Introduction to
MATLAB for
Engineers and
Scientists

Solutions for Numerical Computation
and Modeling

Sandeep Nagar

APress’

Introduction to
MATLAB for
Engineers and
Scientists

Sandeep Nagar

Apress’

Introduction to MATLAB for Engineers and Scientists: Solutions for
Numerical Computation and Modeling

Sandeep Nagar
New York, USA

ISBN-13 (pbk): 978-1-4842-3188-3 ISBN-13 (electronic): 978-1-4842-3189-0
https://doi.org/10.1007/978-1-4842-3189-0

Library of Congress Control Number: 2017960835

Copyright © 2017 by Sandeep Nagar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/9781484231883.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3189-0

Dedicated to my wife Rashmi and my daughter Aliya

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Chapter 1: Introduction to MATLABcccusnmmmmmnnnmnmsmssssssssssssssssssssnes 1
1.1 Introduction to Numerical Computingccocveeeernsernsennesessse e 1
1.2 Tools for Numerical COMPULING........cccvvrrerernrnieneneserserese s ses s sresessessesnes 2
1.2.1 The Need for Specialized SOftWareccovvevvvrrrieriennsnre e 2

1.2.2 The History 0f MATLABccoovvrvrierenir e sessesse e sessessessessssessessees 3

1.3 Installation ReqQUIrEMENTSc.cceevrererrrierererserere s ssesse e ses e s ssesassessessesnes 3
1.4 WOTKSPACEccereeeeruereriteseeseresseessesaesesseessesaesae s s e ssesaesaesssesaessessesssesaesaessnnns 4
1.4.1 The REPL PHINCIPIE.coveereeceeeeesss s sssssssssse e e e sens 5

1.4.2 CaICUIALON ...t 6

1.4.3 Predefined ConStantsccovvvennernnnnenscssessss e 7

1.4.4 Common Mathematical FUNCLIONS..........ccccovvnnnncncnnrssseese s 7

1.5 Self Learning and Getting Help ..o 9
1.6 VariabIes ..o s 10
L D L B LR 11

1.6.2 Naming Conventions for Variables............ccccevvvnnniniennnnnsnsnesensensennns 12

1.6.3 List of VAriabIEscoeoeeerererecrrcrerese e 14

1.6.4 Global and Local Variables...........ccoerenerenernsesenenesesesessesesesesse s 15

1.6.5 The clear Comman(..........occoereerrrennenerere e 15

TABLE OF CONTENTS

1.7 SUMMATY.....ceiiriererterersere e ses e se e sseses e ssesassas e ssesaesssessessesasssssessesaesssnensesnens 19
1.8 Bibliographyccccoecicienesrsre s e 19
Chapter 2: Array Based Computingcccevnsssemnmmssssnnsssssssssssssssssnnens 2 1
2.1 INErOdUCTION......ceece s 21
2.2 Arrays and VECTOrScccvvvicricrers s s se s snes 22
2.3 Creating Arrays from Other Arrayscccoveererenernsesessesesesesessesesesesessesenns 24
2.3.1 Appending Rows and ColuMNS...........ccccvvnennnnsniens e 27
2.3.2 Deleting a Row and/or Column of @ MatriX.......c.ccecvrvvnininiennsnsennenn 29
2.3.3 Concatenation Along a Dimension..........ccccocevvvnvnnnnsnsnseniess s 30
2.3.4 Selecting the Data Type of Elements.........ccccoevvvvrinrsncnsnennsensennenns 31
2.4 Arithmetic Operations 0N Arrayscoeermseresenernsesesssessesesessesesssessssesenns 34
2.5 BUIlt-IN FUNCHIONS....c..oceeeeece e 35
2.6 MatriX AlGEDIa.......cccerrerereserre s 38
2.6.1 Algebraic Operations 0n MatriCesS.........cocurerrrenernsesrnsesesssesessesessesesenns 38
2.6.2 Matrix Operations on MatriCesc.cucvvrerersnernsessssesssese s sessesessnnes 40

P T (o | TSP R 47
2.6.4 Polynomials and Arraysc.cueeeerernseressessssssessssessssessssssessssessssssessanes 50
P T (0] Y 53
2.7.1 Matrix Manipulations........c..coeervverierienennensensesssessesessesessesessessssesessenes 57
2.7.2 Flipping @ MaAtriX.......ccvcvrerienennnsenienesessessese s sessessessesessessessessssessessenes 58
2.7.3 Rotating @ MatriX........cccveerrevnnninienn s ssssese e 58
2.7.4 Reshaping @ MatriX........ccccvrevvrnsenieninnensensese s sessese s sessessessesessessesse s 59
2.7.5 SOMINGcoviirerriserinere e 60
2.7.6 Upper and Lower Triangular MatriXc.ccocvrenemnsesnsesesssesnsesssesensnns 61
2.7.7 0nes and ZeroS MALtriXcocueerererernserensenesssesssessssesessse s ssssesessanes 62

TABLE OF CONTENTS

2.8 INABXING ..erveereririr e e s r e r e e 62
2.8.1 Using Indices to Create @ New VECTOr........cccovververereerensersenenessensensenes 64

P TS 1o 4o OO 65
2.10 Automatic Generation of Arrays ... 71
2.10.1 The : Operator ... s 71
2.10.2 Linearly Spaced VEeCtorsc.ccucrerrnnienennsissesse s sessesse s sessesse s 74
2.10.3 100SPACEcecereerrerieirsirse e e e e 75
2.11 Solving a System of EQUALIONS..........ccoveerrnermrenernsesesese s ese s enens 76
2.12 Eigen Values and Eigen Vectorscoucvvenmncsennsesnnesessse s 78
2.13 STUCTUIE AITAYScoveeeeerrcerre s se s s 79
2.13.1 Defining a New Structure Element Within a Structure Array.............. 81
2.13.2 Adding and Removing Fieldscccccvvennnnennsennsesenese e 83
2.13.3 STUCH) ceucvrrrrrrrr st 85
2.14 Getting Data from a Structure Array..........ccccvvreevvrnserienienessessesesesessessenes 86
2.15 CBILAITAYS ..eruervereeerersersessrseressessesessessessessssessessessssessessessesssssssessessessssensesses 87
2.15.1 Creating Cell AFTaYSc.ccveverrerserersesessersessessssessessessesessessessesssssssessees 88
2.15.2 The celldisp() and cellplot() FUNCHIONS.........cccecvverierevenserierereesersensens 90
2.15.3 The cell2struct(), num2cell(), and struct2cell() Functions................... 91
2.16 SUMMAIY....crerrereeserrererressesersersessessssesessessssessessesssssssessessesssssssessessessssensesses 91
Chapter 3: Plotting........ccccivnnsmmmmmmsssnnnnmsssssnnnmsssssssssssssssssesssssssssssssnnnnes 93
BT 11010 1 £ 93
3.1.1 2D PIOLHING ...vveeecceeeeee s 94
3.1.2 The bar(), barh(), and hist() Commandscccoceernierrenriescrnserenne 100
3.1.3 3D PIOLHING ...cveecceeeeee s 111
3.2 SUMMAIY....cctieierir e s b e s e e s b b e e nne s 116
3.3 Bibliographyccoeorrirreseree s 116

vii

TABLE OF CONTENTS

Chapter 4: Input and Qutputcccccmrrnssemnnmnsssnnmms——————————— 117
4.1 INErOUCTION......ceeeeecece e 117
4.2 Interactive Input from a Keyboard...........cccoeereenrenerenernserenesese e 118

e 1T 10 118
4.2.2 KeYDh0oard()......cooererermrierernrinsenene e e 121
4.2.3 MENU() cverrerreresresresessesese s s e s sr s e s sre s s e sbs e s e s s e s e e s e nneees 123
A.3File Path ... s 126
4.4 File OPErations........cccvcevernnenienieninsissesess s s s sss e s ssessssessessesssssssessessens 128
B.4.1 USEIS ..ueeeerreeresesesesesse e sessesssss e ss s s s s sss e sss s sesssssssssnssanessssssnns 128
4.4.2 File Path......ccceeverereerereeess st 128
4.4.3 Creating and Saving FileS.........ccccvrvrrnsernnenesisnesese s sessesenns 130
4.4.4 Using the Diary and History Commands............cooueernnesenenersesesensenenns 133
4.4.5 Opening and CloSing FileSccccvvrrnserensesesssenssesessesessssessesesessesenns 134
4.4.6 Reading and Writing Binary Filescccvevrrerresnnsenenenesese e 135
4.4.7 Working With EXCel FileS.......covoerererernscrneseresesrese e 136
4.5 Reading Data from the Internet..........ccoooriiiincnncsnnese e 138
4.6 Printing and Saving PIOtS.........cccvvvrrniennnnnnie s sesse s e ssssessessens 139
4.6.1 The print COMMANGcccovvivieriernnrrre e 139
4.6.2 The saveas FunClion...........ccnnnn s 140
4.7 SUMMAIY...ceitrerereesersesessessssesessesssssssessessessssessessessssessessesssssssesssssessssessessens 140

Chapter 5: Functions and LOOPScccceermmmmmmmssssssssssssssssssssssssssssssnenes 141
5.1 INtrodUCTION......covicecr e ———— 141
B2 L00PS c.eeriirire e e e e p e ene s 142

5.2.1 The While LOOPcovvcrrcerererrircre s 142
5.2.2 The do-UNtil LOOP.....cccoereeessnrsrssssnssssssssssssesesesesesesssssssssssssssssssssssanas 143
LT 12T (] 0o o SR 145
5.2.4 The if-elSeif-elSe LOOP.....cccceverieriirrirrererrer e re s s see e s 146

viii

TABLE OF CONTENTS

B3 FUNCLIONS ...t s 147
5.3.1 The function FUNCHON..........coviiriirrr s 147
5.3.2 The inline FUNCHIONccccoiiiiriere s 150
5.3.3 ANoNymMOoUS FUNGLIONSccccoverieriiriinne e sne e ssens 150

L 1111111 152

Chapter 6: Numerical Computing Formalismc.ccccnnnsssnnnnsnsssnnnns 193

6.1 INtrodUCTION......coviieccerrer 153

6.2 Physical Problems.........ccccoviiinnnnin s s sessesnens 154

6.3 Defining @ MOdel ... 154

6.4 Example: POIyNOMI@lSccccoeeoererernsesrnenessse s nenns 158
LR 10 AT 159
SR (1) SRS 161
6.4.3 Addition and Subtraction of Polynomials...........cccevveernenerescrnscnenn 163
6.4.4 Polynomial Multiplicationccocevenernneneresesesesessesese e 163
6.4.5 Polynomial DiviSIONccoveeverrenereneressesessesesese e s sse e sessesenns 164
6.4.6 Polynomial Differentiationccccocvvernsneriennssc s 166
6.4.7 Polynomial Integration..........c.occevenernsernneneresesese s 167
6.4.8 Polynomial Curve Fitling.........ccccoverrnenncereree e 167

6.5 SUMMANY.....coieerrrenrrresessse s se s s ses s sessssessssesessssenns 169

Chapter 7: Approximate answers in numerical computation........... 171

7.1 Numerical ApproXimations.......c.cocvcvverernninnniene s ssessssessessens 171

7.2 TOIBIANCE.......ceeeeeeeere e r e sre e e e e nnens 172

A T E N[0Ty T OSSR 173

7.4 Taylor POIYNOMIAISccccvceeveriirieniie s s s 173
7.4.1 Maclaurin Series for $in(x) and COS(X).......ccvcurrrerrerierersersersesseserserenes 175
7.4.2 The Maclaurin Series for € ... 183

ix

TABLE OF CONTENTS

7.5 Computational Errorscccveevverevenrensenerssessesessessssesessesssssssessessessssessessens 189
7.5.1 Significant DIigitscccvreriererrerreriernsenserere s e sessese e ssssessesaeees 190

7.6 Challenges in Real Number to Floating Point Number Conversion.............. 191
7.6.1 OVEITIOW ... 191
7.6.2 UNAEITIOW ..c.vveececee e se e ssnas 193

7.7 Actual Conversions of Real Numbers to Floating Point Numbers 194
7.8 Alternatives t0 MATLAB............ccooeoerrnereneerese e sessenenns 195
7.9 SUMIMANY...ccitierrreseseesessesesese e srs e sss e se s s e s sss e e e sesssssssssessesssesssssnns 196
7.10 Bibliographyccccvecerniennesesese e s 196
Chapter 8: Symbolic Computation............cccirmssemmnmnsssnnnnmnssssssnmssnnns 199
8.1 INrOTUCTION......covieeccer e e 199
8.2 Defining a Symbolic Variablecccccvvvevnvninnnnsrceness e sesensens 199
8.3 Defining a Symbolic EQUAtioNcccvrevvrensenienenessersere s sessesessesessessessens 200
8.4 Performing Symbolic Computationscccccurvvevniennnnnninsnnesenne e 201
8.4.1 ArithmetiC EXPreSSions........cccvvvierinnsnesiesssesse s sessesessssessesne s 202
8.4.2 Trigonometric EXPresSSionsccvvinvneresnsnssessessssssessessessssessessens 203
8.4.3 Expanding and Factorizing an EXpression.........c.ccccooveevrenerenesensenenns 204

8.5 SUMMAY.....ci i s r e ere s 208
1T = 209

About the Author

Sandeep Nagar, PhD (Material Science. KTH,
Sweden), teaches and consults on the use

of MATLAB for numerical computing and
other open source software. In addition to
teaching at universities, he frequently gives
workshops covering open source software
and is interested in developing hardware for
scientific experiments.

About the Technical Reviewer

~ .4 Massimo Nardone has more than 22 years

of experience in security, web/mobile
development, cloud and IT architecture. His
true IT passions are security and Android.

He has been programming and teaching
others how to program with Android, Perl,
PHP, Java, VB, Python, C/C++, and MySQL for
more than 20 years.

He holds a Master of Science degree in
Computing Science from the University of
Salerno, Italy.

He has worked as a project manager, software engineer, research
engineer, chief security architect, information security manager, PCI/SCADA
auditor, and senior lead IT security/cloud/SCADA architect for many years.

Massimo's technical skills include: Security, Android, Cloud, Java,
MySQL, Drupal, Cobol, Perl, web and mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,
and Scratch.

He currently works as the Chief Information Security Officer (CISO) for
Cargotec Oyj.

He was a visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto
University). He holds four international patents (in the PKI, SIP, SAML, and
Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing
companies and he is the co-author of Pro Android Games (Apress, 2015).

xiii

Acknowledgments

I wish to thank Steve, Mark, and the whole team at Apress for bringing
this book to fruition. I also wish to thank the scientific community for
answering questions on forums, which helped me learn some difficult
concepts with ease.

CHAPTER 1

Introduction to
MATLAB

1.1 Introduction to Numerical Computing

With the advent of computers in the post World War II era, the need

to simulate physical problems using this new tool led to the invention

of numerical computing. Whereas analytical computation required

pen, paper, and the human mind, numerical computation required a
calculating device too. Successful implementation of computing devices
to solve problems (especially involving repeated tasks) over a large array
of data points was observed in many fields of science and engineering.
For example, breaking enemy’s secret codes, simulating nuclear reactions
before nuclear explosions, etc. The scope further expanded to civilian
purposes, such as designing and simulating waterways, dams, electric
power stations, town planning, etc. All of these applications need to use
an equation or systems of equation for a physical model representing

a physical problem. There are two ways that one can approach these
equations—using analytical and numerical techniques. We concentrate
only on the numerical methods of solving equations using MATLAB in this
book.

© Sandeep Nagar 2017 1
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_1

CHAPTER 1 INTRODUCTION TO MATLAB

As time progressed, various schemes to define mathematical
functions—differentiation, integration, trigonometric, etc.—were
written for digital computers. This involved digitization, which certainly
introduces errors. Knowledge of errors and their proper nullification could
yield valuable information quicker than analytical results. Thus, it became
one of the most actively researched fields of science and continues to be
one. The search for faster and more accurate algorithms continues to drive
innovation in the field of numerical computing and enables humanity to
simulate otherwise impossible tasks.

1.2 Tools for Numerical Computing

As the numerical methods progressed as an alternative to analytical
methods, computer programming languages were increasingly being used
to codify them for programmed investigations of simulations. A number
of options [1] exist to perform numerical computation. Programming
languages written to handle mathematical functions like FORTRAN, C,
Python, Java, and Julia, to name a few, can be used to write algorithms for
numerical computation.

1.2.1 The Need for Specialized Software

While all problems can be coded in programming languages, it’s necessary
to change the approach to computing, file management, etc. when the
microprocessor platform or operating system changes. This hinders
interoperability. Modern programming languages address some of these
issues, but the need for specialized software for numerical computing—
where predefined tools of numerical methods can be simply called as and
when required and customized tools can be developed—was being felt in
academia. A number of attempts were made in this direction.

CHAPTER 1 INTRODUCTION TO MATLAB

1.2.2 The History of MATLAB

MATLAB was one such program and it was developed by Cleve Moler [2],
who was a math professor at the University of New Mexico, teaching
numerical analysis and matrix theory. As a PhD student, he initially

wrote a lot of code in FORTRAN to solve systems of simultaneous

linear equations involving matrix algebra, which ultimately he called
MATrixLABoratory (MATLAB). As a professor he wished his students could
use the new packages without writing FORTRAN programes.

Hence, in late 1970s, the first version of MATLAB came out (written
in FORTRAN). There were 80 functions for performing calculations
involving linear algebra problems. Further down the line, Jack Little and
Steve Bangert reprogrammed MATLAB in C with additional features for
producing a commercial version of the software. Together, all three of
them founded The MathWorks [3] in California in 1984, which develops,
maintains, and distributes MATLAB and its products worldwide. MATLAB
has proven to be an excellent tool for numerical methods [4].

Over a period of time, so many tools and features have been added
to the base package of MATLAB that, along with this rich set of libraries,
the installation requirements run it is many GBs of data. MATLAB
became tremendously popular in the scientific community. It is used by
more than 5,000 universities worldwide. It is sometimes rightly termed
the “language of engineering”. Cheap availability of digital computing
resources propelled its usage in industry and academia to such an extent
that virtually every lab needs MATLAB now.

1.3 Installation Requirements

MATLAB should be purchased from the official web site of MathWorks [3]
or from an official distributer. The computer system requirements depend
on the type and number of optional tools [5] installed with the base

CHAPTER 1 INTRODUCTION TO MATLAB

MATLAB package. This book discusses the usage of the base MATLAB
package. Hence, to have a good experience with your MATLAB software,
use a laptop or workstation with 1GB RAM and any of operating systems—
Windows, Linux, or MacOSX. Installation instructions are given with the
product. The MATLAB environment is similar on all systems, so you need
not worry about this while practicing with the book. This book has been
tested for MATLAB R2017a version on the MacOSX 10.12 operating system.

1.4 Workspace

There are two ways to work within MATLAB. The first way is to work at the
command line by writing one command at a time. The second method is
to write a script (an .m file having a set of commands in a sequence) and
run it from the command line by simply typing its name. For example,

to run the a.m script file, you simply write the following at the command
prompt:

1 >>a

The command prompt is represented by the symbol >> by default. You
enter a command at the command prompt and then press the Enter key to
execute the command. See Figure 1-1.

CHAPTER 1 INTRODUCTION TO MATLAB

] s e b Aratyre Code =3 y Comemaniny
“.’m I'-mev @ ereterenans & W ‘-; :
i = -
= = L (sern AdDe My R
s S e Eemaanas
Tat e s bgaslne Wiact |
4 s [T B/ ¢ Usens » sancespragar » Documents » MATLAR -0

Current Foider % Command Window ® | Workspace
& B e = =

Figure 1-1. MATLAB in action

1.4.1 The REPL Principle

The MATLAB command line works on the principle of REPL, which stands
for Read-Evaluates-Prints-Loop. When input is fed into the MATLAB
command prompt, the Julia language:

e Readswhat the user types

e Evaluates what it reads

e Prints out the return value after evaluation
e Loopsback and does it all over again

All MATLAB commands are treated as expressions to be evaluated
at REPL. Many programming environments, such as Python’s interactive
shell as well as the Jupyter notebook format, share the same approach. The
new language called Julia also has a REPL and works in a similar fashion.

CHAPTER 1 INTRODUCTION TO MATLAB

1.4.2 Calculator

In the simplest view, MATLAB works as a calculator with mathematical
operators like multiplication (*), division (/), addition (+), subtraction (-),
and exponentiation (*):

1 >>3+5

2 ans =8

3 >» 2 -3

4 ans = -1

5 > 3.0 %5

6 ans = 15

7 > 2/3

8 ans = 0.6667

9 >> format long
10 » 2/ 3

11 ans = 0.666666666666667
12 >> format short
13 >» 2/ 3

14 ans = 0.6667

15 >> 2 % 3

16 ans = 2

17 > 2 "3

18 ans = 8

As seen in the previous example, when a command is fed into the
command prompt >>, it is executed and an answer is given by displaying
the results in the next line as ans =. To display more decimal digits in the
result, you can use the format long command. By default, MATLAB works
with the format short command.

CHAPTER 1 INTRODUCTION TO MATLAB

1.4.3 Predefined Constants

> pi

ans = 3.1416

>> 1

ans = 0.0000 + 1.0000i
>

ans = 0.0000 + 1.0000i
>> Inf/Inf

ans = NaN

0 N O VT B W N R

A number of physical constants are defined: pi, e (Euler’s number),
i and j (the imaginary number J-1), inf (Infinity), NaN (Not a Number,
which results from undefined operations, such as Inf/Inf).

1.4.4 Common Mathematical Functions

>> abs(-10.034)
ans = 10.034

>> log10(10)
ans =1

>> sin(10)

ans = —0.5440
>> cos(10)

ans = —0.8391
>> tan(10)

ans = 0.6484

>> asin(1)

ans = 1.5708

>> asin(10)

ans = 1.5708 + 2.99321
>> acos(1)

O 60N O U1 & W N B

e T i e
Ui W N B O

CHAPTER 1 INTRODUCTION TO MATLAB

16 ans =0

17 >> acos(10)

18 ans = 0.0000 - 2.9932i
19 >> atan(1)

20 ans = 0.78540

21 >> atan(10)

22 ans = 1.4711

A number of predefined mathematical functions exist in MATLAB,
including:

o Absolute value: abs ()

o Logarithm: Natural logarithm log() and Base-10
logarithm 1og10()

e Trigonometric functions: sin(), cos(), and tan().

Arguments are taken in radians.

o Inverse-trigonometric functions: asin(), acos(), and
atan()

When one works on the command prompt, it is often convenient to
have a clear screen by getting rid of the previous command written at the
command prompt. This is done using the command clc, which clears the
screen by removing all inputs and outputs.

Complex calculations involving these functions and operations can be
performed with ease, like the following

\/sin(IO)2 +cos(10)2
and

sin(10)
cos(10)

CHAPTER 1 INTRODUCTION TO MATLAB

>> sqrt(((sin(10))"2)+(cos(10))"2)
ans = 1

>> sin(10)/sqrt(cos(10))

ans = 0.0000 + 0.59391

B W N R

1.5 Self Learning and Getting Help

Covering all the functions available with MATLAB is beyond the scope of
this book (or any other book!). To understand how a particular function
needs to be used, you can use the help and doc commands. For example,
typing help exp gives you detailed information about how this function
should be used, whereas doc exp opens the official documentation page
for the built-in function, exp.

>> help exp

exp Exponential.

exp(X) is the exponential of the elements of X, e to the X.
For complex Z = X+i*Y, exp(Z) = exp(X)*(COS(Y)+i*SIN(Y)).

1
2
3
4
5
6 See also expmi, log, log10, expm, expint.
7

8

Reference page for exp

Whereas help is typically used by programmers to get a quick
overview of usage for a particular built-in command, the doc is used to
learn about MATLAB structures. The doc provides detailed descriptions
of usage as well as useful examples. For example, typing doc exp on the
MATLAB command prompt will open a new window, which will show the
documentation for using the exp facility.

CHAPTER 1 INTRODUCTION TO MATLAB

1.6 Variables

To store values temporarily, we use variables that store the value at a
particular memory location and address it with a symbol or a set of
symbols (called strings). For example, you can store the value of 1/10 * pi
as a variable a and then use it in an equation like this:

a’*+10vJa

To perform this calculation:

n* +10V7
1 >> a=1/10« pi
2 a = 0.3142
3 >> a2 + 10+ sqrt(a)
4 ans = 5.7037

Hence, the symbol = works as an assignment operator. It assigns the
value on the right side to the variable named on the left side. Multiple
assignments can be performed by using the comma (,) operator. Also, if
you don’t want to produce the results on-screen, you can suppress this by
using the ; operator.

1 > a1l =1, a2 = 10, a3 = 100
2 al =1

3 a2 =10

4 a3 = 100

5 >>al =1, a2 = 10, a3 = 100;
6 a1=1

7 a2 =10

8 >> a1l =1; a2 = 10; a3 = 100;
9 > a1l

10

10
11
12
13
14

al
>>
a2
>>
a3

CHAPTER 1 INTRODUCTION TO MATLAB

=1
a2
= 10
a3
= 100

1.6.1 Data Types

While assigning data to a variable, it is important to understand that data

can be defined as a variety of objects defined by their data types, as follows:

logical: This type of data stores Boolean values 1 or 0,
which can be operated by Boolean operators like AND,
OR, XOR, etc.

char: This type of data stores alphabetic characters and
strings (groups of characters written in a sequence).

int8, int16, int32, and int64: This type of data is
stored as integers within 8 bits, 10 bits, 32 bits, and 64
bits, respectively. The size of the integer is given by its
bit counts.

Both logical and char are one byte (8 bits) wide.

uint8, uint16, uint32, and uinté4: This type of data
stores unsigned integer data in 8, 16, 32 and 64 bits,
respectively.

double and single: This type of data is stored as

double and single precision floating types, respectively.

Decimal numbers are represented by floating point
data types. Single precision occupies 4 bytes (32 bits)
and double precision occupies 8 bytes (64 bits) to store
the floating point numbers.

11

CHAPTER 1 INTRODUCTION TO MATLAB

In the single precision system, 23 bits store the
fraction bits (i.e., the numbers after the decimal
point), 8 bits store the exponent (i.e., the numbers
before the decimal point), and the 32nd bit is
reserved for storing the sign.

In a double precision system, 52 bits store the
fraction bits (i.e., the numbers after the decimal
point), 11 bits store the exponent (i.e., the numbers
before the decimal point), and the 64th bit is
reserved for storing the sign.

Single and double precision matters when the
precision of the result matters. In cases like GPS
positioning for a projectile flying at high speeds,

the results must be as precise as possible for greater
accuracy of hit.

o double complex and single complex: Complex
numbers have real and imaginary parts, which are
stored separately. These numbers can be stored as single
or double precision numbers using these data types.

1.6.2 Naming Conventions for Variables

There are some naming conventions for variables names, which must be
respected to avoid errors.

e Names should not start with a number; however,
numbers can be used anywhere afterward.

e Variable names are case sensitive.
e Keywords cannot be used as names.

e Names can include underscores ().
12

CHAPTER 1 INTRODUCTION TO MATLAB

While naming a variable, if you need to check that the name given is a
keyword first, you can use the built-in function called iskeyword(name).
Simply typing iskeyword() produces a list of keywords, as shown here:

1 >> iskeyword()

2 ans =

3

4 20x1 cell array

5

6 'break'

7 ‘case'

8 ‘'catch'

9 'classdef'
10 'continue'
11 'else’

12 'elseif’

13 'end'

14 'for'

15 ‘'function’
16 'global'

17 if!

18 'otherwise'
19 ‘'parfor’

20 'persistent'’
21 'return'

22 'spmd'

23 'switch'

24 'try'

25 'while'

13

CHAPTER 1 INTRODUCTION TO MATLAB

1.6.3 List of Variables

While working on a project, it is useful to keep track of all the variables
used in the project to avoid errors due to duplication of names. You can
obtain a list of all variables by using the who and whos commands. Whereas
the command who simply presents the list of variables in the workspace,
whos presents the same with more information, like the size of the variable,
the number of bytes used to store the variable, and the variable type.

1 >> who
Your variables are:

d al a2 a3 ans

2
3
4
5
6 >> whos
7
8
9

Name Size Bytes C(Class Attributes
a 1x1 8 double

10 a1 1x1 8 double

11 a2 1x1 8 double

12 a3 1x1 8 double

13 ans 20x1 2462 cell

Note that the list of variables produced in this example represents the
present state on my computer. If you have been working on projects other
than practicing from the present book, all the variables defined in the
present session will get reflected when you type who or whos. By using who
and whos, you can keep track of memory requirements. Remember that
judicious use of memory resources is important, especially on Raspberry
Pi based systems. To wipe off the stored variables, you can use the clear
command. It is also important to note that the variables list is session
dependent. When you exit the session by closing MATLAB using the icon
or using exit, the list of variables is erased from memory.

14

CHAPTER 1 INTRODUCTION TO MATLAB

1.6.4 Global and Local Variables

A variable declared globally (i.e., within the main program) is known as

a global variable, whereas a variable declared locally within a function
(explained in later chapters) is known as a local variable. To define a
global variable, you use the global declaration statement. Once defined, it
remains the same irrespective of any new definition, unless you issue the
clear command to clear the variable names and values from memory.

Asseen, a = 1stays the same irrespective of the next definition, a = 2.
When the command clear is issued at the command prompt, all variable
names and values are flushed out of memory and the variable name can
be used again. This time, if it is not defined as a global variable, its value
can be changed repeatedly. The isglobal() command lets one check if a
variable name has been defined as a global variable.

Global variables are used to define constants during numerical
calculations. Suppose you want certain variables to change values, so you
could make those unchanging values be global variables by giving the
name of your choice. The predefined variables, like pi, e, etc., are defined
in a similar manner.

1.6.5 The clear Command

As seen in the previous section, the clear command flushes out the
variable names and their values from memory. It proves to be much more
useful than that. Whereas clear all is the same as clear, it can also be
used to selectively wipe out variables and their values. Simply type help
clear to see a detailed view of its use, as shown in Listing 1-1.

15

CHAPTER 1 INTRODUCTION TO MATLAB

Listing 1-1. The help clear Command

S v W N

10

11

12

13

14

15

16

17
18

19

20

16

>> help clear

clear Clear variables and functions from memory.

clear removes all variables from the workspace.

clear VARIABLES does the same thing.

clear GLOBAL removes all global variables.

clear FUNCTIONS removes all compiled MATLAB and
MEX-functions.

Calling clear FUNCTIONS decreases code performance and is
usually unnecessary.

For more information, see the clear Reference page.

clear ALL removes all variables, globals, functions and MEX
links.

clear ALL at the command prompt also clears the base import
list.

Calling clear ALL decreases code performance and is usually
unnecessary.

For more information, see the clear Reference page.

clear IMPORT clears the base import list. It can only be
issued at the

command prompt. It cannot be used in a function or a
script.

clear CLASSES is the same as clear ALL except that class
definitions

are also cleared. If any objects exist outside the
workspace (say in

userdata or persistent in a locked program file) a warning
will be

21
22

23
24
25
26

27

28
29

30

31

32

33

34

35

36

37
38

39
40

CHAPTER 1 INTRODUCTION TO MATLAB

issued and the class definition will not be cleared.
Calling clear CLASSES decreases code per formance and is
usually unnecessary.

If you modify a class definition, MATLAB automatically
updates it.

For more information, see the clear Reference page.

clear JAVA is the same as clear ALL except that java
classes on the

dynamic java path (defined using JAVACLASSPATH) are also
cleared.

clear VAR1 VAR2 ... clears the variables specified. The
wildcard

character '*' can be used to clear variables that match a
pattern. For

instance, clear X« clears all the variables in the current
workspace

that start with X.

clear -REGEXP PAT1 PAT2 can be used to match all patterns
using regular

expressions. This option only clears variables. For more
information on

using regular expressions, type "doc regexp" at the command
prompt.

If X is global, clear X removes X from the current
workspace, but

leaves it accessible to any functions declaring it global.
clear GLOBAL -REGEXP PAT removes global variables that
match regular

17

CHAPTER 1 INTRODUCTION TO MATLAB

41
42

43

44

45

46

47

48

49

50

51

52

53
54

55
56

57
58

59
60
61

18

expression patterns.

Note that to clear specific global variables, the GLOBAL
option must

come first. Otherwise, all global variables will be cleared.

clear FUN clears the function specified. If FUN has been
locked by

MLOCK it will remain in memory. If FUN is a script or
function that

is currently executing, then it is not cleared. Use a
partial path

(see PARTIALPATH) to distinguish between different
overloaded versions

of FUN. For instance, 'clear inline/display' clears only
the INLINE

method for DISPLAY, leaving any other implementations in
memory.

Examples for pattern matching:

clear a- % Clear variables starting with "a"

clear -regexp *b\d,{3} $ % Clear variables starting with
"b" and % followed by 3
digits

clear -regexp \d % Clear variables containing any
digits

See also clearvars, who, whos, mlock, munlock, persistent,
import.

Reference page for clear
>>

CHAPTER 1 INTRODUCTION TO MATLAB

Judicious use of the clear command proves to be a very powerful tool
in managing memory requirements for a memory intensive numerical
calculation.

1.7 Summary

MATLAB is a high performance language for technical computing.

By using MATLARB as a simple calculator (using numbers and basic
operations) as well as a complex calculator (using variables with complex
functions), you can perform numerical calculations with ease. The
learning curve for MATLAB is quite flat, owing to its simple and intuitive
syntax. Whenever you become confused, the documentation for the
particular commands can be easily accessed using the help command.
The MATLAB GUI (Graphic User Interface) also provides an integrated
environment for working with many different kinds of computational
tasks, as shall be explored in upcoming chapters.

1.8 Bibliography
[1] https://en.wikipedia.org/wiki/List of
numerical analysis_software

[2] https://mathworks.com/company/newsletters/
articles/the-origins-of-matlab.html

[3] https://www.mathworks.com

[4] https://in.mathworks.com/discovery/
numerical-analysis.html

[5] https://mathworks.com/products/

19

https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://en.wikipedia.org/wiki/List_of_numerical_analysis_software
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://mathworks.com/company/newsletters/articles/the-origins-of-matlab.html
https://www.mathworks.com
https://in.mathworks.com/discovery/numerical-analysis.html
https://in.mathworks.com/discovery/numerical-analysis.html
https://mathworks.com/products/

CHAPTER 2

Array Based
Computing

2.1 Introduction

Matrices have become an integrated part of numerical computation

for dealing with large quantities of data. For a two-dimensional matrix,
elements have unique row and column indices through which you can
access them. Rows and columns can be attributed to different properties
under study. For example, if you measure the temperature and pressure at
four corners of the square, the x, y coordinates associated with the corner
points can be assigned to row and column numbers. Now the experimental
data can be simply represented as a matrix. In this way, you can fit data

for two properties as a matrix and then use these matrices for numerical
calculations.

As an example, suppose an element of a row is defined as 1 ifa
compound is a conductor, it’s 2 if it is a semiconductor, and it’s 3 if it is an
insulator. Then, a row vector (a matrix composed of only one row) [1 0 0
3213010 32 1] hasinformation about 13 compounds. In electrical
conductivity experiments, this row vector (a 13x1 matrix) can be utilized
as input. In this way, you need to model the system in terms of matrix
formulation to be solved using MATLAB.

© Sandeep Nagar 2017 21
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_2

CHAPTER 2 ARRAY BASED COMPUTING

MATLAB defines a data object for dealing with matrices. They are
called arrays. Using different properties of this object, you can define
various kinds of matrices. Built-in functions for matrix operations make it
easier for a programmer to deal with large amounts of data by arranging
it as a matrix in the desired format and performing array operations. This
chapter explores the various options for defining and manipulating arrays.

Since MATLAB was made for matrix manipulation, it has a large set
of built-in functions and a robust environment to define and work with
matrices.

2.2 Arrays and Vectors

Instead of just pointing to a single number, a variable name can also point
to a sequential set of numbers, called an array. The following example
shows how this can be achieved:

>> a = [1:2:3)4’5]

1
2
3
4
5
6 > al = [10,11,12,13,14]
7 a1l =

8

9 10 11 12 13 14
10 >> matrix22 = [1,2;3,4]
11 matrix22 =

12

13 1 2

14

22

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

CHAPTER 2

>> matrix33 = [1,2,3;4,5,6;7,8,9]

matrix33 =

1 2 3

4 5 6

7 8 9

>> size(a)

ans =

1 5

>> size(matrix22)

ans =
2 2
>> size(matrix33)

ans =

3 3

ARRAY BASED COMPUTING

As seen in the example code, an array can be understood as a matrix

consisting of rows and columns. Thus, you can make a desired sized

matrix. For example, matrix22 is a 2x2 and matrix33 is a 3x3 matrix,

whereas a is a 1x5 matrix. The first number listed while defining the size

indicates the number of rows, whereas the second number indicates

the number of columns. It is also important to note that the comma (,)

operator operates by defining the next element in the same row, whereas

the semicolon (;) operator defines the numbers in the next line/row.

A matrix is defined within the brackets of the type [] (commonly called

square brackets).

23

CHAPTER 2 ARRAY BASED COMPUTING

If the number of elements in each row/column do not match, you get

an error message:

1 >> right33 = [1,2,3;4,5,6;7,8,9]

2 right33 =

3

4 1 2 3

5 4 6

6 7

7

8 >> wrong33 = [2,3;4,5,6;7,8,9]

9 Dimensions of matrices being concatenated are

10 not consistent.

11 >> wrong33 = [1,2,3;4,5,6;8,9]

12 Dimensions of matrices being concatenated are
13 not consistent.

2.3 Creating Arrays from Other Arrays

Multi-dimensional arrays can be created from other multi-dimensional

arrays too, as explained here:

1 > a-=[1,2,3;4,5,6]

2

3 a=

4

5 1 2 3

6 4 5 6

7

8 > B =[(1:3);(4:6);(7:9)]
9

24

CHAPTER 2 ARRAY BASED COMPUTING

10 B =

11

12 1 2 3
13 4 5

14 7

15

16 >> c = [a;B]
17

18 c =

19
20
21
22
23
24
25
26 >>>c = [a,B]

27

28 Error using horzcat

29 Dimensions of matrices being concatenated are not

N B P B R
[T, TN TR T N}
O oW o W

30 consistent.

Here, the matrix a has elements 1, 2, 3 in the first row. Then a row
separator (;) defines the next row of elements as 4, 5, 6. Similarly, matrix B
has the rows defined by these commands:

e (1:3)resultsin (1,2, 3)
e (4:6)resultsin (4, 5, 6)
e (7:9)resultsin (178, 9)

Note the MATLAB variable names are case sensitive, so a is not the
same as A. A new matrix called c is created by vertically concatenating the

25

CHAPTER 2 ARRAY BASED COMPUTING

matrices a and B. The resultant matrix c is made of elements of a stacked
on top of elements of B. The c=[a, B] command yields an error because
the dimensions of a and B are not consistent for horizontal concatenation.

Horizontal concatenation can instead be easily performed in the
following ways in this example:

1 > a=1:3
2
3
4
5 1 2 3
6
7
8
9

10
11 1 2 3 1 2 3

For multidimensional arrays, use this code:

> a = 1:4

A =
10
1 1 4
12 1 2 4
13

26

CHAPTER 2 ARRAY BASED COMPUTING

14 >> AA
15

16 AA =
17

18 1 2 3 4 1 2 3 4
19 1 2 3 4 1 2 3 4

]
—
p=
-
>
[h—

2.3.1 Appending Rows and Columns

When an entire row or column of a matrix needs to be appended, you must
consider only one thing—the size of new matrix must match the row and
column requirements. As an example, define an array A, B, D with sizes
(2x2), (1x2), and (2x1), respectively. The row matrix B can be inserted as
arow of A and the column matrix D can be inserted as a row of A, as shown
here:

>> A = [1,2;3,4]

3 4

>> B = [5,6]
10 B =
11
12 5 6
13
14 >> size(A)
15

27

CHAPTER 2 ARRAY BASED COMPUTING

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

28

ans =
2 2
>> size(B)
ans =
1 2
>> C = [A;B]
C =

2

4

6
>> size(C)
ans =
3 2
>> D = [5;6]
D =
5
6

CHAPTER 2 ARRAY BASED COMPUTING

47 >> size(D)
48

49 ans =

50

51 2 1

52

53 >> E = [A,D]
54

5 E =

56

57 1 2 5
58 3 4

59

60 >> size(E)
61

62 ans =

63

64 2 3

2.3.2 Deleting a Row and/or Column of a Matrix

Rows and columns can be deleted by assigning null matrices [] to them.
For example, (1, :)=[] deletes the first row and (:,1)=[] deletes the first
column of a matrix, as shown here:

>> A = rand(3,3)
A =
0.8147 0.9134 0.2785

0.9058 0.6324 0.5469
0.1270 0.0975 0.9575

O N O L1 W N R

29

CHAPTER 2 ARRAY BASED COMPUTING

9 > A(1,:) =[]
10
11 A =
12
13 0.9058 0.6324 0.5469
14 0.1270 0.0975 0.9575
15
16 >> A(:,1) =[]
17
18 A =
19
20 0.6324 0.5469
21 0.0975 0.9575

2.3.3 Concatenation Along a Dimension

Concatenation of two matrices along a dimension can be obtained using
cat(dim, A, B, ...), where dim presents the dimension and A and B are
the input matrices. Its usage is shown here:

1 > A= [1,2;3,4]
2 A=

3 1 2

4 4

5 > B=1[5,6;7,8]
6 B =

7 5 6

8 7 8

9 >> cat(1,A,B)

10 ans =

1 1 2

12 3 4

30

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

5 6

7 8

>> cat(2,A,B)

ans =

1 2 5 6
3 4 7 8
>> C = cat(3,A,B)

ans(:,:,1) =
1 2

3 4
ans(:,:,2) =
5 6

7 8

>>> size(C)
ans =

2 2 2

CHAPTER 2 ARRAY BASED COMPUTING

When cat(1,A,B) is entered at the command prompt, A and B are

concatenated row-wise and cat(2,A,B) performs concatenation column-

wise. In case of cat(3,A,B), a new matrix is created whose first element of

the third dimension is the matrix A and the second element is the matrix B.

2.3.4 Selecting the Data Type of Elements

Elements of an array can be any data type, as explained in Chapter 1.

All elements of an array can be set to a particular data type using the

commands shown here:

1
2
3
4
5

>> X = uint32([1,65535])

X =

1x2 uint32 row vector

31

CHAPTER 2 ARRAY BASED COMPUTING

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

32

1 65535

>> X = uint64([1,65535])
X =

1x2 uint64 row vector
1 65535

>> x = int16([1,65535])
X =

1x2 int6 row vector
1 32767

>> x = int32([1,65535])
X =

1x2 int32 row vector
1 65535

>> x = int64([1,65535])
X:

1x2 int64 row vector

1 65535

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

CHAPTER 2

>> x = single([1,65535])
X =

1x2 single row vector

1 65535

>> x = double([1,65535])
X =

1 65535

>> x = single([1.0,65535e10])
X =

1x2 single row vector
1.0e+14*

0.0000 6.5535

>> x = double([1.0,65535e10])
X =

1.0e+14%*

0.0000 6.5535

ARRAY BASED COMPUTING

Line 15 shows that if the element is set to int16, then it can store a

maximum value of 32767, regardless of being commanded to store a value

bigger than that. Hence, it becomes supremely important to understand

33

CHAPTER 2 ARRAY BASED COMPUTING

the data type of the elements beforehand, in order to avoid errors in
numerical calculations. Keep in mind that storing very small numbers

in larger numbers of bits is a waste of memory. (Line 46 displays that the
number 1, which is stored as a double precision floating point number,
occupies 64 bits, where essentially 63 bits except the last one are all zeros!)

2.4 Arithmetic Operations on Arrays

Operating on arrays involves two aspects:
e Operating on two or more arrays
o Element-wise operations

All arithmetic operators (such as +, -, *, /, %, *, etc.) can be used in
both cases. When you need to do element-wise operation, then a . (dot) is
placed before the operator. The element-wise operators become .+, .-, . %,
./, .% and .". This will become more clear in following example.

1 > a = [1,2;3,4]
2 a-=

3

4 1 2

5 4

6

7 > b=1[5,6;7,8]
8 b=

9

10 6

11 8

12

34

CHAPTER 2 ARRAY BASED COMPUTING

13 >> a+b
14 ans =
15

16 6 8
17 10 12
18

19 >> 2.+a
20 ans =
21

22 3 4
23 5 6
24

25 >> -10.+b
26 ans =
27

28 -5 -4
29 -3 -2

When a and b are matrices to be added/subtracted, their elements are
added/subtracted to elements in the same position. For this reason, the
size of the two matrices should be same. On the other hand, when you
write 2.+a, you add the number 2 to each of the elements individually.
This can be done regardless of the size and is implemented uniformly on
all the elements of the matrix.

2.5 Built-In Functions

A host of built-in functions provide facilities to calculate properties of
arrays for quick computation. This includes:

e Summing all elements using sum() function.

o Finding the product of all elements of an array using
prod().

35

CHAPTER 2 ARRAY BASED COMPUTING

O 60N O U1 & W N -

w
»

Finding the length of array using length().

Finding the mean of array elements using the mean()

function.

Finding the maximum and minimum amongst an

element of an array using max() and min() of an array.

Finding a particular element as per a logical expression

using the find() function.

The rounding elements are as follows:

Rounding the elements of an array to the nearest
integer toward zero using the fix() function.

Rounding the elements of an array to the nearest
integer toward — using the floor () function.

Rounding the elements of an array to the nearest
integer toward +oo using the ceil() function.

Rounding the elements of an array to the nearest
integer using the rounding() function.

Sorting the elements of an array using sort() in

ascending or descending order.

Their usage is demonstrated here:

>> A = 1:5

A =
1

2

>> sum(A)

ans
15

>> prod(A)

ans
120

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

>> length(A)
ans =

5

>> mean(A)

ans =

3

>> max(A)

ans =

5

>> min(A)

ans =

1

>> find(A>4)
ans =

5

>> find(A<4)
ans =

1 2 3
>> A= -1.1:0.5:1.1
A =

-1.1000 -0.6000
>> fix(A)

ans =

-1 0 0
>> floor(A)
ans =

-2 -1 -1
>> ceil(A)

ans =

-1 0 0

-0.1000

CHAPTER 2 ARRAY BASED COMPUTING

0.4000

0.9000

37

CHAPTER 2 ARRAY BASED COMPUTING

40
41
42
43
44
45
46
47
48
49
50
51

>> round(A)

ans =

-1 -1 0 0 1
>> A = [2,4.4,2,7,0,-2]

A =

2.0000 4.4000 2.0000
>> sort(A,'ascend")

ans =

-2.0000 0 2.0000
>> sort(A, 'descend")

ans =

7.0000 4.4000 2.0000

2.6 Matrix Algebra

Arithmetic on matrices can be placed into two classes:

7.0000

2.0000

2.0000

4.4000

o Algebraic operations (covered in Chapter 2)

e Matrix operations

2.6.1 Algebraic Operations on Matrices

-2.0000

7.0000

-2.0000

Algebraic operations on matrices involve element-wise operations. For

example:

1

2
3
4
5

38

>> a = [112;3)4;5;6]

CHAPTER 2 ARRAY BASED COMPUTING

6 > a+2
7 ans =
8 3 4
9 5 6
10 7 8

Note that a defines a 3x2 matrix so the a+2 command performs
element-wise addition of a with a number 2. Computationally, this is done
by creating a 3x2 matrix with all its elements as the number 2 and adding
them.

Similarly, some other operations are shown here:

>> 2*3
ans =
2 4

O 0 N O U1 B W N -
=
o
=
N

I O O = =
oUW N R O
W oRr Y Vv
R S Vv o w
wn

o

T

N
F N I
S

>> a/2
ans =
0.5000 1.0000
1.5000 2.0000
2.5000 3.0000

N B R R
© W

39

CHAPTER 2 ARRAY BASED COMPUTING

The problem starts with other arithmetic operations. For example,
when we want to calculate @? this would mean multiplying a with itself,
i.e., matrix multiplication. This requires either a square matrix or the inner
dimensions to be similar because a matrix of dimension nxm can only be
multiplied with mxt and the resultant matrix is of the dimension
nxt. Hence, the command a”(2) will result in an error message, as shown

here:

1 > a™2

2 Error using "

3 Input s must be a scalar and a square matrix.

4 To compute elementwise POWER, use POWER (.”) instead.

If we wanted to calculate element-wise squares of matrix a then the last
line of the error message comes to the rescue. Adding a dot operator to
a power operator (. ") will direct MATLAB to perform the same operation
element-wise.

1 > a.™2
2 ans =

3 1 4

4 9 16

5 25 36

On the other hand, multiplication of two matrices is the domain of
matrix algebra, discussed next.

2.6.2 Matrix Operations on Matrices

Those who are familiar with matrix algebra know that matrix
multiplication and division are not straightforward tasks. A mxn matrix
can only be multiplied by a nxt matrix, which results in axc matrix. This is
performed by multiplying elements of rows with elements of columns to
get new elements.

40

>> a =

0.8147
0.9058

>> b =

O 60N O U1 &~ W N P

b =

[S Y
N R O

0.2785
0.5469
0.9575
>» c

S O = N =\
N O U AW
N
I
I

=
e}

0.7922
0.9595

NN
= O

>> a.*c

NN
w N

ans =

N NN
[o) NN Up B S

0.6454
0.8691

N
~

rand(2,3)

0.1270
0.9134

rand(3,4)

0.9649

0.1576

0.9706
rand(2,3)

0.6557
0.0357

0.0833
0.0326

0.6324
0.0975

0.9572
0.4854
0.8003

0.8491
0.9340

0.5370
0.0911

CHAPTER 2

0.1419
0.4218
0.9157

ARRAY BASED COMPUTING

Here, the matrices a, b, and c are defined using the rand function

(which generates uniformly distributed random numbers between 0 and 1).

41

CHAPTER 2 ARRAY BASED COMPUTING

Now, a*b performs matrix multiplication, whereas a. *c performs element-
wise multiplication. The requirements for both are as follows:

o For matrix multiplication, the inner dimensions must
match.

o For element-wise multiplication, all dimensions must
match.

Transpose

A single hash mark ("), also called an apostrophe, transposes a matrix
(rows become columns and vice versa). Performing division on a matrix
involves matrix inversion.

1 > a

2

3 a-=

4

51 2

6 3 4

7 5 6

8 >> pinv(a)

9 ans =

10

11 -1.3333 -0.3333 0.6667
12 1.0833 0.3333 -0.4167
13 > b

14

15 b =

16

17 6

18 8

42

CHAPTER 2 ARRAY BASED COMPUTING

19 >> pinv(b)

20

21 ans =

22

23 -4.0000 3.0000
24 3.5000 -2.5000

Inverse

The inverse of a matrix a, denoted by a™!, is a matrix such that

a*a'=1
where I is an identity matrix. If the given matrix is a square matrix, then

the function inv() can be used; otherwise, the function pinv() is used.
Examples are given here:

1 > a-=[1,2;3,4;5,6]

2

3 a-=

4

5 1 2

6 4

7 6

8

9 >> pinv(a)

10

11 ans =

12

13 -1.3333 -0.3333 0.6667
14 1.0833 0.3333 -0.4167
15

43

CHAPTER 2 ARRAY BASED COMPUTING

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

44

>> pinv(a)*a

ans =
1.0000 0.0000
-0.0000 1.0000
>> a = rand(5,5)
ad =
0.9649 0.8003
0.1576 0.1419
0.9706 0.4218
0.9572 0.9157
0.4854 0.7922
>> inv(a)
ans =
2.5545 -0.3119
-4.9167 -0.1095
3.3797 -0.1001
-0.6203 0.4252
-2.0554 1.1445

>> a_pinv(a)

o O O O O

-9595
.6557
.0357
.8491
9340

-0.0173
0.8740
-1.3938
0.9340
0.1203

0.6787
0.7577
0.7431
0.3922
0.6555

-0.4492
2.7919
-1.5253
-1.0120
2.0420

0.1712
0.7060
0.0318
0.2769
0.0462

-1.9962
2.5562
-0.8910
1.2230
-0.5531

CHAPTER 2 ARRAY BASED COMPUTING

45 ans =

46

47 1.0000 -0.0000 0.0000 -0.0000 -0.0000
48 0.0000 1.0000 -0.0000 -0.0000 0.0000
49 -0.0000 0.0000 1.0000 0.0000 0.0000
50 0.0000 -0.0000 -0.0000 1.0000 -0.0000
51 -0.0000 0.0000 0.0000 0.0000 1.0000

Iis called an identity matrix because all its diagonal elements are 1
and all its non-diagonal elements are zero, which makes its determinant
1. The determinant of a matrix a is calculated using the command det(a).
Automatic generation of an identity matrix is done using the command

eye(a,b), where a and b are values of the numbers of rows and columns.

1 > eye(2,2)

2 ans =

3

4 1 0

5 0 1

6 >> det(eye(2,2))

7 ans =

8

9 1
10 >> eye(4,5)
11 ans =
12
13 1 0 0 0 0
14 0 1 0 0 0
15 0 0 1 0 0
16 0 0 0 1 0

45

CHAPTER 2 ARRAY BASED COMPUTING

rank()

The rank of a matrix, i.e., the number of linearly independent rows or
columns, can be determined by the built-in rank () function.

1 a = ones(5,3)

2

3 a-=

4

5 1 1 1

6 1 1 1

7 1 1 1

8 1 1 1

9 1 1 1

10

11 >> rank(a)

12

13 ans =

14

15 1

16

17 >> a = rand(3,2)
18

19 a =

20

21 0.4456 0.7547
22 0.6463 0.2760
23 0.7094 0.6797
24

25 >> rank(a)

26

27 ans =

28

29 2

S
»

2.6.3 trace()

The sum of the diagonal elements of a matrix is called the trace of the

CHAPTER 2 ARRAY BASED COMPUTING

matrix. This is given by the built-in trace() function, as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

>> a = ones(4,4)

[N = N =Y
[= N =Y
[= N =Y
[= N =Y

>> trace(a)

ans =

norm()

The norm() function calculates the 2-norm of a matrix, which is equal to

the Euclidean length of the vector.

0O N OO U1 AW N R

>> A = [1,2;3,4;5,6]

A =
1 2
4
6

47

CHAPTER 2 ARRAY BASED COMPUTING

9 >> norm(A)

10

11 ans =

12

13 9.5255

14

15 >> A = [1,2,3]
16

17 A =

18

19 1 2 3
20

21 >> norm(A)

22

23 ans =

24

25 3.7417

Logical Operations

Two matrices can be compared to each other element-wise.

>> a = rand(2,3)

0.7577 0.3922 0.1712

1
2
3
4
5 0.6787 0.7431 0.6555
6
7
8 >> b = rand(2,3)

9

48

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

b =

0.7060 0.2769
0.0318 0.0462
>> ¢ = (a<b)

c =

2x3 logical array

1 0 0

0 0 1

>> whos

Name Size
a 2X3

b 2x3

C 2X3
>> a+c

ans =

1.6787 0.7431
0.7577 0.3922

CHAPTER 2 ARRAY BASED COMPUTING
0.0971
0.8235
Bytes Class Attributes
48 double
48 double
6 logical
0.6555
1.1712

The matrix c has elements, either 1 or 0, which are assigned by

determining whether the corresponding elements of a are smaller than

b. Note that using whos command, we can probe the variables a, b, and c.

The matrix c contains logical data types, i.e., 1 and 0 represent the boolean

quantities True and False. But performing a+c treats them as numerals.

49

CHAPTER 2 ARRAY BASED COMPUTING

This artifact leads to erroneous computations, hence some programming
languages like Python explicitly use True and False representations for
boolean values rather than 1 and 0.

2.6.4 Polynomials and Arrays

Every matrix has a characteristic polynomial associated with it. It can be
found using the poly() function. Let’s look at an example:

1 > Al =1[-320 4]

Al =

>> Bl

poly(A1)

Bl =

OW 60N O U1 B W N

[N
R O
=
I
w

-10 24 0

=
N

>> A2

=
w

[1,2;3,4]

=
'y

A2 =

N B R R R R
© VW N O WU
=
N

>> B2 = poly(A2)

N N
N R

B =

NN
H w

1.0000 -5.0000 -2.0000

a
o

CHAPTER 2 ARRAY BASED COMPUTING

In the first case, the resultant polynomial (given by B1) is
x* —3x% —10x* +24x, whereas in the second case (given by B2),
it'’s x> — 5x — 2. The resultant matrix presents the coefficients of the
characteristic polynomial.

find()

The built-in function find() returns the row and column indices of

non-zero entries in a matrix. For example, in the 2x2 matrix defined by
A = [1,0;0,2], the non-zero elements exist at A(1,1) and A(2,2). The
information about rows and columns as a vector is demonstrated here:

>> A = [1,0;0,2]

0

1
2

3
4
5 1
6
7
8 >> [row,col,v]=find(A)
9

10 row =

11

12 1
13

14

15

16 col
17

18 1
19 2
20

21

51

CHAPTER 2 ARRAY BASED COMPUTING

22 v =
23

24 1
25 2

sort()

The built-in function sort () can be used to sort the elements of each
column in a particular order. The order can be specified as a second
argument to the function as a string (ascend or descend).

> A = [1)_2)3;4)5)_2;OJ_2)3]

1
2
3
4
5 1 -2 3
6
7
8
9

4 5 -2
0 -2 3
>> sort(A)

10

11 ans =

12

13 0 -2 -2

14 1 -2

15 4 5

16

17 >> sort(A,'ascend")

18

19 ans =

20

52

21 O -2
22 1 -2
23 4 5
24

25 >> sort(A,'descend")

26
27 ans =
28
29 4 5
30 1 -2
31 0 -2

2.7 Random Matrix

Using random number generators, a random matrix can be created. Use

the rand(a,b) command:

ans =

0.8147
0.9058
0.1270
0.9134

OW 60N O U1 B W N -

[N
R O

Column 5

=
N

>> rand(4,5)

Columns 1 through 4

0.6324
0.0975
0.2785
0.5469

0.9575
0.9649
0.1576
0.9706

CHAPTER 2

0.9572
0.4854
0.8003
0.1419

ARRAY BASED COMPUTING

53

CHAPTER 2 ARRAY BASED COMPUTING

13 0.4218
14 0.9157
15 0.7922
16 0.9595

Note that the numbers generated here will be different each time even
on the same machine, since they are supposed to be random in nature.
By default, they are uniformly distributed over the interval (0, 1). A vector
is simply a row vector, so it can be generated randomly using the rand(a)
command. help rand provides a detailed description of various other
features and arguments of the random number generator.

To create random integers, you can use randi() function. You
can also specify a range for these random integers. For example,
randi([1,10],1,5) will create five random integers (an array of 1x 5)
within 1 to 10. On the other hand, randi([1,10],5) will create an array of
random integers (an array of 5x5) within 1 to 10.

1 >> randi([1,10],5)

2

3 ans =

4

55 3 5 8 10
6 5 7 10 3 6
7 7 7 4 6 2
8 8 2 6 7 2
9 8 2 3 9 3
10

11 >> randi([1,10],1,5)
12

13 ans =

14

15 9 3 9 3 10

54

CHAPTER 2 ARRAY BASED COMPUTING

A random complex number can be generated using the rand

command, as follows:

1
2
3
4
5
6
7
8
9

10
11

>> rand + i* rand

ans =

0.3500 + 0.19661

>> rand + i* rand

ans =

0.2511 + 0.61601

Sometimes, you might want to generate the same set of random

numbers each time the program executes. This can be done by setting the

state of the random number function using the rng command, as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

>> state 1 = rng;
>> rl1 = rand(2,3)

rl =

0.4733 0.8308
0.3517 0.5853

>> r12= rand(2,3)
rl2=

0.2858 0.7537
0.7572 0.3804

0.5497
0.9172

0.5678
0.0759

55

CHAPTER 2 ARRAY BASED COMPUTING

16 >> rng(s);

17 Undefined function or variable 's'.
18

19 >> rng(state 1);

20 >> r3= rand(2,3)

21

22 13=

23

24 0.4733 0.8308 0.5497

25 0.3517 0.5853 0.9172

The state is saved in the statel variable and then r1 and 12 creates
two arrays of 2x3 size. They have different elements. But when the state
is reset using rng(statel), the new array of the same size stored in 13 is
exactly the same as 11, which was created when the state of the machine
was saved in the statel variable.

A normally distributed random number generator is given by the
function randn(). The random numbers, thus generated, are normally
distributed around 0. Figure 3-7 in Chapter 3 confirms this fact.

A 3D array of random numbers can be generated by inputting an array
for each dimension. For example, if an array A = [3,2,4] is fed into the
rand() function, an 3D array of random numbers is created, as shown here:

1 > A= [3,2,4];
2 >> B = rand(A)

3

4 B(:,:,1) =

5

6 0.7482 0.2290
7 0.4505 0.9133
8 0.0838 0.1524
9
10

(o
»

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2.7.1 Matrix Manipulations

B(:,:,2) =
0.8258 0.0782
0.5383 0.4427
0.9961 0.1067
B(:):JS) =
0.9619 0.8173
0.0046 0.8687
0.7749 0.0844
B(:):)4) =
0.3998 0.4314
0.2599 0.9106
0.8001 0.1818
>> size(B)

ans =

3 2 4

CHAPTER 2 ARRAY BASED COMPUTING

Some common matrix manipulations have been written in function form,

which makes it easier for developers to use them right away, rather than

invest time in writing optimum code.

57

CHAPTER 2 ARRAY BASED COMPUTING

2.7.2 Flipping a Matrix

flipud(A) returns a copy of matrix A with the order of the rows reversed
along the horizontal axis. f1ipud stands for flip-up-down. fliplr(A)
returns a copy of matrix A with the order of the rows reversed from left to
right. fliplr stands for flip left right.

1 > a=1[12;34;56]
2 a-=

3

4 1 2

5 3 4

6 6

7

8 >> fliplr(a)
9 ans =

10

11 2 1

12 4

13 6

14

15 >> flipud(a)
16 ans =

17

18 5 6

19

20 1 2

2.7.3 Rotating a Matrix

Using the command rot90(a,n), you can rotate a matrixa n times by 90
degrees.

58

CHAPTER 2 ARRAY BASED COMPUTING

1 > a=1[12;34;56]
2 a=

3

4 1 2

5 4

6 6

7

8 >> rot9o(a,1)
9 ans =
10
11 2 6
12 1 3
13
14 >> rot9o(a,2)
15 ans =
16
17
18 3
19 2
20
21 >> rot9o(a,4)
22 ans =
23
24 1 2
25 4
26 6

2.7.4 Reshaping a Matrix

The number of rows and columns in a matrix can be changed provided the
total number of elements remains the same.

59

CHAPTER 2 ARRAY BASED COMPUTING

1 > a=1[12;34;56]
2 a=

3

4 1 2

5 3 4

6 6

7

8 >> reshape(a,6,1)
9 ans =

10

11 1

12 3

13 5

14 2

15 4

16 6

17 >> reshape(a,4,1)
18 Error using reshape
19 To RESHAPE the number of elements must not change.

2.7.5 Sorting

Numbers can be sorted in increasing order using the sort function:

>> a = rand(1,5)
ad =

1
2
3
4 0.7431 0.3922 0.6555 0.1712 0.7060
5

60

CHAPTER 2 ARRAY BASED COMPUTING

6 >> sort(a)
7 ans =

9 0.1712 0.3922 0.6555 0.7060 0.7431

2.7.6 Upper and Lower Triangular Matrix

The upper triangular matrix is such that only diagonal and elements above
diagonal are non-zero. Similarly, the lower triangular matrix is such that
diagonal and elements below diagonal are non-zero.

1 >> a = rand(3,3)

2 a-=

3

4 0.0318 0.0971 0.3171
5 0.2769 0.8235 0.9502
6 0.0462 0.6948 0.0344
7

8 »>> tril(a)

9 ans =
10

11 0.0318 0

12 0.2769 0.8235

13 0.0462 0.6948 0.0344
14

15 >> triu(a)

16 ans =

17

18 0.0318 0.0971 0.3171
19 O 0.8235 0.9502
20 O 0 0.0344

61

CHAPTER 2 ARRAY BASED COMPUTING

2.7.7 Ones and Zeros Matrix

A matrix having all its numbers as 1 or 0 make up a ones and zeros matrix,

respectively:
1 >> ones(3,3)
2 ans =
3
4 1 1 1
5 1
6 1 1 1
7
8 >> zeros(3,3)
9 ans =

10

11

12

13 0 0 0

2.8 Indexing

Each element of the matrix is characterized by two numbers, the row
number and the column number. This is used to pinpoint an element and

operate on that.

>> a = rand(2,3)
ad =

1

2

3

4 0.6557 0.8491 0.6787
5 0.0357 0.9340 0.7577
6

62

7 > a(2,3)=1
a =

10 0.6557 0.8491 0.6787
11 0.0357 0.9340 1.0000
12

13 »>> a(1,1)=0

14 a =

15

16 0 0.8491 0.6787
17 0.0357 0.9340 1.0000

ARRAY BASED COMPUTING

Note that a(2,3)=1 sets the element at the second row and third
column, i.e., number 0.3041072 to 1, and a(1,1)=0 sets the element at the
first row and first column, i.e., number 0.5248873 to 0. To index numbers in

avector, you need a single number.

1 > a-=[1,2,3,4,5,6,7,8,9]
2 a-=

3

4 Columns 1 through 7

5

6 1 2 3 4 5 6
7

8 Columns 8 through 9

9

10 8 9

11

12 >> a(1)

13 ans =

14

15 1

63

CHAPTER 2 ARRAY BASED COMPUTING

16 >> a(-1)
17 Subscript indices must either be real
18 positive integers or logicals.

19 >> a(5)
20 ans =

21

22 5

23 »> a(10)

24 Index exceeds matrix dimensions.

It is important to note that, unlike some programming languages
where indices start at 0, MATLAB starts indices at 1 and does not take

negative numbers as indices.

2.8.1 Using Indices to Create a New Vector

>> a = [10 20 30 40 50 60]
ad =

10 20 30 40 50 60

>>b =a([1361])
b =

W 60N O LT B W N -

10 30 60 10

In the previous example, b is a new vector formed from vector a, where
successive elements are made up of elements taken from an index vector
[136 1]

1 > a=[11,12,13;40,50,60;17,18,19]
2 a-=
3

64

CHAPTER 2 ARRAY BASED COMPUTI

4 11 12 13
5 40 50 60
6 17 18 19
7
8 »> a([1,2], [2,3])
9 ans =
10
11 12 13
12 50 60

Note that since the use of the comma operator is optional, we will
define vectors and matrices by simply using whitespace.

2.9 Slicing

NG

Matrices can be sliced to desired portions by using indices and the colon :

operator.

1 >a=[12341324645]
2 a-=

3

4 Columns 1 through 7

5

6 1 2 3 4 1 3 2
7

8 Columns 8 through 11

9

10 4 6 4 5

11

65

CHAPTER 2 ARRAY BASED COMPUTING

12 >> b =a(1:5)

13 b =

14

15 1 2 3 4 1
16

17 > ¢ = a(5:7)

18 ¢ =

19

20 1 3 2

This is an important feature, as most of experimental calculations
would demand filtering the data. Here, a slice of data will be stored
separately in a variable and then various mathematical operations can be
performed on it.

Now let’s try to access slices of a multidimensional array. A matrix a is
defined to be a 5x5 matrix.

>> a = rand(5,5)

1
2

3

4

5 0.6948 0.3816 0.4456 0.6797 0.9597
6 0.3171 0.7655 0.6463 0.6551 0.3404
7 0.9502 0.7952 0.7094 0.1626 0.5853
8 0.0344 0.1869 0.7547 0.1190 0.2238
9 0.4387 0.4898 0.2760 0.4984 0.7513
10

11 >> b = a(1,1)

12

13 b =

14

15 0.6948

66

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

O O O O O O O o o o o o

.6948
.3171
.9502
.0344
.4387
.3816
.7655
. 7952
.1869
.4898
. 4456
.6463

0.3816

= a(:,1)

0.4456

CHAPTER 2 ARRAY BASED COMPUTING

0.6797

0.9597

67

CHAPTER 2 ARRAY BASED COMPUTING

47 0.7094
48 0.7547
49 0.2760
50 0.6797
51 0.6551
52 0.1626
53 0.1190
54 0.4984
55 0.9597
56 0.3404
57 0.5853
58 0.2238
59 0.7513
60 > f = a(:,[1,3])
61

62 f =

63

64 0.6948 0.4456

65 0.3171 0.6463

66 0.9502 0.7094

67 0.0344 0.7547

68 0.4387 0.2760

69 >> g= a([1,3],:)

70

71 g =

72

73 0.6948 0.3816 0.4456 0.6797 0.9597
74 0.9502 0.7952 0.7094 0.1626 0.5853

e To access a single element, we use the index value of
the row and column, For example, b = a(1,1) accesses
the element within the first row and first column.

68

CHAPTER 2 ARRAY BASED COMPUTING

To access all elements of a row or column, you can
use the : operator. Hence, ¢ = a(1,:) accesses all
elements of the first row. Similarly, >> d = a(:,1)
accesses all elements of the first column. A simple way
to remember in words is to read the colon (:) as all
elements for and then the words n row/column, where

n is a given value.

Using a(:), you can create a new column matrix that
has all the elements.

A sub-matrix can be accessed by defining all elements
for column/row and then defining indices in square
brackets. For example, f = a(:,[1,3]) defines a new
matrix where elements are composed of all elements of
the first and third columns. Similarly, a([1,3], :) uses
all elements of first and third rows.

You can compose complex sub-matrices using this powerful way of

defining your choice of elements.

O 60N O U1 & W N B

BB R
N RO

>> a = rand(5,6)

ad =

0.3510 0.1233 0.9027 0.9001 0.2417 0.9561
0.5132 0.1839 0.9448 0.3692 0.4039 0.5752
0.4018 0.2400 0.4909 0.1112 0.0965 0.0598
0.0760 0.4173 0.4893 0.7803 0.1320 0.2348
0.2399 0.0497 0.3377 0.3897 0.9421 0.3532
>> b = a([2,5],1:3)

69

CHAPTER 2 ARRAY BASED COMPUTING

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

a([2,5],1:3), which says that from the second and third row), take elements
a(2:5,[1,3]) creates
a matrix using this logic: from the first and fifth column, take elements from the

from the first column to the third column. Similarly, c

second row to the third row. Now you can easily guess whata([2,5],[1,3])

70

b =

0.5132
0.2399
>» C

0.5132
0.4018
0.0760
0.2399
> d =

d=

0.5132
0.2399
>e =

0.5132
0.4018
0.0760
0.2399

0.1839 0.9448

0.0497 0.3377
a(2:5,[1,3])

0.9448

0.4909

0.4893

0.3377
a([2,51,[1,3])

0.9448

0.3377
a(2:5,1:3)

0.1839 0.9448

0.2400 0.4909

0.4173 0.4893

0.0497 0.3377

We define a new 5x5 matrix a and then define a subset of this matrix using

CHAPTER 2 ARRAY BASED COMPUTING

and a(2:5,1:3) should do. It’s a good idea to practice slicing of arrays
rigorously, as this is one of the most sought-after skills in data cleaning and
data analysis in general.

2.10 Automatic Generation of Arrays

MATLAB presents a variety of ways to generate arrays of numbers
automatically according to a specified rule. Three methods are discussed
in the following sections.

2.10.1 The : Operator

One of the most useful operators in MATLAB, the : operator can be
mastered easily. You have already seen its usage in selecting a sub-matrix

in Chapter 2.
1 >> help:
2 : Colon.

3 J:K is the same as [J,J+1,...,J+m], where m = fix(K-J). In the

4 case where both J and K are integers, this is simply
[3,341,...,K].

5 This syntax returns an empty matrix if J1>K.

J:1:K is the same as [J,J+I,...,J+m_I], where

m = fix((K-3)/I).

8 This syntax returns an empty matrix when I == 0,
I>0 and 1>K, or

9 I<0 and J<K.

10

11 colon (J,K) is the same as J:K and colon (J,I,K) is the
same as J:I:K.

12

71

CHAPTER 2 ARRAY BASED COMPUTING

13

14
15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30
31

72

The colon notation can be used to pick out selected rows,
columns

and elements of vectors, matrices, and arrays. A(:) is all the
elements of A, regarded as a single column. On the left
side of an

assignment statement, A(:) fills A, preserving its shape
from before.

A(:,3) is the J-th column of A. A(J:K) is
[A(T),A(3+1),...,A(K)].

A(:,3:K) is [A(:,3),A(:,I+1),...,A(:,K)] and so on.

The colon notation can be used with acellar ray to produce
a comma-

separated list. C{:} is the same as Cfig,Cf2g,...,Cfendg.
The comma separated list syntax is valid inside () for
function calls, [] for

concatenation and function return arguments, and inside fg
to produce

a cell array. Expressions such as S(:). name produce the
comma

separated 1list S(1).name,S(2).name,...,S(end). name for the
structure S.

For the use of the colon in the FOR statement, See FOR.
For the use of the colon in a comma separated list, See
VARARGIN.

Reference page for colon
Other functions named colon

CHAPTER 2 ARRAY BASED COMPUTING

You can generate a series of numbers and store them as arrays by using

the start:step:stop command.

O 60N O U1 &~ W N B

NN P R R R R R R R R R
P O VW 0w ~N O U N W N LB O

>> a=1:1:10

a=

Columns 1 through 7

1 2 3 4 5 6 7
Columns 8 through 10

8 9 10

>> a =[1:1:10]

a=

Columns 1 through 7

Columns 8 through 10

8 9 10

Note that brackets ([]) are optional here. If a step is not defined, then it

is taken as 1.

1
2
3
4
5

>> a=1:10
ad =

Columns 1 through 7

73

CHAPTER 2 ARRAY BASED COMPUTING

6 1 2 3 4 5 6 7
7

8 Columns 8 through 10

9

10 8 9 10

11

12 >> a=1:2:10

13

14 a =

15

16 1 3 5 7 9

2.10.2 Linearly Spaced Vectors

The linspace(start, stop, n) command produces an array starting at
the first number and stopping at the second one with a total of n numbers.
Hence, they are linearly spaced.

1 >> a = linspace(1,2,5)
2 a-=

3

4 Columns 1 through 4

5

6 1.0000 1.2500 1.5000 1.7500
7

8 Column 5

9

10 2.0000

11

12 >> a = linspace(1,2,10)
13 a =

14

74

CHAPTER 2 ARRAY BASED COMPUTING

15 Columns 1 through 4

16

17 1.0000 1.1111 1.2222 1.3333
18

19 Columns 5 through 8

20

21 1.4444 1.5556 1.6667 1.7778
22

23 Columns 9 through 10

24

25 1.8889 2.0000

2.10.3 logspace

Similar to the linspace command, logspace(start, stop, n) produces
nnumbers from start to stop, which are linearly spaced in logarithmic
nature.

1 >>> help logspace

logspace Logarithmically spaced vector.

logspace(X1,X2) generates a row vector of 50
logarithmically

equally spaced points between decades 10”X1 and 10"X2. If X2
is pi, then the points are between 107X1 and pi.

w N

logspace(X1,X2,N) generates N points.
For N = 1, logspace returns 10"X2.

O 60 N O U1 B~

10 Class support for inputs X1,X2:
11 float:double, single
12

75

CHAPTER 2 ARRAY BASED COMPUTING

13 See also linspace, colon.

14

15 Reference page for logspace

16 >>>logspace (1,5,10)

17

18 ans =

19

20 1.0e+05 *

21

22 Columns 1 through 4

23

24 0.0001 0.0003 0.0008 0.0022
25

26 Columns 5 through 8

27

28 0.0060 0.0167 0.0464 0.1292
29

30 Columns 9 through 10

31

32 0.3594 1.0000

2.11 Solving a System of Equations

Solving a system of equations in one line simply involves the \ operator.
Suppose the following system of equations needs to be solved:

2x-2y=4 (Equation 2-1)

-3x+4y=9 (Equation 2-2)

76

CHAPTER 2 ARRAY BASED COMPUTING

You can define this problem in a matrix, as follows:

2 =2 X ~ 4 .
{—3 4 }(L}} B {9} (Equation 2-3)

Suppose:
a2 2 _
3 4 (Equation 2-4)
X
X= y (Equation 2-5)
4 .
B= [9} (Equation 2-6)

In this way, you can write the following:

AxX=B (Equation 2-7)

The solution is given by X = A~'B. You can find the inverse of A (using
the inv() or pinv()) function) and then multiply the resultant matrix with
the matrix given by B to find a solution. Alternatively, you can accomplish
this task in just one command, as A\B:

>> A = [2,-2;-3,4]

1
2
3
4
5 2 -2
6
7
8
9

77

CHAPTER 2 ARRAY BASED COMPUTING

10 B =

11

12 4 9

13

14 >> C = A/B
15

16 ans =

17

18 17.0000

19 15.0000

Hence, the solution is x = 17 and y = 15. Since the elements of the C
matrix are solutions, this is often called a solution matrix.

2.12 Eigen Values and Eigen Vectors

The eigenvalue problem is to determine the solution to the equation

Av = v, where A is an n x n matrix, v is a column vector of length n, and

A1is a scalar. The values of A that satisfy the equation are the eigenvalues.
The corresponding values of v that satisfy the equation are the right
eigenvectors. The left eigenvectors, w, satisfy the equation w'A=Aw'. The
MATLAB function eig() returns the eigenvalues and eigenvectors. It also
gives the matrix D (diagonal matrix D of eigenvalues), which is related to W
and Aas WA=DW":

>> A = rand(3,3)
A =
0.6551 0.4984 0.5853

0.1626 0.9597 0.2238
0.1190 0.3404 0.7513

0O N O LT A W N R

~
co

CHAPTER 2 ARRAY BASED COMPUTING

9 > [V,D,W] = eig(A)

10

11 V =

12

13 -0.7284 -0.9532 0.8945

14 -0.5300 0.2997 -0.4178
15 -0.4341 0.0411 0.1590

16

17

18 D =

19

20 1.3665 0 0
21 O 0.4732 0
22 0 0 0.5264
23

24

25 W=

26

27 -0.2724 -0.3066 -0.1266
28 -0.7915 -0.3145 -0.5186
29 -0.5471 0.8984 0.8456

2.13 Structure Arrays

Arrays stores elements of the same data types, whereas structure arrays
can store data of different data types. Structures are collections of data
organized by named fields. For example, one field may contain textual
data, another a number, and a third may be an array, etc. A single structure
is a 1-by-1 structure array. Let’s understand how to create them by using
an example. Let’s create a structure array for this book and name this

array book. Now, various fields can be added using the dot operator, such

79

CHAPTER 2 ARRAY BASED COMPUTING

as name, author, pages, and chapter. The book array is a 1-by-1 structure
with four fields. This is demonstrated here.

>> book.name = 'Introducing MATLAB'

book =

1

2

3

4

5 struct with fields:
6

7 name:'Introducing MATLAB'

8

9 >> book.author = 'Sandeep Nagar'
10

11 book =

12

13 struct with fields:

14

15 name:'Introducing MATLAB'

16 author:'Sandeep Nagar'

17

18 >> book.pages = '175'

19

20 book =

21

22 struct with fields:

23

24 name:'Introducing MATLAB'

25 author:'Sandeep Nagar'

26 pages:'175'

27

28 >> book.chapters = [1 23 456 7]
29

80

CHAPTER 2 ARRAY BASED COMPUTING

30 book =

31

32 struct with fields:

33

34 name:'Introducing MATLAB'
35 author:'Sandeep Nagar'

36 pages:'175'

37 chapters:[1 23456 7]

2.13.1 Defining a New Structure Element
Within a Structure Array

A new structure element can be defined within an existing structure array
(book, in this example) using index values in the following manner.

[N

>> book(2).name = 'Introducing SCILAB'
book =
1x2 struct array with fields:

name
author
pages
chapters

O 60N O U1 B W N

[S S Y
N P O

>> book(2).author = 'Sandeep Nagar'

=
w

book =

[O Y
SRS

1x2 struct array with fields:

=
~

81

CHAPTER 2 ARRAY BASED COMPUTING

18 name

19 author

20 pages

21 chapters

22

23 >> book(2).pages = 175

24

25 book =

26

27 1x2 struct array with fields:
28

29 name

30 author

31 pages

32 chapters

33

34 >> book(2).chapters = [1 23456 7 8 9]
35

36 book =

37

38 1x2 struct array with fields:
39

40 name

41 author

42 pages

43 chapters

In this way, the book is now a 1x2 structure array. All structures in a
structure array have the same number of fields and all fields have the same
number of field names. When the name of the structure array is entered at
the command prompt, the summary of information and fields is displayed.

82

CHAPTER 2 ARRAY BASED COMPUTI

The fieldnames () function can be used to get a cell array having
information about the fields. This is demonstrated in the following code.

>> book
book =

1
2
3
4
5 1x2 struct array with fields:
6
7
8
9

name
author
pages

10 chapters

11

12 »>> fieldnames(book)

13

14 ans =

15

16 4x1 cell array

17

18 'name’

19 ‘'author'’

20 ‘'pages'

21 'chapters'

While expanding a structure arrayj, it is not mandatory to fill in all the
fields. Fields that are not associated with values are left empty.

2.13.2 Adding and Removing Fields

A new field can be added at any point to a single structure. For example,
let’s add the field publisher to the structure book, as demonstrated here.

NG

83

CHAPTER 2 ARRAY BASED COMPUTING

>> book(2).publisher = 'Apress’

book =

name

1
2
3
4
5 1x2 struct array with fields:
6
7
8 author

9

pages
10 chapters
11 publisher
12
13 >> book
14
15 book =
16
17 1x2 struct array with fields:
18
19 name
20 author
21 pages
22 chapters
23 publisher
24
25 >> book = rmfield(book, 'publisher")
26
27 book =
28
29 1x2 struct array with fields:
30

84

CHAPTER 2 ARRAY BASED COMPUTING

31 name
32 author
33 pages

34 chapters

To remove a field, say publisher, from the structure book, you can use
the rmfield() function, as demonstrated.

2.13.3 struct()

The function struct() can also be used to define a structured array with
the syntax shown in the following code:

1 >> bookl = struct('name','Introducing MATLAB', 'author’,
'Sandeep Nagar', 'pages',175, 'chapters',[1, 2, 3, 4, 5, 6, 7])

2

3 book1 =

4

5 struct with fields:

6

7 name:'Introducing MATLAB'

8 author:'Sandeep Nagar'

9 pages:175

10 chapters:[1 23 456 7]

11

12 >> book1(2) = struct('name','Introducing python','author’,
'Sandeep Nagar', 'pages',175,'chapters’',[1, 2, 3, 4, 5, 6,
7, 8, 9])

13

14 book1 =

15

85

CHAPTER 2 ARRAY BASED COMPUTING

16 1x2 struct array with fields:

17

18 name
19 author
20 pages

21 chapters

A new structure named book1 is created where field names and values
are filled in successively. It can be expanded using the index number in a
similar fashion, making it a 1-by-2 structure array.

A structure array may contain another structure or even a structure
array as its fields. These are called nested array. This is demonstrated here,
where book1 (a structure array defined previously) is added as a new field
to the structure array book.

>> book(3).1linked book = book1

book =

name

1
2
3
4
5 1x3 struct array with fields:
6
7
8 author

9

pages
10 chapters
11 linked book

2.14 Getting Data from a Structure Array

Data values can be assigned from a structure array using index numbers,
as demonstrated next. Here, info1l stores the value of the field name for the
second structure (signified by the syntax book(2)). In a similar fashion,

86

CHAPTER 2 ARRAY BASED COMPUTING

info2 stores the value of the field name for the first structure (signified by

the syntax book(1)). The variable info3 extracts the third element of the

field chapter from the second structure of the structure array book.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

>> infol = book(2).name()
info1l =

"Introducing SCILAB'

>> info2 = book(1).name()
infol =

"Introducing MATLAB'

info3 = book(2).chapters(3)

info3

2.15 Cell Arrays

Cell arrays are arrays of cells where each cell stores an array. Within a cell,

elements must be the same type (because cells store arrays), but two cells

may have different types. For example, suppose you have three arrays—

array1 (stores numerical values), array2 (stores textual values), and

array?2 (stores numerical values). You can then construct a cell array using

these three arrays. The elements of this cell array store different types of

arrays, but each element stores just one type of data.

87

CHAPTER 2 ARRAY BASED COMPUTING

2.15.1 Creating Cell Arrays

The cell(m,n) function makes an empty cell array of the size m — by — n.
By assigning data values to this empty cell array, it can then be constructed
as desired, one cell at a time. Let’s first create an empty cell array,
referenced by a variable, say a. There are two ways to assign the data:

e Cellindexing: Cell indices are mentioned within
parentheses () and cell contents are mentioned within
brackets { } on either side of assignment operator, like so:

>> a = cell(3,3)
a =

1
2
3
4
5 3x3 cell array
6
7
8
9

(1 10 Il

(1 00 [Tl

(1 10 Il
10
11 >> a(1,1) = ([1,2,3]);
12 > a(1,2) = (['a','b']);
13 >> a(1,3) = ("Sandeep");
14 >> a(2,3) = ([1.5,-2]);
15 >> a(2,2) = ([-200]);

16 >> a(2,1)
17 >> a(3,1)
18 >> a(3,2)
19 >
20

21 a =
22

(["Nagar"]);
([-10,-15.5,5.3]);
(["Hello"]);
(["World"])

QU
—~
w

.
w
~
1}

88

CHAPTER 2 ARRAY BASED COMPUTING

23 3x3 cell array

24

25 [1x3 double] "ab’ ["Sandeep"]
26 ["Nagar"] [-200] [1x2 double]
27 [1x3 double] ["Hello"] ["World"]

28

Content indexing: Here, brackets/parentheses are used
in reverse fashion, i.e., () for content and [] for indices.

>> a = cell(3,3)

1
2
3
4
5 3x3 cell array
6
7
8
9

10

11 > a {1,1} = ([1,2,3]);
12 > a {1,2} = (['a','b']);
13 >> a {1,3} = ("Sandeep");
14 >> a {2,3} = ([1.5,-2]);
15 >> a {2,2} = ([-200]);

16 >> a {2,1} = (["Nagar"]);
17 > a {3,1} = ([-10,-15.5,5.3]);
18 >> a {3,2} = (["Hello"]);
19 >> a {3,3} = (["World"])
20

v

\ 24

v

89

CHAPTER 2 ARRAY BASED COMPUTING

21 a =

22

23 3x3 cell array

24

25 [1x3 double] "ab' ["Sandeep"]
26 ["Nagar"] [-200] [1x2 double]
27 [1x3 double] ["Hello"] ["World"]

28

2.15.2 The celldisp() and celiplot() Functions

The constructed cell arrays can be displayed by using two functions called
celldisp() and cellplot(). The celldisp() command displays the full
cell contents, whereas cellplot() displays a graphical display of the cell
architecture. See Figure 2-1.

Figure 2-1. Output of cellplot (a)

90

CHAPTER 2 ARRAY BASED COMPUTING

2.15.3 The cell2struct(), num2cell(), and
struct2cell() Functions

The cell2struct() command can be used to convert a cell array to a
structure. Similarly, num2cell() can be used to convert a numeric array
into a cell array and struct2cell() can be used to convert a structure into
a cell array.

2.16 Summary

Array based computing lies at the very heart of modern computational
techniques. MATLAB presents a very suitable platform to perform this
technique with ease. A variety of predefined functions enable users to

save time while prototyping a problem. Having flexible methods to define
multidimensional arrays and perform fast computation is the necessity of
our times. Most of the time spent on a simulation is either in loops or in
array operations. Predefined array operations have been optimized with
algorithms for reliability, time savings, and efficient memory management.

91

CHAPTER 3

Plotting

3.1 Introduction

Without visualization, numerical computations are difficult to judge.
Producing publication quality images of complex plots that provide
meaningful analysis of numerical results has been a challenge for scientists
all over the world. Many commercial software programs have been very
successful in satisfying this need. MATLAB also provides this facility. Its
plotting features include choosing from various types of plots in 2D and 3D,
enhancing plots with additional information like titles, labeled axes, grids,
and labels for data, and writing equations and other important information
about the data. The most important feature is that plots can be defined
in a programmatic manner, i.e., you can enter the data for a plot using a
computer program. This is quite different than entering the data by hand.
One of the advantages is that you can define the data using a variety
of functions. The other advantage is when the data has a huge number of
entries, it can be entered according to the rules that govern the computer
program. The following sections describe these actions in detail.
It is worth mentioning that plotting capabilities are essential
to machine learning experiments, since visual directions from the
progressive steps give you an intuitive understanding of the problem under
consideration.

© Sandeep Nagar 2017 93
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_3

CHAPTER 3 PLOTTING

3.1.1 2D Plotting

plot(x,y)

Since you need data on two axes to be plotted, you first need to create the

plots. Assume for this example that the x axis has 100 linearly spaced data

points on which y = ¥ is defined. See Figure 3-1.

>>
>>
>>
>>
>>
>>

SOV~ W N

y=x2

10000 T T T T T T T T T

x = linspace(0,100,100);

y=X."2;

plot(x,y)

xlabel('x")

ylabel('y=x"{2}")

title('Plot of x versus y=x*{2}")

Plot of x versus y=x2

9000 -

8000

7000

6000 -

5000

4000

3000 -

2000 -

1000

0 10 20 30 40 50 60 70 80 90 100

Figure 3-1. They = x? plot

94

CHAPTER 3 PLOTTING

First we define a variable x and placed 100 equally spaced data points
from 0 to 100. This create a 1x100 matrix. Using the scalar operation of
exponentiation, we define a variable y as y = x%. Then we use the plot()
function, which takes two arguments as the x-axis and y-axis data points.
Typing help plot on the command prompt gives useful insight into this
wonderful function written to plot two dimensional data.

The x and y axis labels can be placed using the x1abel() and ylabel()
functions, which take a string as input. The string can be formatted with
LATEX commands—for example, x> can be printed by using the x*{2}
syntax. Similarly, the title can be added for the graph with an appropriate
string.

area()

The area() function creates a similar plot as plot (), but it also shades the
area under the curve, as shown in Figure 3-2.

1 >> x = linspace(0,100,100);
2 >y = X."2;
3 >> area(x,y)

95

CHAPTER 3 PLOTTING

10000

9000

8000

7000

6000 -

5000 -

4000

3000

2000

1000 [

0
0 10 20 30 40 50 60 70 80 90 100

Figure 3-2. They = x° plot created with the area() function

Plotting Multiple Plots on the Same Graph

You can plot multiple plots on the same graph by simply supplying x and y
axes vectors, as shown in Listing 3-1. Figure 3-3 shows the result.

Listing 3-1. The multi.m Program

1 clear all;

2 clf;

3 x = linspace(1,100,100);

4 yl = Xx."2.0;

5 y2 = X."2.1;

6 y3 = X."2.2;

7 Y4 = x.°2.3;

8 plot (x,y1,"®@12",x,y2,x%,y3,"4",x,y4,"+")

96

10
11
12
13
14
15
16
17

CHAPTER 3 PLOTTING

grid on

legend('x™2", 'x{2.1}","'x{2.2}", 'x{2.3}");
xlabel('x—axis")

ylabel('y—axis")

title('Multiple Graphs')

%plot y with points of type 2 (displayed as '+')
%and color 1 (red), y2 with lines, y3 with lines
%of color 4 (magenta) and y4 with points displayed as '+

Multiple Graphs
40000 ! ; ! ! >
: : : : X
x21
x22
: : : : x{2:3
] s v o
/!
2 /
>
«©
=

X-axis

Figure 3-3. Multiple plots within the same figure

97

CHAPTER 3 PLOTTING

Explanations of the line numbers in the previous code are as follows:

o clear all clears the variable names and values from
memory (line 1).

e clf clears any current figure window (line 2).

e x = linspace(1,100,100) creates a vector x made up
of 100 equally spaced data points between 1 and 100
(line 3).

e yl=x.2% creates a new vector named y1 having
element-wise square of vector x (line 4).

e yl =x.2*!; creates a new vector named y2 having

element-wise exponentiation by 2.1 of vector x (line 5).

e y2=x.2% creates a new vector named y3 having
element-wise exponentiation by 2.2 of vector x (line 6).

e y3=x.%% creates a new vector named y3 having
element-wise exponentiation by 2.3 of vector x (line 7).

e y4=x.2% creates a new vector named y4 having

element-wise exponentiation by 2.4 of vector x (line 8).
e Plots as per comment given in lines 15, 16, 17 (line 9).
e The grid is turned on for the figure (line 10).
o xlable takes the value of string x-axis (line 11).
o ylabel takes the value of string y-axis (line 12).
o title takes the value of stringMultiple Graphs (line 13).

Figure 3-3 is obtained by running the code. These types of plots are
used to check the variation of results by varying a particular parameter.

98

CHAPTER 3 PLOTTING

Plotting Multiple Plots Separately

The subplot(row,coloumn,index) command is used to plot multiple plots

on the same figure, but in separate views. subplot(2,2,4) means that the

plot will be on the second row, the second column, and the fourth index.
See Listing 3-2.

Listing 3-2. The multiSubplot.m Program

O 60N O U1 & W N B

[O e
© N OO A W N R O

20

clear all;

clf;

x = linspace (1,100,100);
yl = x.72.0;

y2 = log(x);

y3 = sin(x);

y4 = log10(x);

subplot(2,2,1), plot(x,y1)

subplot(2,2,2), plot(x,y2)

subplot(2,2,3), plot(x,y3)

subplot(2,2,4), plot(x,y4)

%grid on
%legend('x2",'x{2.1}", 'x*{2.2}", 'x{2.3}");
%xlabel('x—axis")

%ylabel('y—axis")

%title('Multiple Graphs')

%plot y with points of type 2 (displayed as '+')
%and color 1 (red), y2 with lines, y3 with lines
%of color 4 (magenta) and y4 with points displayed as '+'

As shown in Figure 3-4, plots are organized as matrixes, where the

row number and column number dictate its position. An index of the plot

can then be used for further processing as a graphical object. There are

99

CHAPTER 3 PLOTTING

many commands for controlling font size, tick labels and fonts, as well as
for inserting mathematical equations. You can view them by typing help
plot or reading the documentation of this function. Ample examples can
be obtained from the web. This function is used frequently, so you need to
have good command over its use.

10000

8000

6000

4000

2000

0 20 40 60 80 100 0 20 40 60 80 100
dd' 0.5

\w w(\
w’VNv \J\J‘J‘J\ 0

0 20 40 60 80 100 0 20 40 60 80 100

0

0.

o

o

-0.5

-1

Figure 3-4. Separate multiple plots within the same figure

3.1.2 The bar(), barh(), and hist() Commands

Bar charts are a primitive but very effective visualization of primary
statistical information. There are three options for plotting bar charts and

histograms.
1 > x = [1,2,3,4,5];
2 >y = [12,5,11,9,10];

3 >> bar(x,y)

100

CHAPTER 3

1 > x =[1,2,3,4,5];
>>y = [12,5,11,9,10];
>> barh(x,y)

Figure 3-5 shows a standard bar chart and Figure 3-6 shows a
horizontal bar chart.

12

10

1 2 3 4 5

Figure 3-6. A horizontal bar chart

PLOTTING

101

CHAPTER 3 PLOTTING

A histogram can be plotted using the hist () function in a similar
fashion. Let’s look at the behavior of a normalized distribution of random
numbers generated by the randn() function.

1 >> x = randn(100);
2 >> hist(x)

In Figure 3-7, you can clearly observe the bell-shaped curve of the
envelope to confirm that the random numbers are indeed normally
distributed.

40

35}
30

25

20 1
15t i
5| N ,
o s fub M |

-4 -3 -2 -1 0 1 2 3 4

Figure 3-7. A histogram showing normalized distribution of random
numbers

Logarithmic Plots

For plotting graphs involving logarithmic scale, MATLAB provides three
options:

o semilogx(): Plots with a logarithmically spaced x-axis.
As an example, consider the code 1log1a.mshown in
Listing 3-3, which produces the plot shown in Figure 3-8.

102

CHAPTER 3

Listing 3-3. The logla.m Program

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

%#MATLAB program to illustrate
%usage of semilogx() and
%semilogy() and loglog() command

%semilogx()

y = 0:2:50;

x = exp(-y/2);

subplot(3,1,1)

semilogx(x,y)

grid on

xlabel('x=e{y/2}");

ylabel('y");

title('Using semilogx() command');

%semilogy ()

X1 = 0:2:50;

yl = exp(—x1/2);

subplot (3,1,2)

semilogy (x1,y1)

grid on

xlabel('y=e"{x/2}");

ylabel('x");

title('Using semilogy() command');

%loglog()

X2 = 0:2:50;
V1 = exp(x2);
y2 = exp(x2/2);
subplot(3,1,3)
loglog(x1,y1)

PLOTTING

103

CHAPTER 3 PLOTTING

31 grid on

32 xlabel('y1i=e*{x}');

33 ylabel('y2=e"{x/2}");

34 title('Using loglog() command');

Using semilogx() command

1 —— errm—— S — r—r—rra
a0t T e— -
- 20 | ‘H‘-E""“—-H-_._
0 A A e A '} A B
1012 10710 108 106 104 1072 100
X=ey/2
. Using semilogy() command
10 e T ___.__h___h.-*“_, T
< 10710 F B e, — T IR
10_20 L I} '} '} 'l 'l 'l I} i
5 10 15 20 25 30 35 40 45 50
y=eX2
104 Using loglog() command
g“’ 20
n 107 L <
S ——
10° -T————-"—F-ﬂi‘””""‘fﬂr
10° 10° 102
y1=¢*

Figure 3-8. Describing usage of semilogx()

o semilogy(): Similarly, semilogy() plots a
logarithmically spaced y-axis.

o loglog(): Plots with both axes logarithmically spaced.

104

CHAPTER 3 PLOTTING

Polar Plots

Sometimes you'll prefer to plot in polar coordinates, rather than Cartesian

ones. Then, instead of x and y, the coordinates are r and 6. See Listing 3-4.

Listing 3-4. The CoordinatesPolar.m Program

theta = 0:0.02:2%pi;
al = 0.5+1.3."theta;
a2 = 5*cos(theta);

a3 = 3*(1—cos(theta));
a4 = 6*sin(4*theta);

r = [a1;a2;a3;a4];
Polar Graph = polar(theta)r,u*u);
set(Polar Graph,"LineWidth",2);

legend("spiral”,"circle","heart","Rose");

spiral

r\.. .-"-\ * circle
L - * heart

* Rose

OW 60N O VT & W N P

Figure 3-9. Polar graph

105

CHAPTER 3 PLOTTING

Figure 3-9 shows an example of a polar graph for the code given in
the CoordinatesPolar.m example. Explanation of the program follows
(according to the line number):

e Avariable named theta representing 6 is defined by
points starting from 0 to 2z, with steps of 0.02 (line 1).

e Avariable named a1l representing r for spiral is
calculated using the following equation (line 2).

r=1.5(0)

e Avariable named a2 representing r for circle is
calculated using the following equation (line 3).

r=5((cos)0)

e Avariable named a3 representing r for heart is
calculated using the equation (line 4).

r= 3(1—(005)6)

e Avariable named a4 representing r for rose is
calculated using the equation (line 5).

r=6(sin(40))

e Avariable named r stores all the r calculated using
equations as a column vector (line 6).

e Avariable named PolarGraph stores the values
produced by the function polar (), which takes 6, r as
arguments and "*" for the type of marker (line 7).

o The set function is used to set the property values for the
graph function. This is a neat way of setting properties
of the graph and experimenting with them later. In this
case, the property named LineWidth is set to 2 (line 8).

106

CHAPTER 3 PLOTTING

o The legend() function sets four legends in the same
order that the polar function takes them from vector r
(line 9).

The rose() Function

The rose() function draws an angled histogram, i.e., a polar histogram.
The input should be a vector of numbers. Let’s look at the usage by
constructing a vector of 100 random numbers using randn (100, 1) *pi

and then feeding it to the rose() function. The resultant plot is shown in

Figure 3-10.

1 >> x = randn(100,1)*pi;
2 >> rose(x)

90 10
120 60

150

180 0

210 330

240 300
270

Figure 3-10. Plot of random numbers by the rose() function

107

CHAPTER 3 PLOTTING

pie()

A pie chart can be created using the pie() function. This provides a very
powerful tool to visualize the parts of a whole. The usage is explained in the
following code and graphs are shown in Figure 3-11. This function supports
34 items, which are distributed such thata,b,c,d,e,f get4,7,2,8,4and 9
parts. The pie chart can be made by first defining the parts as an array, then
defining the labels as an array. Then if the pie() function is fed directly, you
see a color coded exploded pie chart showing the percentages of each part.
When a show() array is also entered, it explodes only those parts where the
value of the corresponding element is 1.

>> X = [4:712)8)4:9];

>> subplot(2,1,1)

>> pie(x)

>> subplot(2,1,2)

>> show = [1,0,0,1,0,1];
>> pie(x,show,labels)

>>

~N O v B WN

108

CHAPTER 3 PLOTTING

12%

26%

12%

N\
74

6%

24%

12%

24%

Figure 3-11. Pie plots with all parts exploded and with some parts
exploded

stairs()

A staircase graph draws a stair-step graph for elements of a vector.
Consider an example of plotting y = x5, where x is a vector of 100 elements
from —x to 7. As shown in Figure 3-12, the data points are connected in a
stair-step fashion.

1 > x = —pi:pi:100;

2 >y =x."(2.5);
3 >> stairs(y)

109

CHAPTER 3 PLOTTING

4
10 210 . . . , , .

0 5 35

Figure 3-12. Stair plot for y = x**

stem()

Stem plots draw data points as stems that extend from equally spaced
values. Sample code for plotting y = cos(x) € (—z, z) is presented here and it
produces the graph shown in Figure 3-13.

1 >> x = —2%pi:2*pi;
2 >y = cos(x);
3 >> stem(y)

110

CHAPTER 3 PLOTTING

08 |

06

04

02 |

-0.2

-04 |

-0.6

-0.8

-1 L 1 1

0 2 4 [8 10 12 14

Figure 3-13. Stem plot fory = cos(x) € (-n, n)

3.1.3 3D Plotting

There are various functions available for 3D plotting in MATLAB. Your
choice of function depends on the particular problem.

mesh

Consider the mesh command shown in Listing 3-5. It produces the graph
shown in Figure 3-14.

Listing 3-5. The ThreeDMesh.m Program

1 a =b = linspace(-8,8,41)";
2 [xx,yy] = meshgrid(a,b);
3 c = sqrt(xx."2+yy."2)+eps;

111

CHAPTER 3 PLOTTING

4 d = sin(c)./c;
5 mesh(a,b,d);

08 Joee T

Figure 3-14. 3D meshing

It’s important to note that this code uses a new function named
meshgrid. Do a quick search of it using help meshgrid.
meshgrid is used as follows:

1 >> a =b = linspace(-8,8,41);
2 > [xx,yy] = meshgrid(a,b);

Two variables are created, namely a and b, and they store 41 linearly
spaced data points between —8 to 8, as a row vector. These two row
vectors (both 1x41 in dimension) are passed as arguments for the
function meshgrid, which gives two outputs: xx and yy. These are 41x41
dimensioned matrices where rows of xx are copies of a and columns of yy
are copies of b.

112

CHAPTER 3 PLOTTING

meshgrid can also take a third argument whose copes make a complete
3D grid. Otherwise on this two-dimensional base grid, a function can be
defined for data points defined by copies of the a and b vectors. In this
case, the function is defined as follows:

c=yx*+y° (Equation 3-1)

and

Je sin(c)

. (Equation 3-2)

Note Function eps produces a very small number (2.2204.10-
defined by machine precision [1]. It is widely used in numerical
computation, where zero needs to be avoided, especially in the case
of division by zero. By adding a very small number to large numbers,
we avoid this problem (remember that variable c calculated in Step 3
is then used under division as a denominator in Step 4).

Continuing now with the plotting exercise, new arrays can be used to
plot by applying the 3D plotting function mesh (), which takes these two
arrays a and d as its arguments, resulting in Figure 3-14. If mesh(x,y,z)
is used then a wire-frame mesh made up of rectangles is created. The
vertices of the rectangles are made of data points generated by the function
(in this case, Equations 3-1 and 3-2). The (x, y) coordinates of vertices are
given by the xx and yy matrices, since the x coordinate comes from the xx
matrix and the y coordinate comes from the yy matrix. z determines the
height above the plane of each vertex.

In this way, a 3D plot is created. It is important to note that the original
3D “curve” is interpreted as a surface made of flat rectangles, which is at
best an approximation. In some cases, this error can be ignored. To get
less error, the rectangles can be smaller, if possible. There are some other

113

CHAPTER 3 PLOTTING

variations of the same function, such as ezmesh, meshc, and meshz. A
simple help command can be very useful to determine which one suits a
particular problem best. The mesh also codes color for height (z-value).
This is computed by linearly scaling the Z values to fit the range of the
current color-map (type help colormap to learn more).

meshc

meshc() generates a 3D rectangulated mesh as well as a contour at the
base. As shown in Figure 3-15, apart from producing a 3D plot for a given
function, you also get a contour plot. Note that at this time, the equation
working on matrices is written as an argument of the meshc () function,
thus making the program even smaller. See Listing 3-6.

Listing 3-6. The ThreeDMeshc.m Program

x=1inspace(-10,10,50);
y=linspace(-10,10,50);
[xx,yy]=meshgrid(x,y);
meshc(xx,yy,2—(xx."2+yy."2))

2 W N R

114

CHAPTER 3 PLOTTING

-100

-150

-200
10

Figure 3-15. 3D meshing with the meshc() function

surf()

surf() generates a surface plot where the wire mesh is simply filled up at
the empty points, as shown in Figure 3-16. See Listing 3-7.

Listing 3-7. The ThreeDsurf.m Program

1 a=b = linspace(-8,8,10)";
2 [xx,yy] = meshgrid(a,b);

3 c = sqrt(xx."2+yy."2)+eps;

4 d = sin(c)./c;

5

115

CHAPTER 3 PLOTTING

Figure 3-16. 3D meshing with the surf() function

3.2 Summary

Arich library of plotting functions makes MATLAB a suitable choice for
plotting data in a variety of publication-ready formats. Together with
commands to access system files and folders, these plots can be directed to
be saved at appropriate places for creating a suitable report. Plotting in 3D
and viewing at different angles is quite intuitive in MATLAB. Hence, MATLAB
is a suitable method to visualize data. The limitations of data and the speed of
execution depend on the computer storage and RAM on the motherboard.

3.3 Bibliography

[1] https://en.wikipedia.org/wiki/Machineepsilon

116

https://en.wikipedia.org/wiki/Machineepsilon

CHAPTER 4

Input and Output

4.1 Introduction

The fundamental data type for MATLAB is an array. Most of numerical
computations for scientific and engineering purposes involve dealing with
data in various file formats. Scientific devices and computer programs
themselves generate data as files. These files are then read and converted
into arrays (mostly). These arrays can be manipulated as per mathematical
requirements by the files of matrix algebra. The results generate a new set
of arrays. These arrays are further converted into files for visualization.

Using the information in Chapters 2 and 3 (arrays and plotting), you
can now formulate physical problems in terms of numerical computations
and solve them on a digital computer. This process has some requirements
such as:

o The data should be in a digital form (a digital file).

e The computer program should be able to read the file
and make arrays from it without errors. If errors occur,
a mechanism to check those errors and warning the
user should be in place. If possible, a mechanism for
correcting them should also be in place.

e The data should be stored as an array in the proper data
type and should be displayed on demand in the proper

format.

© Sandeep Nagar 2017 117
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_4

CHAPTER 4 INPUT AND OUTPUT

e Array operations on data will result in memory usage in
terms of reading and writing data on disk. This should
be facilitated by the system. Users should be able to
check the status of memory as and when required.

o Post-processing tasks include displaying data in various
formats—as a printout from a printer, on a terminal, as
a graph on a terminal or printer/plotter, etc.

o Ifareport for a particular experiment has input
parameters, processing the data and output as a file or
graph will make the user’s task easier.

MATLAB has some features for each of these steps. This chapter
discusses them in brief.

4.2 Interactive Input from a Keyboard

A user interacts with MATLAB using a keyboard. Keyboards generate ASCII
or Unicode strings for specific characters. These are fed into MATLAB,
which then interprets them to perform a specific task. For an interactive
session with MATLAB during the course of programming, MATLAB offers
the functions discussed in the following sections.

4.2.1 input()

input("Text") displays the Text string at the MATLAB prompt (the
default symbol is >>>) and waits for the user to input a value and press
Enter. Users may enter any type of data. The input is treated as a MATLAB
expression and it is evaluated in the current workspace. If the input ()
function is used for an assignment operation, then the data is assigned to
avariable appropriately. If the user presses the Enter key without entering
anything, then the input returns an empty matrix. When the user enters an

118

CHAPTER 4 INPUT AND OUTPUT

invalid expression into the prompt, a relevant error message is displayed at

the prompt. When a character or a string of character vectors needs to be

fed into input(), the user must define them as a string. Otherwise, 's" is

used as a second argument and then input is treated as a string. The usage

is demonstrated in this code.

O 60N O U1 &~ W N P

S e
O N OOV A W N R O

>> prompt = 'What is your name:';

>> name = input(prompt)

What is your name:Sandeep

Error using input

Undefined function or variable 'Sandeep'.
What is your name:'Sandeep'

name =

'Sandeep'

>> name = input(prompt,'s")
What is your name:Sandeep
name =

'Sandeep'

While dealing with numerical values, a single value or an array must

be used, but with valid MATLAB syntax. For example, in the following

code, the user can type a single value of r (storing the radius of a circle) or

multiple values as arrays. This information can then be used to find the

circumference (= 2zr) and area (= #r2).

119

CHAPTER 4 INPUT AND OUTPUT

1 >> r = input('Enter value of radius:');
2 Enter value of radius:2

3 >> circumference = 2*pi*r

4

5 circumference =

6

7 12.5664

8

9 >> area = pi*r2

10

11 area =

12

13 12.5664

14

15 >> r = input('Enter value of radius:');
16 Enter value of radius:[1 2 3]
17 >«

18

19 1 =

20

21 1 2 3

22

23 >> circumference = 2*pi*r

24

25 circumference =

26

27 6.2832 12.5664 18.8496
28

29 >> area = pi*r.”2

30

120

CHAPTER 4 INPUT AND OUTPUT

31 area =

32

33 3.1416 12.5664 28.2743
34

4.2.2 keyboard()

The keyboard keyword gives control to the user while running a program
so that user can enter data or additional MATLAB commands, if required.
This process can be effectively used by the user to check the program. It is
called debugging.

When this is done, the MATLAB prompt changes from >>> to k>. The
keyboard mode is terminated by executing the command dbcont. dbquit
can also be used to exit keyboard mode, but in this case the invoking
MATLAB code file is terminated. Control returns to the invoking MATLAB
code file.

A valid MATLAB expression must be entered here. This keyword
can be used to change values of variables in the middle of programs very
effectively. Its usage is shown in the sample code in Listing 4-1.

Listing 4-1. The keyboardCommand.m Program

%program to demonstrate
%usage of keyboard command

y = 12;

1

2

3

4 x = 10;
5

6 keyboard %change value of x here
7

answer = x"2

121

CHAPTER 4 INPUT AND OUTPUT

When this is executed, you'll see the following session:

1 >> keyboardCommand
2 K>> x=2.5
3

4 x =

5

6 2.5000
7

8 K>> dbcont
9

10 answer =
11

12 6.2500
13

14 >> x=2.5
15

16 x =

17

18 2.5000

19

20 >> x.72
21

22 ans =

23

24 6.2500

25

When the keyboard keyword is encountered, the MATLAB session
goes into debug mode and the user then alters the values of x=2.5. Typing
dbcont continues the execution of the program. The answer is calculated
as per the new assignment of value.

122

CHAPTER 4 INPUT AND OUTPUT

4.2.3 menu()

A graphical way of inputting values can be performed using the menu()
command, where a title and a set of options are given as inputs (separated
by commas). This works if the user has a computer terminal with graphics
capabilities. Otherwise, a list of options is presented at the command
prompt. The user is presented with a graphical window and can use a
mouse or keyboard to select an option. The options return a scalar value,
which can be stored in a variable. The options are numbered internally.

Let’s look at the usage with an example. Create a menu with the title
“Even or Odd Numbers” and two options—Even and 0dd. Store this value
in the variable I. When this command is executed, the graphical window
shown in Figure 4-1 appears. The following outputs are possible:

o Ifthe user closes the window without entering a value,
the output is 0.

o Ifthe user clicks on Even, the outputis 1.

o Ifthe user clicks on 0dd, the output is 2.

Even or Odd numbers

Even

Odd

Figure 4-1. The Menu window output

123

CHAPTER 4

O 60N O U1 & W N B

e O N O = O =
0 ~N OO U1 A W N R O

124

INPUT AND OUTPUT

This is shown in the following code:

>» 1

I=

menu('Even or Odd Numbers','Even','Odd")

menu('Even or 0dd numbers','Even','0dd")

menu('Even or 0dd numbers','Even','0dd")

pause(): If you want to temporarily halt the program,
you can use the pause() command. Press any key to
continue the program execution. To understand its
usage, consider an example. Suppose you have an 3x3
matrix of random numbers. Then MATLAB program
pauseCommand.m will show its rank, transpose, and
size. Each item is shown if the user presses a key. See
Listing 4-2.

CHAPTER 4 INPUT AND OUTPUT

Listing 4-2. The pauseCommand.m Program

%Program to show usage
%ot pause command

= rand(3,3);
= rank(x);
x';

w + H X
1}

= size(x);

disp('Given matrix is:')

disp(x)

10 disp('To continue checking its rank, press any key')
11 pause

12 disp('Rank of matrix is:')

1
2
3
4
5
6
7
8
9

13 disp(r)

14 pause

15 disp('To continue checking its transpose, press any key')
16 pause

17 disp('Transpose of matrix is:")

18 disp(t)

19 pause

20 disp('To continue checking its size, press any key')
21 pause

22 disp('Size of matrix is:')

23 disp(s)

24 pause

The output for running pauseCommand.m is shown here:

1 >> pauseCommand
2 Given matrix is:
3 0.8147 0.9134 0.2785
4 0.9058 0.6324 0.5469
5 0.1270 0.0975 0.9575

125

CHAPTER 4 INPUT AND OUTPUT

6

7 To continue checking its rank, press any key
8 Rank of matrix is:

9 3
10

11 To continue checking its transpose, press any key
12 Transpose of matrix is:

13 0.8147 0.9058 0.1270

14 0.9134 0.6324 0.0975

15 0.2785 0.5469 0.9575

16

17 To continue checking its size, press any key

18 Size of matrix is:

19 3 3

20

4.3 File Path

A MATLAB session starts from a default folder, which depends on the

installation of a particular operating system. Usually a dedicated folder
is created at the time of installation and it is generally named MATLAB by
default. This folder’s path can be viewed by typing pwd at the command

prompt.

1 > pwd

2

3 ans =

4

5 '/Users/.../MATLAB'

Note that the path may be different on your computer and the three
dots are used to represent a generalized representation of the path.

126

CHAPTER 4 INPUT AND OUTPUT

When you want to run a MATLAB'’s .m file, the file is searched first in
the default folder. If it is not there, you must change the working directory
to the one where the file is stored. This can be initiated by typing pathtool
at MATLAB’s command prompt (see Figure 4-2).

All changes take effect immediately.

MATLAB search path:
Add Folder...

sers fsandeepnagarfDocuments /MATLAB
4\ /Applications /MATLAB_R2017a.app/toolbox/matlab/datafun
4\ Applications /MATLAB_R2017a.app/toolbox/matlab/datatypes
4\ [Applications /MATLAB_R2017a.app/toolbox/matlab/elfun
4\ [Applications /MATLAB_R2017a.app/toolbox/matlab/elmat
4\ [Applications /MATLAB_R2017a.app/toolbox/matlab/funfun
4\ /Applications /MATLAB_R2017a.app/toolbox/matlab/general

Add with Subfolders...

Move to Top 4\ Applications /MATLAB_R2017a.app/toolbox/matlab/iofun
4\ [Applications /MATLAB_R2017a.app/toolbox | matlab/lang
Move Up 4\ /Applications /MATLAB_R2017a.app/toolbox/matlab/matfun
<\ jApplications/MATLAB_R2017a.app/toolbox/matlab/mym
Move Down 4\ /Applications /MATLAB_R2017a.app/toolbox/matlab/ops

4\ Applications /MATLAB_R2017a.app/toolbox/matlab/polyfun
4\ /Applications /MATLAB_R2017a.app/toolbox /matlab/randfun
4\ /Applications /MATLAB_R2017a.app/toclbox/matlab/sparfun
4\ /Applications /MATLAB_R2017a.app/toolbox/matlab/specfun
4\ [Applications /MATLAB_R2017a.app/toolbox/matlab/strfun

Move to Bottom

Ramove |- __cmee— oo

(3‘) Save Close Revert Default

Figure 4-2. Setting the path of working directory using the pathtool
command

You can simply add the directory to the list of directories for the
session or save it. You can also choose to set the directory as the default
for future MATLAB sessions. This is a good option if you will be working
on a project for a long time and are sure that the directory will be used on
a daily basis. It is strongly suggested that you keep all the files in either the
default directory of the installed MATLAB program or make your working
directory the default one.

127

CHAPTER 4 INPUT AND OUTPUT

4.4 File Operations

File operations constitute an important part of computation. It is
important to note that the file system is OS (Operating System) dependent.
Just like most scientific programs, MATLAB works with UNIX-like systems,
so it works on Linux-based and MacOS X equally well with the same set

of commands. On Windows, you use the same commands as the Linux
version for dealing with files within the MATLAB environment. The code
examples in this book were written and tested on Windows 8, MacOSX 10.10,
and Ubuntu 14.04 systems.

4.4.1 Users

A computing system is accessed by different users. Each user defines

a workspace to avoid damaging each other’s work. After login, a user’s
workspace becomes active for that user. The workspace is made up of
various files and folders. Some files are essential for the OS to define the
workspace and its properties, hence they should not be altered. This is
ensured by giving permissions to various users.

Reading and writing a file is restricted by permission. The
administrator (fondly called the admin) is also called the superuser
and has all privileges and permission to edit any file/folder. You must
understand the defined user types for a computer system and then issue
those commands accordingly. If you are not permitted to access certain
folders and the input data you need is placed inside those files/folders, you
will always get an error (unless the admin changes your permissions).

4.4.2 File Path

Directories/folders can contain sub-directories/sub-folders and files
again. This can go to any level if this process if not restricted by the
administrator.

128

CHAPTER 4 INPUT AND OUTPUT

The pwd command stands for print working directory. On the MATLAB
terminal, typing pwd displays the path of the present working directory, as
shown in this example:

1 > pwd
2 ans = /home/sandeep

The user’s /home directory contains another directory named /sandeep.
This is the present working space. When pwd is typed into the terminal, a
variable name named ans stores this data (file path). A variable name of
your choice can be assigned to store the filename as a string.

A file/folder is accessed by typing the file path into the terminal.
Consider this small exercise to understand this process. To create a new
directory, you use mkdir name as follows:

>> mkdir matlab—practice

ans = 1

> 1s

Downloads Music
R

Templates

matplab—practice

Videos

OW 60N O LT & W N B

Desktop software
Work
Documents Library

[N
R O

Pictures
>> cd matplab—practice
>>

[= =\
N W oN

129

CHAPTER 4 INPUT AND OUTPUT

Atline 1, mkdir matplab-practice creates a directory named
matplab-practice. To see the contents of the present directory, you can
use the 1s command, as is done at line 3, which stands for 1ist. To change
the directory, you can use the cd file pathcommand, asshown inline 13.
I'suggest that you work in this directory for rest of the book.

4.4.3 Creating and Saving Files

The save and load commands allow you to write and read data to memory.

1 >> matrix = rand(3,3);

2 >> save MyFirstFile.mat matrix

3 >» 1s

4 MyFirstFile.mat

5 >> load MyFirstFile.mat

6 >> matrix

7 matrix =

8

9 0.467414 0.610273 0.429941

10 0.568490 0.037898 0.734682
11 0.547370 0.275421 0.539650
12

13 >

Atline 1, A variable named matrix is created first, which stores a
random-value 3x3 matrix. At line 2, this data is stored as a .mat file named
MyFirstFile.mat, which is passed the variable name as the argument.
When required, this file can be loaded in the workspace using the load
MyFirstFile.mat command and then by calling the variable named
matrix. The random numbers recorded when the file was saved are
loaded as the data for the 3x3 matrix. Note that this data does need not be
numbers. It can be anything that a digital computer can handle, including
pictures, videos, strings, and characters, just to name a few.

130

CHAPTER 4 INPUT AND OUTPUT

Multiple variables can be stored in the same file by passing the name of

the variables at the time of saving.

B W N R

O 0 N O U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

>> matrix1l = rand(4,4);
>> matrix2 = rand(2,3);
>> matrix3 = rand(2,2);
>> save("SavingMultipleVariables.mat","matrix1", "matrix2",
"matrix3")
>> load SavingMultipleVariables.mat
>> matrixi
matrix1 =
0.8598130 0.0118250 0.9803720 0.3044413
0.6676748 0.0056845 0.1101545 0.2183920
0.2547204 0.8192626 0.8056112 0.6961116
0.7924558 0.9130480 0.1976146 0.4635055
>> matrix2
matrix2 =
0.35215 0.55770 0.66650
0.98515 0.98677 0.45513
>> matrix3
matrix3 =
0.097693 0.540354
0.923853 0.329501
>>>> save —binary SavedAsBinary m*
> 1s
MyFirstFile.mat SavedAsBinary SavingMultipleVariables.mat

131

CHAPTER 4 INPUT AND OUTPUT

The help save and help load commands provide very useful
instructions about using save and load. Using the options, you can save the
file in a specific format. For example, on line 26, all variables names starting
with m are saved as binary data inside a binary file named SavedAsBinary.
This is particularly important when data generated from MATLAB-based
numerical computations is used in other software programs. You can also
specify the precision of saved data using options. You can also compresses
a big file using the -zip command. This is very useful when the data
generated by MATLAB is large in size and needs to be transmitted.

The load function follows the same logic as the save function. Data
can be unzipped and loaded from a particular formatted file as an array.
The array, thus populated, can be used for computation and the resultant
files can be made by using the save function again (if required). Elaborate
computations require this procedure to be repeated successively many
times, thus the functions have been optimized to locate and load the
required data in a short time.

Delimited numeric data files (numerical data values separated by a
delimiter) can be read and written using dlmread() and dlmwrite(). The
functions produce ASCII-delimited files. To illustrate this, the following
MATLAB code performs the following task:

e Stores a 3x3 matrix in variable A.

e Using the dlmwrite() function, a file named
randomNumbers . txt is written, which takes its inputs
from the matrix stored in A.

— The delimiter is defined to;

— You can check the file in the working directory and
open it with an appropriate text editor or spread-
sheet software.

e Anew variable named B is initialized to be an empty

matrix.

132

CHAPTER 4 INPUT AND OUTPUT

o Using the function dlmread(), this file is read. It is
important to define the delimiter used during the
creation of the file. The results are stored in B and found
to be exactly same as that of A.

1 >> A = randn(3,3)
2
3 A=
4
5 0.3252 —-1.7115 0.3192
6 —0.7549 —0.1022 0.3129
7 1.3703 —0.2414 —0.8649
8
9 >> dlmwrite('randomNumbers.txt',A,";")
10 >> B =]
11 >> B = dlmread('randomNumbers.txt',';")
12
13 B =
14
15 0.3252 —-1.7115 0.3192
16 —0.7549 —0.1022 0.3129
17 1.3703 —0.2414 —0.8649

4.4.4 Using the Diary and History Commands

A MATLAB session can be recorded in a file by using the command diary.
Type help diary to see information about its use. Writing help filename
allows recording the session in a file with given filename. The commands
and their outputs are continuously updated using this function.

You can use the history command to display a list of executed
commands. Various options are available to see this history in particular
formats.

133

CHAPTER 4 INPUT AND OUTPUT

4.4.5 Opening and Closing Files

To read and write data files, they must be opened and defined as readable
and/or writable. The fopen function returns a pointer to an open file that is
ready to be read or written to. This is defined by the following options: r as
readable, w as writable, r+ as readable and writable, a for appending
(i.e., writing new content at the end of the file), and a+ for reading, writing,
and appending. The opening mode can be set to t for text mode or b for
binary mode. z enables opening a gzipped file for reading and writing.
Once all the data has been read from or written to, the opened file
should be closed. The fclose function does this.

1 MyFile = fopen("a.dat","r");

Avariable MyFile is created which is used to store the contents of
the file a.dat. This file is opened in reading mode only in the sense
that it cannot be edited. This is important if the author of the file wants
the information to remain unchanged while sharing it. This might be
necessary for files containing constants or important pieces of code that
should not be changed.

The freport() command prints a list of opened files and whether they
are opened for reading, writing, or both. For example:

1 >> freport

2

3 number mode arch name
4 _____ —_— [[
5 0 T ieee—1le stdin
6 W ieee—1le stdout
7 2 W ieee—1le stderr
8

9 »

134

CHAPTER 4 INPUT AND OUTPUT

4.4.6 Reading and Writing Binary Files

A binary file is computer readable file. They are simply sequence of bytes.
They are the same as the C functions fread and fwrite, which can read
and write binary data from a file.

4.4.6.1 The csvread and csvwrite Functions

The csvread and csvwrite functions are used to read data from . csv files,
which stands for comma separated values. Suppose the following data
needs to be stored as a .csyv file.

N OO N W
= U1 o

2
6
7
3

N o0 U1 R

The following code creates an array using csvwrite to create a file
named csvTestData.dat containing the matrix values. You can check this
by simply opening this newly created file in a text editor. At line 3, a new
file named csvTestDatal.dat is created with an offset defined at row 1

and column 2.

1 > a-=[1,2,3,4;5,6,7,8;8,7,6,5;4,3,2,1];
2 > a

3 a-=

4

51 2 3 4

6 5 6 7 8

78 7 6 5

8 4 3 2 1

9 >> csvwrite('csvTestData.dat',a)

10 >> csvwrite('csvTestDatal.dat',a,1,2)
11 >> al = csvread('csvTestData.dat")

135

CHAPTER 4 INPUT AND OUTPUT

12 a1l =
13
14
15
16
17
18
19 >> al = csvread('csvTestData.dat',1,2)
20 a1l =

21

22 7 8

23 6

24 2 1

25

26 >>

~ oo U1 -
w N O N
N O N W
= Ul 0 N

Now the csvread function can be used to create matrices with desired
offsets just as the csvwrite function.

Note A number of other functions to read and write files exist, but
the present section focuses on some of the most commonly used
ones. You can access the documentation to learn about using these
specialized functions, if required.

4.4.7 Working with Excel Files

Alot of data is presented on the Internet in the form of Excel files. Note that
one must be connected to the Internet in this case.

The x1sopen, x1swrite, x1sclose, odsopen, odswrite, and odsclose
commands open, write, and close.x1s and . ods files, respectively.

136

CHAPTER 4 INPUT AND OUTPUT

While .x1s files are generated using Microsoft Excel, .ods files are
generated using Open/Libre Office software, which is the open source
equivalent of Microsoft Excel. The process of opening, reading, and writing
data is as follows:

o xlsopen('Filename.x1s")

e a = xlsread ('Filename.x1ls', '3rd sheet’',
'B3:AA10");

Numeric data from the Filename.x1s worksheet
named 3rd sheet will be read from cell B3 to AA10.
This data is stored as an array named a.

o [Array, Text, Raw, limits] = xlsread ('a.xls’,
"hello');

The file a.x1s is read from the worksheet named
hello, and the whole numeric data is fed into an
array named Array. The text data is fed into array
named Text, the raw cell data into cell array named
Raw, and the ranges where the actual data came in is
saved in limits.

o xlswrite('new.xls',a)writes the data in an array
named a into an .x1s formatted Excel sheet named
new.xls.

e xlsclose

1 >> a = rand(10,10);

2 >> odswrite('a.ods',a)
3 ans =1

4 >> 1s

5 a.ods

137

CHAPTER 4 INPUT AND OUTPUT

4.5 Reading Data from the Internet

Most often, large data sets that you need to access are kept on some remote
server. Using urlread(), you can read a remote file. To save data to the
local disk, you use the urlwrite() functions.

1 >> a = urlread('http://www.fs.fed.us/land/wfas/fdr obs.

dat');
2 >> who
3 Variables in the current scope:
4
5 a ans
6
7 >> whos
8 Variables in the current scope:
9
10 Attr Name Size Bytes Class
11 ==== ==== ==== ===== =====
12 a 1x147589 147589 char
13 ans 1x1 8 double
14
15 Total is 147590 elements using 147597 bytes
16
17 >> urlwrite('http://www.fs.fed.us/land/wfas/fdr_obs.
dat','fire.dat")
18 >> 1s
19 fire.dat
20 >

Here, a variable named a stores the data from the data file stored at
http://www.fs.fed.us/land/wfas/fdr_obs.dat. Alternatively, the whole
data is stored as a file named a.dat using the function urlwrite(URL).

138

http://www.fs.fed.us/land/wfas/fdr_obs.dat
http://www.fs.fed.us/land/wfas/fdr_obs.dat

CHAPTER 4 INPUT AND OUTPUT

4.6 Printing and Saving Plots

Some commands, like print and saveas, exist to save graphs/figures
generated by MATLAB programs, to be saved in desired formats. They are
discussed in the following sections.

4.6.1 The print Command

The print command prints jobs, including printing using a printer and/
or plotter, printing to a file, etc. This command is very useful if you need to
save a figure automatically by a desired filename in a specified format.

1 %Saving in svg format

2 figure(1);

3 clf();

4 peaks();

5 print —dsvg figureil.svg
6

7 %Saving in png format

8 figure(1);

9 clf();

10 sombrero();

11 print —dpng figure2.png
12

13 %Printing to a HP DeskJet 550C
14 clf();

15 sombrero();

16 print —dcdj550

The c1f function clears the current graphic window. A lot of other
options for saving in different formats exist for the print command. To
learn more, type help print into the MATLAB terminal.

139

CHAPTER 4 INPUT AND OUTPUT

4.6.2 The saveas Function

The saveas function saves a graphic object in a desired format, as follows:

1 clf();
a = sombrero();
3 saveas (a,"figure3.png");

The orient(a,orientation) function defines the orientation of
an graphical object a. The valid values for the orientation parameters
are portrait, landscape, and tall. The landscape option changes the
orientation so the plot width is larger than the plot height. The tall option
sets the orientation to portrait and fills the page with the plot, while
leaving a 0.25 inch border. The portrait option (default) changes the
orientation so the plot height is larger than the plot width.

4.7 Summary

This chapter explained various functions enabling reading and writing
permission as well as taking data to and from a file. This becomes an
essential part of a numerical computation exercise. The data can be
generated in the form of files using software or hardware (an instrument).
MATLAB does not care about its origin. It treats data by its type and by
file type. Determining the appropriate function when using files has to be
done by the user as per the situation.

File operations do provide faculties to trim the data so that only
the useful part is used as an array. Further trimming can be performed
by slicing operations. With the art of handling files under your belt,
you can confidently proceed toward handling sophisticated numerical
computations.

140

CHAPTER 5

Functions and Loops

5.1 Introduction

When a particular numerical tasks needs to be “repeated” over different
data points, digital computers become a useful tool since they can do this
with greater speed than humans. Loops perform exactly these tasks. Using
a condition to check the start and termination rules, you can perform
repetitive parts of a process easily. Different programming languages and
environments have different rules for defining loops. MATLAB provides a
much simpler way to define and run loops. They will be discussed shortly.

It's useful to define the term function here. A big program may require
a set of instructions to be called at different times. Hence, these set of
instructions can be defined as a sub-program, which can be requested to
perform the computation at a desired time. In this way, a complicated task
can be divided into many small parts. This architecture of programming
is called modular programming. This is the most popular way of
programming since it’s quite logical, better at visualizing the problem,
and easy to debug. The most popular way of defining these small sets of
instructions is to define them as functions. This chapter discusses both of
these concepts in detail.

© Sandeep Nagar 2017 141
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_5

CHAPTER 5 FUNCTIONS AND LOOPS

5.2 Loops

Loops form an essential part of an algorithm since they perform the tasks
that computers perform best: doing repetitive actions very quickly. Loops
come in many flavors—the for loop repeats certain tasks over a list of
variable values, the while loop checks a logical condition before executing
a certain task, and the if-then-else loop checks a condition and directs
the flow of the algorithm. The choice of a particular loop depends on the
problem at hand.

A variety of functions and their usage are listed in the following
sections. Judging their usage critically becomes very important because
the looping part of the algorithm consumes most of the execution time.

5.2.1 The while Loop

The while loop defines a logical condition and, until it is satisfied, it runs a
block of code. The syntax for the while loop is:

1 while condition
BODY
3 endwhile

Here, the keyword while initiates the execution of awhile loop. The
conditionis alogical condition whose answer can be true (1) or false
(0). The BODY encompasses a set of commands that is executed until the
condition holds true (see Listing 5-1).

Listing 5-1. The whilel.m Program

1 x = 1.0;

2 while x<10

3 disp(sqrt(x));
4 X = X+1;

5 endwhile

142

CHAPTER 5 FUNCTIONS AND LOOPS

The whilel.m program runs by first initializing the x variable to a
value, 1.0. Then it lists a logical condition:

x<10

In the first step of the loop, x = 1, this condition is satisfied since 1 < 10.
Since this condition is satisfied, disp(sqrt(x)) is executed and displays
the square root of x. Then line 4 is executed, where x = x + 1increments
X. With the new incremented value of x being 2, the logical condition
x < 10 is again checked and the body of loop given in lines 3 and 4 is
executed. This is done until x = 10, when the loop condition is not satisfied.
At that point, line 5 is executed and declares the end of the while loop. The
execution of whilel.myields:

1 >> whilel
2 1

3 1.4142

4 1.7321

5 2

6 2.2361

7 2.4495

8 2.6458

9 2.8284
10 3

5.2.2 The do-until Loop

It is important to note that there can be cases where the body of a loop
might not get executed even once in the case of while loop. This is the
case when, after initialization, a condition is not satisfied. To deal with this
scenario, the do-until loop’s syntax is as follows:

1 do
2 BODY
3 until condition

143

CHAPTER 5 FUNCTIONS AND LOOPS

The loop first executes the body of the code and then checks for
the condition. This way, the code block comprising the BODY of loop is
executed at least once. The usage can be understood in the example shown
in Listing 5-2.

Listing 5-2. The dountill.m Program

%Displaying square root of
%first ten positive natural numbers

1

2

3

4 x =1.0;

5 do

6 disp(sqrt(x));
7 X = X+1;

8 until x == 10

The execution of the code yields the following:

1 >> dountil1
2 1

3 1.4142
4 1.7321
5 2

6 2.2361
7 2.4495
8 2.6458
9 2.8284
10 3

11 >>

Atline 4, x is initialized at 1.0. Then the body of the loop is written to
display the square root of x and then increment it by 1. This is done until
x =10, i.e., until the value of x becomes 10.

144

CHAPTER 5 FUNCTIONS AND LOOPS

5.2.3 The for Loop

The for loop is used to perform computations on a list of known values.
The syntax of the for loop is as follows:

1 for variable = vector
2 BODY
3 end

The keyword for declares the start of the loop where a variable takes
the values stored in a vector. Then the body of the code (here represented
by BODY) is executed. The keyword end declares the end of the for loop.
This is explained in the example in Listing 5-3.

Listing 5-3. The forl.m Program

%program to calculate square root
%of first 10 numbers

1
2
3
4 for i
5
6

= 1:10
ans = sqrt(i)
end
Executing for1.myields:
1 > fori
2 ans =1
3 ans = 1.4142
4 ans = 1.7321
5 ans = 2
6 ans = 2.2361
7 ans = 2.4495
8 ans = 2.6458
9 ans = 2.8284
10 ans = 3
11 ans = 3.1623

145

CHAPTER 5 FUNCTIONS AND LOOPS

5.2.4 The if-elseif-else Loop

When you need a number of conditions to be checked at different times,
the if-elseif-else loop works well. The syntax for this loop is given by:

1 if conditioni

2 BODY1

3 elseif condition2
4 BODY2

5 else

6 BODY3

7 endif

Atline 1, a condition is defined. If this condition is satisfied, then line 2
is executed; otherwise, line 3 is executed. Hence, BODY1 and BODY2 are the
blocks of code that are executed by checking for different sets of conditions
and BODY3 is the code that’s executed when none of the conditions are
executed. See Listing 5-4.

Listing 5-4. The ifelsel.m Program

1 J%Program to check if a

2 Jnumber is even or odd

3

4 X = 33;

5

6 if(rem(x,2) == 0)

7 printf("x is even\n");
8 elseif(rem(x,5) == 0)

9 printf("x is odd and divisible by 5\n");
10 else

11 printf("x is odd\n");
12 endif

146

CHAPTER 5 FUNCTIONS AND LOOPS
Executing ifelsel.myields:

1 >> ifelse1l
2 x is odd and divisible by 5

Atline 4, x is initialized as 33. Then, at line 6, the remainder of d is
checked. If it is zero, then line 7 is executed. Otherwise, line 8 is exezcuted
and the remainder of > is checked. If it is zero, then line 9 is executed. If
neither of the conditio?ls is satisfied, then line 11 is executed. Line 12 ends
the if-elseloop.

5.3 Functions

A function is code that can be called as and when required. Hence, it
can be defined separately, either in a separate file or within the body of
program. MATLAB presents several ways to define functions, which are
discussed in the following subsections.

5.3.1 The function Function

The definition of a function follows this syntax:

1 function [return value 1, return value 2, ...] =
name([argl, arg2,...])

2 body
endfunction

Here, the function keyword defines the object types as a function.
Then, a set of variables are defined that this function is expected to return.
Next comes an = operator, and then the name of the function. In this case,
it's called name. Name objects takes a set of arguments, which are objects
that the function defined. Then comes the main body of the function.

147

CHAPTER 5 FUNCTIONS AND LOOPS

The last part defines the end of the function. For example, you can write
a function to find x* — y* and assign the result to a variable named z, as
follows:

1 function y = fni(x,y)
y = X"2-y"2;
3 end

Save this as fn1.min the present working directory. Now go to the
MATLAB terminal and type the following:

>> fn1(5,1)
ans = 24
>> fn1(5,2)
ans = 21
>> fn1(5,3)
ans = 16

>> fn1(5,4)
ans =9

>> fn1(5,5)
ans = 0

O 00 N O U1 & W N -

=
(@]

You can see that the function named fn1 is performing the
computation x* — ¥* on the two input arguments for which it is defined.

It is a good practice to define the program as a group of function files
and call them in the master program stored as a script file. This modular
approach makes it easy to experiment with the idea and also makes it
easier to debug and test the code. A function can return more than two
values too. For example:

1 function[y1,y2,y3] = fn2(x,y)
2yl = xX"2-y"2;

3 y2 = X"2+y"2;

4 y3 = y2-yi;

5 end

148

CHAPTER 5 FUNCTIONS AND LOOPS

This gives the following result:

1 > [a,b,c] = fn2(5,2)
2 a=21

3 b=29

4 c =28

5 >> [a,b,c] = fn2(5,0)
6 a =25

7 b =25

8 ¢c=0

Functions can incorporate loops to regulate the repetitive tasks inside
the program. For example, a factorial of a number can be calculated using
the function given here:

1 function result = factorial(n)
2 if(n == 0)

3 result = 1;

4 return;

5 else

6 result = prod(1:n);

7 endif

8 endfunction

A function named factorial, which takes a number n as an argument,
calculates the product of the number with all its successive numbers.
When called from the MATLAB command line, the function yields the
following result.

>> factorial(50)
ans = 3.0414e+064
>> factorial(1)
ans =1

>> factorial(0)

Ui B W N R

149

CHAPTER 5 FUNCTIONS AND LOOPS

ans =1

>> factorial(100)

ans = 9.3326e+157

>> factorial(1000)

10 ans = NaN

11 >> factorial(-1)

12 error:factorial:N must all be non—negative integers

6
7
8
9

help NaNand help prod provide useful insights into the behavior of
these commands.

5.3.2 The inline Function

Functions can also be defined inline using the inline keyword, as follows:

>> f = inline("x"2+y");
>> (1,2)

ans = 3

>> f(10,10)

ans = 110

>> (0,2)

ans = 2

>

0O N O L1 W N R

Line 1 defines a function named f with two variables, x and y, to
calculate f(x, y) = x* + y. When called with values of these two variables, the
function outputs the calculated values.

5.3.3 Anonymous Functions

Anonymous functions are unnamed function objects defined in a program.
Their definition follows a simple syntax:

@(argument list) expression

150

CHAPTER 5
For example:

>> a = @(x) sin(x)*cos(x);
>> quad(a,0,1)

ans = 0.35404

>> quad(a,0,pi)

ans = 7.3031e—-017

>> quad(a,—pi,pi)

ans = 0

>> quad(a,—pi,2*pi)
ans = —2.8435e—016
>> quad(a,—2*pi,2*pi)
ans = 0

OW 60N O U1 B W N -

[N
R O

FUNCTIONS AND LOOPS

help quad tells us that the function quad evaluated the integration of a

function between two values. Hence, line 1 defines a function sin(x)cos(x),

whose integration is as follows.

1
Isin(x)cos(x)=0.35404

0

Isin(x)cos(x) =7.3031x107"
0
jsin(x)cos(x)zo

sin(x)cos(x)=-2.8435x10""°

2

Isin(x)cos(x)zo

-7

Hence, if you use the anonymous function definition, you do not need

to name a function.

151

CHAPTER 5 FUNCTIONS AND LOOPS

5.4 Summary

Defining functions is the key to modular programming. MATLAB presents
an elegant way to define and use functions, both inline and in separate
files. When combined with the ability to write functions inside a loop,
complex problems can be implemented in just a few lines of code. This
requires an artistic attitude while designing an algorithm, where functions
and loops are the paintbrushes that help you devise an elegant solution to
a given numerical problem.

152

CHAPTER 6

Numerical Computing
Formalism

6.1 Introduction

Numerical computation enables you to compute solutions to numerical
problems, provided you can frame them into a proper format. This
requires certain considerations. For example, if you digitize continuous
functions, then you are going to introduce certain errors due to the
sampling at a finite frequency. Hence, a very accurate result would require
very a fast sampling rate. When a large data set needs to be computed, it
becomes a computationally intensive and time consuming task. Also you
must understand that the numerical solutions are an approximation at
best, compared to analytical solutions. The onus of finding their physical
meaning and significance lies on you. The art of discarding solutions that
do not have meaning in real world scenarios is something that a scientist/
engineer develops over the years. Also, a computational device is only as
intelligent as its operator. The law of GIGO (garbage-in-garbage-out) is
followed very strictly in this domain.

This chapter attempts to explain some of the important steps you must
consider in order to solve a physical problem using numerical computations.
Defining a problem in the proper terms is just the first step. Making the right
model and then using the right method to solve (solver) the issue is the
difference between a naive and an experienced scientist/engineer.

© Sandeep Nagar 2017 153
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_6

CHAPTER6 NUMERICAL COMPUTING FORMALISM

6.2 Physical Problems

Everything in our physical world is governed by physical laws. Owing

to men and women of science who toiled under difficult circumstances

and came up with fine solutions to the things happening around us,

we obtained mathematical theories for physical laws. To test these
mathematical formalisms of physical laws, we use numerical computations.
If it yields the same results as that of a real experiment, they validate each
other. Numerical simulations can remove the need to do an experiment
altogether, provided you have a well tested mathematical formalism. For
example, nuclear powers of our times need not test nuclear bombs for real
any more. The data related to nuclear explosion, which was obtained during
real nuclear explosions, enables scientists to model these physical systems
quite accurately, thus eliminating the need to do real testing.

Apart from applications like simulating a real experiment, modeling
physical problems are good educational exercises. While modeling,
hands-on exercises enable students to explore the subject in depth and
give proper meaning to the topic under study. Solving numerical problems
and visualizing results makes the learning permanent and also elucidates
any flaws in the mathematical theory, which ultimately leads to new
discoveries.

6.3 Defining a Model

Modeling means writing equations for a physical system. As the name
suggests, an equation is about equating two sides. An equation is written
using an equals (=) sign, where terms on the left side are equal to terms on
the right side. The terms on either side of an equation can be numbers or

expressions. For example:

3x+4y+9z=10

154

CHAPTER6 NUMERICAL COMPUTING FORMALISM

This equation has the term 3x + 4y + 9z on the left hand side (LHS)
and the term 10 on the right hand side (RHS). Note that whereas LHS is an
algebraic term, RHS is a number.

Expressions are written using functions, which is simply a relationship
between two domains. Like f(x) = y is a relationship from y to x using the
rules of algebra. Mathematics has a rich library of functions, which you can
use to make expressions.

Choosing the proper functions depends on the problem. Some
functions describe some situations best. For example, the oscillatory
behavior can be described in a reasonable manner using trigonometric
functions like sin(x), cos(x), etc. Objects moving in straight lines can be
described well using linear equations like y = mx + ¢, where x is the present
position, m is the constant rate of change of x, and c is the offset position.
Objects moving in a curved fashion can be described by various non-linear
functions (where the power of the dependent variable is not 1).

In real life, you can have situations that are a mixture of these
scenarios. An object can oscillate and move in a curved fashion at the
same time. In that case, you write an expression using a mixture of
functions or find new functions that can explain the behavior of the object.
Veritying the functions is done by finding solutions to equations describing
the behavior and matching it with observations of the object. If they match
perfectly, you have a perfect solution. In most cases, an exact solution
might be difficult to obtain. In these cases, you get an “approximate”
solution. If the errors involved while obtaining an approximate solution
are within tolerable limits, the models can be acceptable.

As discussed, physical situations can be analytically solved by writing
mathematical expressions in terms of functions involving dependent
variables. The simplest problems have simple functions between
dependent variables with a single equation. There can be situations where
multiple equations are needed to explain a physical behavior. In case of
multiple equations being solved, the theory of the matrix comes in handy.

155

CHAPTER6 NUMERICAL COMPUTING FORMALISM

Suppose the following equations define the physical behavior of a

system:
—x+3y=4 (Equation 6-1)

2x—4y=-3 (Equation 6-2)

Then this system of two equations can be represented by a matrix

i

Now using matrix algebra, values of variables x and y can be found

equation, as follows:

such that they satisfy the equations. Those values are called roofts of these
equations. These roots are the point in 2D space (because there are two
dependent variables) where the system will find stability for that physical
problem. In this way, you can predict the behavior of system without
actually doing an experiment.

Mathematical concepts of differentiation and integration become very
important when you need to work with dynamic systems. When the system
is constantly changing the values of its dependent variables to produce
a scenario, it’s important to know the rate of change of these variables.
When these variables are independent of each other, you can use simple
derivatives to define their rate of change. When they are not independent
of each other, you must use partial derivatives for the same.

For example, Newton'’s second law of motion says that the rate of
change of velocity of an object is directly proportional to the force applied
on it. Mathematically:

Fa— (Equation 6-3)

156

CHAPTER6 NUMERICAL COMPUTING FORMALISM

The proportionality is turned into equality by substituting for a
constant of multiplication m such that:
dy

F=mx—- Equation 6-4
T (Equation 6-4)

If you know values or expressions for F, this equation can be solved
analytically and solutions can be found to this equation. But in some cases,
the analytical solution may be too difficult to obtain. In those cases, you
can digitize the system and find a numerical solution.

There are many methods to digitize and numerically solve a given
function. Programs used to implement a particular method to solve a
function numerically are called solvers. A lot of solvers exist to solve a
function. The choice of solver is critical to successfully obtain a solution.
For example, Equation 6-4 is a differential equation. It is a first order
ordinary differential equation. A number of solvers exist to solve such
problems, like Euler, Runge-Kutta, etc. The choice of the particular solver
depends on the accuracy of its solution, the time taken for obtaining a
solution, and the amount of memory used during the process. The last
point is especially important when memory is not an freely expendable
commodity, such as when you're using micro-computers with limited
memory storage.

The advantage of using MATLAB to perform numerical computations
lies in the fact that it has a very rich library of functions to perform the
various tasks required. The predefined functions have been optimized
for speed and accuracy (in some cases, accuracy can be predefined). This
enables you to rapidly prototype the problem instead of concentrating
on writing functions to do basic tasks and optimizing them for speed,
accuracy, and memory usage.

157

CHAPTER6 NUMERICAL COMPUTING FORMALISM

6.4 Example: Polynomials

The coefficients of a vector are defined as elements of a vector. In this
manner, a coefficient is defined for numerical computing. For example,
consider defining two arrays, p1 and p2, as shown:

1 > pl=1[1032]
2

3 pl=

4

5 1 0 3 2
6

7 > p2 =[3405]
8

9 p2 =

10

11 3 4 0 5

The corresponding polynomial for p1 is p,(s) = s* + 3s — 2 = 0 and for p2,
it’s p,(s) = 3s° + 45> — 5 = 0. See Figure 6-1.

158

CHAPTER6 NUMERICAL COMPUTING FORMALISM

3500

3000

2500

2000

1500

1000

500}

Figure 6-1. Plot for equation p,(s) = 3s*+ 4s* = 5=0

6.4.1 polyval()

Polynomials can be evaluated for a single value or multiple values using
the polyval() function. Consider the polynomials defined in p1 and p2.
Let’s calculate the values for p,(5) and p_{2}(-2).

1 > s =5

2

3 s =

4

55

6

7 >> polyval(pi,s)
8

159

CHAPTER6 NUMERICAL COMPUTING FORMALISM

9 ans =
10
11 142
12
13 >> s=2
14
15 s =
16
17 2
18
19 >> polyval(p2,s)
20
21 ans =
22
23 45

If a polynomial needs to be calculated on multiple values, say from 1
to 10 for p,, then an array 1:10 can be fed to the s variable and this can be
used in the polyval() function.

1 >> s =1:10,

2 >> polyval(p2,s)

3

4 ans =

5

6 12 45 122 261 480 797
1230 1797 2516 3405

This facility can be used to plot polynomials easily. The plot()
command can be fed s and polyval() output as the x and y axes to
visualize a plot.

160

CHAPTER6 NUMERICAL COMPUTING FORMALISM

6.4.2 roots()

The roots of a polynomial are the numerical values where the evaluated
polynomial is valued at zero. Roots can be found easily using the roots()
function. Here’s an example using the previously defined polynomials,
pland p2.

1 > p1

OW 60N O U1 B W N

[=Y
w N R O
w
S
o
vl

>> roots(p1)

[
(IS

ans =

=
()]

0.2980 + 1.80731
0.2980 — 1.80731
—0.5961 + 0.00001

NN R R R
R O W

>> roots(p2)

NN
w N

ans =

)
~

161

CHAPTER6 NUMERICAL COMPUTING FORMALISM

25 —1.8307 + 0.00001
26 0.2487 + 0.92121
27 0.2487 — 0.92121
28

29 >> polyval(pi,roots(p1))
30

31 ans =

32

33 1.0e—14*

34

35 —-0.1776 — 0.27201
36 —0.1776 + 0.27201
37 0.0888 + 0.00001
38

39 >> polyval(p2,roots(p2))
40

41 ans =

42

43 1.0e—13%*

44

45 —0.2753 + 0.00001
46 —0.0089 — 0.0111i
47 -0.0089 + 0.01111

As per the definition of a root, the polynomial should be valued at zero
at its roots, but the value for roots(p1,roots(p1)) is not zero. Instead, it’s
a very small number in the order of 107 This is due to errors introduced
in the numerical approximations for calculating the roots.

162

CHAPTER6 NUMERICAL COMPUTING FORMALISM

6.4.3 Addition and Subtraction of Polynomials

Two polynomials are added by adding their coefficients. Since they are
defined as arrays in MATLAB, polynomial addition and subtraction is
simply an element-wise operation.

>> pl+p2

O 00N O L1 B W N R
S
S
w
~

>> p1-p2
ans =

10

11 -2 -4 3 -3

This effectively means that:

p.(s)=s"+3s—2=0 (Equation 6-5)
p,(s)=3s>+4s>-5=0 (Equation 6-6)
p.(s)+p,(s)=4s’+4s"+35+7 (Equation 6-7)
p,(s)-p,(s)=—-2s"—4s*+3-3 (Equation 6-8)

6.4.4 Polynomial Multiplication

The product of two polynomials can be found using a convolution
operation, which is provided using the conv() function in MATLAB.

163

CHAPTER6 NUMERICAL COMPUTING FORMALISM

1 > p1

2

3 p1-

4

5 1 0 3 2

6

7 > p2

8

9 p2-=

10

1 3 4 0 5

12

13 >> conv(p1,p2)

14

15 ans =

16

17 3 4 9 23 8 15 10
p(s)=s"+3s-2=0 (Equation 6-9)
p,(s)=3s>+4s>-5=0 (Equation 6-10)

_ a6 5 4 3 2 —
P(a)xp,(a)=3s"+4s"+9s" +23s° +8s* +15x+10=0 (Equation 6-11)

6.4.5 Polynomial Division

Polynomial division is performed by using deconvolving operations, which
are provided by the deconv() function. It gives two outputs—a quotient
and a remainder.

164

O 60N O U1 &~ W N P

W N NN NNNNNNNIERIERIERERERLRPRPR PR R R
O ©W O ~N O U WN PR O W OoOLwNO U DM WN LB O

CHAPTER 6

>> pl

0 —1.3333 3.0000

>> [q,r] = deconv(p2,p1)

q:

NUMERICAL COMPUTING FORMALISM

0.3333

165

CHAPTER6 NUMERICAL COMPUTING FORMALISM

31 1 =
32
33 0 4 -9 -1

This means that if:
p.(s)=s"+3s-2=0 (Equation 6-12)

p,(s)=3s>+4s>-5=0 (Equation 6-13)
Then:

P, 3=0.333,r=—1.33335* +35+0.3333 (Equation 6-14)
P

&—>q:3,r:—432 -95-1=0 (Equation 6-15)

h

6.4.6 Polynomial Differentiation

Polynomial differentiation can be accomplished using the polyder ()
function. For example, say you have a polynomial y(x) = x* — 2x*> + 4x — 5=0.
That means:

YW 3 _4x14-0
dx

This can be calculated by MATLAB as follows.

1 > vy=[1-24-5]
2

3 y-=

4

5 1 -2 4 -5
6

166

CHAPTER6 NUMERICAL COMPUTING FORMALISM

7 >> dydx = polyder(y)
8

9 dydx =

10

11 3 —4 4

6.4.7 Polynomial Integration

Just as with differentiation, you can define integration of polynomials
using the polyint () function. For example, say you have a polynomial
y(x) =x* — 2x*> + 4x — 5=0. Then:

[y(x)dx=0.25x"~0.6667x° +2x* ~5x =0
>»>> y = [1-24 -5]
y =
2 a4 s

>> integration =vpolyint(y)

O 0o N O U1 B W N B
[N

integrationv=

[N
» O

0.2500 —0.6667 2.0000 —5.0000 0

6.4.8 Polynomial Curve Fitting

Suppose you are given some data and need to find a polynomial that fits
the data. This task can be performed using the polyfit() function. For
example, suppose you want to fit the data given here:

167

CHAPTER6 NUMERICAL COMPUTING FORMALISM

X 1 2 3 4 5 6
y 10 11 21 2 3 7
1 > x =[1,2,3,4,5,6]

2

3 X =

4

5 1 2 3 4 5 6

6

7 >y = [10,11,21,2,3,7]

8

9 y-=

10

11 10 11 21 2 3 7

12

13 >> polyfit(x,y,2)

14

15 ans =

16

17 -0.3750 0.9679 11.3000

18

19 >> polyfit(x,y,3)

20

21 ans =

22

23 1.0833 —11.7500 35.3095 —16.0000

Second and third degree polynomials that fit the data are —0.375x* +
0.9679x + 11.3 = 0 and 1.0833x® — 11.75x* + 35.3095x — 16 = 0, respectively.

168

CHAPTER6 NUMERICAL COMPUTING FORMALISM

6.5 Summary

Almost all branches of science and engineering require you to perform
numerical computations. MATLAB is one of the alternatives for doing so.
MATLAB has a library of optimized functions for general computation. It
also has a variety of packages that perform specialized jobs. This makes
it an ideal choice for prototyping a numerical computation problem
efficiently. This chapter summarized various issues related to errors
generated during numerical computation and various methods to
obtain their value or order of magnitude. These quantities are important
to measure, since in real life, you will need these values to define the
accuracy of the final product.

169

CHAPTER 7

Approximate
answers in numerical
computation

7.1 Numerical Approximations

In the course of scientific investigation, finding exact answers may not

be possible at times. Instead of devoting a lot of effort trying to find an
exact answer by solving the problem analytically, another alternative is

to develop methods to produce approximate answers. This is particularly
true for solutions involving irrational numbers like pi. You can choose the
number of significant digits to be used with pi and determine the accuracy
of the result.

The degree of accuracy required always depends on the targeted
application. For example, when measuring the length of a building, we
don’t need the answer to be accurate to the length of an atom (A). When
measuring a person’s body temperature, we don’t need to be accurate to
more than two decimal places for most applications. In the era of faster
and more efficient computers, higher accuracies of computations can
be calculated by investing more time and memory storage, whenever
required. But this must be used judiciously.

© Sandeep Nagar 2017 171
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_7

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

7.2 Tolerance

When an approximated answer or a set of approximated answers is
available to the user, one answer must be chosen depending on the
requirements of the application. One of the ways to make this decision is
to define a folerance limit. Tolerance can be defined as a single number
or a range of numbers (having a maximum and a minimum). The rules to
define tolerance limits are entirely application dependent. For example,
while measuring human height, we could define the tolerance to be 1
centimeter but at the same time, while measuring the diameter of a human
hair, we might like to be more accurate, by going down to 1 micron. At the
same time, while measuring the size of a red blood cell, we would need
to go further down, to 1 nm (nanometer). Whereas the decision to define
tolerance is simpler when measuring sizes—i.e., tolerance is one or two
orders of magnitude smaller than the size of the object—it may not be a
straightforward task in other applications. For example, measuring land
when constructing a building would require a tolerance of a fraction of
meters, whereas positioning a screw in a hole requires an accuracy within
a fraction of a centimeter.

In mathematical terms, if € is the tolerance limit, x represents the real
values, and x" represents the approximated value:

|x—x*|£e (Equation 7-1)

In this case, the absolute error (e,) and the relative error (e,) in the
measurements are given by:

(Equation 7-2)

e =—— (Equation 7-3)

172

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Hence, if absolute error is less than or equal to the tolerance limit,
the approximate solution or set of solutions is acceptable. However, if x is
known, why do we need to calculate an approximate solution?

When solutions of physical systems are unknown, x" can be calculated
and then be compared to the physical measurements. The physical
measurements constitute the value of x in this case. Then, by using Equation 7-2,
we can calculate errors. Tolerance can then be determined using the fact that
some x will differ from x insignificantly, i.e., the errors don’t matter much.

7.3 Taylor Series

Most mathematical functions require many complex operators—other
than the simpler ones like +, —, x, and +—to be computed. However, a
polynomial requires only these basic ones to be computed. Hence, if other
mathematical functions can be represented in terms of polynomials, they
can be approximated with relative ease.

A polynomial is defined as follows:

p(x)=a,+ax+a,x" +-+a,x" (Equation 7-4)

where a, € R (The as are called the coefficients). For the largest n that
corresponds to a, # 0, the degree of polynomial is defined to be n.

7.4 Taylor Polynomials

Taylor’s theorem explains how to define a great many mathematical
functions, which can be defined as polynomials and are called Taylor
polynomials. The accuracy of the final answer shown by a Taylor
polynomial depends on its degree, i.e., the number of terms defined in
the polynomial. This provides a convenient method to customize the
polynomial based on the desired tolerance.

173

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Suppose a mathematical function f(x) needs to be approximated

around x = a. A Taylor Polynomial p,(x) of degree n centered at x = a is a

polynomial (of degree at-most n) that has the same value as n” derivative

atx=a.

Here’s how to derive the formula for a Taylor Polynomial:

1. The zero order polynomial p,(x) has degrees of at

most zero.

po(x) must be a constant function (a horizontal line
function, graphically).

Approximating around x = a: p,(x) = fla).

2. The first order polynomial p,(x) has a degree at

most of 1.

174

p1(x) must satisfy two conditions:
n(a)=/(a)

and
pi(a)=fi(a)

p1(x) must be of the form p,(x) = mx + ¢ (a straight
line with slope m and c as the intercept).

Since p'(a)=f'(a) so m=f'(a)
So we can write c= f(a)-f'(a)a

Substituting back the values of m and ¢, we get

p(x)=f(a)x+f(a)-f"(a)a=f(a)(x~a)

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

3. Carrying forward the same arguments in a similar
fashion, you can write the general form of the Taylor
Polynomial of order n as:

p.(x)=f(a)+ £ (a)(x—a)+ f"(a)(x—a)

+ @ x-a) s (@) - a)

which can be rewritten in sigma notation as follows:

pn(x)zkz(;%fk(a)(x—a)lC (Equation 7-5)

This definition requires that the polynomial must have » derivatives
atx=a.

The Maclaurin Series is simply the Taylor Series defined for a = 0. You
can use algebraic manipulations of the Taylor/Maclaurin Series for basic
functions like sin(x), cos(x), and e * to define other complicated functions
in their series forms. These can be performed by simply using algebraic
operators in addition to substitutions, derivatives, and integrations. This
mathematical convenience comes in handy in formulating approximate

solutions for physical systems defined by complicated functions.

7.4.1 Maclaurin Series for sin(x) and cos(x)

To check Maclaurin expansion, let’s start with the trigonometric functions
sin(x) and cos(x). Both are continuous and differentiable in the range given
by any set of real numbers. Hence their differentials exist in the same. They
can be expanded in the form of a Maclaurin Series as follows.

Suppose f(x) = sin(x) needs to be approximated at a = 0.

175

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Using Table 7-1 and Equation 7.5 results in this equation:

. 1, 1 :
sm(x)zx——'x +=x"——x"+—x" -t —x (Equation 7-6)
! n!

Table 7-1. Calculating Coefficients for
the Maclaurin Series of sin(x) at x= 0

n f(x) f(a)
0 sin(x) 0

1 cos(x) 1

0 —sin(x) 0

1 —C0S(X) -1
0 sin(x) 0

Similarly for f(x) = cos(x) approximated at a = 0, using Table 7-2 and

Equation 7-5 results in this equation:

176

cos(x)=1-—+—x"——x"+—x" -t —x (Equation 7-7)

Table 7-2. Calculating Coefficients for the
Maclaurin Series of cos(x) at x = 0

n f(x) f(a)
0 cos(X) 1

1 —Sin(x) 0

0 —C0S(X) -1
1 sin(x) 0

0 cos(X) 1

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Choosing Tolerance While Calculating cos(x)

The program MaclaurinCos.min Listing 7-1 shows how error is reduced
by many orders of magnitude, as more and more terms of the Taylor Series
are included for calculating cos(15°). See Figure 7-1.

Listing 7-1. The MaclaurinCos.m Program

1 %A program to show usage of Taylor Series expansion of cos(x)
2 %Suppose we wish to calculate cos(15) where argument of cos
function is given in degrees

3

4 x = 15*pi/180; %converts 15 degrees into radian

5

6 format long %show results in long format having a lot of
decimal places for numbers

7

8 %Calculating each term of Taylor Series

10 p1 = 1;

11 p2 = x(2)/2;

12 p4 = x"(4)/factorial(4);

13 p6 = x*(6)/factorial(6);

14 p8 = x"(8)/factorial(8);

15 p10 = x*(10)/factorial(10);

16

17 approx_1= pl-p2; %approximate values using two terms

18 approx_2= pl-—p2+p4; %approximate values using three terms

19 approx_3= pl—p2+p4—pb6; %approximate values using four terms

20 approx_4= pl—p2+p4—pb+p8; %approximate values using five
terms

177

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

21

22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

178

approx_5= pl—p2+p4—p6+p8—p10; %approximate values using
six terms

real value = cos(x); %calculating the real value to find
errors

%calculation of final errors

error 1 = abs(real value — approx 1);
error 2 = abs(real value — approx 2);
error_3 = abs(real value — approx_3);
error 4 = abs(real value — approx 4);
error 5 = abs(real value — approx 5);

%making an error vector for plotting
error = [error 1, error 2, error 3, error 4, error 5];
%plotting error versus number of terms

figure(1)

semilogy(error, '*r-")

title('Variation of error in calculating cos(15°{0}) using
Taylor Series')

xlabel('Number of terms on Taylor Series')
ylabel('log(error)")

%plotting cos(x) and its various approximations

t = 0:0.001:20;
%length(t)

50
51
52
53
54
55
56
57
58
59
60
61

62
63

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

figure(2)

y = cos(t);

subplot(2,3,1)

plot(t,y,t,ones(length(t)))

subplot(2,3,2)

plot(t,y,t,(1-t."2/2))

subplot(2,3,3)

plot(t,y,t,(1-t."2/2+t."4/factorial(4)))

subplot(2,3,4)
plot(t,y,t,(1-t."2/2+t."4/factorial(4)—t."6/factorial(6)))
subplot(2,3,5)
plot(t,y,t,(1—t."2/2+t."4/factorial(4)—t."6/factorial(6)+t."8/
factorial(8)))

subplot(2,3,6)
plot(t,y,t,(1—t."2/2+t."4/factorial(4)—t."6/factorial(6)+t."8/
factorial (8)-t . " 10 / factorial (10)))

) Variation of error in calculating cos(15°) using Taylor Series
10 T r T r T - r

1074
106} N

108}

log(error)

10710+ ~
1012} N

10—14 L

10-15 1 1 1 L 1 1 I 5
1 1.5 2 25 3 3.5 4 4.5 5

Number of terms on Taylor Series

Figure 7-1. Variation of logarithmic error in the number of terms
used to define a Maclaurin Series for cos(x)

179

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

As seen from Figure 7-1, you can now choose to insert certain numbers
of terms as per the given tolerance for calculating cos(x). To make a
judicious decision about the number of terms, you must inspect the
function in a similar fashion (as was done by MaclaurinCos.m). Inserting a
lot of terms while demanding less accuracy is a waste of time, energy, and
resources (both human and computational).

Instead of expanding around one particular point, the series can
be defined for a set of points. The Octave program called CosApprox.m
attempts the same, as shown in Listing 7-2. See Figure 7-2.

Listing 7-2. The CosApprox.m Program

1 %plotting cos(x) and its various approximations
2
3 t = —3%pi:pi/10:3*pi; %defining an array of points for

Xx—axis
4 1 = length(t); %to be used for defining pi
5 y = cos(t); %real values of cosine function
6
7 %defining various terms of Maclaurin Series
8 a1l = ones(l); %only first term
9 a2 = (1-t."2/2); %first and second term
10 a3 = (a2+t."4/factorial(4)); %first, second and third term
11 a4 = (a3-t."6/factorial(6)); %first, second, third and

fourth term

12 a5 = (a4+t."8/factorial(8)); %first, second, third, fourth
and fifth term

13 a6 = (a5-t."10/factorial(10)); %first, second, third,
fourth, fifth and sixth term

14

15 %plotting fitting of cos(x) with increasing number of terms

16 figure(1)

17

180

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

subplot(3,2,1)

plot(t,y, *r-',t,a1, "*b-")
axis([—3*pi 3*pi —1.2 1.2])
title('fitting p_{1} to cos(x)")
xlabel('t")

ylabel('cos(t)")

subplot(3,2,2)
plot(t,y, " '*r-',t,a2, *b-")
axis([—-3*pi 3*pi —-1.2 1.2])
title('fitting p_{2} to cos(x)")
xlabel('t")

ylabel('cos(t)")

subplot(3,2,3)

plot(t,y, '*r-',t,a3, "*b-")
axis([—-3*pi 3*pi —-1.2 1.2])
title('fitting p_{3} to cos(x)")
xlabel('t")

ylabel('cos(t)")

subplot(3,2,4)

plot(t,y, '*r-',t,a4, "*b-")
axis([—3*pi 3*pi —1.2 1.2])
title('fitting p_{4} to cos(x)")
xlabel('t")

ylabel('cos(t)")

subplot(3,2,5)
plot(t,y, '*r-',t,as5, "*b-")
axis([—3*pi 3*pi —1.2 1.2])

181

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

49 title('fitting p_{5} to cos(x)")
50 xlabel('t")

51 ylabel('cos(t)")

52

53 subplot(3,2,6)

54 plot(t,y, *r—',t,a6, *b—")

55 axis([—3*pi 3*pi —-1.2 1.2])

56 title('fitting p {6} to cos(x)")
57 xlabel('t")

58 ylabel('cos(t)')

fitting p, to cos(x fitting p, to cos(x)

3 3

8 8

g g

8 8
fitting pg to cos(x)

= = &Y i

: : V{%ﬁ
- ' 5

t t

Figure 7-2. Fitting of Maclaurin Series with different numbers of
terms to cos(x)

182

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

As you can see from Figure 7-2, as higher orders of terms are used to
describe cos(x), the error reduces by fitting with increasing accuracy. For
ideal fitting, very large numbers of terms must be used to describe the
approximated cos (x) function. The choice of tolerance is user defined.
Depending on the tolerance value, a particular number of terms can be
determined.

7.4.2 The Maclaurin Series for e*

Let’s explore the concept of errors using another example of the Maclaurin
Series—for e*:

2 3 4
a

a .
el =l+a+—+24+2 4. (Equation 7-8)
20 3! 4!
For programming purposes, it’s easier to derive an inherent
relationship between the terms of the Maclaurin Series. The first terms is
the number 1, but afterward, each term can be obtained by multiplying the

previous terms by this equation:
a .
o (Equation 7-9)

where n represents the n term. This fact is used in the MaclaurinExp.m
code (see Listing 7-3), where the first term is defined at line number 5
in variable expVal and then this variable is added to the currentTerm
variable, which is simply calculated using the formula in Equation 7-9.

Listing 7-3. The MaclaurinExp.m Program

1 7%Maclaurin Series for exp(0.1)

2

3 n =5; %Number of terms

4 a = 0.1; %Functional value of x for e"(x)

183

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

5 expVal = 1.0;

6 currentTerm = 1.0;

7 for i=1:n

8 currentTerm = currentTerm*a/i;
9 expVal = expVal+currentTerm
10 endfor
11

12 trueVal = exp(0.1);
13 error = abs(trueVal —expVal)

The output is displayed as follows:

1 >> MaclaurinExp

2 expVal = 1.1000

3 expVal = 1.1050

4 expVal = 1.1052

5 expVal = 1.1052

6 expVal = 1.1052

7 error = 1.4090e —09

8 >> format long

9 >> MaclaurinExp

10 expVal = 1.10000000000000
11 expVal = 1.10500000000000
12 expVal = 1.10516666666667
13 expVal = 1.10517083333333
14 expVal = 1.10517091666667
15 error = 1.40898115397192e—09

Notice that while the numeric display is usually set for just four
numerical values after the decimal point, the format long command
increases this accuracy (the format short command returns to the default
behavior). Thus, you can clearly observe that by increasing the number of

184

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

terms, the error is reduced drastically as it approaches the true value and
you will achieve an error of the order 10~ in just five terms.

If you want to store all the calculated values in the expVal variable, you
must define it as a vector, as shown in Listing 7-4 (the MaclaurinExp1.m
program).

Listing 7-4. The MaclaurinExpl.m Program

1 %Maclaurin Series for exp(0.1)

2

3 n =5; %Number of terms

4 a = 0.1; %Functional value of x fore™(x)
5 expVal = 1.0;

6 currentTerm = 1.0;

7 for i =1:n

8 currentTerm = currentTerm*a/i;

9 expVal(i+1) = expVal(i)+currentTerm;
10 endfor

11

12 trueVal = exp(0.1);

13 error = abs(trueVal—expVal)

Here, line 9 dictates that the (i + 1)” is modified as per Equation 7-9,
using the previous term, i.e., the (i) term. Also notice that printing line
9 has been suppressed by using the ; operator. The output is shown as
follows:

1 >> MaclaurinExp1

2 error =

3

4 1.0517e—01 5.1709e—-03 1.7092e—04 4.2514e—06
8.4742e—08 1.4090e—09

>>>plot(error, 'r*-")

v

185

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Using the plot(error, 'r*-"), you can generate graphs where error

values are plotted (the r*- argument shows red stars connected with

rules). This is shown in Figure 7-3.

0.12 T T T T

0.1

008 \

0.06 | \

0.04 - \

0.02 [\

-

. 4
1 2 3 4 5

6

Figure 7-3. Error in calculating e®! with an increasing number of

terms

Since the error drops by orders of magnitude with each new term, the

effect can be best seen in a logarithmic plot. This can be generated using

the semilogy(error, 'r*-') command. Figure 7-4 will be generated.

186

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

1e+0 T T T . T .
le-1f * 3
le-2fF E
1e-3f 1
le-4f E
1e-5f 1
1e-6F 1
le-7¢ 1
1e-8F 7
1e-9f 1

1e-10F 1

le-11y E

1e-12F \ 3

1e-13F E

le-14f 7

1e-15F I 1

1e-16 : ! ' ! ! :

0 2 4 6 8 10 12 14

Figure 7-4. Error in calculating e *' with an increasing number of terms

It seems that beyond 10 terms, the error flattens out. But you will see
that this is an erroneous result, as this graph will depend on the least count
of your computing machine.

How Many Number of Terms?

You can observe from Figure 7-4 that, by increasing the number of terms,
you reduce the error by two orders of magnitude when calculating e*'.
But does this trend mean that to achieve true values, you must include
an infinite number of terms? After all, each time you add a new term, you
invest time and energy into the computation. In general, the Maclaurin
Series has the accuracy of a™! when n terms are used:

2 3 4 n

a __ a_ £ . =2 a_ n+l .
e —1+a+2!+3!+4!+...+ n!+0(a) (Equation 7-10)

187

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Analytically, you can choose 7 to be any large number, but this cannot
be done on a computing machine. The reason for this is explored next.

Figure 7-4 shows one interesting fact that beyond 10 terms, the error
no longer changes by orders of magnitude and instead just flattens out.
This is a misleading result. Each computing machine has limits for storing
the smallest floating point number. This can be obtained by issuing the
eps command. The system on which the program has been run shows the
following output.

1 >> error(9:12)

2 ans =

3

4 3.10862446895044e—15 4.44089209850063e—16
4.44089209850063e—16 4.44089209850063e—16

5 >>> eps

6 ans = 2.22044604925031e—-16

You can now see that, when error values are very close to eps values,
they cannot be stored reliably anymore. The command error(9:12)
outputs a similar viewpoint. It can be seen that while the ninth term yields
an error of the order of 1073, the eleventh term onward have similar values
of the order 107'°. This is done so that the computer avoids crashing the
calculation by going beyond its limits defined by the eps value.

The eps command gives the machine precision. The help('eps")
command shows the documentation for the eps command and its usage.
Technically, eps is the relative spacing between any two adjacent numbers
in the machine’s floating point system, i.e., computational machines’ least
count. This number is obviously system dependent as you can devise
specialized hardware where machine precision can be enhanced. In
fact, this is done when increased precision matters, such as for missile
guidance, space navigation, etc. On machines that support IEEE floating
point arithmetic, eps is approximately 2.2204 x 10~'¢ for double precision
and 1.1921 x 1077 for single precision.

188

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

Itis interesting to note that 2 ~2.2204x107'*. This essentially
signifies that the double precision mode of software can store 52 digits
after the decimal point. You learn more about this in the “Computational
Errors” section of this chapter, which discusses the machine precision
aspect of numerical computations and the importance of knowing which
precision you need to work on for a particular numerical problem.

The realmax, realmin, intmax, and intmin commands show the
maximum and minimum values of real numbers and integers on the

particular machine where the software is installed.

>> realmax

ans = 1.79769313486232e+308
>> intmax

ans = 2147483647

>> realmin

ans = 2.22507385850720e—308
>> intmin

ans = —2147483648

0O N O V1 AW N R

It is useful to know these numbers, as the numbers beyond these limits
will be prone to error because of machine precision.

7.5 Computational Errors

Up until now, you have read about the inherent errors that are due to the
inclusion of a certain number of terms while calculating a mathematical
function. There is, in fact, another kind of error, which is introduced due to
the fact that computers can store only numbers of finite lengths.

189

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

7.5.1 Significant Digits

The concept of significant digits plays an important role here. If computers
can store all the significant digits of the final answer, the errors become
irrelevant. Otherwise, it is important to identify them and, if possible,
rectify them when reporting a final answer. For example, while dealing
with pi, if only three significant digits are desired, this can be stored easily
on any low-end computing solution.

Computers can store numbers as floating point objects. A floating
point object stores a number as follows:

tdd,...d xp° (Equation 7-11)
1772 s

Where d,=0,1,2...-1 but d, #0 and m<e<M where mel and
Mel".
Three parts of a floating point number are:

e Sign (1)
e Mantissa (d\d, ... d)
o Exponent (/)

In IEEE double precision roundoff, MATLAB uses binary arithmetic

where:
. B=2
e §=53
e m=-1074
e M=+1023

Since humans are used to decimal arithmetic systems, these binary
numbers are converted to decimal numbers for reporting purposes. It is
important to understand the key point that all internal calculations are
done in binary form but input and output for humans are fed in decimal

190

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

form. The rounding-off error due to conversion is given by the unit
roundoff, u, which is the maximum relative error while approximating a
real number as a floating point number.

MATLAB can handle numbers with absolute values from 27'°* =107**
and 2% =10**® with a unit roundoff of u=2""=107"°.

7.6 Challenges in Real Number to Floating
Point Number Conversion

A real number x can be stored in floating point representation given by
Equation 7-11 as:

x=tdd,..dd,,,...x10° (Equation 7-12)

sTUSHL

Now note that s = 53, but the previous description does not restrict
representation of a floating point number. Its storage is, however, an
altogether different game. When it is stored, the number is rounded off and
stored as per the guidelines, i.e., s = 53.

7.6.1 Overflow

From Equations 7-11 and 7-12, if e > M, computation is said to have
overflowed. That means a number bigger than possible has been presented
and hence the storage container has overflowed. In this case, MATLAB
produces Inf or -Inf as the answer, which represents the fact that the
answer is a very large number.

The following exercise, performed in a MATLAB terminal, explains
the process clearly. Inf is displayed as an answer when €900 is attempted.
When this number is divided by a negative number, -Inf is displayed,
signifying an overflow while storing a negative number. When Inf-Inf is
attempted, NaN (which stands for Not a Number) is displayed, signifying
that the large numbers cannot produce a result that’s meaningful.

191

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

192

>> format long
>> exp(50)

ans =
5.184705528587072e+21
>> exp(100)

ans =
2.688117141816136e+43
>> exp(500)

ans =
1.403592217852837e+217
>> exp(700)

ans =
1.014232054735005e+304
>> exp(900)

ans =

Inf

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

32 >> exp(900)/-2

33

34 ans =

35

36 —Inf

37

38 >> exp(900)—exp(900)
39

40 ans =

41

42 NaN

7.6.2 Underflow

If e < m, then underflow is said to have occurred. Octave represents

an underflow by showing zero and the answer. It would seem that
underflow is not serious, but consider the fact that, as per basic rules of
exponentiation:

When you perform the same calculations for numbers representing
overflow and underflow, Octave has to perform Inf X 0, which results in
NaN. This is demonstrated in the following example:

>> exp(900)*exp(—900)
ans =
NaN

>> exp(900)

0O N O L1 W N R

193

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

9 ans =

10

11 Inf

12

13 >> exp(—900)
14

15 ans =

16

17 0

7.7 Actual Conversions of Real Numbers
to Floating Point Numbers

After look at the two extreme cases, overflow and underflow, you need to
understand the real number to floating point number conversion process.
Recall from Equations 7-11 and 7-12 that a real number can be stored with
s significant digits, as follows:

tdd,...d xp°
whereas it can be written in floating point notation (for base 10) as follows:

x=tdd,..dd,,..x10°

sTUs+L

There are two ways to achieve the conversion: using the method of
truncation and using the method of rounding off. The method of truncation
will simply discard all digits after s, i.e., it will produce the following:

x=xdd,...d x10° (Equation 7-13)

194

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

On the other hand, the method of rounding off recommends the
following process:

1. If Ssac 5, then perform truncation and retain the
sign of x.

2. If Ssv > 5, then d . is incremented. Then truncation
is performed and retain the sign of x.

This seemingly simple scheme has a flaw. Suppose for s = 4, you need
to round off 2.9345. The answer would be 2.934, i.e., last digit 5 is simply
discarded. In a similar fashion, when 2.9355 is rounded off, the answer can
be written as 2.936, where the last digit is discarded and the last significant
digit is incremented. In both cases, only one digit changed. But suppose
you need to round off 2.9999. In this case, the answer comes out to be
3.000, where four numeral values changed.

7.8 Alternatives to MATLAB

With growing computational power, advances in numerical computers,
and the dropping prices of computational resources, MATLAB has become
the language of engineering. With challenges posed from open source
alternatives like Scilab [1], Octave [2], and Python [3], it now needs to
innovate in new dimensions to remain relevant, both commercially and
academically. My books on Octave, Scilab, and Python (available on
Amazon [4, 5, 6]) run parallel with the contents of this book for easier
comparison [7]. I highly recommended that you study all these options so
you can make the best decision for your needs.

195

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

7.9 Summary

It should be clear now that performing mathematical modeling of physical
systems using numerical computation does not mean merely entering
input and getting out some output. This must be done judiciously. The very
act of performing calculations on a discrete system having a finite level

for computation introduces errors. These errors must be mentioned while
presenting results so that they can be cross-checked by other investigators.
But despite the fact that numerical computations are tedious to code and
they introduce error, they remain tremendously popular among scientists.
This is because modern computers offer greater speeds of calculation

and analytical solutions to most of the physical world’s problems, and
these calculations remain too tedious to be done by humans. This trend is
expected to continue in the near future.

7.10 Bibliography

[1] Sandeep Nagar. Introduction to Scilab: For Engineers
and Scientists, volume 1 of 1. Self-Published,
2 edition, 1 2016.

[2] Sandeep Nagar. Introduction to Octave: For Engineers
and Scientists, volume 1 of 1. Self-Published,
2 edition, 1 2016.

[3] Sandeep Nagar. Introduction to Python for Engineers
and Scientists: Open Source Solutions for Numerical
Computation, volume 1 of 1. Self-Published,

2 edition, 1 2016.

[4] https://www.amazon.com/dp/1520158106

196

https://www.amazon.com/dp/1520158106

CHAPTER 7 APPROXIMATE ANSWERS IN NUMERICAL COMPUTATION

[5] https://www.amazon.com/dp/1520153686
[6] https://www.amazon.com/dp/152015111X

[7] Sai K Popuri, Andrew M Raim, Matthew W Brewster,
and Matthias K Gobbert. A comparative evaluation of
matlab, octave, freemat, scilab, and r on tara. Technical
report, Technical Report HPCF-2012-7, UMBC High
Performance Computing Facility, University of
Maryland, Baltimore County, 2012.

197

https://www.amazon.com/dp/1520153686
https://www.amazon.com/dp/152015111X

CHAPTER 8

Symbolic
Computation

8.1 Introduction

Until now, we have been dealing with numeric computation where
variables store numeric values. In Chapter 7, you learned that numerical
computation involves working with approximate solutions. On the other
hand, an analytical solution is not an approximation since one uses
symbols rather than numbers. MATLAB provides the means to perform
symbolic computations, too.

8.2 Defining a Symbolic Variable

The keyword syms is used to define single or multiple symbolic variable(s).
The key feature of a symbolic variable is that it just stores a symbol to
perform symbolic calculations.

1 >> syms Xy z
2 >

After executing the command, inspect the Workspace window
(see Figure 8-1) and note that three new variables—X, y, and z—have been
created.

© Sandeep Nagar 2017 199
S. Nagar, Introduction to MATLAB for Engineers and Scientists,
https://doi.org/10.1007/978-1-4842-3189-0_8

CHAPTER 8 SYMBOLIC COMPUTATION

Name 4 Value

(@] x Ix1 sym ®
@] y Ix1 sym

€] z Ix1 sym

Figure 8-1. New symbolic variables appearing in the workspace

8.3 Defining a Symbolic Equation
Once the variables have been defined, you can define an equation:
z=x"+y (Equation 8-1)

using these variables as follows:

1 >z = X"2+y
2 z =
3 X2+y

In the present example, z was predefined as a symbolic variable. The
output variable is created by MATLAB and becomes a symbolic variable by
default. Its inputs have been defined as symbolic variables. For example,
suppose you want to define this equation:

a=x*+y*+z (Equation 8-2)

This results in the creation of a new symbolic variable (which can be
verified by checking the Workspace window). The following MATLAB code
performs this task:

200

CHAPTER 8 SYMBOLIC COMPUTATION

>> syms X y z
>> a = X3+y"2+z
ad =

B W N R

X3 +y2+z

8.4 Performing Symbolic Computations

Symbolic computations are same as what we are used to doing by hand on
paper. You define a variable and use mathematical rules of algebra as well
as calculus to perform calculations. For example, two roots (r, and r,) of a
quadratic equation:

=ax’+bx+c (Equation 8-3)
y q

can be written as follows:

_ —b++b* —4ac

2a

:—b—\/b2—4ac

2a

(Equation 8-4)

1

(Equation 8-5)

h

This can be performed using the following MATLAB code:

>> syms a b ¢ x

>> y = a*¥(x"2)+(b*x)+c

y =

a*x"2 + b*x + ¢

>> solve(y)

ans =

—(b + (b"2 — 4*a*c)~(1/2))/(2*a)
—(b — (b"2 — 4*a*c)"(1/2))/(2*a)

0O N O U1 W N

201

CHAPTER 8 SYMBOLIC COMPUTATION

Similarly, a symbolic mathematical expression can be integrated and
differentiated as follows:

>> syms a b ¢ x

>> y = a*(x"2)+(b*x)+c

y =

a*x"2 + b*x + ¢

>> int(y)

ans =

(a*x"3)/3 + (b*x"2)/2 + c*x
>> diff(y)

ans =

b + 2*a*x

O 60N O U1 &~ W N P

=
o

This can be verified using paper-based calculation by hand, where we

know the following:
y=ax®+bx+c (Equation 8-6)
3 2
I _ax + bx +cx (Equation 8-7)
3
dy
——=2ax+b Equation 8-8
. (Equation 8-8)

8.4.1 Arithmetic Expressions

Simple arithmetic expressions can be dealt with using symbols. For
example, two polynomials can be used to define a new polynomial.

1 >>syms xy z

2 >> al = x"2+2%y+z
3 a1l =

4 X2 +2*y + z

202

CHAPTER 8 SYMBOLIC COMPUTATION

>> a2 = X(—2)—2*%y+3*z

a2 =

3*z — 2%y + 1/Xx"2

>> a3 = al/a2

a3 =

10 (X2 + 2%y + z)/(3*z — 2*y + 1/x°2)
11 >> a4 = al*a2

12 a4 =

13 (X"2 + 2%y + z)*(3*z — 2*y+1/x°2)

O 00 N O U

8.4.2 Trigonometric Expressions

Trigonometric variables defined using symbolic variables can also be used
in mathematical calculations, as follows:

y=sin(x) (Equation 8-9)
d
d—i=—cos(x) (Equation 8-10)
1 > syms abcx
2 >y = sin(x)
3. y-=
4 sin(x)
5 >> int(y)
6 ans =
7 —cos(x)
Even more complicated calculations can be performed by a click of a
button.

1 > z = cos(x*(1/2)) — (sin(y))~(1/3)
2 Z =
3 cos(x(1/2)) — sin(y)~(1/3)

203

CHAPTER 8 SYMBOLIC COMPUTATION

>> int(z)

ans =

2*cos(x™(1/2)) — x*sin(y)~(1/3) + 2*x"(1/2)*sin(x"(1/2))
>> diff(z)

ans =

—sin(x"(1/2))/(2*x*(1/2))

O 60 N O U1 B~

8.4.3 Expanding and Factorizing an Expression

The expand() function can be used to write equations with individual
terms of expanded polynomials. The most important use of expand()

is the application of the distributivity law to rewrite products of sums as
sums of products. If f represents a symbolic expression, then expand(f) is
calculated using the following set of rules:

° xa+b — xu Xxb

o (xy) =x"xy"Vx,y>0,bel
° (xa)b — xa+b
It is also important to note that the expand() function will work
recursively on the subexpressions of a given expression.

1 >> syms Xy z

2 >> al = x"2+2%y+z

3 a1 =

4 X2 +2*y + z

5 >> a2 = x"(—2)—2*y+3*z

6 a2 =

7 3*z — 2%y + 1/x"2

8 >> a3 = al/a2

9 a3 =

10 (X2 + 2%y + z)/(3*z — 2%y + 1/x°2)

204

CHAPTER 8 SYMBOLIC COMPUTATION

11 >> a4 = al*a2

12 a4 =

13 (X"2 + 2*y + z)*(3*z — 2*y + 1/x°2)

14 >> a5 = expand(a3)

15 ab =

16 (2*y)/(3*z — 2*y + 1/x°2) + z/(3*z — 2*y + 1/x°2) + X"2/
(3*z — 2%y + 1/x"2)

17 >> a6 = expand(a4)

18 ab =
19 4*y*z + (2%y)/X"2 — 2¥xX"2%y + z/X"2 + 3*X"2*z — 4*y"2 +
3*2°2 + 1

The function named factor produces factors of an expression such
that multiplying all factors results in the final expression. Let’s try to
factorize the values stored in symbolic variable a5 and a6.

>> a7 = factor(as)

a7 =

[-1,%x,X, X2 + 2%y + z, —1/(3*x"2%¥z — 2*x"2*y + 1)]
>> a8 = factor(as)

a8 =

[—1,%,X, X2 + 2%y + z, —1/(3*x"2%¥z — 2*x"2*y + 1)]

SO UV B~ W N

The factors are present as elements of an array, which can be accessed
using their index. This comes in handy when extracting a factor and its
usage in mathematical analysis.

1 > a7[2]
2 >> a7f4] = X2 + 2%y + 2
3 >> a8[3:5] = [x, X2 + 2¥y + z, —1/(3*x"2%z — 2*x"2*y + 1)]

X

205

CHAPTER 8 SYMBOLIC COMPUTATION

In the previous example, a7[2] extracts the second element of variable
a7, a7[4] extracts the fourth element of variable a7, and a8[3:5] extracts
all elements from the third to fifth element and stores them as a list of
symbolic expressions.

When an expression is written as a power of another expression,
expand() works just like mathematical rules. For example, consider the
case when an expression:

(z+y)

a=xy
is defined. Its expansion is given as:
xxy'xy*

Each term is clearly a factor of the expression. This can be verified with
the following MATLAB code:

1 > syms Xy z

2 >> a = x*y'(z+y)
3 a-=

4 xy(y + 2)

5 >> b = expand(a)
6 b=

7 x*yy*ry'z

8 >> c = factor(b)
9 c=

10 [%,y%y,y'z]

When an expression is powered by another expression, the expand()
function works recursively.

1 > a=((x+y)"(x+z+2))
2 a-=

3 (x+y)(x+z+2)
4 >> expand(a)

206

5

6 X2¥(Xx + y)XK(x + y)'z + y2¥(x + y)'XK(x + y)'z + 2*x*ky*

O 60N O U1 & W N B

N NN NNRERRRR R PR R PR
B W NP OWO®NOGOU D WN PR O

CHAPTER 8 SYMBOLIC COMPUTATION

ans =

(x + y)x*
(x +y)z

It can be used to check out trigonometric identities:

>> expand(sin(x+y))

ans =

cos(x)*sin(y) + cos(y)*sin(x)

>> expand(cos(x+y))

ans =

cos(x)*cos(y) — sin(x)*sin(y)

>> expand(tan(x+y))

ans =

—(tan(x) + tan(y))/(tan(x)*tan(y) — 1)
>> expand(sec(x+y))

ans =

1/(cos(x)*cos(y) — sin(x)*sin(y))
>> a = cosh(x+y)

a =

cosh(x+y)

>> expand(a)

ans =

cosh(x)*cosh(y) + sinh(x)*sinh(y)
>> a = cosh(2*x)

ad =

cosh(2*x)

>> expand(a)

ans =

2*cosh(x)"2 — 1

207

CHAPTER 8 SYMBOLIC COMPUTATION

25 >> a = coth(x+y)

26 a =

27 coth(x +y)

28 >> expand(a)

29 ans =

30 (coth(x)*coth(y) + 1)/(coth(x) + coth(y))

8.5 Summary

This chapter illustrated the usage of symbols to solve mathematical
equations. Symbolic computation proves useful when error-prone
numerical computing is not acceptable, but it has its limits. A limited set
of built-in functions must be appended by user-defined functions, and
this requires experience with writing MATLAB packages. But it is definitely
worth exploring.

This book has illustrated the use of MATLAB as a tool for efficient
scientific computing. It first illustrated the basic usage using single-line
commands and then illustrated writing multi-line commands as an .m
file. Arrays for the fundamental blocks of scientific computing and thus
matrix-based calculations can be performed using arrays. Plotting graphs
is simplified to the extent that even a beginner can easily plot a equation
to visualize a graph. Using loops and functions, programs can be made
modular and information flow can be controlled in an efficient fashion.
You also saw some basic examples of numerical computing. The book
should enable any beginner to enter the world of scientific computing with
ease. Its widely popular usage has rightly coined the phrase “MATLAB is
the language of engineering”.

208

Index

A, B
area() function, 95, 96
Arithmetic expressions, 202-203
Array based computing
appending rows and
columns, 27
arithmetic operations, 34-35
built-in function find(), 51
built-in functions, 35-36
built-in function sort(), 52
cell arrays
arrayl and array2, 87

cell2struct(), num2cell() and

struct2cell() functions, 91
celldisp() and cellplot()
functions, 90
creation, 88-89
concatenation, 30-31
creation, 24-26
data type, 31, 34
data values, 86
definition, arrays, 22
deleting row and column, 29

eigenvalues and eigenvectors, 78

electrical conductivity
experiments, 21
indexing, 62, 64-65

© Sandeep Nagar 2017

inverse, 43, 45
linearly spaced vectors, 74
logical operations, 48, 50
logspace, 75
matrix algebra
algebraic operations, 38-40
matrix operations, 40, 42
modern computational
techniques, 91
norm() function, 47
operator, 71, 73
polynomials and arrays, 50-51
random matrix
3D array, 56
flipping, 58
manipulations, 57
ones and zeros matrix, 62
rand(a,b) command, 53-55
reshaping, 59
rng command, 55
rotating, 58
sorting, 60
statel variable, 56
upper and lower triangular
matrix, 61
rank of a matrix, 46
slicing, 65-66, 69, 71

209

S. Nagar, Introduction to MATLAB for Engineers and Scientists,

https://doi.org/10.1007/978-1-4842-3189-0

https://doi.org/10.1007/978-1-4842-3189-0

INDEX

Array based computing (cont.)
structure array
adding and removing
fields, 83, 85
book array, 80
definition, 79

fieldnames() function, 82
new structure element, 81

struct() function, 85-86
system of equations, 76-78
trace of matrix, 47
transpose, 42
two-dimensional matrix, 21
and vectors, 22, 24

C

cell2struct() command, 91
celldisp() function, 90
cellplot() function, 90
CoordinatesPolar.m, 105-106

D

2D plotting
area() function, 95
bar(), barh() and hist()

commands, 100-102

logarithmic, 102-104
pie() function, 108, 109
plot(x,y), 94-95
polar, 105-106
rose() function, 107
on same graph, 96-98

210

in separate views, 99-100
stairs() function, 109-110
stem() function, 110-111

3D plotting

mesh command, 111, 112, 114
meshc() function, 114-115
surf() function, 115-116

Element-wise operations, 38
Euler’s number, 7

File operations

creation and save, 130-132
csvread and csvwrite
functions, 135-136
diary and history
commands, 133
Excel, 136-137
file path, 126-128, 130
keyboards
debugging, 121
input(“Text”)
function, 118-119
keyboardCommand.m
Program, 121
menu() command, 123-124
pauseCommand.m
Program, 125
numerical computations, 117
opening and closing, 134

print command, 139
process, 117
reading and writing, 135
reading data, internet, 138
saveas function, 140
software/hardware, 140
users, 128
find() function, 51
Floating point number conversion
MATLAB, 195
overflow, 191-193
vs. real numbers, 194-195
underflow, 193
FORTRAN programs, 3
freport() command, 134
Functions
anonymous functions, 150-151
definition, 147
inline function, 150
MATLAB command, 149
script file, 148

G
Garbage-in-garbage-out
(GIGO), 153

H

hist() function, 102

1, J

iskeyword(name) function, 13

INDEX

K

keyboardCommand.m
program, 121

L

Left hand side (LHS), 155
load MyFirstFile.mat command, 130
logla.m program, 103
Loops
do-until Loop, 143-144
for loop, 145
if-elseif-else Loop, 146-147
while loop, 142-143

Matrix inversion, 42
MATrixLABoratory (MATLAB)

in action, 5

FORTRAN programs, 3

MathWorks, 3

operating systems, 4
mesh command, 111
meshc() function, 114
meshgrid function, 112
Modular programming, 141
multi.m program, 96
m\times n matrix, 40

N, O
norm() function, 47
n\times t matrix, 40

211

INDEX

Numerical computation

calculator, 6

civilian purposes, 1

clear command, 15-16

common mathematical
functions, 7-8

data types, 11-12

global and local variables, 15

help and doc commands, 9

history, MATLAB, 3

implementation of, 1

installation requirements, 3-4

mathematical functions, 2

MATLAB GUI, 19

model definition, 154-157

naming conventions, 12-13

physical problems, 154

predefined constants, 7

programming languages, 2

REPL principle, 5

strings, 10

Taylor series, 173

tolerance, 172-173

variable type, 14

workspace, 4

PQ

pauseCommand.m program, 125
pie() function, 108

pinv() function, 43

plot() function, 95

Plotting

212

commercial software
programs, 93
2D plotting (see 2D plotting)
3D plotting (see 3D plotting)
types of, 93
poly() function, 50
Polynomials
addition and subtraction, 163
arrays, 158
curve fitting, 167
differentiation, 166-167
division, 164, 166
integration, 167
multiplication, 163-164
polyval() function, 159-160
roots() function, 161-162
Python’s interactive shell, 5

R

randi() function, 54

randn() function, 102

Read-Evaluates-Prints-Loop
(REPL), 5

Right hand side (RHS), 155

rose() function, 107

S

Solution matrix, 78
sort() function, 52
Square brackets, 23
stairs() function, 109

stem() function, 110
subplot(row,coloumn, index)
command, 99

surf() function, 115, 116

Symbolic computations
arithmetic expressions, 202-203
expand() function, 204, 206
factors, 205
MATLAB code, 201, 206
paper-based calculation, 202
quadratic equation, 201
trigonometric variables, 203

Symbolic equation, 200

Symbolic variable, 199-200

TLUVW

Taylor polynomials
computational errors, 189-191
computing machine, 188

INDEX

cos(x) calculation, 177-178, 180,
182-183
formula, 174-175
Maclaurin Series, 175-176,
183-185, 187
real numbers and integers, 189
ThreeDMeshc.m program, 114
ThreeDMesh.m program, 111
ThreeDsurf.m program, 115
Tolerance, 172
Trigonometric variables, 203

X

xlabel() functions, 95

Y,Z

ylabel() functions, 95

213

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to MATLAB
	1.1 Introduction to Numerical Computing
	1.2 Tools for Numerical Computing
	1.2.1 The Need for Specialized Software
	1.2.2 The History of MATLAB

	1.3 Installation Requirements
	1.4 Workspace
	1.4.1 The REPL Principle
	1.4.2 Calculator
	1.4.3 Predefined Constants
	1.4.4 Common Mathematical Functions

	1.5 Self Learning and Getting Help
	1.6 Variables
	1.6.1 Data Types
	1.6.2 Naming Conventions for Variables
	1.6.3 List of Variables
	1.6.4 Global and Local Variables
	1.6.5 The clear Command

	1.7 Summary
	1.8 Bibliography

	Chapter 2: Array Based Computing
	2.1 Introduction
	2.2 Arrays and Vectors
	2.3 Creating Arrays from Other Arrays
	2.3.1 Appending Rows and Columns
	2.3.2 Deleting a Row and/or Column of a Matrix
	2.3.3 Concatenation Along a Dimension
	2.3.4 Selecting the Data Type of Elements

	2.4 Arithmetic Operations on Arrays
	2.5 Built-In Functions
	2.6 Matrix Algebra
	2.6.1 Algebraic Operations on Matrices
	2.6.2 Matrix Operations on Matrices
	Transpose
	 Inverse
	 rank()

	2.6.3 trace()
	 norm()
	 Logical Operations

	2.6.4 Polynomials and Arrays
	 find()
	 sort()

	2.7 Random Matrix
	2.7.1 Matrix Manipulations
	2.7.2 Flipping a Matrix
	2.7.3 Rotating a Matrix
	2.7.4 Reshaping a Matrix
	2.7.5 Sorting
	2.7.6 Upper and Lower Triangular Matrix
	2.7.7 Ones and Zeros Matrix

	2.8 Indexing
	2.8.1 Using Indices to Create a New Vector

	2.9 Slicing
	2.10 Automatic Generation of Arrays
	2.10.1 The: Operator
	2.10.2 Linearly Spaced Vectors
	2.10.3 logspace

	2.11 Solving a System of Equations
	2.12 Eigen Values and Eigen Vectors
	2.13 Structure Arrays
	2.13.1 Defining a New Structure Element Within a Structure Array
	2.13.2 Adding and Removing Fields
	2.13.3 struct()

	2.14 Getting Data from a Structure Array
	2.15 Cell Arrays
	2.15.1 Creating Cell Arrays
	2.15.2 The celldisp() and cellplot() Functions
	2.15.3 The cell2struct(), num2cell(), and struct2cell() Functions

	2.16 Summary

	Chapter 3: Plotting
	3.1 Introduction
	3.1.1 2D Plotting
	 plot(x,y)
	 area()
	 Plotting Multiple Plots on the Same Graph
	 Plotting Multiple Plots Separately

	3.1.2 The bar(), barh(), and hist() Commands
	 Logarithmic Plots
	 Polar Plots
	 The rose() Function
	 pie()
	 stairs()
	 stem()

	3.1.3 3D Plotting
	 mesh
	 meshc
	 surf()

	3.2 Summary
	3.3 Bibliography

	Chapter 4: Input and Output
	4.1 Introduction
	4.2 Interactive Input from a Keyboard
	4.2.1 input()
	4.2.2 keyboard()
	4.2.3 menu()

	4.3 File Path
	4.4 File Operations
	4.4.1 Users
	4.4.2 File Path
	4.4.3 Creating and Saving Files
	4.4.4 Using the Diary and History Commands
	4.4.5 Opening and Closing Files
	4.4.6 Reading and Writing Binary Files
	4.4.6.1 The csvread and csvwrite Functions

	4.4.7 Working with Excel Files

	4.5 Reading Data from the Internet
	4.6 Printing and Saving Plots
	4.6.1 The print Command
	4.6.2 The saveas Function

	4.7 Summary

	Chapter 5: Functions and Loops
	5.1 Introduction
	5.2 Loops
	5.2.1 The while Loop
	5.2.2 The do-until Loop
	5.2.3 The for Loop
	5.2.4 The if-elseif-else Loop

	5.3 Functions
	5.3.1 The function Function
	5.3.2 The inline Function
	5.3.3 Anonymous Functions

	5.4 Summary

	Chapter 6: Numerical Computing Formalism
	6.1 Introduction
	6.2 Physical Problems
	6.3 Defining a Model
	6.4 Example: Polynomials
	6.4.1 polyval()
	6.4.2 roots()
	6.4.3 Addition and Subtraction of Polynomials
	6.4.4 Polynomial Multiplication
	6.4.5 Polynomial Division
	6.4.6 Polynomial Differentiation
	6.4.7 Polynomial Integration
	6.4.8 Polynomial Curve Fitting

	6.5 Summary

	Chapter 7: Approximate answers in numerical computation
	7.1 Numerical Approximations
	7.2 Tolerance
	7.3 Taylor Series
	7.4 Taylor Polynomials
	7.4.1 Maclaurin Series for sin(x) and cos(x)
	 Choosing Tolerance While Calculating cos(x)

	7.4.2 The Maclaurin Series for e x
	 How Many Number of Terms?

	7.5 Computational Errors
	7.5.1 Significant Digits

	7.6 Challenges in Real Number to Floating Point Number Conversion
	7.6.1 Overflow
	7.6.2 Underflow

	7.7 Actual Conversions of Real Numbers to Floating Point Numbers
	7.8 Alternatives to MATLAB
	7.9 Summary
	7.10 Bibliography

	Chapter 8: Symbolic Computation
	8.1	 Introduction
	8.2	 Defining a Symbolic Variable
	8.3	 Defining a Symbolic Equation
	8.4	 Performing Symbolic Computations
	8.4.1 Arithmetic Expressions
	8.4.2 Trigonometric Expressions
	8.4.3 Expanding and Factorizing an Expression

	8.5	 Summary

	Index

