
105© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_5

CHAPTER 5

Working with Razor

In an ASP.NET Core MVC application, a component called the view engine is used to produce the
content sent to clients. The default view engine is called Razor, and it processes annotated HTML files for
instructions that insert dynamic content into the output sent to the browser.

In this chapter, I give you a quick tour of the Razor syntax so you can recognize Razor expressions when
you see them. I am not going to supply an exhaustive Razor reference in this chapter; think of this more as
a crash course in the syntax. I explore Razor in depth as I continue through the book, within the context of
other MVC features. Table 5-1 puts Razor in context.

Table 5-1.  Putting Razor in Context

Question Answer

What is it? Razor is the view engine responsible for incorporating data into HTML
documents.

Why is it useful? The ability to dynamically generate content is essential to being able to write
a web application. Razor provides features that make it easy to work with the
rest of the ASP.NET Core MVC using C# statements.

How is it used? Razor expressions are added to static HTML in view files. The expressions
are evaluated to generate responses to client requests.

Are there any pitfalls or
limitations?

Razor expressions can contain almost any C# statement, and it can be hard
to decide whether logic should belong in the view or in the controller, which
can erode the separation of concerns that is central to the MVC pattern.

Are there any alternatives? You can write your own view engine, as I explain in Chapter 21. There are
some third-party view engines available, but they tend to be useful for niche
situations and don’t attract long-term support.

https://doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working with Razor

106

Table 5-2 summarizes the chapter.

Preparing the Example Project
To demonstrate how Razor works, I created an ASP.NET Core Web Application (.NET Core) project called
Razor using the Empty template, just as in the previous chapter. I enabled the MVC framework by make the
changes shown in Listing 5-1 to the Startup class.

Listing 5-1.  Enabling MVC in the Startup.cs File in the Razor Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace Razor {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 }

Table 5-2.  Chapter Summary

Problem Solution Listing

Access the view model Use an @model expression to define the
model type and @Model expressions to
access the model object

5, 14, 17

Use type names without qualifying them with
namespaces

Create a view imports file 6, 7

Define content that will be used by multiple
views

Use a layout 8–10

Specify a default layout Use a view start file 11–13

Pass data from the controller to the view
outside of the view model

Use the view bag 15–16

Generate content selectively Use Razor conditional expressions 18, 19

Generate content for each item in an array or
collection

Use a Razor foreach expression 20–21

Chapter 5 ■ Working with Razor

107

 //app.Run(async (context) => {
 // await context.Response.WriteAsync("Hello World!");
 //});
 app.UseMvcWithDefaultRoute();
 }
 }
}

Defining the Model
Next, I created a Models folder and added to it a class file called Product.cs, which I used to define the
simple model class shown in Listing 5-2.

Listing 5-2.  The Contents of the Product.cs File in the Models Folder

namespace Razor.Models {

 public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
 }
}

Creating the Controller
The default configuration that I set up in the Startup.cs file follows the MVC convention of sending
requests to a controller called Home by default. I created a Controllers folder and added to it a class file
called HomeController.cs, which I used to define the simple controller shown in Listing 5-3.

Listing 5-3.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

 return View(myProduct);
 }
 }
}

Chapter 5 ■ Working with Razor

108

The controller defines an action method called Index, in which I create and populate the properties
of a Product object. I pass the Product to the View method so that it is used as the model when the view is
rendered. I do not specify the name of a view file when I call the View method, so the default view for the
action method will be used.

Creating the View
To create the default view for the Index action method, I created a Views/Home folder and added to it an
MVC View Page file called Index.cshtml, to which I added the content shown in Listing 5-4.

Listing 5-4.  The Contents of the Index.cshtml File in the Views/Home Folder

@model Razor.Models.Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 Content will go here
</body>
</html>

In the sections that follow, I go through the different parts of a Razor view and demonstrate some of
the different things you can do with one. When learning about Razor, it is helpful to bear in mind that views
exist to express one or more parts of the model to the user—and that means generating HTML that displays
data that is retrieved from one or more objects. If you remember that I am always trying to build an HTML
page that can be sent to the client, then everything that Razor does begins to make sense. If you run the
application, you will see the simple output shown in Figure 5-1.

Figure 5-1.  Running the example application

Chapter 5 ■ Working with Razor

109

Working with the Model Object
Let’s start with the first line in the Index.cshtml view file:

...
@model Razor.Models.Product
...

Razor expressions start with the @ character. In this case, the @model expression declares the type of the
model object that I will pass to the view from the action method. This allows me to refer to the methods,
fields, and properties of the view model object through @Model, as shown in Listing 5-5, which displays a
simple addition to the Index view.

Listing 5-5.  Referring to a View Model Object Property in the Index.cshtml File in the Views/Home Folder

@model Razor.Models.Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 @Model.Name
</body>
</html>

■■ Note  Notice that I declare the view model object type using @model (a lowercase m) and access the Name
property using @Model (an uppercase M). This is slightly confusing when you start working with Razor, but it
quickly becomes second nature.

If you run the application, you will see the output shown in Figure 5-2.

Figure 5-2.  The effect of reading a property value in the view

Chapter 5 ■ Working with Razor

110

A view that uses the @model expression to specify a type is known as a strongly typed view. Visual Studio
is able to use the @model expression to pop up suggestions of member names when you type @Model followed
by a period, as shown in Figure 5-3.

The Visual Studio suggestions for member names help avoid errors in Razor views. You can ignore the
suggestions if you prefer, and Visual Studio will highlight problems with member names so that you make
corrections, just as it does with regular C# class files. You can see an example of problem highlighting in
Figure 5-4, where I have tried to reference @Model.NotARealProperty. Visual Studio has realized that the Product
class I specified at the model type does not have such a property and has highlighted an error in the editor.

Figure 5-3.  Visual Studio offering suggestions for member names based on the @Model expression

Figure 5-4.  Visual Studio reporting a problem with an @Model expression

Chapter 5 ■ Working with Razor

111

Using View Imports
When I defined the model object at the start of the Index.cshtml file, I had to include the namespace that
contains the model class, like this:

...
@model Razor.Models.Product
...

By default, all types that are referenced in a strongly typed Razor view must be qualified with a
namespace. This isn’t a big deal when the only type reference is for the model object, but it can make a view
more difficult to read when writing more complex Razor expressions such as the ones I describe later in this
chapter.

You can specify a set of namespaces that should be searched for types by adding a view imports file to
the project. The view imports file is placed in the Views folder and is named _ViewImports.cshtml.

■■ Note  Files in the Views folder whose names begin with an underscore (the _ character) are not returned
to the user, which allows the file name to differentiate between views that you want to render and the files that
support them. View imports files and layouts (which I describe shortly) are prefixed with an underscore.

To create the view imports file, right-click the Views folder in the Solution Explorer, select Add ➤ New
Item from the pop-up menu, and select the MVC View Imports Page template from the ASP.NET Core ➤
Web category, as shown in Figure 5-5.

Figure 5-5.  Creating a view imports file

Chapter 5 ■ Working with Razor

112

Visual Studio will automatically set the name of the file to _ViewImports.cshtml, and clicking the Add
button will create the file, which will be empty. Add the expression shown in Listing 5-6.

Listing 5-6.  The Content of the _ViewImports.cshtml File in the Views Folder

@using Razor.Models

The namespaces that should be searched for classes used in Razor views are specified using the @
using expression, followed by the namespace. In Listing 5-6, I have added an entry for the Razor.Models
namespace that contains the model class in the example application.

Now that the Razor.Models namespace is included in the view imports file, I can remove the
namespace from the Index.cshtml file, as shown in Listing 5-7.

Listing 5-7.  Omitting the Model Namespace in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 @Model.Name
</body>
</html>

■■ Tip  You can also add an @using expression to individual view files, which allows types to be used without
namespaces in a single view.

Working with Layouts
There is another important Razor expression in the Index.cshtml view file:

...
@{
 Layout = null;
}
...

This is an example of a Razor code block, which allows me to include C# statements in a view. The code
block is opened with @{ and closed with }, and the statements it contains are evaluated when the view is
rendered.

Chapter 5 ■ Working with Razor

113

This code block sets the value of the Layout property to null. Razor views are compiled into C# classes
in an MVC application, and the base class that is used defines the Layout property. I’ll show you how this all
works in Chapter 21, but the effect of setting the Layout property to null is to tell MVC that the view is self-
contained and will render all of the content required for the client.

Self-contained views are fine for simple example apps, but a real project can have dozens of views,
and some views will have shared content. Duplicating shared content in views becomes hard to manage,
especially when you need to make a change and have to track down all of the views that need to be altered.

A better approach is to use a Razor layout, which is a template that contains common content and that
can be applied to one or more views. When you make a change to a layout, the change will automatically
affect all the views that use it.

Creating the Layout
Layouts are typically shared by views used by multiple controllers and are stored in a folder called Views/
Shared, which is one of the locations that Razor looks in when it tries to find a file. To create a layout, create
the Views/Shared folder, right-click it, and select Add ➤ New Item from the pop-up menu. Select the MVC
View Layout Page template from the ASP.NET category and set the file name to _BasicLayout.cshtml, as
shown in Figure 5-6. Click the Add button to create the file. (Like view import files, the names of layout files
begin with an underscore.)

Listing 5-8 shows the initial contents of the _BasicLayout.cshtml file, added by Visual Studio when it
creates the file.

Figure 5-6.  Creating a layout

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working with Razor

114

Listing 5-8.  The Initial Contents of the _BasicLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

Layouts are a specialized form of view, and there are two @ expressions in the listing. The call to the @
RenderBody method inserts the contents of the view specified by the action method into the layout markup,
like this:

...
<div>
 @RenderBody()
</div>
...

The other Razor expression in the layout looks for a property called ViewBag.Title in order to set the
contents of the title element, like this:

...
<title>@ViewBag.Title</title>
...

The ViewBag is a handy feature that allows data values to be passed around an application and, in this
case, between a view and its layout. You will see how this works when I apply the layout to a view.

The HTML elements in a layout will be applied to any view that uses it, providing a template for defining
common content. In Listing 5-9, I have added some simple markup to the layout so that its template effect
will be obvious.

Listing 5-9.  Adding Content to the _BasicLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <style>
 #mainDiv {
 padding: 20px;
 border: solid medium black;
 font-size: 20pt
 }
 </style>

Chapter 5 ■ Working with Razor

115

</head>
<body>
 <h1>Product Information</h1>
 <div id="mainDiv">
 @RenderBody()
 </div>
</body>
</html>

I have added a header element as well as some CSS to style the contents of the div element that
contains the @RenderBody expression, just to make it clear what content comes from the layout and what
comes from the view.

Applying a Layout
To apply the layout to the view, I need to set the value of the Layout property and remove the HTML that will
now be provided by the layout, such as the html, head, and body elements, as shown in Listing 5-10.

Listing 5-10.  Applying a Layout in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 Layout = "_BasicLayout";
 ViewBag.Title = "Product Name";
}

Product Name: @Model.Name

The Layout property specifies the name of the layout file that will be used for the view, without the cshtml
file extension. Razor will look for the specified layout file in the /Views/Home and Views/Shared folders.

I also set the ViewBag.Title property in the listing. This will be used by the layout to set the contents of
the title element when the view is rendered.

The transformation of the view is dramatic, even for such a simple application. The layout contains all
the structure required for any HTML response, which leaves the view to focus on just the dynamic content
that presents the data to the user. When MVC processes the Index.cshtml file, it applies the layout to create
a unified HTML response, as shown in Figure 5-7.

Chapter 5 ■ Working with Razor

116

Using a View Start File
I still have a tiny wrinkle to sort out, which is that I have to specify the layout file I want in every view. If
I need to rename the layout file, I am going to have to find every view that refers to it and make a change,
which will be an error-prone process and counter to the general theme of easy maintenance that runs
through MVC development.

I can resolve this by using a view start file. When it renders a view, MVC will look for a file called
_ViewStart.cshtml. The contents of this file will be treated as though they were contained in the view file
itself, and I can use this feature to automatically set a value for the Layout property.

To create a view start file, right-click the Views folder, select Add ➤ New Item from the pop-up menu,
and choose the MVC View Start Page template from the ASP.NET category, as shown in Figure 5-8.

Figure 5-7.  The effect of applying a layout to a view

Chapter 5 ■ Working with Razor

117

Visual Studio will set the name of the file to _ViewStart.cshtml, and clicking the Add button will create
the file with the initial content shown in Listing 5-11.

Listing 5-11.  The Initial Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

To apply my layout to all the views in the application, I changed the value assigned to the Layout
property, as shown in Listing 5-12.

Listing 5-12.  Applying a Default View in the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_BasicLayout";
}

Since the view start file contains a value for the Layout property, I can remove the corresponding
expression from the Index.cshtml file, as shown in Listing 5-13.

Figure 5-8.  Creating a view start file

Chapter 5 ■ Working with Razor

118

Listing 5-13.  Applying a View Start File in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

Product Name: @Model.Name

I do not have to specify that I want to use the view start file. MVC will locate the file and use its contents
automatically. The values defined in the view file take precedence, which makes it easy to override the view
start file.

You can also use multiple view start files to set defaults for different parts of the application. Razor looks
for the closest view start file to the view that it being processed, which means you can override the default
setting by adding a view start file to the Views/Home or Views/Shared folders, for example.

■■ Caution  It is important to understand the difference between omitting the Layout property from the view
file and setting it to null. If your view is self-contained and you do not want to use a layout, then set the Layout
property to null. If you omit the Layout property, then MVC will assume that you do want a layout and that it
should use the value it finds in the view start file.

Using Razor Expressions
Now that I have shown you the basics of views and layouts, I am going to turn to the different kinds
of expressions that Razor supports and how you can use them to create view content. In a good MVC
application, there is a clear separation between the roles that the action method and view perform.
The rules are simple; I have summarized them in Table 5-3.

I come back to this theme throughout this book. To get the best from MVC, you need to respect
and enforce the separation between the different parts of the app. As you will see, you can do quite a lot
with Razor, including using C# statements—but you should not use Razor to perform business logic or
manipulate your domain model objects in any way. Listing 5-14 shows the addition of a new expression to
the Index view.

Table 5-3.  The Roles Played by the Action Method and the View

Component Does Do Doesn’t Do

Action method Passes a view model object to the view Passes formatted data to the view

View Uses the view model object to present
content to the user

Changes any aspect of the view model
object

Chapter 5 ■ Working with Razor

119

Listing 5-14.  Adding an Expression to the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<p>Product Name: @Model.Name</p>
<p>Product Price: @($"{Model.Price:C2}")</p>

I could have formatted the value of the Price property in the action method and passed it to the view.
It would have worked, but taking this approach undermines the benefit of the MVC pattern and reduces
my ability to respond to changes in the future. As I said, I will return to this theme again, but you should
remember that ASP.NET Core MVC does not enforce proper use of the MVC pattern and that you must
remain aware of the effect of the design and coding decisions you make.

PROCESSING VERSUS FORMATTING DATA

It is important to differentiate between processing data and formatting it. Views format data, which is
why I passed the Product object in the previous section to the view, rather than formatting the object’s
properties into a display string. Processing data—including selecting the data objects to display—is the
responsibility of the controller, which will call on the model to get and modify the data it requires. It can
sometimes be hard to figure out where the line between processing and formatting is, but as a rule of
thumb, I recommend erring on the side of caution and pushing anything but the simplest of expressions
out of the view and into the controller.

Inserting Data Values
The simplest thing you can do with a Razor expression is to insert a data value into the markup. The most
common way to do this is with the @Model expression. The Index view already includes examples of this
approach, like this:

...
<p>Product Name: @Model.Name</p>
...

You can also insert values using the ViewBag feature, which is the feature I used in the layout to set
the content of the title element. The ViewBag can be used to pass data from the controller to the view,
supplementing the model, as shown in Listing 5-15.

Listing 5-15.  Using the View Bag in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

Chapter 5 ■ Working with Razor

120

 public ViewResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

 ViewBag.StockLevel = 2;

 return View(myProduct);
 }
 }
}

The ViewBag property returns a dynamic object that can be used to define arbitrary properties. In
the listing, I have defined a property called StockLevel and assigned a value of 2 to it. Since the ViewBag
property is dynamic, I don’t have to declare the property names in advance, but it does mean that Visual
Studio is unable to provide autocomplete suggestions for view bag properties.

Knowing when to use the view bag and when the model should be extended is a matter of experience
and personal preference. My personal style is to use the view bag only to give a view hints about how to
render data and not to use it for data values that are displayed to the user. But that’s just what works for me.
If you do use the view bag for data you want to display to the user, then you access values using the @ViewBag
expression, as shown in Listing 5-16.

Listing 5-16.  Displaying a View Bag Value in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<p>Product Name: @Model.Name</p>
<p>Product Price: @($"{Model.Price:C2}")</p>
<p>Stock Level: @ViewBag.StockLevel</p>

Chapter 5 ■ Working with Razor

121

Figure 5-9 shows the result of the new data value.

Setting Attribute Values
All the examples so far have set the content of elements, but you can also use Razor expressions to set the
value of element attributes. Listing 5-17 shows the user of the @Model and @ViewBag expressions to set the
contents of attributes on elements in the Index view.

Listing 5-17.  Set Attribute Values in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level: @ViewBag.StockLevel</p>
</div>

I used the Razor expressions to set the value for some data attributes on a div element.

Figure 5-9.  Using Razor expressions to insert data values

Chapter 5 ■ Working with Razor

122

■■ Tip  Data attributes, which are attributes whose names are prefixed by data-, have been an informal way
of creating custom attributes for many years and have been made part of the formal standard as part of HTML5.
They are most often applied so that JavaScript code can locate specific elements or so that CSS styles can be
more narrowly applied.

If you run the example application and look at the HTML source that is sent to the browser, you will see
that Razor has set the values of the attributes, like this:

<div data-productid="1" data-stocklevel="2">
 <p>Product Name: Kayak</p>
 <p>Product Price: £275.00</p>
 <p>Stock Level: 2</p>
</div>

Using Conditional Statements
Razor is able to process conditional statements, which means that I can tailor the output from a view based
on values in the view data. This kind of technique is at the heart of Razor and allows you to create complex
and fluid layouts that are still reasonably simple to read and maintain. In Listing 5-18, I have updated the
Index view so that it includes a conditional statement.

Listing 5-18.  Using a Conditional Razor Statement in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level:
 @switch (ViewBag.StockLevel) {
 case 0:
 @:Out of Stock
 break;
 case 1:
 case 2:
 case 3:
 Low Stock (@ViewBag.StockLevel)
 break;
 default:
 @: @ViewBag.StockLevel in Stock
 break;
 }
 </p>
</div>

Chapter 5 ■ Working with Razor

123

To start a conditional statement, you place an @ character in front of the C# conditional keyword, which
is switch in this example. You terminate the code block with a close brace character (}) just as you would
with a regular C# code block.

Inside the Razor code block, you can include HTML elements and data values into the view output just
by defining the HTML and Razor expressions, like this:

...
Low Stock (@ViewBag.StockLevel)
...

I do not have to put the elements or expressions in quotes or denote them in any special way—the Razor
engine will interpret these as output to be processed. However, if you want to insert literal text into the view
when it is not contained in an HTML element, then you need to give Razor a helping hand and prefix the line
like this:

...
@: Out of Stock
...

The @: characters prevent Razor from interpreting this as a C# statement, which is the default behavior
when it encounters text. You can see the result of the conditional statement in Figure 5-10.

Conditional statements are important in Razor views because they allow content to be varied based on
the data values that the view receives from the action method. As an additional demonstration, Listing 5-19
shows the addition of an if statement to the Index.cshtml view. As you might imagine, this is a commonly
used conditional statement.

Figure 5-10.  Using a switch statement in a Razor view

Chapter 5 ■ Working with Razor

124

Listing 5-19.  Using an if Statement in a Razor View in the Index.cshtml File in Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level:
 @if (ViewBag.StockLevel == 0) {
 @:Out of Stock
 } else if (ViewBag.StockLevel > 0 && ViewBag.StockLevel <= 3) {
 Low Stock (@ViewBag.StockLevel)
 } else {
 @: @ViewBag.StockLevel in Stock
 }
 </p>
</div>

This conditional statement produces the same results as the switch statement, but I wanted to
demonstrate how you can mesh C# conditional statements with Razor views. I explain how this works
in Chapter 21, when I describe views in depth.

Enumerating Arrays and Collections
When writing an MVC application, you will often want to enumerate the contents of an array or some other
kind of collection of objects and generate content that details each one. To demonstrate how this is done, in
Listing 5-20 I have revised the Index action in the Home controller to pass an array of Product objects to the
view.

Listing 5-20.  Using an Array in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

 public IActionResult Index() {
 Product[] array = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };
 return View(array);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working with Razor

125

This action method creates a Product[] object that contains simple data values and passes them to the
View method so that the data is rendered using the default view. In Listing 5-21, I have changed the model
type for the Index view and used a foreach loop to enumerate the objects in the array.

■■ Tip  The Model term in Listing 5-21 doesn’t need to be prefixed with an @ character because it is part of a
larger C# expression. It can be difficult to figure out when an @ character is required and when it is not, but the
Visual Studio IntelliSense for Razor files will tell you when you get it wrong by underlining errors.

Listing 5-21.  Enumerating an Array in the Index.cshtml File in the Views/Home Folder

@model Product[]

@{
 ViewBag.Title = "Product Name";
}

<table>
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
</table>

The @foreach statement enumerates the contents of the model array and generates a row in a table for
each of them. You can see how I created a local variable called p in the foreach loop and then referred to its
properties using the Razor expressions @p.Name and @p.Price. You can see the result in Figure 5-11.

Chapter 5 ■ Working with Razor

126

Summary
In this chapter, I gave you an overview of the Razor view engine and how it can be used to generate HTML.
I showed you how to refer to data passed from the controller via the view model object and the view bag
and how Razor expressions can be used to tailor responses to the user based on data values. You will see
many different examples of how Razor can be used in the rest of the book, and I describe how the MVC view
mechanism works in detail in Chapter 21. In the next chapter, I introduce some of the features provided by
Visual Studio for working with ASP.NET Core MVC projects.

Figure 5-11.  Using Razor to enumerate an array

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

	Chapter 5: Working with Razor
	Preparing the Example Project
	Defining the Model
	Creating the Controller
	Creating the View

	Working with the Model Object
	Using View Imports

	Working with Layouts
	Creating the Layout
	Applying a Layout
	Using a View Start File

	Using Razor Expressions
	Inserting Data Values
	Setting Attribute Values
	Using Conditional Statements
	Enumerating Arrays and Collections

	Summary

