the previous code are as follows:

• clear all clears the variable names and values from

memory (line 1).

• clf clears any current figure window (line 2).

• x = linspace(1,100,100) creates a vector x made up

of 100 equally spaced data points between 1 and 100

(line 3).

• y1 = x.2.0; creates a new vector named y1 having

element-wise square of vector x (line 4).

• y1 = x.2.1; creates a new vector named y2 having

element-wise exponentiation by 2.1 of vector x (line 5).

• y2 = x.2.2; creates a new vector named y3 having

element-wise exponentiation by 2.2 of vector x (line 6).

• y3 = x.2.3; creates a new vector named y3 having

element-wise exponentiation by 2.3 of vector x (line 7).

• y4 = x.2.4; creates a new vector named y4 having

element-wise exponentiation by 2.4 of vector x (line 8).

• Plots as per comment given in lines 15, 16, 17 (line 9).

• The grid is turned on for the figure (line 10).

• xlable takes the value of string x-axis (line 11).

• ylabel takes the value of string y-axis (line 12).

• title takes the value of string Multiple Graphs (line 13).

Figure 3-3 is obtained by running the code. These types of plots are

used to check the variation of results by varying a particular parameter.

Chapter 3 plotting

99

 Plotting Multiple Plots Separately

The subplot(row,coloumn,index) command is used to plot multiple plots

on the same figure, but in separate views. subplot(2,2,4) means that the

plot will be on the second row, the second column, and the fourth index.

See Listing 3-2.

Listing 3-2. The multiSubplot.m Program

 1 clear all;

 2 clf;

 3 x = linspace (1,100,100);

 4 y1 = x.ˆ2.0;
 5 y2 = log(x);

 6 y3 = sin(x);

 7 y4 = log10(x);

 8 subplot(2,2,1), plot(x,y1)

 9 subplot(2,2,2), plot(x,y2)

10 subplot(2,2,3), plot(x,y3)

11 subplot(2,2,4), plot(x,y4)

12 %grid on

13 %legend('xˆ2','xˆ{2.1}','xˆ{2.2}','xˆ{2.3}');
14 %xlabel('x−axis')
15 %ylabel('y−axis')
16 %title('Multiple Graphs')

17

18 %plot y with points of type 2 (displayed as '+')

19 %and color 1 (red), y2 with lines, y3 with lines

20 %of color 4 (magenta) and y4 with points displayed as '+'

As shown in Figure 3-4, plots are organized as matrixes, where the

row number and column number dictate its position. An index of the plot

can then be used for further processing as a graphical object. There are

Chapter 3 plotting

100

many commands for controlling font size, tick labels and fonts, as well as

for inserting mathematical equations. You can view them by typing help

plot or reading the documentation of this function. Ample examples can

be obtained from the web. This function is used frequently, so you need to

have good command over its use.

3.1.2 The bar(), barh(), and hist() Commands
Bar charts are a primitive but very effective visualization of primary

statistical information. There are three options for plotting bar charts and

histograms.

1 >> x = [1,2,3,4,5];

2 >> y = [12,5,11,9,10];

3 >> bar(x,y)

10000

8000

6000

4000

2000

0
0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0

1

2

3

4

5

1

0

0.5

-0.5

1.5

0.5

-1

2

1

0

Figure 3-4. Separate multiple plots within the same figure

Chapter 3 plotting

101

1 >> x = [1,2,3,4,5];

2 >> y = [12,5,11,9,10];

3 >> barh(x,y)

Figure 3-5 shows a standard bar chart and Figure 3-6 shows a

horizontal bar chart.

12

10

8

6

4

2

0
1 2 3 4 5

Figure 3-5. A bar chart

5

4

3

2

1

0 2 4 6 8 10 12

Figure 3-6. A horizontal bar chart

Chapter 3 plotting

102

A histogram can be plotted using the hist() function in a similar

fashion. Let’s look at the behavior of a normalized distribution of random

numbers generated by the randn() function.

1 >> x = randn(100);

2 >> hist(x)

In Figure 3-7, you can clearly observe the bell-shaped curve of the

envelope to confirm that the random numbers are indeed normally

distributed.

 Logarithmic Plots

For plotting graphs involving logarithmic scale, MATLAB provides three

options:

• semilogx(): Plots with a logarithmically spaced x-axis.

As an example, consider the code log1a.m shown in

Listing 3-3, which produces the plot shown in Figure 3- 8.

40

35

30

25

20

15

10

5

0
-4 -3 -2 -1 0 1 2 3 4

Figure 3-7. A histogram showing normalized distribution of random
numbers

Chapter 3 plotting

103

Listing 3-3. The log1a.m Program

 1 %MATLAB program to illustrate

 2 %usage of semilogx() and

 3 %semilogy() and loglog() command

 4

 5 %semilogx()

 6 y = 0:2:50;

 7 x = exp(−y/2);
 8 subplot(3,1,1)

 9 semilogx(x,y)

10 grid on

11 xlabel('x=eˆ{y/2}');
12 ylabel('y');

13 title('Using semilogx() command');

14

15 %semilogy()

16 x1 = 0:2:50;

17 y1 = exp(−x1/2);
18 subplot (3,1,2)

19 semilogy (x1,y1)

20 grid on

21 xlabel('y=eˆ{x/2}');
22 ylabel('x');

23 title('Using semilogy() command');

24

25 %loglog()

26 x2 = 0:2:50;

27 y1 = exp(x2);

28 y2 = exp(x2/2);

29 subplot(3,1,3)

30 loglog(x1,y1)

Chapter 3 plotting

104

31 grid on

32 xlabel('y1=eˆ{x}');
33 ylabel('y2=eˆ{x/2}');
34 title('Using loglog() command');

• semilogy(): Similarly, semilogy() plots a

logarithmically spaced y-axis.

• loglog(): Plots with both axes logarithmically spaced.

60

40

20

0

0 5 10 15 25 30 35 40 45 5020

10-12

100

100

100 101 102

10-10

1020

1040

10-20

10-10 10-8 10-6

x=ey/2

y=ex/2

y1=ex

y2
=

ex/
2

10-4 10-2 100

y
x

Using semilogx() command

Using semilogy() command

Using loglog() command

Figure 3-8. Describing usage of semilogx()

Chapter 3 plotting

105

 Polar Plots

Sometimes you’ll prefer to plot in polar coordinates, rather than Cartesian

ones. Then, instead of x and y, the coordinates are r and θ. See Listing 3-4.

Listing 3-4. The CoordinatesPolar.m Program

1 theta = 0:0.02:2*pi;

2 a1 = 0.5+1.3.ˆtheta;
3 a2 = 5*cos(theta);

4 a3 = 3*(1−cos(theta));
5 a4 = 6*sin(4*theta);

6 r = [a1;a2;a3;a4];

7 Polar Graph = polar(theta,r,"*");

8 set(Polar Graph,"LineWidth",2);

9 legend("spiral","circle","heart","Rose");

4

2

0

-2

-4

-4 -2 0 2 4

spiral
circle
heart
Rose

Figure 3-9. Polar graph

Chapter 3 plotting

106

Figure 3-9 shows an example of a polar graph for the code given in

the CoordinatesPolar.m example. Explanation of the program follows

(according to the line number):

• A variable named theta representing θ is defined by

points starting from 0 to 2π, with steps of 0.02 (line 1).

• A variable named a1 representing r for spiral is

calculated using the following equation (line 2).

r = ()1 5. q

• A variable named a2 representing r for circle is

calculated using the following equation (line 3).

r = ()()5 cos q

• A variable named a3 representing r for heart is

calculated using the equation (line 4).

r = -()()3 1 cos q

• A variable named a4 representing r for rose is

calculated using the equation (line 5).

r = ()()6 4sin q

• A variable named r stores all the r calculated using

equations as a column vector (line 6).

• A variable named PolarGraph stores the values

produced by the function polar(), which takes θ, r as

arguments and "*" for the type of marker (line 7).

• The set function is used to set the property values for the

graph function. This is a neat way of setting properties

of the graph and experimenting with them later. In this

case, the property named LineWidth is set to 2 (line 8).

Chapter 3 plotting

107

• The legend() function sets four legends in the same

order that the polar function takes them from vector r

(line 9).

 The rose() Function

The rose() function draws an angled histogram, i.e., a polar histogram.

The input should be a vector of numbers. Let’s look at the usage by

constructing a vector of 100 random numbers using randn(100,1)*pi

and then feeding it to the rose() function. The resultant plot is shown in

Figure 3-10.

1 >> x = randn(100,1)*pi;

2 >> rose(x)

120

90
10

8

6

4

2

60

0

330

300

270

240

210

180

150

Figure 3-10. Plot of random numbers by the rose() function

Chapter 3 plotting

108

 pie()

A pie chart can be created using the pie() function. This provides a very

powerful tool to visualize the parts of a whole. The usage is explained in the

following code and graphs are shown in Figure 3-11. This function supports

34 items, which are distributed such that a,b,c,d,e,f get 4,7,2,8,4 and 9

parts. The pie chart can be made by first defining the parts as an array, then

defining the labels as an array. Then if the pie() function is fed directly, you

see a color coded exploded pie chart showing the percentages of each part.

When a show() array is also entered, it explodes only those parts where the

value of the corresponding element is 1.

1 >> x = [4,7,2,8,4,9];

2 >> subplot(2,1,1)

3 >> pie(x)

4 >> subplot(2,1,2)

5 >> show = [1,0,0,1,0,1];

6 >> pie(x,show,labels)

7 >>

Chapter 3 plotting

109

 stairs()

A staircase graph draws a stair-step graph for elements of a vector.

Consider an example of plotting y = x2.5, where x is a vector of 100 elements

from −π to π. As shown in Figure 3-12, the data points are connected in a

stair-step fashion.

1 >> x = −pi:pi:100;
2 >> y = x.ˆ(2.5);
3 >> stairs(y)

12%

21%

6%

26%

12%

12%

24%

26%

21%

6%

24%

12%

Figure 3-11. Pie plots with all parts exploded and with some parts
exploded

Chapter 3 plotting

110

 stem()

Stem plots draw data points as stems that extend from equally spaced

values. Sample code for plotting y = cos(x) ϵ (−π, π) is presented here and it

produces the graph shown in Figure 3-13.

1 >> x = −2*pi:2*pi;
2 >> y = cos(x);

3 >> stem(y)

10
x104

9

8

7

6

5

4

3

2

1

0
0 5 10 15 20 25 30 35

Figure 3-12. Stair plot for y = x2.5

Chapter 3 plotting

111

3.1.3 3D Plotting
There are various functions available for 3D plotting in MATLAB. Your

choice of function depends on the particular problem.

 mesh

Consider the mesh command shown in Listing 3-5. It produces the graph

shown in Figure 3-14.

Listing 3-5. The ThreeDMesh.m Program

1 a = b = linspace(−8,8,41)';
2 [xx,yy] = meshgrid(a,b);

3 c = sqrt(xx.ˆ2+yy.ˆ2)+eps;

1

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1
0 2 4 6 8 10 12 14

0

Figure 3-13. Stem plot for y = cos(x) ϵ (−π, π)

Chapter 3 plotting

112

4 d = sin(c)./c;

5 mesh(a,b,d);

It’s important to note that this code uses a new function named

meshgrid. Do a quick search of it using help meshgrid.

meshgrid is used as follows:

1 >> a = b = linspace(−8,8,41);
2 >> [xx,yy] = meshgrid(a,b);

Two variables are created, namely a and b, and they store 41 linearly

spaced data points between −8 to 8, as a row vector. These two row

vectors (both 1×41 in dimension) are passed as arguments for the

function meshgrid, which gives two outputs: xx and yy. These are 41×41

dimensioned matrices where rows of xx are copies of a and columns of yy

are copies of b.

1

0.8

0.6

0.4

0.2

-0.2

-0.4

0

5
50

0
-5 -5

-10

10

10

-10

Figure 3-14. 3D meshing

Chapter 3 plotting

113

meshgrid can also take a third argument whose copes make a complete

3D grid. Otherwise on this two-dimensional base grid, a function can be

defined for data points defined by copies of the a and b vectors. In this

case, the function is defined as follows:

 c x y= +2 2 (Equation 3-1)

and

 d
c

c
=

()sin
 (Equation 3-2)

Note Function eps produces a very small number (2.2204.10−16
defined by machine precision [1]. it is widely used in numerical
computation, where zero needs to be avoided, especially in the case
of division by zero. By adding a very small number to large numbers,
we avoid this problem (remember that variable c calculated in Step 3
is then used under division as a denominator in Step 4).

Continuing now with the plotting exercise, new arrays can be used to

plot by applying the 3D plotting function mesh(), which takes these two

arrays a and d as its arguments, resulting in Figure 3-14. If mesh(x,y,z)

is used then a wire-frame mesh made up of rectangles is created. The

vertices of the rectangles are made of data points generated by the function

(in this case, Equations 3-1 and 3-2). The (x, y) coordinates of vertices are

given by the xx and yy matrices, since the x coordinate comes from the xx

matrix and the y coordinate comes from the yy matrix. z determines the

height above the plane of each vertex.

In this way, a 3D plot is created. It is important to note that the original

3D “curve” is interpreted as a surface made of flat rectangles, which is at

best an approximation. In some cases, this error can be ignored. To get

less error, the rectangles can be smaller, if possible. There are some other

Chapter 3 plotting

114

variations of the same function, such as ezmesh, meshc, and meshz. A

simple help command can be very useful to determine which one suits a

particular problem best. The mesh also codes color for height (z-value).

This is computed by linearly scaling the Z values to fit the range of the

current color-map (type help colormap to learn more).

 meshc

meshc() generates a 3D rectangulated mesh as well as a contour at the

base. As shown in Figure 3-15, apart from producing a 3D plot for a given

function, you also get a contour plot. Note that at this time, the equation

working on matrices is written as an argument of the meshc() function,

thus making the program even smaller. See Listing 3-6.

Listing 3-6. The ThreeDMeshc.m Program

1 x=linspace(−10,10,50);
2 y=linspace(−10,10,50);
3 [xx,yy]=meshgrid(x,y);

4 meshc(xx,yy,2−(xx.ˆ2+yy.ˆ2))

Chapter 3 plotting

115

 surf()

surf() generates a surface plot where the wire mesh is simply filled up at

the empty points, as shown in Figure 3-16. See Listing 3-7.

Listing 3-7. The ThreeDsurf.m Program

1 a = b = linspace(−8,8,10)';
2 [xx,yy] = meshgrid(a,b);

3 c = sqrt(xx.ˆ2+yy.ˆ2)+eps;
4 d = sin(c)./c;

5 surf(c,d);

50

-50

-100

-150

-200

0

10

-10 -10

5 10
5

-5
-5

0
0

Figure 3-15. 3D meshing with the meshc() function

Chapter 3 plotting

116

3.2 Summary
A rich library of plotting functions makes MATLAB a suitable choice for

plotting data in a variety of publication-ready formats. Together with

commands to access system files and folders, these plots can be directed to

be saved at appropriate places for creating a suitable report. Plotting in 3D

and viewing at different angles is quite intuitive in MATLAB. Hence, MATLAB

is a suitable method to visualize data. The limitations of data and the speed of

execution depend on the computer storage and RAM on the motherboard.

3.3 Bibliography

 [1] https://en.wikipedia.org/wiki/Machineepsilon

12

10

8

6

4

2

0
10

8
6

4
2

0 0
2

4
6

8
10

Figure 3-16. 3D meshing with the surf() function

Chapter 3 plotting

https://en.wikipedia.org/wiki/Machineepsilon

117© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_4

CHAPTER 4

Input and Output

4.1 Introduction
The fundamental data type for MATLAB is an array. Most of numerical

computations for scientific and engineering purposes involve dealing with

data in various file formats. Scientific devices and computer programs

themselves generate data as files. These files are then read and converted

into arrays (mostly). These arrays can be manipulated as per mathematical

requirements by the files of matrix algebra. The results generate a new set

of arrays. These arrays are further converted into files for visualization.

Using the information in Chapters 2 and 3 (arrays and plotting), you

can now formulate physical problems in terms of numerical computations

and solve them on a digital computer. This process has some requirements

such as:

• The data should be in a digital form (a digital file).

• The computer program should be able to read the file

and make arrays from it without errors. If errors occur,

a mechanism to check those errors and warning the

user should be in place. If possible, a mechanism for

correcting them should also be in place.

• The data should be stored as an array in the proper data

type and should be displayed on demand in the proper

format.

118

• Array operations on data will result in memory usage in

terms of reading and writing data on disk. This should

be facilitated by the system. Users should be able to

check the status of memory as and when required.

• Post-processing tasks include displaying data in various

formats—as a printout from a printer, on a terminal, as

a graph on a terminal or printer/plotter, etc.

• If a report for a particular experiment has input

parameters, processing the data and output as a file or

graph will make the user’s task easier.

MATLAB has some features for each of these steps. This chapter

discusses them in brief.

4.2 Interactive Input from a Keyboard
A user interacts with MATLAB using a keyboard. Keyboards generate ASCII

or Unicode strings for specific characters. These are fed into MATLAB,

which then interprets them to perform a specific task. For an interactive

session with MATLAB during the course of programming, MATLAB offers

the functions discussed in the following sections.

4.2.1 input()
input("Text") displays the Text string at the MATLAB prompt (the

default symbol is >>>) and waits for the user to input a value and press

Enter. Users may enter any type of data. The input is treated as a MATLAB

expression and it is evaluated in the current workspace. If the input()

function is used for an assignment operation, then the data is assigned to

a variable appropriately. If the user presses the Enter key without entering

anything, then the input returns an empty matrix. When the user enters an

Chapter 4 Input and Output

119

invalid expression into the prompt, a relevant error message is displayed at

the prompt. When a character or a string of character vectors needs to be

fed into input(), the user must define them as a string. Otherwise, 's' is

used as a second argument and then input is treated as a string. The usage

is demonstrated in this code.

 1 >> prompt = 'What is your name:';

 2 >> name = input(prompt)

 3 What is your name:Sandeep

 4 Error using input

 5 Undefined function or variable 'Sandeep'.

 6

 7 What is your name:'Sandeep'

 8

 9 name =

10

11 'Sandeep'

12

13 >> name = input(prompt,'s')

14 What is your name:Sandeep

15

16 name =

17

18 'Sandeep'

19

While dealing with numerical values, a single value or an array must

be used, but with valid MATLAB syntax. For example, in the following

code, the user can type a single value of r (storing the radius of a circle) or

multiple values as arrays. This information can then be used to find the

circumference (= 2πr) and area (= πr2).

Chapter 4 Input and Output

120

 1 >> r = input('Enter value of radius:');

 2 Enter value of radius:2

 3 >> circumference = 2*pi*r

 4

 5 circumference =

 6

 7 12.5664

 8

 9 >> area = pi*rˆ2
10

11 area =

12

13 12.5664

14

15 >> r = input('Enter value of radius:');

16 Enter value of radius:[1 2 3]

17 >> r

18

19 r =

20

21 1 2 3

22

23 >> circumference = 2*pi*r

24

25 circumference =

26

27 6.2832 12.5664 18.8496

28

29 >> area = pi*r.ˆ2
30

Chapter 4 Input and Output

121

31 area =

32

33 3.1416 12.5664 28.2743

34

4.2.2 keyboard()
The keyboard keyword gives control to the user while running a program

so that user can enter data or additional MATLAB commands, if required.

This process can be effectively used by the user to check the program. It is

called debugging.

When this is done, the MATLAB prompt changes from >>> to k>. The

keyboard mode is terminated by executing the command dbcont. dbquit

can also be used to exit keyboard mode, but in this case the invoking

MATLAB code file is terminated. Control returns to the invoking MATLAB

code file.

A valid MATLAB expression must be entered here. This keyword

can be used to change values of variables in the middle of programs very

effectively. Its usage is shown in the sample code in Listing 4-1.

Listing 4-1. The keyboardCommand.m Program

1 %program to demonstrate

2 %usage of keyboard command

3

4 x = 10;

5 y = 12;

6 keyboard %change value of x here

7 answer = xˆ2

Chapter 4 Input and Output

122

When this is executed, you’ll see the following session:

 1 >> keyboardCommand

 2 K>> x=2.5

 3

 4 x =

 5

 6 2.5000

 7

 8 K>> dbcont

 9

10 answer =

11

12 6.2500

13

14 >> x=2.5

15

16 x =

17

18 2.5000

19

20 >> x.ˆ2
21

22 ans =

23

24 6.2500

25

When the keyboard keyword is encountered, the MATLAB session

goes into debug mode and the user then alters the values of x=2.5. Typing

dbcont continues the execution of the program. The answer is calculated

as per the new assignment of value.

Chapter 4 Input and Output

123

4.2.3 menu()
A graphical way of inputting values can be performed using the menu()

command, where a title and a set of options are given as inputs (separated

by commas). This works if the user has a computer terminal with graphics

capabilities. Otherwise, a list of options is presented at the command

prompt. The user is presented with a graphical window and can use a

mouse or keyboard to select an option. The options return a scalar value,

which can be stored in a variable. The options are numbered internally.

Let’s look at the usage with an example. Create a menu with the title

“Even or Odd Numbers” and two options—Even and Odd. Store this value

in the variable I. When this command is executed, the graphical window

shown in Figure 4-1 appears. The following outputs are possible:

• If the user closes the window without entering a value,

the output is 0.

• If the user clicks on Even, the output is 1.

• If the user clicks on Odd, the output is 2.

Figure 4-1. The Menu window output

Chapter 4 Input and Output

124

This is shown in the following code:

 1 >> I = menu('Even or Odd Numbers','Even','Odd')

 2

 3 I =

 4

 5 0

 6

 7 >> I = menu('Even or Odd numbers','Even','Odd')

 8

 9 I =

10

11 1

12

13 >> I = menu('Even or Odd numbers','Even','Odd')

14

15 I =

16

17 2

18

• pause(): If you want to temporarily halt the program,

you can use the pause() command. Press any key to

continue the program execution. To understand its

usage, consider an example. Suppose you have an 3×3

matrix of random numbers. Then MATLAB program

pauseCommand.m will show its rank, transpose, and

size. Each item is shown if the user presses a key. See

Listing 4-2.

Chapter 4 Input and Output

125

Listing 4-2. The pauseCommand.m Program

 1 %Program to show usage

 2 %of pause command
 3

 4 x = rand(3,3);

 5 r = rank(x);

 6 t = x';

 7 s = size(x);

 8 disp('Given matrix is:')

 9 disp(x)

10 disp('To continue checking its rank, press any key')

11 pause

12 disp('Rank of matrix is:')

13 disp(r)

14 pause

15 disp('To continue checking its transpose, press any key')

16 pause

17 disp('Transpose of matrix is:')

18 disp(t)

19 pause

20 disp('To continue checking its size, press any key')

21 pause

22 disp('Size of matrix is:')

23 disp(s)

24 pause

The output for running pauseCommand.m is shown here:

 1 >> pauseCommand

 2 Given matrix is:

 3 0.8147 0.9134 0.2785

 4 0.9058 0.6324 0.5469

 5 0.1270 0.0975 0.9575

Chapter 4 Input and Output

126

 6

 7 To continue checking its rank, press any key

 8 Rank of matrix is:

 9 3

10

11 To continue checking its transpose, press any key

12 Transpose of matrix is:

13 0.8147 0.9058 0.1270

14 0.9134 0.6324 0.0975

15 0.2785 0.5469 0.9575

16

17 To continue checking its size, press any key

18 Size of matrix is:

19 3 3

20

4.3 File Path
A MATLAB session starts from a default folder, which depends on the

installation of a particular operating system. Usually a dedicated folder

is created at the time of installation and it is generally named MATLAB by

default. This folder’s path can be viewed by typing pwd at the command

prompt.

1 >> pwd

2

3 ans =

4

5 '/Users/.../MATLAB'

Note that the path may be different on your computer and the three

dots are used to represent a generalized representation of the path.

Chapter 4 Input and Output

127

When you want to run a MATLAB’s .m file, the file is searched first in

the default folder. If it is not there, you must change the working directory

to the one where the file is stored. This can be initiated by typing pathtool

at MATLAB’s command prompt (see Figure 4-2).

You can simply add the directory to the list of directories for the

session or save it. You can also choose to set the directory as the default

for future MATLAB sessions. This is a good option if you will be working

on a project for a long time and are sure that the directory will be used on

a daily basis. It is strongly suggested that you keep all the files in either the

default directory of the installed MATLAB program or make your working

directory the default one.

Figure 4-2. Setting the path of working directory using the pathtool
command

Chapter 4 Input and Output

128

4.4 File Operations
File operations constitute an important part of computation. It is

important to note that the file system is OS (Operating System) dependent.

Just like most scientific programs, MATLAB works with UNIX-like systems,

so it works on Linux-based and MacOS X equally well with the same set

of commands. On Windows, you use the same commands as the Linux

version for dealing with files within the MATLAB environment. The code

examples in this book were written and tested on Windows 8, MacOSX 10.10,

and Ubuntu 14.04 systems.

4.4.1 Users
A computing system is accessed by different users. Each user defines

a workspace to avoid damaging each other’s work. After login, a user’s

workspace becomes active for that user. The workspace is made up of

various files and folders. Some files are essential for the OS to define the

workspace and its properties, hence they should not be altered. This is

ensured by giving permissions to various users.

Reading and writing a file is restricted by permission. The

administrator (fondly called the admin) is also called the superuser

and has all privileges and permission to edit any file/folder. You must

understand the defined user types for a computer system and then issue

those commands accordingly. If you are not permitted to access certain

folders and the input data you need is placed inside those files/folders, you

will always get an error (unless the admin changes your permissions).

4.4.2 File Path
Directories/folders can contain sub-directories/sub-folders and files

again. This can go to any level if this process if not restricted by the

administrator.

Chapter 4 Input and Output

129

The pwd command stands for print working directory. On the MATLAB

terminal, typing pwd displays the path of the present working directory, as

shown in this example:

1 >> pwd

2 ans = /home/sandeep

The user’s /home directory contains another directory named /sandeep.

This is the present working space. When pwd is typed into the terminal, a

variable name named ans stores this data (file path). A variable name of

your choice can be assigned to store the filename as a string.

A file/folder is accessed by typing the file path into the terminal.

Consider this small exercise to understand this process. To create a new

directory, you use mkdir name as follows:

 1 >> mkdir matlab−practice
 2 ans = 1

 3 >> ls

 4 Downloads Music

 5 R

 6 Templates

 7 matplab−practice
 8 Videos

 9 Desktop software

10 Work

11 Documents Library

12 Pictures

13 >> cd matplab−practice
14 >>

Chapter 4 Input and Output

130

At line 1, mkdir matplab-practice creates a directory named

matplab-practice. To see the contents of the present directory, you can

use the ls command, as is done at line 3, which stands for list. To change

the directory, you can use the cd file path command, as shown in line 13.

I suggest that you work in this directory for rest of the book.

4.4.3 Creating and Saving Files
The save and load commands allow you to write and read data to memory.

 1 >> matrix = rand(3,3);

 2 >> save MyFirstFile.mat matrix

 3 >> ls

 4 MyFirstFile.mat

 5 >> load MyFirstFile.mat

 6 >> matrix

 7 matrix =

 8

 9 0.467414 0.610273 0.429941

10 0.568490 0.037898 0.734682

11 0.547370 0.275421 0.539650

12

13 >>

At line 1, A variable named matrix is created first, which stores a

random-value 3×3 matrix. At line 2, this data is stored as a .mat file named

MyFirstFile.mat, which is passed the variable name as the argument.

When required, this file can be loaded in the workspace using the load

MyFirstFile.mat command and then by calling the variable named

matrix. The random numbers recorded when the file was saved are

loaded as the data for the 3×3 matrix. Note that this data does need not be

numbers. It can be anything that a digital computer can handle, including

pictures, videos, strings, and characters, just to name a few.

Chapter 4 Input and Output

131

Multiple variables can be stored in the same file by passing the name of

the variables at the time of saving.

 1 >> matrix1 = rand(4,4);

 2 >> matrix2 = rand(2,3);

 3 >> matrix3 = rand(2,2);

 4 >> save ("SavingMultipleVariables.mat","matrix1","matrix2",

"matrix3")

 5 >> load SavingMultipleVariables.mat

 6 >> matrix1

 7 matrix1 =

 8

 9 0.8598130 0.0118250 0.9803720 0.3044413

10 0.6676748 0.0056845 0.1101545 0.2183920

11 0.2547204 0.8192626 0.8056112 0.6961116

12 0.7924558 0.9130480 0.1976146 0.4635055

13

14 >> matrix2

15 matrix2 =

16

17 0.35215 0.55770 0.66650

18 0.98515 0.98677 0.45513

19

20 >> matrix3

21 matrix3 =

22

23 0.097693 0.540354

24 0.923853 0.329501

25

26 >>>> save −binary SavedAsBinary m*
27 >> ls

28 MyFirstFile.mat SavedAsBinary SavingMultipleVariables.mat

Chapter 4 Input and Output

132

The help save and help load commands provide very useful

instructions about using save and load. Using the options, you can save the

file in a specific format. For example, on line 26, all variables names starting

with m are saved as binary data inside a binary file named SavedAsBinary.

This is particularly important when data generated from MATLAB-based

numerical computations is used in other software programs. You can also

specify the precision of saved data using options. You can also compresses

a big file using the -zip command. This is very useful when the data

generated by MATLAB is large in size and needs to be transmitted.

The load function follows the same logic as the save function. Data

can be unzipped and loaded from a particular formatted file as an array.

The array, thus populated, can be used for computation and the resultant

files can be made by using the save function again (if required). Elaborate

computations require this procedure to be repeated successively many

times, thus the functions have been optimized to locate and load the

required data in a short time.

Delimited numeric data files (numerical data values separated by a

delimiter) can be read and written using dlmread() and dlmwrite(). The

functions produce ASCII-delimited files. To illustrate this, the following

MATLAB code performs the following task:

• Stores a 3×3 matrix in variable A.

• Using the dlmwrite() function, a file named

randomNumbers.txt is written, which takes its inputs

from the matrix stored in A.

 – The delimiter is defined to;

 – You can check the file in the working directory and
open it with an appropriate text editor or spread-
sheet software.

• A new variable named B is initialized to be an empty

matrix.

Chapter 4 Input and Output

133

• Using the function dlmread(), this file is read. It is

important to define the delimiter used during the

creation of the file. The results are stored in B and found

to be exactly same as that of A.

 1 >> A = randn(3,3)

 2

 3 A =

 4

 5 0.3252 −1.7115 0.3192
 6 −0.7549 −0.1022 0.3129
 7 1.3703 −0.2414 −0.8649
 8

 9 >> dlmwrite('randomNumbers.txt',A,';')

10 >> B = []

11 >> B = dlmread('randomNumbers.txt',';')

12

13 B =

14

15 0.3252 −1.7115 0.3192
16 −0.7549 −0.1022 0.3129
17 1.3703 −0.2414 −0.8649

4.4.4 Using the Diary and History Commands
A MATLAB session can be recorded in a file by using the command diary.

Type help diary to see information about its use. Writing help filename

allows recording the session in a file with given filename. The commands

and their outputs are continuously updated using this function.

You can use the history command to display a list of executed

commands. Various options are available to see this history in particular

formats.

Chapter 4 Input and Output

134

4.4.5 Opening and Closing Files
To read and write data files, they must be opened and defined as readable

and/or writable. The fopen function returns a pointer to an open file that is

ready to be read or written to. This is defined by the following options: r as

readable, w as writable, r+ as readable and writable, a for appending

(i.e., writing new content at the end of the file), and a+ for reading, writing,

and appending. The opening mode can be set to t for text mode or b for

binary mode. z enables opening a gzipped file for reading and writing.

Once all the data has been read from or written to, the opened file

should be closed. The fclose function does this.

1 MyFile = fopen("a.dat","r");

A variable MyFile is created which is used to store the contents of

the file a.dat. This file is opened in reading mode only in the sense

that it cannot be edited. This is important if the author of the file wants

the information to remain unchanged while sharing it. This might be

necessary for files containing constants or important pieces of code that

should not be changed.

The freport() command prints a list of opened files and whether they

are opened for reading, writing, or both. For example:

1 >> freport

2

3 number mode arch name

4 −−−−− −−−− −−−− −−−−
5 0 r ieee−le stdin
6 1 w ieee−le stdout
7 2 w ieee−le stderr
8

9 >>

Chapter 4 Input and Output

135

4.4.6 Reading and Writing Binary Files
A binary file is computer readable file. They are simply sequence of bytes.

They are the same as the C functions fread and fwrite, which can read

and write binary data from a file.

4.4.6.1 The csvread and csvwrite Functions

The csvread and csvwrite functions are used to read data from .csv files,

which stands for comma separated values. Suppose the following data

needs to be stored as a .csv file.

1 2 3 4

5 6 7 8

8 7 6 5

4 3 2 1

The following code creates an array using csvwrite to create a file

named csvTestData.dat containing the matrix values. You can check this

by simply opening this newly created file in a text editor. At line 3, a new

file named csvTestData1.dat is created with an offset defined at row 1

and column 2.

 1 >> a = [1,2,3,4;5,6,7,8;8,7,6,5;4,3,2,1];

 2 >> a

 3 a =

 4

 5 1 2 3 4

 6 5 6 7 8

 7 8 7 6 5

 8 4 3 2 1

 9 >> csvwrite('csvTestData.dat',a)

10 >> csvwrite('csvTestData1.dat',a,1,2)

11 >> a1 = csvread('csvTestData.dat')

Chapter 4 Input and Output

136

12 a 1 =

13

14 1 2 3 4

15 5 6 7 8

16 8 7 6 5

17 4 3 2 1

18

19 >> a1 = csvread('csvTestData.dat',1,2)

20 a1 =

21

22 7 8

23 6 5

24 2 1

25

26 >>

Now the csvread function can be used to create matrices with desired

offsets just as the csvwrite function.

Note a number of other functions to read and write files exist, but
the present section focuses on some of the most commonly used
ones. You can access the documentation to learn about using these
specialized functions, if required.

4.4.7 Working with Excel Files
A lot of data is presented on the Internet in the form of Excel files. Note that

one must be connected to the Internet in this case.

The xlsopen, xlswrite, xlsclose, odsopen, odswrite, and odsclose

commands open, write, and close.xls and .ods files, respectively.

Chapter 4 Input and Output

137

While .xls files are generated using Microsoft Excel, .ods files are

generated using Open/Libre Office software, which is the open source

equivalent of Microsoft Excel. The process of opening, reading, and writing

data is as follows:

• xlsopen('Filename.xls')

• a = xlsread ('Filename.xls', '3rd_sheet',

'B3:AA10');

Numeric data from the Filename.xls worksheet

named 3rd sheet will be read from cell B3 to AA10.

This data is stored as an array named a.

• [Array, Text, Raw, limits] = xlsread ('a.xls',

'hello');

The file a.xls is read from the worksheet named

hello, and the whole numeric data is fed into an

array named Array. The text data is fed into array

named Text, the raw cell data into cell array named

Raw, and the ranges where the actual data came in is

saved in limits.

• xlswrite('new.xls',a) writes the data in an array

named a into an .xls formatted Excel sheet named

new.xls.

• xlsclose

1 >> a = rand(10,10);

2 >> odswrite('a.ods',a)

3 ans = 1

4 >> ls

5 a.ods

Chapter 4 Input and Output

138

4.5 Reading Data from the Internet
Most often, large data sets that you need to access are kept on some remote

server. Using urlread(), you can read a remote file. To save data to the

local disk, you use the urlwrite() functions.

 1 >> a = urlread('http://www.fs.fed.us/land/wfas/fdr_obs.

dat');

 2 >> who

 3 Variables in the current scope:

 4

 5 a ans

 6

 7 >> whos

 8 Variables in the current scope:

 9

10 Attr Name Size Bytes Class

11 ==== ==== ==== ===== =====

12 a 1x147589 147589 char

13 ans 1x1 8 double

14

15 Total is 147590 elements using 147597 bytes

16

17 >> urlwrite('http://www.fs.fed.us/land/wfas/fdr_obs.

dat','fire.dat')

18 >> ls

19 fire.dat

20 >>

Here, a variable named a stores the data from the data file stored at

http://www.fs.fed.us/land/wfas/fdr_obs.dat. Alternatively, the whole

data is stored as a file named a.dat using the function urlwrite(URL).

Chapter 4 Input and Output

http://www.fs.fed.us/land/wfas/fdr_obs.dat
http://www.fs.fed.us/land/wfas/fdr_obs.dat

139

4.6 Printing and Saving Plots
Some commands, like print and saveas, exist to save graphs/figures

generated by MATLAB programs, to be saved in desired formats. They are

discussed in the following sections.

4.6.1 The print Command
The print command prints jobs, including printing using a printer and/

or plotter, printing to a file, etc. This command is very useful if you need to

save a figure automatically by a desired filename in a specified format.

 1 %Saving in svg format

 2 figure(1);

 3 clf();

 4 peaks();

 5 print −dsvg figure1.svg
 6

 7 %Saving in png format

 8 figure(1);

 9 clf();

10 sombrero();

11 print −dpng figure2.png
12

13 %Printing to a HP DeskJet 550C

14 clf();

15 sombrero();

16 print −dcdj550

The clf function clears the current graphic window. A lot of other

options for saving in different formats exist for the print command. To

learn more, type help print into the MATLAB terminal.

Chapter 4 Input and Output

140

4.6.2 The saveas Function
The saveas function saves a graphic object in a desired format, as follows:

1 clf();

2 a = sombrero();

3 saveas (a,"figure3.png");

The orient(a,orientation) function defines the orientation of

an graphical object a. The valid values for the orientation parameters

are portrait, landscape, and tall. The landscape option changes the

orientation so the plot width is larger than the plot height. The tall option

sets the orientation to portrait and fills the page with the plot, while

leaving a 0.25 inch border. The portrait option (default) changes the

orientation so the plot height is larger than the plot width.

4.7 Summary
This chapter explained various functions enabling reading and writing

permission as well as taking data to and from a file. This becomes an

essential part of a numerical computation exercise. The data can be

generated in the form of files using software or hardware (an instrument).

MATLAB does not care about its origin. It treats data by its type and by

file type. Determining the appropriate function when using files has to be

done by the user as per the situation.

File operations do provide faculties to trim the data so that only

the useful part is used as an array. Further trimming can be performed

by slicing operations. With the art of handling files under your belt,

you can confidently proceed toward handling sophisticated numerical

computations.

Chapter 4 Input and Output

141© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_5

CHAPTER 5

Functions and Loops

5.1 Introduction
When a particular numerical tasks needs to be “repeated” over different

data points, digital computers become a useful tool since they can do this

with greater speed than humans. Loops perform exactly these tasks. Using

a condition to check the start and termination rules, you can perform

repetitive parts of a process easily. Different programming languages and

environments have different rules for defining loops. MATLAB provides a

much simpler way to define and run loops. They will be discussed shortly.

It’s useful to define the term function here. A big program may require

a set of instructions to be called at different times. Hence, these set of

instructions can be defined as a sub-program, which can be requested to

perform the computation at a desired time. In this way, a complicated task

can be divided into many small parts. This architecture of programming

is called modular programming. This is the most popular way of

programming since it’s quite logical, better at visualizing the problem,

and easy to debug. The most popular way of defining these small sets of

instructions is to define them as functions. This chapter discusses both of

these concepts in detail.

142

5.2 Loops
Loops form an essential part of an algorithm since they perform the tasks

that computers perform best: doing repetitive actions very quickly. Loops

come in many flavors—the for loop repeats certain tasks over a list of

variable values, the while loop checks a logical condition before executing

a certain task, and the if-then-else loop checks a condition and directs

the flow of the algorithm. The choice of a particular loop depends on the

problem at hand.

A variety of functions and their usage are listed in the following

sections. Judging their usage critically becomes very important because

the looping part of the algorithm consumes most of the execution time.

5.2.1 The while Loop
The while loop defines a logical condition and, until it is satisfied, it runs a

block of code. The syntax for the while loop is:

1 while condition

2 BODY

3 endwhile

Here, the keyword while initiates the execution of a while loop. The

condition is a logical condition whose answer can be true (1) or false

(0). The BODY encompasses a set of commands that is executed until the

condition holds true (see Listing 5-1).

Listing 5-1. The while1.m Program

1 x = 1.0;

2 while x<10

3 disp(sqrt(x));

4 x = x+1;

5 endwhile

Chapter 5 FunCtions and Loops

143

The while1.m program runs by first initializing the x variable to a

value, 1.0. Then it lists a logical condition:

x<10

In the first step of the loop, x = 1, this condition is satisfied since 1 < 10.

Since this condition is satisfied, disp(sqrt(x)) is executed and displays

the square root of x. Then line 4 is executed, where x = x + 1 increments

x. With the new incremented value of x being 2, the logical condition

x < 10 is again checked and the body of loop given in lines 3 and 4 is

executed. This is done until x = 10, when the loop condition is not satisfied.

At that point, line 5 is executed and declares the end of the while loop. The

execution of while1.m yields:

 1 >> while1

 2 1

 3 1.4142

 4 1.7321

 5 2

 6 2.2361

 7 2.4495

 8 2.6458

 9 2.8284

10 3

5.2.2 The do-until Loop
It is important to note that there can be cases where the body of a loop

might not get executed even once in the case of while loop. This is the

case when, after initialization, a condition is not satisfied. To deal with this

scenario, the do-until loop’s syntax is as follows:

1 do

2 BODY

3 until condition

Chapter 5 FunCtions and Loops

144

The loop first executes the body of the code and then checks for

the condition. This way, the code block comprising the BODY of loop is

executed at least once. The usage can be understood in the example shown

in Listing 5-2.

Listing 5-2. The dountil1.m Program

1 %Displaying square root of

2 %first ten positive natural numbers

3

4 x = 1.0;

5 do

6 disp(sqrt(x));

7 x = x+1;

8 until x == 10

The execution of the code yields the following:

 1 >> dountil1

 2 1

 3 1.4142

 4 1.7321

 5 2

 6 2.2361

 7 2.4495

 8 2.6458

 9 2.8284

10 3

11 >>

At line 4, x is initialized at 1.0. Then the body of the loop is written to

display the square root of x and then increment it by 1. This is done until

x = 10, i.e., until the value of x becomes 10.

Chapter 5 FunCtions and Loops

145

5.2.3 The for Loop
The for loop is used to perform computations on a list of known values.

The syntax of the for loop is as follows:

1 for variable = vector

2 BODY

3 end

The keyword for declares the start of the loop where a variable takes

the values stored in a vector. Then the body of the code (here represented

by BODY) is executed. The keyword end declares the end of the for loop.

This is explained in the example in Listing 5-3.

Listing 5-3. The for1.m Program

1 %program to calculate square root

2 %of first 10 numbers

3

4 for i = 1:10

5 ans = sqrt(i)

6 end

Executing for1.m yields:

 1 >> for1

 2 ans = 1

 3 ans = 1.4142

 4 ans = 1.7321

 5 ans = 2

 6 ans = 2.2361

 7 ans = 2.4495

 8 ans = 2.6458

 9 ans = 2.8284

10 ans = 3

11 ans = 3.1623

Chapter 5 FunCtions and Loops

146

5.2.4 The if-elseif-else Loop
When you need a number of conditions to be checked at different times,

the if-elseif-else loop works well. The syntax for this loop is given by:

1 if condition1

2 BODY1

3 elseif condition2

4 BODY2

5 else

6 BODY3

7 endif

At line 1, a condition is defined. If this condition is satisfied, then line 2

is executed; otherwise, line 3 is executed. Hence, BODY1 and BODY2 are the

blocks of code that are executed by checking for different sets of conditions

and BODY3 is the code that’s executed when none of the conditions are

executed. See Listing 5-4.

Listing 5-4. The ifelse1.m Program

 1 %Program to check if a

 2 %number is even or odd

 3

 4 x = 33;

 5

 6 if(rem(x,2) == 0)

 7 printf("x is even\n");

 8 elseif(rem(x,5) == 0)

 9 printf("x is odd and divisible by 5\n");

10 else

11 printf("x is odd\n");

12 endif

Chapter 5 FunCtions and Loops

147

Executing ifelse1.m yields:

1 >> ifelse1

2 x is odd and divisible by 5

At line 4, x is initialized as 33. Then, at line 6, the remainder of
x

2
 is

checked. If it is zero, then line 7 is executed. Otherwise, line 8 is executed

and the remainder of
x

5
 is checked. If it is zero, then line 9 is executed. If

neither of the conditions is satisfied, then line 11 is executed. Line 12 ends

the if-else loop.

5.3 Functions
A function is code that can be called as and when required. Hence, it

can be defined separately, either in a separate file or within the body of

program. MATLAB presents several ways to define functions, which are

discussed in the following subsections.

5.3.1 The function Function
The definition of a function follows this syntax:

1 function [return value 1, return value 2, ...] =

name([arg1, arg2,...])

2 body

3 endfunction

Here, the function keyword defines the object types as a function.

Then, a set of variables are defined that this function is expected to return.

Next comes an = operator, and then the name of the function. In this case,

it’s called name. Name objects takes a set of arguments, which are objects

that the function defined. Then comes the main body of the function.

Chapter 5 FunCtions and Loops

148

The last part defines the end of the function. For example, you can write

a function to find x2 − y2 and assign the result to a variable named z, as

follows:

1 function y = fn1(x,y)

2 y = xˆ2−yˆ2;
3 end

Save this as fn1.m in the present working directory. Now go to the

MATLAB terminal and type the following:

 1 >> fn1(5,1)

 2 ans = 24

 3 >> fn1(5,2)

 4 ans = 21

 5 >> fn1(5,3)

 6 ans = 16

 7 >> fn1(5,4)

 8 ans = 9

 9 >> fn1(5,5)

10 ans = 0

You can see that the function named fn1 is performing the

computation x2 − y2 on the two input arguments for which it is defined.

It is a good practice to define the program as a group of function files

and call them in the master program stored as a script file. This modular

approach makes it easy to experiment with the idea and also makes it

easier to debug and test the code. A function can return more than two

values too. For example:

1 function[y1,y2,y3] = fn2(x,y)

2 y1 = xˆ2−yˆ2;
3 y2 = xˆ2+yˆ2;
4 y3 = y2−y1;
5 end

Chapter 5 FunCtions and Loops

149

This gives the following result:

1 >> [a,b,c] = fn2(5,2)

2 a = 21

3 b = 29

4 c = 8

5 >> [a,b,c] = fn2(5,0)

6 a = 25

7 b = 25

8 c = 0

Functions can incorporate loops to regulate the repetitive tasks inside

the program. For example, a factorial of a number can be calculated using

the function given here:

1 function result = factorial(n)

2 if(n == 0)

3 result = 1;

4 return;

5 else

6 result = prod(1:n);

7 endif

8 endfunction

A function named factorial, which takes a number n as an argument,

calculates the product of the number with all its successive numbers.

When called from the MATLAB command line, the function yields the

following result.

 1 >> factorial(50)

 2 ans = 3.0414e+064

 3 >> factorial(1)

 4 ans = 1

 5 >> factorial(0)

Chapter 5 FunCtions and Loops

150

 6 ans = 1

 7 >> factorial(100)

 8 ans = 9.3326e+157

 9 >> factorial(1000)

10 ans = NaN

11 >> factorial(−1)
12 error:factorial:N must all be non−negative integers

help NaN and help prod provide useful insights into the behavior of

these commands.

5.3.2 The inline Function
Functions can also be defined inline using the inline keyword, as follows:

1 >> f = inline("xˆ2+y");
2 >> f(1,2)

3 ans = 3

4 >> f(10,10)

5 ans = 110

6 >> f(0,2)

7 ans = 2

8 >>

Line 1 defines a function named f with two variables, x and y, to

calculate f (x, y) = x2 + y. When called with values of these two variables, the

function outputs the calculated values.

5.3.3 Anonymous Functions
Anonymous functions are unnamed function objects defined in a program.

Their definition follows a simple syntax:

@(argument list) expression

Chapter 5 FunCtions and Loops

151

For example:

 1 >> a = @(x) sin(x)*cos(x);

 2 >> quad(a,0,1)

 3 ans = 0.35404

 4 >> quad(a,0,pi)

 5 ans = 7.3031e−017
 6 >> quad(a,−pi,pi)
 7 ans = 0

 8 >> quad(a,−pi,2*pi)
 9 ans = −2.8435e−016
10 >> quad(a,−2*pi,2*pi)
11 ans = 0

help quad tells us that the function quad evaluated the integration of a

function between two values. Hence, line 1 defines a function sin(x)cos(x),

whose integration is as follows.

0

1

0

17

0 35404

7 3031 10

ò

ò

ò

() () =

() () = ´ -

-

sin cos

sin cos

sin

x x

x x

.

.
p

p

p

xx x

x x

x x

() () =

() () = - ´

()

-

-

-

ò

ò

cos

sin cos

sin cos

0

2 8435 10
2

16

2

p

p

p

p

.

(() = 0

Hence, if you use the anonymous function definition, you do not need

to name a function.

Chapter 5 FunCtions and Loops

152

5.4 Summary
Defining functions is the key to modular programming. MATLAB presents

an elegant way to define and use functions, both inline and in separate

files. When combined with the ability to write functions inside a loop,

complex problems can be implemented in just a few lines of code. This

requires an artistic attitude while designing an algorithm, where functions

and loops are the paintbrushes that help you devise an elegant solution to

a given numerical problem.

Chapter 5 FunCtions and Loops

153© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_6

CHAPTER 6

Numerical Computing
Formalism

6.1 Introduction
Numerical computation enables you to compute solutions to numerical

problems, provided you can frame them into a proper format. This

requires certain considerations. For example, if you digitize continuous

functions, then you are going to introduce certain errors due to the

sampling at a finite frequency. Hence, a very accurate result would require

very a fast sampling rate. When a large data set needs to be computed, it

becomes a computationally intensive and time consuming task. Also you

must understand that the numerical solutions are an approximation at

best, compared to analytical solutions. The onus of finding their physical

meaning and significance lies on you. The art of discarding solutions that

do not have meaning in real world scenarios is something that a scientist/

engineer develops over the years. Also, a computational device is only as

intelligent as its operator. The law of GIGO (garbage-in-garbage-out) is

followed very strictly in this domain.

This chapter attempts to explain some of the important steps you must

consider in order to solve a physical problem using numerical computations.

Defining a problem in the proper terms is just the first step. Making the right

model and then using the right method to solve (solver) the issue is the

difference between a naive and an experienced scientist/engineer.

154

6.2 Physical Problems
Everything in our physical world is governed by physical laws. Owing

to men and women of science who toiled under difficult circumstances

and came up with fine solutions to the things happening around us,

we obtained mathematical theories for physical laws. To test these

mathematical formalisms of physical laws, we use numerical computations.

If it yields the same results as that of a real experiment, they validate each

other. Numerical simulations can remove the need to do an experiment

altogether, provided you have a well tested mathematical formalism. For

example, nuclear powers of our times need not test nuclear bombs for real

any more. The data related to nuclear explosion, which was obtained during

real nuclear explosions, enables scientists to model these physical systems

quite accurately, thus eliminating the need to do real testing.

Apart from applications like simulating a real experiment, modeling

physical problems are good educational exercises. While modeling,

hands-on exercises enable students to explore the subject in depth and

give proper meaning to the topic under study. Solving numerical problems

and visualizing results makes the learning permanent and also elucidates

any flaws in the mathematical theory, which ultimately leads to new

discoveries.

6.3 Defining a Model
Modeling means writing equations for a physical system. As the name

suggests, an equation is about equating two sides. An equation is written

using an equals (=) sign, where terms on the left side are equal to terms on

the right side. The terms on either side of an equation can be numbers or

expressions. For example:

 3 4 9 10x y z+ + =

Chapter 6 NumeriCal ComputiNg Formalism

155

This equation has the term 3x + 4y + 9z on the left hand side (LHS)

and the term 10 on the right hand side (RHS). Note that whereas LHS is an

algebraic term, RHS is a number.

Expressions are written using functions, which is simply a relationship

between two domains. Like f (x) = y is a relationship from y to x using the

rules of algebra. Mathematics has a rich library of functions, which you can

use to make expressions.

Choosing the proper functions depends on the problem. Some

functions describe some situations best. For example, the oscillatory

behavior can be described in a reasonable manner using trigonometric

functions like sin(x), cos(x), etc. Objects moving in straight lines can be

described well using linear equations like y = mx + c, where x is the present

position, m is the constant rate of change of x, and c is the offset position.

Objects moving in a curved fashion can be described by various non-linear

functions (where the power of the dependent variable is not 1).

In real life, you can have situations that are a mixture of these

scenarios. An object can oscillate and move in a curved fashion at the

same time. In that case, you write an expression using a mixture of

functions or find new functions that can explain the behavior of the object.

Verifying the functions is done by finding solutions to equations describing

the behavior and matching it with observations of the object. If they match

perfectly, you have a perfect solution. In most cases, an exact solution

might be difficult to obtain. In these cases, you get an “approximate”

solution. If the errors involved while obtaining an approximate solution

are within tolerable limits, the models can be acceptable.

As discussed, physical situations can be analytically solved by writing

mathematical expressions in terms of functions involving dependent

variables. The simplest problems have simple functions between

dependent variables with a single equation. There can be situations where

multiple equations are needed to explain a physical behavior. In case of

multiple equations being solved, the theory of the matrix comes in handy.

Chapter 6 NumeriCal ComputiNg Formalism

156

Suppose the following equations define the physical behavior of a

system:

 - + =x y3 4 (Equation 6-1)

 2 4 3x y- = - (Equation 6-2)

Then this system of two equations can be represented by a matrix

equation, as follows:

-

-
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú

1 3

2 4

4

3

x

y

Now using matrix algebra, values of variables x and y can be found

such that they satisfy the equations. Those values are called roots of these

equations. These roots are the point in 2D space (because there are two

dependent variables) where the system will find stability for that physical

problem. In this way, you can predict the behavior of system without

actually doing an experiment.

Mathematical concepts of differentiation and integration become very

important when you need to work with dynamic systems. When the system

is constantly changing the values of its dependent variables to produce

a scenario, it’s important to know the rate of change of these variables.

When these variables are independent of each other, you can use simple

derivatives to define their rate of change. When they are not independent

of each other, you must use partial derivatives for the same.

For example, Newton’s second law of motion says that the rate of

change of velocity of an object is directly proportional to the force applied

on it. Mathematically:

 F
dy

dx
a (Equation 6-3)

Chapter 6 NumeriCal ComputiNg Formalism

157

The proportionality is turned into equality by substituting for a

constant of multiplication m such that:

 F m
dy

dx
= ´ (Equation 6-4)

If you know values or expressions for F, this equation can be solved

analytically and solutions can be found to this equation. But in some cases,

the analytical solution may be too difficult to obtain. In those cases, you

can digitize the system and find a numerical solution.

There are many methods to digitize and numerically solve a given

function. Programs used to implement a particular method to solve a

function numerically are called solvers. A lot of solvers exist to solve a

function. The choice of solver is critical to successfully obtain a solution.

For example, Equation 6-4 is a differential equation. It is a first order

ordinary differential equation. A number of solvers exist to solve such

problems, like Euler, Runge-Kutta, etc. The choice of the particular solver

depends on the accuracy of its solution, the time taken for obtaining a

solution, and the amount of memory used during the process. The last

point is especially important when memory is not an freely expendable

commodity, such as when you’re using micro-computers with limited

memory storage.

The advantage of using MATLAB to perform numerical computations

lies in the fact that it has a very rich library of functions to perform the

various tasks required. The predefined functions have been optimized

for speed and accuracy (in some cases, accuracy can be predefined). This

enables you to rapidly prototype the problem instead of concentrating

on writing functions to do basic tasks and optimizing them for speed,

accuracy, and memory usage.

Chapter 6 NumeriCal ComputiNg Formalism

158

6.4 Example: Polynomials
The coefficients of a vector are defined as elements of a vector. In this

manner, a coefficient is defined for numerical computing. For example,

consider defining two arrays, p1 and p2, as shown:

 1 >> p1 = [1 0 3 2]

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2 =[3 4 0 5]

 8

 9 p2 =

10

11 3 4 0 5

The corresponding polynomial for p1 is p1(s) = s3 + 3s − 2 = 0 and for p2,

it’s p2(s) = 3s3 + 4s2 − 5 = 0. See Figure 6-1.

Chapter 6 NumeriCal ComputiNg Formalism

159

6.4.1 polyval()
Polynomials can be evaluated for a single value or multiple values using

the polyval() function. Consider the polynomials defined in p1 and p2.

Let’s calculate the values for p1(5) and p_{2}(-2).

 1 >> s = 5

 2

 3 s =

 4

 5 5

 6

 7 >> polyval(p1,s)

 8

3500

3000

2500

2000

1500

1000

500

0
1 2 3 4 5 6 7 8 9 10

Figure 6-1. Plot for equation p2(s) = 3s3 + 4s2 − 5 = 0

Chapter 6 NumeriCal ComputiNg Formalism

160

 9 ans =

10

11 142

12

13 >> s=2

14

15 s =

16

17 2

18

19 >> polyval(p2,s)

20

21 ans =

22

23 45

If a polynomial needs to be calculated on multiple values, say from 1

to 10 for p1, then an array 1:10 can be fed to the s variable and this can be

used in the polyval() function.

1 >> s = 1:10;

2 >> polyval(p2,s)

3

4 ans =

5

6 12 45 122 261 480 797

 1230 1797 2516 3405

This facility can be used to plot polynomials easily. The plot()

command can be fed s and polyval() output as the x and y axes to

visualize a plot.

Chapter 6 NumeriCal ComputiNg Formalism

161

6.4.2 roots()
The roots of a polynomial are the numerical values where the evaluated

polynomial is valued at zero. Roots can be found easily using the roots()

function. Here’s an example using the previously defined polynomials,

p1 and p2.

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> roots(p1)

14

15 ans =

16

17 0.2980 + 1.8073i

18 0.2980 − 1.8073i
19 −0.5961 + 0.0000i
20

21 >> roots(p2)

22

23 ans =

24

Chapter 6 NumeriCal ComputiNg Formalism

162

25 −1.8307 + 0.0000i
26 0.2487 + 0.9212i

27 0.2487 − 0.9212i
28

29 >> polyval(p1,roots(p1))

30

31 ans =

32

33 1.0e−14*
34

35 −0.1776 − 0.2720i
36 −0.1776 + 0.2720i
37 0.0888 + 0.0000i

38

39 >> polyval(p2,roots(p2))

40

41 ans =

42

43 1.0e−13*
44

45 −0.2753 + 0.0000i
46 −0.0089 − 0.0111i
47 −0.0089 + 0.0111i

As per the definition of a root, the polynomial should be valued at zero

at its roots, but the value for roots(p1,roots(p1)) is not zero. Instead, it’s

a very small number in the order of 10−14. This is due to errors introduced

in the numerical approximations for calculating the roots.

Chapter 6 NumeriCal ComputiNg Formalism

163

6.4.3 Addition and Subtraction of Polynomials
Two polynomials are added by adding their coefficients. Since they are

defined as arrays in MATLAB, polynomial addition and subtraction is

simply an element-wise operation.

 1 >> p1+p2

 2

 3 ans =

 4

 5 4 4 3 7

 6

 7 >> p1−p2
 8

 9 ans =

10

11 −2 −4 3 −3

This effectively means that:

 p s s s1
3 3 2 0() = + - = (Equation 6-5)

 p s s s2
3 23 4 5 0() = + - = (Equation 6-6)

 p s p s s s s1 2
3 24 4 3 7()+ () = + + + (Equation 6-7)

 p s p s s s1 2
3 22 4 3 3()- () = - - + - (Equation 6-8)

6.4.4 Polynomial Multiplication
The product of two polynomials can be found using a convolution

operation, which is provided using the conv() function in MATLAB.

Chapter 6 NumeriCal ComputiNg Formalism

164

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> conv(p1,p2)

14

15 ans =

16

17 3 4 9 23 8 15 10

 p s s s1
3 3 2 0() = + - = (Equation 6-9)

 p s s s2
3 23 4 5 0() = + - = (Equation 6-10)

P a p a s s s s s x1 2
6 5 4 3 23 4 9 23 8 15 10 0()´ () = + + + + + + = (Equation 6-11)

6.4.5 Polynomial Division
Polynomial division is performed by using deconvolving operations, which

are provided by the deconv() function. It gives two outputs—a quotient

and a remainder.

Chapter 6 NumeriCal ComputiNg Formalism

165

 1 >> p1

 2

 3 p1 =

 4

 5 1 0 3 2

 6

 7 >> p2

 8

 9 p2 =

10

11 3 4 0 5

12

13 >> [q,r] = deconv(p1,p2)

14

15 q =

16

17 0.3333

18

19

20 r =

21

22 0 −1.3333 3.0000 0.3333
23

24 >> [q,r] = deconv(p2,p1)

25

26 q =

27

28 3

29

30

Chapter 6 NumeriCal ComputiNg Formalism

166

31 r =

32

33 0 4 −9 −1

This means that if:

 p s s s1
3 3 2 0() = + - = (Equation 6-12)

 p s s s2
3 23 4 5 0() = + - = (Equation 6-13)

Then:

p

p
q r s s1

2

20 333 1 3333 3 0 3333® = = - + +. , . . (Equation 6-14)

p

p
q r s s2

1

23 4 9 1 0® = = - - - =, (Equation 6-15)

6.4.6 Polynomial Differentiation
Polynomial differentiation can be accomplished using the polyder()

function. For example, say you have a polynomial y(x) = x3 − 2x2 + 4x − 5 = 0.

That means:

dy

dx
x x= - + =3 4 4 02

This can be calculated by MATLAB as follows.

 1 >> y = [1 −2 4 −5]
 2

 3 y =

 4

 5 1 −2 4 −5
 6

Chapter 6 NumeriCal ComputiNg Formalism

167

 7 >> dydx = polyder(y)

 8

 9 dydx =

10

11 3 −4 4

6.4.7 Polynomial Integration
Just as with differentiation, you can define integration of polynomials

using the polyint() function. For example, say you have a polynomial

y(x) = x3 − 2x2 + 4x − 5 = 0. Then:

 y x dx x x x x() = =- + -ò 0 25 0 6667 2 5 04 3 2. .

 1 >>>> y = [1 −2 4 −5]
 2

 3 y =

 4

 5 1 −2 4 −5
 6

 7 >> integration =vpolyint(y)

 8

 9 integrationv=

10

11 0.2500 −0.6667 2.0000 −5.0000 0

6.4.8 Polynomial Curve Fitting
Suppose you are given some data and need to find a polynomial that fits

the data. This task can be performed using the polyfit() function. For

example, suppose you want to fit the data given here:

Chapter 6 NumeriCal ComputiNg Formalism

168

x 1 2 3 4 5 6

y 10 11 21 2 3 7

 1 >> x = [1,2,3,4,5,6]

 2

 3 x =

 4

 5 1 2 3 4 5 6

 6

 7 >> y = [10,11,21,2,3,7]

 8

 9 y =

10

11 10 11 21 2 3 7

12

13 >> polyfit(x,y,2)

14

15 ans =

16

17 −0.3750 0.9679 11.3000
18

19 >> polyfit(x,y,3)

20

21 ans =

22

23 1.0833 −11.7500 35.3095 −16.0000

Second and third degree polynomials that fit the data are −0.375x2 +

0.9679x + 11.3 = 0 and 1.0833x3 − 11.75x2 + 35.3095x − 16 = 0, respectively.

Chapter 6 NumeriCal ComputiNg Formalism

169

6.5 Summary
Almost all branches of science and engineering require you to perform

numerical computations. MATLAB is one of the alternatives for doing so.

MATLAB has a library of optimized functions for general computation. It

also has a variety of packages that perform specialized jobs. This makes

it an ideal choice for prototyping a numerical computation problem

efficiently. This chapter summarized various issues related to errors

generated during numerical computation and various methods to

obtain their value or order of magnitude. These quantities are important

to measure, since in real life, you will need these values to define the

accuracy of the final product.

Chapter 6 NumeriCal ComputiNg Formalism

171© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_7

CHAPTER 7

Approximate
answers in numerical
computation

7.1 Numerical Approximations
In the course of scientific investigation, finding exact answers may not

be possible at times. Instead of devoting a lot of effort trying to find an

exact answer by solving the problem analytically, another alternative is

to develop methods to produce approximate answers. This is particularly

true for solutions involving irrational numbers like pi. You can choose the

number of significant digits to be used with pi and determine the accuracy

of the result.

The degree of accuracy required always depends on the targeted

application. For example, when measuring the length of a building, we

don’t need the answer to be accurate to the length of an atom (Å). When

measuring a person’s body temperature, we don’t need to be accurate to

more than two decimal places for most applications. In the era of faster

and more efficient computers, higher accuracies of computations can

be calculated by investing more time and memory storage, whenever

required. But this must be used judiciously.

172

7.2 Tolerance
When an approximated answer or a set of approximated answers is

available to the user, one answer must be chosen depending on the

requirements of the application. One of the ways to make this decision is

to define a tolerance limit. Tolerance can be defined as a single number

or a range of numbers (having a maximum and a minimum). The rules to

define tolerance limits are entirely application dependent. For example,

while measuring human height, we could define the tolerance to be 1

centimeter but at the same time, while measuring the diameter of a human

hair, we might like to be more accurate, by going down to 1 micron. At the

same time, while measuring the size of a red blood cell, we would need

to go further down, to 1 nm (nanometer). Whereas the decision to define

tolerance is simpler when measuring sizes—i.e., tolerance is one or two

orders of magnitude smaller than the size of the object—it may not be a

straightforward task in other applications. For example, measuring land

when constructing a building would require a tolerance of a fraction of

meters, whereas positioning a screw in a hole requires an accuracy within

a fraction of a centimeter.

In mathematical terms, if ∈ is the tolerance limit, x represents the real

values, and x* represents the approximated value:

 x x- £Î*
 (Equation 7-1)

In this case, the absolute error (ea) and the relative error (er) in the

measurements are given by:

 e x xa = - *
 (Equation 7-2)

 e
x x

xr =
- *

 (Equation 7-3)

Chapter 7 approximate answers in numeriCal Computation

173

Hence, if absolute error is less than or equal to the tolerance limit,

the approximate solution or set of solutions is acceptable. However, if x is

known, why do we need to calculate an approximate solution?

When solutions of physical systems are unknown, x* can be calculated

and then be compared to the physical measurements. The physical

measurements constitute the value of x in this case. Then, by using Equation 7-2,

we can calculate errors. Tolerance can then be determined using the fact that

some x* will differ from x insignificantly, i.e., the errors don’t matter much.

7.3 Taylor Series
Most mathematical functions require many complex operators—other

than the simpler ones like +, −, ×, and ÷—to be computed. However, a

polynomial requires only these basic ones to be computed. Hence, if other

mathematical functions can be represented in terms of polynomials, they

can be approximated with relative ease.

A polynomial is defined as follows:

 p x a a x a x a xn
n() = + + + +0 1 2

2 � (Equation 7-4)

where an ∈ R (The as are called the coefficients). For the largest n that

corresponds to an ≠ 0, the degree of polynomial is defined to be n.

7.4 Taylor Polynomials
Taylor’s theorem explains how to define a great many mathematical

functions, which can be defined as polynomials and are called Taylor

polynomials. The accuracy of the final answer shown by a Taylor

polynomial depends on its degree, i.e., the number of terms defined in

the polynomial. This provides a convenient method to customize the

polynomial based on the desired tolerance.

Chapter 7 approximate answers in numeriCal Computation

174

Suppose a mathematical function f (x) needs to be approximated

around x = a. A Taylor Polynomial pn(x) of degree n centered at x = a is a

polynomial (of degree at-most n) that has the same value as nth derivative

at x = a.

Here’s how to derive the formula for a Taylor Polynomial:

 1. The zero order polynomial p0(x) has degrees of at

most zero.

 – p0(x) must be a constant function (a horizontal line

function, graphically).

 – Approximating around x = a: p0(x) = f(a).

 2. The first order polynomial p0(x) has a degree at

most of 1.

 – p1(x) must satisfy two conditions:

 p a f a1 () = ()

and

 p a f a1 1
’ ’() = ()

 – p1(x) must be of the form p1(x) = mx + c (a straight

line with slope m and c as the intercept).

 – Since ¢ ¢() = ()p a f a so m f a= ()¢

 – So we can write c = ()- ()¢f a f a a

 – Substituting back the values of m and c, we get

 p x f a x f a f a a f a x a1 () = () + ()- () = () -()¢ ¢

Chapter 7 approximate answers in numeriCal Computation

175

 3. Carrying forward the same arguments in a similar

fashion, you can write the general form of the Taylor

Polynomial of order n as:

p x f a f a x a f a x a

f a x a
n

n () = () + () -() + () -()

+ () -() + +

’ ’’

!
’’’

1

2
1

3

1

2

3 �
!!
f a x an n() -()

which can be rewritten in sigma notation as follows:

 p x
k

f a x an
k

n
k k() = () -()

=
å

0

1

!
 (Equation 7-5)

This definition requires that the polynomial must have n derivatives

at x = a.

The Maclaurin Series is simply the Taylor Series defined for a = 0. You

can use algebraic manipulations of the Taylor/Maclaurin Series for basic

functions like sin(x), cos(x), and e x to define other complicated functions

in their series forms. These can be performed by simply using algebraic

operators in addition to substitutions, derivatives, and integrations. This

mathematical convenience comes in handy in formulating approximate

solutions for physical systems defined by complicated functions.

7.4.1 Maclaurin Series for sin(x) and cos(x)
To check Maclaurin expansion, let’s start with the trigonometric functions

sin(x) and cos(x). Both are continuous and differentiable in the range given

by any set of real numbers. Hence their differentials exist in the same. They

can be expanded in the form of a Maclaurin Series as follows.

Suppose f (x) = sin(x) needs to be approximated at a = 0.

Chapter 7 approximate answers in numeriCal Computation

176

Using Table 7-1 and Equation 7.5 results in this equation:

sin x x x x x x
n

xn() = - + - + - ±
1

3

1

5

1

7

1

9

13 5 7 9

! ! ! ! !
� (Equation 7-6)

Similarly for f (x) = cos(x) approximated at a = 0, using Table 7-2 and

Equation 7-5 results in this equation:

cos x
x

x x x
n

xn() = - + - + - ±1
2

1

4

1

6

1

8

12
4 6 8

! ! ! !
� (Equation 7-7)

Table 7-1. Calculating Coefficients for

the Maclaurin Series of sin(x) at x = 0

n f(x) f(a)

0 sin(x) 0

1 cos(x) 1

0 −sin(x) 0

1 −cos(x) −1

0 sin(x) 0

Table 7-2. Calculating Coefficients for the

Maclaurin Series of cos(x) at x = 0

n f(x) f(a)

0 cos(x) 1

1 −sin(x) 0

0 −cos(x) −1

1 sin(x) 0

0 cos(x) 1

Chapter 7 approximate answers in numeriCal Computation

177

 Choosing Tolerance While Calculating cos(x)

The program MaclaurinCos.m in Listing 7-1 shows how error is reduced

by many orders of magnitude, as more and more terms of the Taylor Series

are included for calculating cos(150). See Figure 7-1.

Listing 7-1. The MaclaurinCos.m Program

 1 %A program to show usage of Taylor Series expansion of cos(x)

 2 %Suppose we wish to calculate cos(15) where argument of cos

function is given in degrees

 3

 4 x = 15*pi/180; %converts 15 degrees into radian

 5

 6 format long %show results in long format having a lot of

decimal places for numbers

 7

 8 %Calculating each term of Taylor Series

 9

10 p1 = 1;

11 p2 = xˆ(2)/2;
12 p4 = xˆ(4)/factorial(4);
13 p6 = xˆ(6)/factorial(6);
14 p8 = xˆ(8)/factorial(8);
15 p10 = xˆ(10)/factorial(10);
16

17 approx_1= p1−p2; %approximate values using two terms
18 approx_2= p1−p2+p4; %approximate values using three terms
19 approx_3= p1−p2+p4−p6; %approximate values using four terms
20 approx_4= p1−p2+p4−p6+p8; %approximate values using five

terms

Chapter 7 approximate answers in numeriCal Computation

178

21 approx_5= p1−p2+p4−p6+p8−p10; %approximate values using
six terms

22

23 real_value = cos(x); %calculating the real value to find

errors

24

25 %calculation of final errors

26

27 error_1 = abs(real_value − approx_1);
28 error_2 = abs(real_value − approx_2);
29 error_3 = abs(real_value − approx_3);
30 error_4 = abs(real_value − approx_4);
31 error_5 = abs(real_value − approx_5);
32

33 %making an error vector for plotting

34

35 error = [error_1, error_2, error_3, error_4, error_5];

36

37 %plotting error versus number of terms

38

39 figure(1)

40 semilogy(error,'*r−')
41 title('Variation of error in calculating cos(15ˆ{0}) using

Taylor Series')

42 xlabel('Number of terms on Taylor Series')

43 ylabel('log(error)')

44

45 %plotting cos(x) and its various approximations

46

47 t = 0:0.001:20;

48 %length(t)

49

Chapter 7 approximate answers in numeriCal Computation

179

50 figure(2)

51 y = cos(t);

52 subplot(2,3,1)

53 plot(t,y,t,ones(length(t)))

54 subplot(2,3,2)

55 plot(t,y,t,(1−t.ˆ2/2))
56 subplot(2,3,3)

57 plot(t,y,t,(1−t.ˆ2/2+t.ˆ4/factorial(4)))
58 subplot(2,3,4)

59 plot(t,y,t,(1−t.ˆ2/2+t.ˆ4/factorial(4)−t.ˆ6/factorial(6)))
60 subplot(2,3,5)

61 plot(t,y,t,(1−t.ˆ2/2+t.ˆ4/factorial(4)−t.ˆ6/factorial(6)+t.ˆ8/
 factorial(8)))

62 subplot(2,3,6)

63 plot(t,y,t,(1−t.ˆ2/2+t.ˆ4/factorial(4)−t.ˆ6/factorial(6)+t.ˆ8/
 factorial (8)−t . ˆ 10 / factorial (10)))

10-2

10-4

10-6

10-8

10-10

10-12

10-14

10-16

1 1.5 2.5 3.5 4.52 3 4 5
Number of terms on Taylor Series

lo
g(

er
ro

r)

Variation of error in calculating cos(15˚) using Taylor Series

Figure 7-1. Variation of logarithmic error in the number of terms
used to define a Maclaurin Series for cos(x)

Chapter 7 approximate answers in numeriCal Computation

180

As seen from Figure 7-1, you can now choose to insert certain numbers

of terms as per the given tolerance for calculating cos(x). To make a

judicious decision about the number of terms, you must inspect the

function in a similar fashion (as was done by MaclaurinCos.m). Inserting a

lot of terms while demanding less accuracy is a waste of time, energy, and

resources (both human and computational).

Instead of expanding around one particular point, the series can

be defined for a set of points. The Octave program called CosApprox.m

attempts the same, as shown in Listing 7-2. See Figure 7-2.

Listing 7-2. The CosApprox.m Program

 1 %plotting cos(x) and its various approximations

 2

 3 t = −3*pi:pi/10:3*pi; %defining an array of points for
x−axis

 4 l = length(t); %to be used for defining pi

 5 y = cos(t); %real values of cosine function

 6

 7 %defining various terms of Maclaurin Series

 8 a1 = ones(l); %only first term

 9 a2 = (1−t.ˆ2/2); %first and second term
10 a3 = (a2+t.ˆ4/factorial(4)); %first, second and third term
11 a4 = (a3−t.ˆ6/factorial(6)); %first, second, third and

fourth term

12 a5 = (a4+t.ˆ8/factorial(8)); %first, second, third, fourth
and fifth term

13 a6 = (a5−t.ˆ10/factorial(10)); %first, second, third,
fourth, fifth and sixth term

14

15 %plotting fitting of cos(x) with increasing number of terms

16 figure(1)

17

Chapter 7 approximate answers in numeriCal Computation

181

18 subplot(3,2,1)

19 plot(t,y,'*r−',t,a1,'*b−')
20 axis([−3*pi 3*pi −1.2 1.2])
21 title('fitting p_{1} to cos(x)')

22 xlabel('t')

23 ylabel('cos(t)')

24

25 subplot(3,2,2)

26 plot(t,y,'*r−',t,a2,'*b−')
27 axis([−3*pi 3*pi −1.2 1.2])
28 title('fitting p_{2} to cos(x)')

29 xlabel('t')

30 ylabel('cos(t)')

31

32 subplot(3,2,3)

33 plot(t,y,'*r−',t,a3,'*b−')
34 axis([−3*pi 3*pi −1.2 1.2])
35 title('fitting p_{3} to cos(x)')

36 xlabel('t')

37 ylabel('cos(t)')

38

39 subplot(3,2,4)

40 plot(t,y,'*r−',t,a4,'*b−')
41 axis([−3*pi 3*pi −1.2 1.2])
42 title('fitting p_{4} to cos(x)')

43 xlabel('t')

44 ylabel('cos(t)')

45

46 subplot(3,2,5)

47 plot(t,y,'*r−',t,a5,'*b−')
48 axis([−3*pi 3*pi −1.2 1.2])

Chapter 7 approximate answers in numeriCal Computation

182

49 title('fitting p_{5} to cos(x)')

50 xlabel('t')

51 ylabel('cos(t)')

52

53 subplot(3,2,6)

54 plot(t,y,'*r−',t,a6,'*b−')
55 axis([−3*pi 3*pi −1.2 1.2])
56 title('fitting p_{6} to cos(x)')

57 xlabel('t')

58 ylabel('cos(t)')

1

0

-1

co
s(

t)

1

0

-1

co
s(

t)

1

0

-1

co
s(

t)

1

0

-1

co
s(

t)

1

0

-1

co
s(

t)

1

0

-1

co
s(

t)

-5 0 5

t
-5 0 5

t

-5 0 5

t
-5 0 5

t

-5 0 5

t
-5 0 5

t

fitting p1 to cos(x) fitting p2 to cos(x)

fitting p3 to cos(x) fitting p4 to cos(x)

fitting p5 to cos(x) fitting p6 to cos(x)

Figure 7-2. Fitting of Maclaurin Series with different numbers of
terms to cos(x)

Chapter 7 approximate answers in numeriCal Computation

183

As you can see from Figure 7-2, as higher orders of terms are used to

describe cos(x), the error reduces by fitting with increasing accuracy. For

ideal fitting, very large numbers of terms must be used to describe the

approximated cos(x) function. The choice of tolerance is user defined.

Depending on the tolerance value, a particular number of terms can be

determined.

7.4.2 The Maclaurin Series for e x

Let’s explore the concept of errors using another example of the Maclaurin

Series—for e x:

 e a
a a aa = + + + + +1
2 3 4

2 3 4

! ! !
� (Equation 7-8)

For programming purposes, it’s easier to derive an inherent

relationship between the terms of the Maclaurin Series. The first terms is

the number 1, but afterward, each term can be obtained by multiplying the

previous terms by this equation:

a

n
 (Equation 7-9)

where n represents the nth term. This fact is used in the MaclaurinExp.m

code (see Listing 7-3), where the first term is defined at line number 5

in variable expVal and then this variable is added to the currentTerm

variable, which is simply calculated using the formula in Equation 7-9.

Listing 7-3. The MaclaurinExp.m Program

 1 %Maclaurin Series for exp(0.1)

 2

 3 n = 5; %Number of terms

 4 a = 0.1; %Functional value of x for eˆ(x)

Chapter 7 approximate answers in numeriCal Computation

184

 5 expVal = 1.0;

 6 currentTerm = 1.0;

 7 for i=1:n

 8 currentTerm = currentTerm*a/i;

 9 expVal = expVal+currentTerm

10 endfor

11

12 trueVal = exp(0.1);

13 error = abs(trueVal −expVal)

The output is displayed as follows:

 1 >> MaclaurinExp

 2 expVal = 1.1000

 3 expVal = 1.1050

 4 expVal = 1.1052

 5 expVal = 1.1052

 6 expVal = 1.1052

 7 error = 1.4090e −09
 8 >> format long

 9 >> MaclaurinExp

10 expVal = 1.10000000000000

11 expVal = 1.10500000000000

12 expVal = 1.10516666666667

13 expVal = 1.10517083333333

14 expVal = 1.10517091666667

15 error = 1.40898115397192e−09

Notice that while the numeric display is usually set for just four

numerical values after the decimal point, the format long command

increases this accuracy (the format short command returns to the default

behavior). Thus, you can clearly observe that by increasing the number of

Chapter 7 approximate answers in numeriCal Computation

185

terms, the error is reduced drastically as it approaches the true value and

you will achieve an error of the order 10−9 in just five terms.

If you want to store all the calculated values in the expVal variable, you

must define it as a vector, as shown in Listing 7-4 (the MaclaurinExp1.m

program).

Listing 7-4. The MaclaurinExp1.m Program

 1 %Maclaurin Series for exp(0.1)

 2

 3 n = 5; %Number of terms

 4 a = 0.1; %Functional value of x foreˆ(x)
 5 expVal = 1.0;

 6 currentTerm = 1.0;

 7 for i =1:n

 8 currentTerm = currentTerm*a/i;

 9 expVal(i+1) = expVal(i)+currentTerm;

10 endfor

11

12 trueVal = exp(0.1);

13 error = abs(trueVal−expVal)

Here, line 9 dictates that the (i + 1)th is modified as per Equation 7-9,

using the previous term, i.e., the (i)th term. Also notice that printing line

9 has been suppressed by using the ; operator. The output is shown as

follows:

1 >> MaclaurinExp1

2 error =

3

4 1.0517e−01 5.1709e−03 1.7092e−04 4.2514e−06
8.4742e−08 1.4090e−09

5 >>>plot(error,'r*−')

Chapter 7 approximate answers in numeriCal Computation

186

Using the plot(error,'r*-'), you can generate graphs where error

values are plotted (the r*- argument shows red stars connected with

rules). This is shown in Figure 7-3.

Since the error drops by orders of magnitude with each new term, the

effect can be best seen in a logarithmic plot. This can be generated using

the semilogy(error,'r*-') command. Figure 7-4 will be generated.

0.12

0.08

0.06

0.04

0.02

0.1

0
1 2 3 4 5 6

Figure 7-3. Error in calculating e 0.1 with an increasing number of
terms

Chapter 7 approximate answers in numeriCal Computation

187

It seems that beyond 10 terms, the error flattens out. But you will see

that this is an erroneous result, as this graph will depend on the least count

of your computing machine.

 How Many Number of Terms?

You can observe from Figure 7-4 that, by increasing the number of terms,

you reduce the error by two orders of magnitude when calculating e0.1.

But does this trend mean that to achieve true values, you must include

an infinite number of terms? After all, each time you add a new term, you

invest time and energy into the computation. In general, the Maclaurin

Series has the accuracy of an+1 when n terms are used:

 e a
a a a a

n
O aa

n
n= + + + + +¼+ + ()+1

2 3 4

2 3 4
1

! ! ! !
 (Equation 7-10)

1e+0

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

1e-7

1e-8

1e-9

1e-10

1e-11

1e-12

1e-13

1e-14

1e-15

1e-16
0 2 4 6 8 10 12 14

Figure 7-4. Error in calculating e 0.1 with an increasing number of terms

Chapter 7 approximate answers in numeriCal Computation

188

Analytically, you can choose n to be any large number, but this cannot

be done on a computing machine. The reason for this is explored next.

Figure 7-4 shows one interesting fact that beyond 10 terms, the error

no longer changes by orders of magnitude and instead just flattens out.

This is a misleading result. Each computing machine has limits for storing

the smallest floating point number. This can be obtained by issuing the

eps command. The system on which the program has been run shows the

following output.

1 >> error(9:12)

2 ans =

3

4 3.10862446895044e−15 4.44089209850063e−16
4.44089209850063e−16 4.44089209850063e−16

5 >>> eps

6 ans = 2.22044604925031e−16

You can now see that, when error values are very close to eps values,

they cannot be stored reliably anymore. The command error(9:12)

outputs a similar viewpoint. It can be seen that while the ninth term yields

an error of the order of 10−15, the eleventh term onward have similar values

of the order 10−16. This is done so that the computer avoids crashing the

calculation by going beyond its limits defined by the eps value.

The eps command gives the machine precision. The help('eps')

command shows the documentation for the eps command and its usage.

Technically, eps is the relative spacing between any two adjacent numbers

in the machine’s floating point system, i.e., computational machines’ least

count. This number is obviously system dependent as you can devise

specialized hardware where machine precision can be enhanced. In

fact, this is done when increased precision matters, such as for missile

guidance, space navigation, etc. On machines that support IEEE floating

point arithmetic, eps is approximately 2.2204 × 10−16 for double precision

and 1.1921 × 10−7 for single precision.

Chapter 7 approximate answers in numeriCal Computation

189

It is interesting to note that 2 2 2204 1025 16- -» ´. . This essentially

signifies that the double precision mode of software can store 52 digits

after the decimal point. You learn more about this in the “Computational

Errors” section of this chapter, which discusses the machine precision

aspect of numerical computations and the importance of knowing which

precision you need to work on for a particular numerical problem.

The realmax, realmin, intmax, and intmin commands show the

maximum and minimum values of real numbers and integers on the

particular machine where the software is installed.

1 >> realmax

2 ans = 1.79769313486232e+308

3 >> intmax

4 ans = 2147483647

5 >> realmin

6 ans = 2.22507385850720e−308
7 >> intmin

8 ans = −2147483648

It is useful to know these numbers, as the numbers beyond these limits

will be prone to error because of machine precision.

7.5 Computational Errors
Up until now, you have read about the inherent errors that are due to the

inclusion of a certain number of terms while calculating a mathematical

function. There is, in fact, another kind of error, which is introduced due to

the fact that computers can store only numbers of finite lengths.

Chapter 7 approximate answers in numeriCal Computation

190

7.5.1 Significant Digits
The concept of significant digits plays an important role here. If computers

can store all the significant digits of the final answer, the errors become

irrelevant. Otherwise, it is important to identify them and, if possible,

rectify them when reporting a final answer. For example, while dealing

with pi, if only three significant digits are desired, this can be stored easily

on any low-end computing solution.

Computers can store numbers as floating point objects. A floating

point object stores a number as follows:

 ± ¼ ´d d ds
e

1 2 b (Equation 7-11)

Where di = ¼ -0 1 2 1, , b but d1 0¹ and m e M£ £ where m IÎ - and

M IÎ + .

Three parts of a floating point number are:

• Sign (±)

• Mantissa (d1d2 … d s)

• Exponent (β)

In IEEE double precision roundoff, MATLAB uses binary arithmetic

where:

• b = 2

• s = 53

• m = −1074

• M = +1023

Since humans are used to decimal arithmetic systems, these binary

numbers are converted to decimal numbers for reporting purposes. It is

important to understand the key point that all internal calculations are

done in binary form but input and output for humans are fed in decimal

Chapter 7 approximate answers in numeriCal Computation

191

form. The rounding-off error due to conversion is given by the unit

roundoff, u, which is the maximum relative error while approximating a

real number as a floating point number.

MATLAB can handle numbers with absolute values from 2 101074 324- -�

and 2 101023 308- � with a unit roundoff of u = - -2 1053 16� .

7.6 Challenges in Real Number to Floating
Point Number Conversion

A real number x can be stored in floating point representation given by

Equation 7-11 as:

 x d d d ds s
e= ± ¼ ¼´+1 2 1 10 (Equation 7-12)

Now note that s = 53, but the previous description does not restrict

representation of a floating point number. Its storage is, however, an

altogether different game. When it is stored, the number is rounded off and

stored as per the guidelines, i.e., s = 53.

7.6.1 Overflow
From Equations 7-11 and 7-12, if e > M, computation is said to have

overflowed. That means a number bigger than possible has been presented

and hence the storage container has overflowed. In this case, MATLAB

produces Inf or -Inf as the answer, which represents the fact that the

answer is a very large number.

The following exercise, performed in a MATLAB terminal, explains

the process clearly. Inf is displayed as an answer when e900 is attempted.

When this number is divided by a negative number, -Inf is displayed,

signifying an overflow while storing a negative number. When Inf-Inf is

attempted, NaN (which stands for Not a Number) is displayed, signifying

that the large numbers cannot produce a result that’s meaningful.

Chapter 7 approximate answers in numeriCal Computation

192

 1 >> format long

 2 >> exp(50)

 3

 4 ans =

 5

 6 5.184705528587072e+21

 7

 8 >> exp(100)

 9

10 ans =

11

12 2.688117141816136e+43

13

14 >> exp(500)

15

16 ans =

17

18 1.403592217852837e+217

19

20 >> exp(700)

21

22 ans =

23

24 1.014232054735005e+304

25

26 >> exp(900)

27

28 ans =

29

30 Inf

31

Chapter 7 approximate answers in numeriCal Computation

193

32 >> exp(900)/−2
33

34 ans =

35

36 −Inf
37

38 >> exp(900)−exp(900)
39

40 ans =

41

42 NaN

7.6.2 Underflow
If e < m, then underflow is said to have occurred. Octave represents

an underflow by showing zero and the answer. It would seem that

underflow is not serious, but consider the fact that, as per basic rules of

exponentiation:

 e e e ea a a a- -= = =0 1

When you perform the same calculations for numbers representing

overflow and underflow, Octave has to perform Inf X 0, which results in

NaN. This is demonstrated in the following example:

 1 >> exp(900)*exp(−900)
 2

 3 ans =

 4

 5 NaN

 6

 7 >> exp(900)

 8

Chapter 7 approximate answers in numeriCal Computation

194

 9 ans =

10

11 Inf

12

13 >> exp(−900)
14

15 ans =

16

17 0

7.7 Actual Conversions of Real Numbers
to Floating Point Numbers

After look at the two extreme cases, overflow and underflow, you need to

understand the real number to floating point number conversion process.

Recall from Equations 7-11 and 7-12 that a real number can be stored with

s significant digits, as follows:

 ± ¼ ´d d ds
e

1 2 b

whereas it can be written in floating point notation (for base 10) as follows:

 x d d d ds s
e= ± ¼ ¼´+1 2 1 10

There are two ways to achieve the conversion: using the method of

truncation and using the method of rounding off. The method of truncation

will simply discard all digits after s, i.e., it will produce the following:

 x d d ds
e= ± ¼ ´1 2 10 (Equation 7-13)

Chapter 7 approximate answers in numeriCal Computation

195

On the other hand, the method of rounding off recommends the

following process:

 1. If ss+1 < 5, then perform truncation and retain the

sign of x.

 2. If ss+1 > 5, then d s is incremented. Then truncation

is performed and retain the sign of x.

This seemingly simple scheme has a flaw. Suppose for s = 4, you need

to round off 2.9345. The answer would be 2.934, i.e., last digit 5 is simply

discarded. In a similar fashion, when 2.9355 is rounded off, the answer can

be written as 2.936, where the last digit is discarded and the last significant

digit is incremented. In both cases, only one digit changed. But suppose

you need to round off 2.9999. In this case, the answer comes out to be

3.000, where four numeral values changed.

7.8 Alternatives to MATLAB
With growing computational power, advances in numerical computers,

and the dropping prices of computational resources, MATLAB has become

the language of engineering. With challenges posed from open source

alternatives like Scilab [1], Octave [2], and Python [3], it now needs to

innovate in new dimensions to remain relevant, both commercially and

academically. My books on Octave, Scilab, and Python (available on

Amazon [4, 5, 6]) run parallel with the contents of this book for easier

comparison [7]. I highly recommended that you study all these options so

you can make the best decision for your needs.

Chapter 7 approximate answers in numeriCal Computation

196

7.9 Summary
It should be clear now that performing mathematical modeling of physical

systems using numerical computation does not mean merely entering

input and getting out some output. This must be done judiciously. The very

act of performing calculations on a discrete system having a finite level

for computation introduces errors. These errors must be mentioned while

presenting results so that they can be cross-checked by other investigators.

But despite the fact that numerical computations are tedious to code and

they introduce error, they remain tremendously popular among scientists.

This is because modern computers offer greater speeds of calculation

and analytical solutions to most of the physical world’s problems, and

these calculations remain too tedious to be done by humans. This trend is

expected to continue in the near future.

7.10 Bibliography

 [1] Sandeep Nagar. Introduction to Scilab: For Engineers

and Scientists, volume 1 of 1. Self-Published,

2 edition, 1 2016.

 [2] Sandeep Nagar. Introduction to Octave: For Engineers

and Scientists, volume 1 of 1. Self-Published,

2 edition, 1 2016.

 [3] Sandeep Nagar. Introduction to Python for Engineers

and Scientists: Open Source Solutions for Numerical

Computation, volume 1 of 1. Self-Published,

2 edition, 1 2016.

 [4] https://www.amazon.com/dp/1520158106

Chapter 7 approximate answers in numeriCal Computation

https://www.amazon.com/dp/1520158106

197

 [5] https://www.amazon.com/dp/1520153686

 [6] https://www.amazon.com/dp/152015111X

 [7] Sai K Popuri, Andrew M Raim, Matthew W Brewster,

and Matthias K Gobbert. A comparative evaluation of

matlab, octave, freemat, scilab, and r on tara. Technical

report, Technical Report HPCF-2012-7, UMBC High

Performance Computing Facility, University of

Maryland, Baltimore County, 2012.

Chapter 7 approximate answers in numeriCal Computation

https://www.amazon.com/dp/1520153686
https://www.amazon.com/dp/152015111X

199© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_8

CHAPTER 8

Symbolic
Computation

8.1 Introduction
Until now, we have been dealing with numeric computation where

variables store numeric values. In Chapter 7, you learned that numerical

computation involves working with approximate solutions. On the other

hand, an analytical solution is not an approximation since one uses

symbols rather than numbers. MATLAB provides the means to perform

symbolic computations, too.

8.2 Defining a Symbolic Variable
The keyword syms is used to define single or multiple symbolic variable(s).

The key feature of a symbolic variable is that it just stores a symbol to

perform symbolic calculations.

1 >> syms x y z

2 >>

After executing the command, inspect the Workspace window

(see Figure 8-1) and note that three new variables—x, y, and z—have been

created.

200

8.3 Defining a Symbolic Equation
Once the variables have been defined, you can define an equation:

 z x y= +2 (Equation 8-1)

using these variables as follows:

1 >> z = xˆ2+y
2 z =

3 xˆ2 + y

In the present example, z was predefined as a symbolic variable. The

output variable is created by MATLAB and becomes a symbolic variable by

default. Its inputs have been defined as symbolic variables. For example,

suppose you want to define this equation:

 a x y z= + +3 2 (Equation 8-2)

This results in the creation of a new symbolic variable (which can be

verified by checking the Workspace window). The following MATLAB code

performs this task:

Figure 8-1. New symbolic variables appearing in the workspace

Chapter 8 SymboliC Computation

201

1 >> syms x y z

2 >> a = xˆ3+yˆ2+z
3 a =

4 xˆ3 + yˆ2 + z

8.4 Performing Symbolic Computations
Symbolic computations are same as what we are used to doing by hand on

paper. You define a variable and use mathematical rules of algebra as well

as calculus to perform calculations. For example, two roots (r1 and r2) of a

quadratic equation:

 y ax bx c= + +2 (Equation 8-3)

can be written as follows:

 r
b b ac

a1

2 4

2
=
- + - (Equation 8-4)

 r
b b ac

a1

2 4

2
=
- - - (Equation 8-5)

This can be performed using the following MATLAB code:

1 >> syms a b c x

2 >> y = a*(xˆ2)+(b*x)+c
3 y =

4 a*xˆ2 + b*x + c
5 >> solve(y)

6 ans =

7 −(b + (bˆ2 − 4*a*c)ˆ(1/2))/(2*a)
8 −(b − (bˆ2 − 4*a*c)ˆ(1/2))/(2*a)

Chapter 8 SymboliC Computation

202

Similarly, a symbolic mathematical expression can be integrated and

differentiated as follows:

 1 >> syms a b c x

 2 >> y = a*(xˆ2)+(b*x)+c
 3 y =

 4 a*xˆ2 + b*x + c
 5 >> int(y)

 6 ans =

 7 (a*xˆ3)/3 + (b*xˆ2)/2 + c*x
 8 >> diff(y)

 9 ans =

10 b + 2*a*x

This can be verified using paper-based calculation by hand, where we

know the following:

 y ax bx c= + +2 (Equation 8-6)

 y
ax bx

cx= + +ò
3 2

3 2
 (Equation 8-7)

dy

dx
ax b= +2 (Equation 8-8)

8.4.1 Arithmetic Expressions
Simple arithmetic expressions can be dealt with using symbols. For

example, two polynomials can be used to define a new polynomial.

 1 >> syms x y z

 2 >> a1 = xˆ2+2*y+z
 3 a1 =

 4 xˆ2 + 2*y + z

Chapter 8 SymboliC Computation

203

 5 >> a2 = xˆ(−2)−2*y+3*z
 6 a2 =

 7 3*z − 2*y + 1/xˆ2
 8 >> a3 = a1/a2

 9 a3 =

10 (xˆ2 + 2*y + z)/(3*z − 2*y + 1/xˆ2)
11 >> a4 = a1*a2

12 a4 =

13 (xˆ2 + 2*y + z)*(3*z − 2*y+1/xˆ2)

8.4.2 Trigonometric Expressions
Trigonometric variables defined using symbolic variables can also be used

in mathematical calculations, as follows:

 y x= ()sin (Equation 8-9)

dy

dx
x= - ()cos (Equation 8-10)

1 >> syms a b c x

2 >> y = sin(x)

3 y =

4 sin(x)

5 >> int(y)

6 ans =

7 −cos(x)

Even more complicated calculations can be performed by a click of a

button.

1 >> z = cos(xˆ(1/2)) − (sin(y))ˆ(1/3)
2 z =

3 cos(xˆ(1/2)) − sin(y)ˆ(1/3)

Chapter 8 SymboliC Computation

204

4 >> int(z)

5 ans =

6 2*cos(xˆ(1/2)) − x*sin(y)ˆ(1/3) + 2*xˆ(1/2)*sin(xˆ(1/2))
7 >> diff(z)

8 ans =

9 −sin(xˆ(1/2))/(2*xˆ(1/2))

8.4.3 Expanding and Factorizing an Expression
The expand() function can be used to write equations with individual

terms of expanded polynomials. The most important use of expand()

is the application of the distributivity law to rewrite products of sums as

sums of products. If f represents a symbolic expression, then expand(f) is

calculated using the following set of rules:

• x x xa b a b+ = ´

• xy x y x y b I
b b b() = ´ " ³ Î, ,0

• x xa b a b() = +

It is also important to note that the expand() function will work

recursively on the subexpressions of a given expression.

 1 >> syms x y z

 2 >> a1 = xˆ2+2*y+z
 3 a1 =

 4 xˆ2 + 2*y + z
 5 >> a2 = xˆ(−2)−2*y+3*z
 6 a2 =

 7 3*z − 2*y + 1/xˆ2
 8 >> a3 = a1/a2

 9 a3 =

10 (xˆ2 + 2*y + z)/(3*z − 2*y + 1/xˆ2)

Chapter 8 SymboliC Computation

205

11 >> a4 = a1*a2

12 a4 =

13 (xˆ2 + 2*y + z)*(3*z − 2*y + 1/xˆ2)
14 >> a5 = expand(a3)

15 a5 =

16 (2*y)/(3*z − 2*y + 1/xˆ2) + z/(3*z − 2*y + 1/xˆ2) + xˆ2/
(3*z − 2*y + 1/xˆ2)

17 >> a6 = expand(a4)

18 a6 =

19 4*y*z + (2*y)/xˆ2 − 2*xˆ2*y + z/xˆ2 + 3*xˆ2*z − 4*yˆ2 +
3*zˆ2 + 1

The function named factor produces factors of an expression such

that multiplying all factors results in the final expression. Let’s try to

factorize the values stored in symbolic variable a5 and a6.

1 >> a7 = factor(a5)

2 a7 =

3 [−1,x,x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]
4 >> a8 = factor(a5)

5 a8 =

6 [−1,x,x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]

The factors are present as elements of an array, which can be accessed

using their index. This comes in handy when extracting a factor and its

usage in mathematical analysis.

1 >> a7[2] = x

2 >> a7[4] = xˆ2 + 2*y + z
3 >> a8[3:5] = [x, xˆ2 + 2*y + z, −1/(3*xˆ2*z − 2*xˆ2*y + 1)]

Chapter 8 SymboliC Computation

206

In the previous example, a7[2] extracts the second element of variable

a7, a7[4] extracts the fourth element of variable a7, and a8[3:5] extracts

all elements from the third to fifth element and stores them as a list of

symbolic expressions.

When an expression is written as a power of another expression,

expand() works just like mathematical rules. For example, consider the

case when an expression:
a xy z y= +()

is defined. Its expansion is given as:

x y yy z´ ´

Each term is clearly a factor of the expression. This can be verified with

the following MATLAB code:

 1 >> syms x y z

 2 >> a = x*yˆ(z+y)
 3 a =

 4 x*yˆ(y + z)
 5 >> b = expand(a)

 6 b =

 7 x*yˆy*yˆz
 8 >> c = factor(b)

 9 c =

10 [x,yˆy,yˆz]

When an expression is powered by another expression, the expand()

function works recursively.

1 >> a=((x+y)ˆ(x+z+2))
2 a =

3 (x + y)ˆ(x + z + 2)
4 >> expand(a)

Chapter 8 SymboliC Computation

207

5 ans =

6 xˆ2*(x + y)ˆx*(x + y)ˆz + yˆ2*(x + y)ˆx*(x + y)ˆz + 2*x*y*
(x + y)ˆx*

 (x + y)ˆz

It can be used to check out trigonometric identities:

 1 >> expand(sin(x+y))

 2 ans =

 3 cos(x)*sin(y) + cos(y)*sin(x)

 4 >> expand(cos(x+y))

 5 ans =

 6 cos(x)*cos(y) − sin(x)*sin(y)
 7 >> expand(tan(x+y))

 8 ans =

 9 −(tan(x) + tan(y))/(tan(x)*tan(y) − 1)
10 >> expand(sec(x+y))

11 ans =

12 1/(cos(x)*cos(y) − sin(x)*sin(y))
13 >> a = cosh(x+y)

14 a =

15 cosh(x+y)

16 >> expand(a)

17 ans =

18 cosh(x)*cosh(y) + sinh(x)*sinh(y)

19 >> a = cosh(2*x)

20 a =

21 cosh(2*x)

22 >> expand(a)

23 ans =

24 2*cosh(x)ˆ2 − 1

Chapter 8 SymboliC Computation

208

25 >> a = coth(x+y)

26 a =

27 coth(x + y)

28 >> expand(a)

29 ans =

30 (coth(x)*coth(y) + 1)/(coth(x) + coth(y))

8.5 Summary
This chapter illustrated the usage of symbols to solve mathematical

equations. Symbolic computation proves useful when error-prone

numerical computing is not acceptable, but it has its limits. A limited set

of built-in functions must be appended by user-defined functions, and

this requires experience with writing MATLAB packages. But it is definitely

worth exploring.

This book has illustrated the use of MATLAB as a tool for efficient

scientific computing. It first illustrated the basic usage using single-line

commands and then illustrated writing multi-line commands as an .m

file. Arrays for the fundamental blocks of scientific computing and thus

matrix-based calculations can be performed using arrays. Plotting graphs

is simplified to the extent that even a beginner can easily plot a equation

to visualize a graph. Using loops and functions, programs can be made

modular and information flow can be controlled in an efficient fashion.

You also saw some basic examples of numerical computing. The book

should enable any beginner to enter the world of scientific computing with

ease. Its widely popular usage has rightly coined the phrase “MATLAB is

the language of engineering”.

Chapter 8 SymboliC Computation

209© Sandeep Nagar 2017
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0

Index

A, B
area() function, 95, 96
Arithmetic expressions, 202–203
Array based computing

appending rows and
columns, 27

arithmetic operations, 34–35
built-in function find(), 51
built-in functions, 35–36
built-in function sort(), 52
cell arrays

array1 and array2, 87
cell2struct(), num2cell() and

struct2cell() functions, 91
celldisp() and cellplot()

functions, 90
creation, 88–89

concatenation, 30–31
creation, 24–26
data type, 31, 34
data values, 86
definition, arrays, 22
deleting row and column, 29
eigenvalues and eigenvectors, 78
electrical conductivity

experiments, 21
indexing, 62, 64–65

inverse, 43, 45
linearly spaced vectors, 74
logical operations, 48, 50
logspace, 75
matrix algebra

algebraic operations, 38–40
matrix operations, 40, 42

modern computational
techniques, 91

norm() function, 47
operator, 71, 73
polynomials and arrays, 50–51
random matrix

3D array, 56
flipping, 58
manipulations, 57
ones and zeros matrix, 62
rand(a,b) command, 53–55
reshaping, 59
rng command, 55
rotating, 58
sorting, 60
state1 variable, 56
upper and lower triangular

matrix, 61
rank of a matrix, 46
slicing, 65–66, 69, 71

https://doi.org/10.1007/978-1-4842-3189-0

210

structure array
adding and removing

fields, 83, 85
book array, 80
definition, 79
fieldnames() function, 82
new structure element, 81
struct() function, 85–86

system of equations, 76–78
trace of matrix, 47
transpose, 42
two-dimensional matrix, 21
and vectors, 22, 24

C
cell2struct() command, 91
celldisp() function, 90
cellplot() function, 90
CoordinatesPolar.m, 105–106

D
2D plotting

area() function, 95
bar(), barh() and hist()

commands, 100–102
logarithmic, 102–104
pie() function, 108, 109
plot(x,y), 94–95
polar, 105–106
rose() function, 107
on same graph, 96–98

in separate views, 99–100
stairs() function, 109–110
stem() function, 110–111

3D plotting
mesh command, 111, 112, 114
meshc() function, 114–115
surf() function, 115–116

E
Element-wise operations, 38
Euler’s number, 7

F
File operations

creation and save, 130–132
csvread and csvwrite

functions, 135–136
diary and history

commands, 133
Excel, 136–137
file path, 126–128, 130
keyboards

debugging, 121
input(“Text”)

function, 118–119
keyboardCommand.m

Program, 121
menu() command, 123–124
pauseCommand.m

Program, 125
numerical computations, 117
opening and closing, 134

Array based computing (cont.)

Index

211

print command, 139
process, 117
reading and writing, 135
reading data, internet, 138
saveas function, 140
software/hardware, 140
users, 128

find() function, 51
Floating point number conversion

MATLAB, 195
overflow, 191–193
vs. real numbers, 194–195
underflow, 193

FORTRAN programs, 3
freport() command, 134
Functions

anonymous functions, 150–151
definition, 147
inline function, 150
MATLAB command, 149
script file, 148

G
Garbage-in-garbage-out

(GIGO), 153

H
hist() function, 102

I, J
iskeyword(name) function, 13

K
keyboardCommand.m

program, 121

L
Left hand side (LHS), 155
load MyFirstFile.mat command, 130
log1a.m program, 103
Loops

do-until Loop, 143–144
for loop, 145
if-elseif-else Loop, 146–147
while loop, 142–143

M
Matrix inversion, 42
MATrixLABoratory (MATLAB)

in action, 5
FORTRAN programs, 3
MathWorks, 3
operating systems, 4

mesh command, 111
meshc() function, 114
meshgrid function, 112
Modular programming, 141
multi.m program, 96
m\times n matrix, 40

N, O
norm() function, 47
n\times t matrix, 40

Index

212

Numerical computation
calculator, 6
civilian purposes, 1
clear command, 15–16
common mathematical

functions, 7–8
data types, 11–12
global and local variables, 15
help and doc commands, 9
history, MATLAB, 3
implementation of, 1
installation requirements, 3–4
mathematical functions, 2
MATLAB GUI, 19
model definition, 154–157
naming conventions, 12–13
physical problems, 154
predefined constants, 7
programming languages, 2
REPL principle, 5
strings, 10
Taylor series, 173
tolerance, 172–173
variable type, 14
workspace, 4

P, Q
pauseCommand.m program, 125
pie() function, 108
pinv() function, 43
plot() function, 95
Plotting

commercial software
programs, 93

2D plotting (see 2D plotting)
3D plotting (see 3D plotting)
types of, 93

poly() function, 50
Polynomials

addition and subtraction, 163
arrays, 158
curve fitting, 167
differentiation, 166–167
division, 164, 166
integration, 167
multiplication, 163–164
polyval() function, 159–160
roots() function, 161–162

Python’s interactive shell, 5

R
randi() function, 54
randn() function, 102
Read-Evaluates-Prints-Loop

(REPL), 5
Right hand side (RHS), 155
rose() function, 107

S
Solution matrix, 78
sort() function, 52
Square brackets, 23
stairs() function, 109

Index

213

stem() function, 110
subplot(row,coloumn, index)

command, 99
surf() function, 115, 116
Symbolic computations

arithmetic expressions, 202–203
expand() function, 204, 206
factors, 205
MATLAB code, 201, 206
paper-based calculation, 202
quadratic equation, 201
trigonometric variables, 203

Symbolic equation, 200
Symbolic variable, 199–200

T, U, V, W
Taylor polynomials

computational errors, 189–191
computing machine, 188

cos(x) calculation, 177–178, 180,
182–183

formula, 174–175
Maclaurin Series, 175–176,

183–185, 187
real numbers and integers, 189

ThreeDMeshc.m program, 114
ThreeDMesh.m program, 111
ThreeDsurf.m program, 115
Tolerance, 172
Trigonometric variables, 203

X
xlabel() functions, 95

Y, Z
ylabel() functions, 95

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to MATLAB
	1.1 Introduction to Numerical Computing
	1.2 Tools for Numerical Computing
	1.2.1 The Need for Specialized Software
	1.2.2 The History of MATLAB

	1.3 Installation Requirements
	1.4 Workspace
	1.4.1 The REPL Principle
	1.4.2 Calculator
	1.4.3 Predefined Constants
	1.4.4 Common Mathematical Functions

	1.5 Self Learning and Getting Help
	1.6 Variables
	1.6.1 Data Types
	1.6.2 Naming Conventions for Variables
	1.6.3 List of Variables
	1.6.4 Global and Local Variables
	1.6.5 The clear Command

	1.7 Summary
	1.8 Bibliography

	Chapter 2: Array Based Computing
	2.1 Introduction
	2.2 Arrays and Vectors
	2.3 Creating Arrays from Other Arrays
	2.3.1 Appending Rows and Columns
	2.3.2 Deleting a Row and/or Column of a Matrix
	2.3.3 Concatenation Along a Dimension
	2.3.4 Selecting the Data Type of Elements

	2.4 Arithmetic Operations on Arrays
	2.5 Built-In Functions
	2.6 Matrix Algebra
	2.6.1 Algebraic Operations on Matrices
	2.6.2 Matrix Operations on Matrices
	Transpose
	 Inverse
	 rank()

	2.6.3 trace()
	 norm()
	 Logical Operations

	2.6.4 Polynomials and Arrays
	 find()
	 sort()

	2.7 Random Matrix
	2.7.1 Matrix Manipulations
	2.7.2 Flipping a Matrix
	2.7.3 Rotating a Matrix
	2.7.4 Reshaping a Matrix
	2.7.5 Sorting
	2.7.6 Upper and Lower Triangular Matrix
	2.7.7 Ones and Zeros Matrix

	2.8 Indexing
	2.8.1 Using Indices to Create a New Vector

	2.9 Slicing
	2.10 Automatic Generation of Arrays
	2.10.1 The: Operator
	2.10.2 Linearly Spaced Vectors
	2.10.3 logspace

	2.11 Solving a System of Equations
	2.12 Eigen Values and Eigen Vectors
	2.13 Structure Arrays
	2.13.1 Defining a New Structure Element Within a Structure Array
	2.13.2 Adding and Removing Fields
	2.13.3 struct()

	2.14 Getting Data from a Structure Array
	2.15 Cell Arrays
	2.15.1 Creating Cell Arrays
	2.15.2 The celldisp() and cellplot() Functions
	2.15.3 The cell2struct(), num2cell(), and struct2cell() Functions

	2.16 Summary

	Chapter 3: Plotting
	3.1 Introduction
	3.1.1 2D Plotting
	 plot(x,y)
	 area()
	 Plotting Multiple Plots on the Same Graph
	 Plotting Multiple Plots Separately

	3.1.2 The bar(), barh(), and hist() Commands
	 Logarithmic Plots
	 Polar Plots
	 The rose() Function
	 pie()
	 stairs()
	 stem()

	3.1.3 3D Plotting
	 mesh
	 meshc
	 surf()

	3.2 Summary
	3.3 Bibliography

	Chapter 4: Input and Output
	4.1 Introduction
	4.2 Interactive Input from a Keyboard
	4.2.1 input()
	4.2.2 keyboard()
	4.2.3 menu()

	4.3 File Path
	4.4 File Operations
	4.4.1 Users
	4.4.2 File Path
	4.4.3 Creating and Saving Files
	4.4.4 Using the Diary and History Commands
	4.4.5 Opening and Closing Files
	4.4.6 Reading and Writing Binary Files
	4.4.6.1 The csvread and csvwrite Functions

	4.4.7 Working with Excel Files

	4.5 Reading Data from the Internet
	4.6 Printing and Saving Plots
	4.6.1 The print Command
	4.6.2 The saveas Function

	4.7 Summary

	Chapter 5: Functions and Loops
	5.1 Introduction
	5.2 Loops
	5.2.1 The while Loop
	5.2.2 The do-until Loop
	5.2.3 The for Loop
	5.2.4 The if-elseif-else Loop

	5.3 Functions
	5.3.1 The function Function
	5.3.2 The inline Function
	5.3.3 Anonymous Functions

	5.4 Summary

	Chapter 6: Numerical Computing Formalism
	6.1 Introduction
	6.2 Physical Problems
	6.3 Defining a Model
	6.4 Example: Polynomials
	6.4.1 polyval()
	6.4.2 roots()
	6.4.3 Addition and Subtraction of Polynomials
	6.4.4 Polynomial Multiplication
	6.4.5 Polynomial Division
	6.4.6 Polynomial Differentiation
	6.4.7 Polynomial Integration
	6.4.8 Polynomial Curve Fitting

	6.5 Summary

	Chapter 7: Approximate answers in numerical computation
	7.1 Numerical Approximations
	7.2 Tolerance
	7.3 Taylor Series
	7.4 Taylor Polynomials
	7.4.1 Maclaurin Series for sin(x) and cos(x)
	 Choosing Tolerance While Calculating cos(x)

	7.4.2 The Maclaurin Series for e x
	 How Many Number of Terms?

	7.5 Computational Errors
	7.5.1 Significant Digits

	7.6 Challenges in Real Number to Floating Point Number Conversion
	7.6.1 Overflow
	7.6.2 Underflow

	7.7 Actual Conversions of Real Numbers to Floating Point Numbers
	7.8 Alternatives to MATLAB
	7.9 Summary
	7.10 Bibliography

	Chapter 8: Symbolic Computation
	8.1	 Introduction
	8.2	 Defining a Symbolic Variable
	8.3	 Defining a Symbolic Equation
	8.4	 Performing Symbolic Computations
	8.4.1 Arithmetic Expressions
	8.4.2 Trigonometric Expressions
	8.4.3 Expanding and Factorizing an Expression

	8.5	 Summary

	Index

