
67© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_4

CHAPTER 4

Essential C# Features

In this chapter, I describe C# features used in web application development that are not widely understood
or that often cause confusion. This is not a book about C#, however, and so I provide only a brief example for
each feature so that you can follow the examples in the rest of the book and take advantage of these features
in your own projects. Table 4-1 summarizes this chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Avoid accessing properties on null references Use the null conditional operator 5–8

Simplify C# properties Use automatically implemented
properties

9–11

Simplify string composition Use string interpolation 12

Create an object and set its properties in a single
step

Use an object or collection
initializer

13–16

Test an object’s type or characteristics Use pattern matching 17–18

Add functionality to a class that cannot be modified Use an extension method 19–26

Simplify the use of delegates and single-statement
methods

Use a lambda expression 27–34

Use implicit typing Use the var keyword 35

Create objects without defining a type Use an anonymous type 36–37

Simplify the use of asynchronous methods Use the async and await keywords 38–41

Get the name of a class method or property without
defining a static string

Use a nameof expression 42–43

https://doi.org/10.1007/978-1-4842-3150-0_4

Chapter 4 ■ essential C# Features

68

Preparing the Example Project
For this chapter, I created a new Visual Studio project called LanguageFeatures using the ASP.NET Core Web
Application (.NET Core) template, as shown in Figure 4-1.

When presented with the different project configurations, I selected the Empty template, as shown in
Figure 4-2. I selected .NET Core and ASP.NET Core 2.0 from the lists at the top of the dialog window, ensured
that Authentication option was set to No Authentication and that the Enable Docker Support option was
unchecked before clicking the OK button to create the project.

Figure 4-1. Selecting the project type

Chapter 4 ■ essential C# Features

69

Enabling ASP.NET Core MVC
The Empty project template creates a project that contains a minimal ASP.NET Core configuration without
any MVC support. This means that the placeholder content that is added by the Web Application (Model-
View-Controller) template isn’t present, but it also means that some extra steps are required to enable MVC
so that features such as controllers and views work. In this section, I make the changes required to add
enable an MVC setup in the project, but I won’t get into the details of what each step does for the moment.

Figure 4-2. Selecting the project template

Chapter 4 ■ essential C# Features

70

To enable the MVC framework, make the changes shown in Listing 4-1 to the Startup class.

Listing 4-1. Enabling MVC in the Startup.cs File in the LanguageFeatures Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace LanguageFeatures {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 }

 //app.Run(async (context) => {
 // await context.Response.WriteAsync("Hello World!");
 //});

 app.UseMvcWithDefaultRoute();
 }
 }
}

I explain how to configure ASP.NET Core MVC applications in Chapter 14, but the two statements
added in Listing 4-1 provide a basic MVC setup using the default configuration and conventions.

Creating the MVC Application Components
Now that MVC is set up, I can add the MVC application components that I will use to demonstrate important
C# language features.

Creating the Model
I started by creating a simple model class so that I can have some data to work with. I added a folder called
Models and created a class file called Product.cs within it, which I used to define the class shown in
Listing 4-2.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 4 ■ essential C# Features

71

Listing 4-2. The Contents of the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };

 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The Products class defines Name and Price properties, and there is a static method called GetProducts
that returns a Products array. One of the elements contained in the array returned by the GetProducts
method is set to null, which I will use to demonstrate some useful language features later in the chapter.

Creating the Controller and View
For the examples in this chapter, I use a simple controller to demonstrate different language features.
I created a Controllers folder and added to it a class file called HomeController.cs, the contents of which
are shown in Listing 4-3. When using the default MVC configuration, the Home controller is where MVC will
send HTTP requests by default.

Listing 4-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View(new string[] { "C#", "Language", "Features" });
 }
 }
}

The Index action method tells MVC to render the default view and passes it an array of strings to be
included in the HTML sent to the client. To create the corresponding view, I added a Views/Home folder (by
creating a Views folder and then adding a Home folder within it) and added a view file called Index.cshtml,
the contents of which are shown in Listing 4-4.

Chapter 4 ■ essential C# Features

72

Listing 4-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<string>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Language Features</title>
</head>
<body>

 @foreach (string s in Model) {
 @s
 }

</body>
</html>

If you run the example application by selecting Start Debugging from the Debug menu, you will see the
output shown in Figure 4-3.

Since the output from all the examples in this chapter is text, I will show the messages displayed by the
browser like this:

C#
Language
Features

Figure 4-3. Running the example application

Chapter 4 ■ essential C# Features

73

Using the Null Conditional Operator
The null conditional operator allows for null values to be detected more elegantly. There can be a lot of
checking for nulls in MVC development as you work out whether a request contains a specific header or value
or whether the model contains a particular data item. Traditionally, dealing with nulls requires making an
explicit check, and this can become tedious and error-prone when both an object and its properties have to be
inspected. The null conditional operator makes this process simpler and more concise, as shown in Listing 4-5.

Listing 4-5. Detecting null Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name;
 decimal? price = p?.Price;
 results.Add(string.Format("Name: {0}, Price: {1}", name, price));
 }

 return View(results);
 }
 }
}

The static GetProducts method defined by the Product class returns an array of objects that I inspect in
the controller’s Index action method in order to get a list of the Name and Price values. The problem is that
both the object in the array and the value of the properties could be null, which means I can’t just refer to
p.Name or p.Price within the foreach loop without causing a NullReferenceException. To avoid this, I used
the null conditional operator, like this:

...
string name = p?.Name;
decimal? price = p?.Price;
...

The null conditional operator is a single question mark (the ? character). If p is null, then name will be set to
null as well. If p is not null, then name will be set to the value of the Person.Name property. The Price property is
subject to the same test. Notice that the variable you assign to when using the null conditional operator must be
able to be assigned null, which is why the price variable is declared as a nullable decimal (decimal?).

Chapter 4 ■ essential C# Features

74

Chaining the Null Conditional Operator
The null conditional operator can be chained to navigate through a hierarchy of objects, which is where
it really becomes an effective tool for simplifying code and allowing safe navigation. In Listing 4-6, I have
added a property to the Product class that nests references, creating a more complex object hierarchy.

Listing 4-6. Adding a Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Each Product object has a Related property that can refer to another Product object. In the GetProducts
method, I set the Related property for the Product object that represents a kayak. Listing 4-7 shows how I can
chain the null conditional operator to navigate through the object properties without causing an exception.

Listing 4-7. Detecting Nested null Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name;
 decimal? price = p?.Price;
 string relatedName = p?.Related?.Name;

Chapter 4 ■ essential C# Features

75

 results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
 }

 return View(results);
 }
 }
}

The null conditional operator can be applied to each part of a chain of properties, like this:

...
string relatedName = p?.Related?.Name;
...

The result is that the relatedName variable will be null when p is null or when p.Related is null.
Otherwise, the variable will be assigned the value of the p.Related.Name property. If you run the example,
you will see the following output in the browser window:

Name: Kayak, Price: 275, Related: Lifejacket
Name: Lifejacket, Price: 48.95, Related:
Name: , Price: , Related:

Combining the Conditional and Coalescing Operators
It can be useful to combine the null conditional operator (a single question mark) with the null coalescing
operator (two question marks) to set a fallback value to present null values being used in the application, as
shown in Listing 4-8.

Listing 4-8. Combining Null Operators in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name ?? "<No Name>";
 decimal? price = p?.Price ?? 0;
 string relatedName = p?.Related?.Name ?? "<None>";
 results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
 }

Chapter 4 ■ essential C# Features

76

 return View(results);
 }
 }
}

The null conditional operator ensures that I don’t get a NullReferenceException when navigating
through the object properties, and the null coalescing operator ensures that I don’t include null values in
the results displayed in the browser. If you run the example, you will see the following results displayed in
the browser window:

Name: Kayak, Price: 275, Related: Lifejacket
Name: Lifejacket, Price: 48.95, Related: <None>
Name: <No Name>, Price: 0, Related: <None>

Using Automatically Implemented Properties
C# supports automatically implemented properties, and I used them when defining properties for the
Person class in the previous section, like this:

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

This feature allows me to define properties without having to implement the get and set bodies. Using
the auto-implemented property feature means that defining a property like this:

...
public string Name { get; set; }
...
is equivalent to the following code:

Chapter 4 ■ essential C# Features

77

...
public string Name {
 get { return name; }
 set { name = value; }
}
...

This type of feature is known as syntactic sugar, which means that it makes C# more pleasant to work
with—in this case by eliminating redundant code that ends up being duplicated for every property—
without substantially altering the way the language behaves. The term sugar may seem pejorative, but
any enhancements that make code easier to write and maintain can be beneficial, especially in large and
complex projects.

Using Auto-Implemented Property Initializers
Automatically implemented properties have been supported since C# 3.0. The latest version of C# supports
initializers for automatically implemented properties, which allows an initial value to be set without having
to use the constructor, as shown in Listing 4-9.

Listing 4-9. Using an Auto-Implemented Property Initializer in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {
 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Assigning a value to an auto-implemented property doesn’t prevent the setter from being used to
change the property later and just tidies up the code for simple types that ended up with a constructor that
contained a list of property assignments to provide default values. In the example, the initializer assigns a
value of Watersports to the Category property. The initial value can be changed, which I do when I create
the kayak object and specify a value of Water Craft instead.

Chapter 4 ■ essential C# Features

78

Creating Read-Only Automatically Implemented Properties
You can create a read-only property by using an initializer and omitting the set keyword from an auto-
implemented property that has an initializer, as shown in Listing 4-10.

Listing 4-10. Creating a Read-Only Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; } = true;

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The InStock property is initialized to true and cannot be changed; however, the value can be assigned
to in the type’s constructor, as shown in Listing 4-11.

Listing 4-11. Assigning a Value to a Read-Only Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public Product(bool stock = true) {
 InStock = stock;
 }

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; }

Chapter 4 ■ essential C# Features

79

 public static Product[] GetProducts() {
 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };

 Product lifejacket = new Product(false) {
 Name = "Lifejacket",
 Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The constructor allows the value for the read-only property to be specified as an argument and defaults
to true if no value is provided. The property value cannot be changed once set by the constructor.

Using String Interpolation
The string.Format method is the traditional C# tool for composing strings that contain data values. Here is
an example of this technique from the Home controller:

...
results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
...

C# also supports a different approach, known as string interpolation, that avoids the need to ensure that
the {0} references in the string template match up with the variables specified as arguments. Instead, string
interpolation uses the variable names directly, as shown in Listing 4-12.

Listing 4-12. Using String Interpolation in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name ?? "<No Name>";

Chapter 4 ■ essential C# Features

80

 decimal? price = p?.Price ?? 0;
 string relatedName = p?.Related?.Name ?? "<None>";
 results.Add($"Name: {name}, Price: {price}, Related: {relatedName}");
 }

 return View(results);
 }
 }
}

Interpolated strings are prefixed with the $ character and contain holes, which are references to values
contained within the { and } characters. When the string is evaluated, the holes are filled in with the current
values of the variables or constants that are specified.

Visual Studio provides IntelliSense support for creating interpolated strings and offers a list of the
available members when the { character is typed; this helps to minimize typos, and the result is a string
format that is easier to understand.

 ■ Tip string interpolation supports all the format specifiers that are available with the string.Format
method. the format specifiers are included as part of the hole, so $"Price: {price:C2}" would format the
price value as a currency value with two decimal digits.

Using Object and Collection Initializers
When I create an object in the static GetProducts method of the Product class, I use an object initializer,
which allows me to create an object and specify its property values in a single step, like this:

...
Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
};
...

This is another syntactic sugar feature that makes C# easier to use. Without this feature, I would have to
call the Product constructor and then use the newly created object to set each of the properties, like this:

...
Product kayak = new Product();
kayak.Name = "Kayak";
kayak.Category = "Water Craft";
kayak.Price = 275M;
...

Chapter 4 ■ essential C# Features

81

A related feature is the collection initializer, which allows the creation of a collection and its contents to
be specified in a single step. Without an initializer, creating a string array, for example, requires the size of
the array and the array elements to be specified separately, as shown in Listing 4-13.

Listing 4-13. Initializing an Object in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 string[] names = new string[3];
 names[0] = "Bob";
 names[1] = "Joe";
 names[2] = "Alice";
 return View("Index", names);
 }
 }
}

Using a collection initializer allows the contents of the array to be specified as part of the construction,
which implicitly provides the compiler with the size of the array, as shown in Listing 4-14.

Listing 4-14. Using a Collection Initializer in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View("Index", new string[] { "Bob", "Joe", "Alice" });
 }
 }
}

The array elements are specified between the { and } characters, which allows for a more concise
definition of the collection and makes it possible to define a collection inline within a method call. The code
in Listing 4-14 has the same effect as the code in Listing 4-13, and if you run the example application, you
will see the following output in the browser window:

Bob
Joe
Alice

Chapter 4 ■ essential C# Features

82

Using an Index Initializer
Recent versions of C# tidy up the way collections that use indexes, such as dictionaries, are initialized.
Listing 4-15 shows the Index action rewritten to define a collection using the traditional C# approach to
initializing a dictionary.

Listing 4-15. Initializing a Dictionary in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Dictionary<string, Product> products = new Dictionary<string, Product> {
 { "Kayak", new Product { Name = "Kayak", Price = 275M } },
 { "Lifejacket", new Product{ Name = "Lifejacket", Price = 48.95M } }
 };
 return View("Index", products.Keys);
 }
 }
}

The syntax for initializing this type of collection relies too much on the { and } characters, especially
when the collection values are created using object initializers. The latest versions of C# support a more
natural approach to initializing indexed collections that is consistent with the way that values are retrieved
or modified once the collection has been initialized, as shown in Listing 4-16.

Listing 4-16. Using Collection Initializer Syntax in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Dictionary<string, Product> products = new Dictionary<string, Product> {
 ["Kayak"] = new Product { Name = "Kayak", Price = 275M },
 ["Lifejacket"] = new Product { Name = "Lifejacket", Price = 48.95M }
 };

 return View("Index", products.Keys);
 }
 }
}

Chapter 4 ■ essential C# Features

83

The effect is the same—to create a dictionary whose keys are Kayak and Lifejacket and whose values
are Product objects—but the elements are created using the index notation that is used for other collection
operations. If you run the application, you will see the following results in the browser:

Kayak
Lifejacket

Pattern Matching
One of the most useful recent additions to C# is support for pattern matching, which can be used to test that
an object is of a specific type or has specific characteristics. This is another form is syntactic sugar, and it can
dramatically simplify complex blocks of conditional statements. The is keyword is used to perform a type
test, as demonstrated in Listing 4-17.

Listing 4-17. Performing a Type Test in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 object[] data = new object[] { 275M, 29.95M,
 "apple", "orange", 100, 10 };

 decimal total = 0;
 for (int i = 0; i < data.Length; i++) {
 if (data[i] is decimal d) {
 total += d;
 }
 }

 return View("Index", new string[] { $"Total: {total:C2}" });
 }
 }
}

The is keyword performs a type check, and if a value is of the specified type, it will assign the value to a
new variable, like this:

...
if (data[i] is decimal d) {
...

Chapter 4 ■ essential C# Features

84

This expression will evaluate as true if the value stored in data[i] is a decimal. The value of data[i]
will be assigned to the variable d, which allows it to be used in subsequent statements without needing to
perform any type conversions. The is keyword will only match the specified type, which means that only
two of the values in the data array will be processed (the other items in the array are string and int values).
If you run the application, you will see the following output in the browser window:

Total: $304.95

Pattern Matching in Switch Statements
Pattern matching can also be used in switch statements, which support the when keyword for restricting
when a value is matched by a case statement, as shown in Listing 4-18.

Listing 4-18. Pattern Matching in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 object[] data = new object[] { 275M, 29.95M,
 "apple", "orange", 100, 10 };
 decimal total = 0;
 for (int i = 0; i < data.Length; i++) {
 switch (data[i]) {
 case decimal decimalValue:
 total += decimalValue;
 break;
 case int intValue when intValue > 50:
 total += intValue;
 break;
 }
 }

 return View("Index", new string[] { $"Total: {total:C2}" });
 }
 }
}

To match any value of a specific type, use the type and variable name in the case statement, like this:

...
case decimal decimalValue:
...

Chapter 4 ■ essential C# Features

85

This case statement matches any decimal value and assigns it to a new variable called decimalValue.
To be more selective, the when keyword can be included, like this:

...
case int intValue when intValue > 50:
...

This case statement matches int values and assigns them to a variable called intValue, but only when
the value is greater than 50. If you run the application, you will see the following output in the browser
window:

Total: $404.95

Using Extension Methods
Extension methods are a convenient way of adding methods to classes that you do not own and cannot
modify directly. Listing 4-19 shows the definition of the ShoppingCart class, which I added to the Models
folder in a file called ShoppingCart.cs and which represents a collection of Product objects.

Listing 4-19. The Contents of the ShoppingCart.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public class ShoppingCart {
 public IEnumerable<Product> Products { get; set; }
 }
}

This is a simple class that acts as a wrapper around a sequence of Product objects (I only need a basic
class for this example). Suppose I need to be able to determine the total value of the Product objects in the
ShoppingCart class but I cannot modify the class itself, perhaps because it comes from a third party and I do
not have the source code. I can use an extension method to add the functionality I need. Listing 4-20 shows
the MyExtensionMethods class that I added to the Models folder in the MyExtensionMethods.cs file.

Listing 4-20. The Contents of the MyExtensionMethods.cs File in the Models Folder

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this ShoppingCart cartParam) {
 decimal total = 0;
 foreach (Product prod in cartParam.Products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }
 }
}

Chapter 4 ■ essential C# Features

86

The this keyword in front of the first parameter marks TotalPrices as an extension method. The first
parameter tells .NET which class the extension method can be applied to—ShoppingCart in this case. I can
refer to the instance of the ShoppingCart class that the extension method has been applied to by using the
cartParam parameter. My method enumerates the Product objects in ShoppingCart and returns the sum
of the Product.Price property values. Listing 4-21 shows how I apply the extension method in the Home
controller’s action method.

 ■ Note extension methods do not let you break through the access rules that classes define for methods,
fields, and properties. You can extend the functionality of a class by using an extension method but only using
the class members that you had access to anyway.

Listing 4-21. Applying an Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 ShoppingCart cart

= new ShoppingCart { Products = Product.GetProducts() };
 decimal cartTotal = cart.TotalPrices();
 return View("Index", new string[] { $"Total: {cartTotal:C2}" });
 }
 }
}

The key statement is this one:

...
decimal cartTotal = cart.TotalPrices();
...

I call the TotalPrices method on a ShoppingCart object as though it were part of the ShoppingCart
class, even though it is an extension method defined by a different class altogether. .NET will find extension
classes if they are in the scope of the current class, meaning that they are part of the same namespace or in
a namespace that is the subject of a using statement. If you run the application, you will see the following
output in the browser window:

Total: $323.95

Applying Extension Methods to an Interface
I can also create extension methods that apply to an interface, which allows me to call the extension method
on all the classes that implement the interface. Listing 4-22 shows the ShoppingCart class updated to
implement the IEnumerable<Product> interface.

Chapter 4 ■ essential C# Features

87

Listing 4-22. Implementing an Interface in the ShoppingCart.cs File in the Models Folder

using System.Collections;
using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public class ShoppingCart : IEnumerable<Product> {
 public IEnumerable<Product> Products { get; set; }

 public IEnumerator<Product> GetEnumerator() {
 return Products.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
 }
}

I can now update the extension method so that it deals with IEnumerable<Product>, as shown in
Listing 4-23.

Listing 4-23. Updating an Extension Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }
 }
}

The first parameter type has changed to IEnumerable<Product>, which means that the foreach loop
in the method body works directly on Product objects. The change to using the interface means that I can
calculate the total value of the Product objects enumerated by any IEnumerable<Product>, which includes
instances of ShoppingCart but also arrays of Product objects, as shown in Listing 4-24.

Listing 4-24. Applying an Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

88

 public ViewResult Index() {

 ShoppingCart cart
 = new ShoppingCart { Products = Product.GetProducts() };

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M}
 };

 decimal cartTotal = cart.TotalPrices();
 decimal arrayTotal = productArray.TotalPrices();

 return View("Index", new string[] {
 $"Cart Total: {cartTotal:C2}",
 $"Array Total: {arrayTotal:C2}" });
 }
 }
}

If you start the project, you will see the following results, which demonstrate that I get the same result
from the extension method, irrespective of how the Product objects are collected:

Cart Total: $323.95
Array Total: $323.95

Creating Filtering Extension Methods
The last thing I want to show you about extension methods is that they can be used to filter collections of
objects. An extension method that operates on an IEnumerable<T> and that also returns an IEnumerable<T>
can use the yield keyword to apply selection criteria to items in the source data to produce a reduced set of
results. Listing 4-25 demonstrates such a method, which I have added to the MyExtensionMethods class.

Listing 4-25. A Filtering Extension Method in the MyExtensionMethods.cs File in the Controllers Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

Chapter 4 ■ essential C# Features

89

 public static IEnumerable<Product> FilterByPrice(
 this IEnumerable<Product> productEnum, decimal minimumPrice) {

 foreach (Product prod in productEnum) {
 if ((prod?.Price ?? 0) >= minimumPrice) {
 yield return prod;
 }
 }
 }
 }
}

This extension method, called FilterByPrice, takes an additional parameter that allows me to filter
products so that Product objects whose Price property matches or exceeds the parameter are returned in
the result. Listing 4-26 shows this method being used.

Listing 4-26. Using the Filtering Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal arrayTotal = productArray.FilterByPrice(20).TotalPrices();

 return View("Index", new string[] { $"Array Total: {arrayTotal:C2}" });
 }
 }
}

When I call the FilterByPrice method on the array of Product objects, only those that cost more than
$20 are received by the TotalPrices method and used to calculate the total. If you run the application, you
will see the following output in the browser window:

Total: $358.90

Chapter 4 ■ essential C# Features

90

Using Lambda Expressions
Lambda expressions are a feature that causes a lot of confusion, not least because the feature they simplify
is also confusing. To understand the problem that is being solved, consider the FilterByPrice extension
method that I defined in the previous section. This method is written so that it can filter Product objects by
price, which means that if I want to filter by name, I have to create a second method, like the one shown in
Listing 4-27.

Listing 4-27. Adding a Filter Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

 public static IEnumerable<Product> FilterByPrice(
 this IEnumerable<Product> productEnum, decimal minimumPrice) {

 foreach (Product prod in productEnum) {
 if ((prod?.Price ?? 0) >= minimumPrice) {
 yield return prod;
 }
 }
 }

 public static IEnumerable<Product> FilterByName(
 this IEnumerable<Product> productEnum, char firstLetter) {

 foreach (Product prod in productEnum) {
 if (prod?.Name?[0] == firstLetter) {
 yield return prod;
 }
 }
 }
 }
}

Chapter 4 ■ essential C# Features

91

Listing 4-28 shows the use of both filter methods applied in the controller to create two different totals.

Listing 4-28. Using Two Filter Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal priceFilterTotal = productArray.FilterByPrice(20).TotalPrices();
 decimal nameFilterTotal = productArray.FilterByName('S').TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

The first filter selects all of the products with a price of $20 or more, and the second filter selects
products whose name starts with the letter S. You will see the following output in the browser window if you
run the example application:

Price Total: $358.90
Name Total: $19.50

Defining Functions
I can repeat this process indefinitely to create filter methods for every property and every combination of
properties that I am interested in. A more elegant approach is to separate out the code that processes the
enumeration from the selection criteria. C# makes this easy by allowing functions to be passed around as
objects. Listing 4-29 shows a single extension method that filters an enumeration of Product objects but that
delegates the decision about which ones are included in the results to a separate function.

Chapter 4 ■ essential C# Features

92

Listing 4-29. Creating a General Filter Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;
using System;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

 public static IEnumerable<Product> Filter(
 this IEnumerable<Product> productEnum,
 Func<Product, bool> selector) {

 foreach (Product prod in productEnum) {
 if (selector(prod)) {
 yield return prod;
 }
 }
 }
 }
}

The second argument to the Filter method is a function that accepts a Product object and that returns
a bool value. The Filter method calls the function for each Product object and includes it in the result if the
function returns true. To use the Filter method, I can specify a method or create a stand-alone function, as
shown in Listing 4-30.

Listing 4-30. Using a Function to Filter Objects in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 bool FilterByPrice(Product p) {
 return (p?.Price ?? 0) >= 20;
 }

 public ViewResult Index() {

 Product[] productArray = {

Chapter 4 ■ essential C# Features

93

 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 Func<Product, bool> nameFilter = delegate (Product prod) {
 return prod?.Name?[0] == 'S';
 };

 decimal priceFilterTotal = productArray
 .Filter(FilterByPrice)
 .TotalPrices();
 decimal nameFilterTotal = productArray
 .Filter(nameFilter)
 .TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

Neither approach is ideal. Defining methods like FilterByPrice clutters up a class definition. Creating
a Func<Product, bool> object avoids this problem but uses an awkward syntax that is hard to read and hard
to maintain. It is this issue that lambda expressions address by allowing functions to be defined in a more
elegant and expressive way, as shown in Listing 4-31.

Listing 4-31. Using Lambda Expression in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal priceFilterTotal = productArray
 .Filter(p => (p?.Price ?? 0) >= 20)
 .TotalPrices();
 decimal nameFilterTotal = productArray

Chapter 4 ■ essential C# Features

94

 .Filter(p => p?.Name?[0] == 'S')
 .TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

The lambda expressions are shown in bold. The parameters are expressed without specifying a type,
which will be inferred automatically. The => characters are read aloud as “goes to” and link the parameter
to the result of the lambda expression. In my examples, a Product parameter called p goes to a bool result,
which will be true if the Price property is equal or greater than 20 in the first expression or if the Name
property starts with S in the second expression. This code works in the same way as the separate method and
the function delegate but is more concise and is—for most people—easier to read.

i don’t need to express the logic of my delegate in the lambda expression. i can as easily call a method,
like this:

prod => EvaluateProduct(prod)

if i need a lambda expression for a delegate that has multiple parameters, i must wrap the parameters
in parentheses, like this:

(prod, count) => prod.Price > 20 && count > 0

Finally, if i need logic in the lambda expression that requires more than one statement, i can do so by
using braces ({}) and finishing with a return statement, like this:

(prod, count) => {
 // ...multiple code statements...
 return result;
}

You do not need to use lambda expressions in your code, but they are a neat way of expressing complex
functions simply and in a manner that is readable and clear. i like them a lot, and you will see them used
liberally throughout this book.

Using Lambda Expression Methods and Properties
Lambda expressions can be used to implement constructors, methods, and properties. In MVC
development, especially when writing controllers, you will often end up with methods that contain a single
statement that selects the data to display and the view to render. In Listing 4-32, I have rewritten the Index
action method so that it follows this common pattern.

OTHER FORMS FOR LAMBDA EXPRESSIONS

Chapter 4 ■ essential C# Features

95

Listing 4-32. Creating a Common Action Pattern in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View(Product.GetProducts().Select(p => p?.Name));
 }
 }
}

The action method gets a collection of Product objects from the static Product.GetProducts method
and uses LINQ to project the values of the Name properties, which are then used as the view model for the
default view. If you run the application, you will see the following output displayed in the browser window:

Kayak
Lifejacket

There will be an empty list item in the browser window as well because the GetProducts method
includes a null reference in its results, but that doesn’t matter for this section of the chapter.

When a constructor or method body consists of a single statement, it can be rewritten as a lambda
expression, as shown in Listing 4-33.

Listing 4-33. An Action Method Expressed as a Lambda Expression in the HomeController.cs File

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() =>
View(Product.GetProducts().Select(p => p?.Name));

 }
}

Lambda expressions for methods omit the return keyword and use => (goes to) to associate the method
signature (including its arguments) with its implementation. The Index method shown in Listing 4-33 works
in the same way as the one shown in Listing 4-32 but is expressed more concisely. The same basic approach
can also be used to define properties. Listing 4-34 shows the addition of a property that uses a lambda
express to the Product class.

Chapter 4 ■ essential C# Features

96

Listing 4-34. Expressing a Property as a Lambda Expression in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public Product(bool stock = true) {
 InStock = stock;
 }

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; }
 public bool NameBeginsWithS => Name?[0] == 'S';

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };

 Product lifejacket = new Product(false) {
 Name = "Lifejacket",
 Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Using Type Inference and Anonymous Types
The var keyword allows you to define a local variable without explicitly specifying the variable type, as
demonstrated by Listing 4-35. This is called type inference or implicit typing.

Listing 4-35. Using Type Inference in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

97

 public ViewResult Index() {
 var names = new [] { "Kayak", "Lifejacket", "Soccer ball" };
 return View(names);
 }
 }
}

It is not that the names variable does not have a type; instead, I am asking the compiler to infer the type
from the code. The compiler examines the array declaration and works out that it is a string array. Running
the example produces the following output:

Kayak
Lifejacket
Soccer ball

Using Anonymous Types
By combining object initializers and type inference, I can create simple view model objects that are useful
for transferring data between a controller and a view without having to define a class or struct, as shown in
Listing 4-36.

Listing 4-36. Creating an Anonymous Type in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => p.Name));
 }
 }
}

Chapter 4 ■ essential C# Features

98

Each of the objects in the products array is an anonymously typed object. This does not mean that it
is dynamic in the sense that JavaScript variables are dynamic. It just means that the type definition will be
created automatically by the compiler. Strong typing is still enforced. You can get and set only the properties
that have been defined in the initializer, for example. If you run the example, you will see the following
output in the browser window:

Kayak
Lifejacket
Soccer ball
Corner flag

The C# compiler generates the class based on the name and type of the parameters in the initializer.
Two anonymously typed objects that have the same property names and types will be assigned to the same
automatically generated class. This means that all the objects in the products array will have the same type
because they define the same properties.

 ■ Tip i have to use the var keyword to define the array of anonymously typed objects because the type isn’t
created until the code is compiled and so i don’t know the name of the type to use. the elements in an array of
anonymously typed objects must all define the same properties; otherwise, the compiler can’t work out what
the array type should be.

To demonstrate this, I have changed the output from the example in Listing 4-37 so that it shows the
type name rather than the value of the Name property.

Listing 4-37. Displaying the Type Name in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => p.GetType().Name));
 }
 }
}

Chapter 4 ■ essential C# Features

99

All the objects in the array have been assigned the same type, which you can see if you run the example.
The type name isn’t user-friendly but isn’t intended to be used directly, and you may see a different name
than the one shown in the following output:

<>f__AnonymousType0`2
<>f__AnonymousType0`2
<>f__AnonymousType0`2
<>f__AnonymousType0`2

Using Asynchronous Methods
Asynchronous methods go off and do work in the background and notify you when they are complete,
allowing your code to take care of other business while the background work is performed. Asynchronous
methods are an important tool in removing bottlenecks from code and allow applications to take advantage
of multiple processors and processor cores to perform work in parallel.

In MVC, asynchronous methods can be used to improve the overall performance of an application by
allowing the server more flexibility in the way that requests are scheduled and executed. Two C# keywords—
async and await—are used to perform work asynchronously.

To prepare for this section, I need to add a new .NET assembly to the example project so that I can make
asynchronous HTTP requests. Right-click the LanguageFeatures project item in the Solution Explorer, select
Edit LanguageFeatures.csproj from the pop-up menu, and add the element shown in Listing 4-38.

Listing 4-38. Adding a Package in the LanguageFeatures.csproj File in the LanguageFeatures Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="System.Net.Http" Version="4.3.2" />
 </ItemGroup>

</Project>

When you save the file, Visual Studio will download the System.Net.Http assembly and add it to the
project. I describe this process in more detail in Chapter 6.

Working with Tasks Directly
C# and .NET have excellent support for asynchronous methods, but the code has tended to be verbose, and
developers who are not used to parallel programming often get bogged down by the unusual syntax. As
an example, Listing 4-39 shows an asynchronous method called GetPageLength, which I defined in a class
called MyAsyncMethods and added to the Models folder in a class file called MyAsyncMethods.cs.

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

Chapter 4 ■ essential C# Features

100

Listing 4-39. The Contents of the MyAsyncMethods.cs File in the Models Folder

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures.Models {

 public class MyAsyncMethods {

 public static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpTask = client.GetAsync("http://apress.com");

 return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => {
 return antecedent.Result.Content.Headers.ContentLength;
 });
 }
 }
}

This method uses a System.Net.Http.HttpClient object to request the contents of the Apress home
page and returns its length. .NET represents work that will be done asynchronously as a Task. Task objects
are strongly typed based on the result that the background work produces. So, when I call the HttpClient.
GetAsync method, what I get back is a Task<HttpResponseMessage>. This tells me that the request will be
performed in the background and that the result of the request will be an HttpResponseMessage object.

 ■ Tip When i use words like background, i am skipping over a lot of detail to make just the key points that
are important to the world of MVC. the .net support for asynchronous methods and parallel programming is
excellent, and i encourage you to learn more about it if you want to create truly high-performing applications
that can take advantage of multicore and multiprocessor hardware. You will see how MVC makes it easy to
create asynchronous web applications throughout this book as i introduce different features.

The part that most programmers get bogged down with is the continuation, which is the mechanism by
which you specify what you want to happen when the background task is complete. In the example, I have
used the ContinueWith method to process the HttpResponseMessage object I get from the HttpClient.
GetAsync method, which I do using a lambda expression that returns the value of a property that contains
the length of the content I get from the Apress web server. Here is the continuation code:

...
return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => {
 return antecedent.Result.Content.Headers.ContentLength;
});
...

Chapter 4 ■ essential C# Features

101

Notice that I use the return keyword twice. This is the part that causes confusion. The first use of the return
keyword specifies that I am returning a Task<HttpResponseMessage> object, which, when the task is complete,
will return the length of the ContentLength header. The ContentLength header returns a long? result (a nullable
long value), and this means that the result of my GetPageLength method is Task<long?>, like this:

...
public static Task<long?> GetPageLength() {
...

Do not worry if this does not make sense—you are not alone in your confusion. It is for this reason that
Microsoft added keywords to C# to simplify asynchronous methods.

Applying the async and await Keywords
Microsoft introduced two keywords to C# that are specifically intended to simplify using asynchronous
methods like HttpClient.GetAsync. The keywords are async and await, and you can see how I have used
them to simplify my example method in Listing 4-40.

Listing 4-40. Using the async and await Keywords in the MyAsyncMethods.cs File in the Models Folder

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures.Models {

 public class MyAsyncMethods {

 public async static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpMessage = await client.GetAsync("http://apress.com");

 return httpMessage.Content.Headers.ContentLength;
 }
 }
}

I used the await keyword when calling the asynchronous method. This tells the C# compiler that
I want to wait for the result of the Task that the GetAsync method returns and then carry on executing other
statements in the same method.

Applying the await keyword means I can treat the result from the GetAsync method as though it were a
regular method and just assign the HttpResponseMessage object that it returns to a variable. Even better,
I can then use the return keyword in the normal way to produce a result from another method—in this case,
the value of the ContentLength property. This is a much more natural technique, and it means I do not have
to worry about the ContinueWith method and multiple uses of the return keyword.

Chapter 4 ■ essential C# Features

102

When you use the await keyword, you must also add the async keyword to the method signature, as
I have done in the example. The method result type does not change—my example GetPageLength method
still returns a Task<long?>. This is because await and async are implemented using some clever compiler
tricks, meaning that they allow a more natural syntax, but they do not change what is happening in the
methods to which they are applied. Someone who is calling my GetPageLength method still has to deal
with a Task<long?> result because there is still a background operation that produces a nullable long—
although, of course, that programmer can also choose to use the await and async keywords as well.

This pattern follows through into the MVC controller, which makes it easy to write asynchronous action
methods, as shown in Listing 4-41.

Listing 4-41. An Asynchronous Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;
using System.Threading.Tasks;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public async Task<ViewResult> Index() {
 long? length = await MyAsyncMethods.GetPageLength();
 return View(new string[] { $"Length: {length}" });
 }
 }
}

I have changed the result of the Index action method to Task<ViewResult>, which tells MVC that
the action method will return a Task that will produce a ViewResult object when it completes, which
will provide details of the view that should be rendered and the data that it requires. I have added the
async keyword to the method’s definition, which allows me to use the await keyword when calling the
MyAsyncMethods.GetPathLength method. MVC and .NET take care of dealing with the continuations,
and the result is asynchronous code that is easy to write, easy to read, and easy to maintain. If you run the
application, you will see output similar to the following (although with a different length since the content of
the Apress web site changes often):

Length: 54576

Getting Names
There are many tasks in web application development in which you need to refer to the name of an
argument, variable, method, or class. Common examples include when you throw an exception or create a
validation error when processing input from the user. The traditional approach has been to use a string value
hard-coded with the name, as shown in Listing 4-42.

Chapter 4 ■ essential C# Features

103

Listing 4-42. Hard-Coding a Name in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => $"Name: {p.Name}, Price: {p.Price}"));
 }
 }
}

The call to the LINQ Select method generates a sequence of strings, each of which contains a hard-
coded reference to the Name and Price properties. Running the application produces the following output in
the browser window:

Name: Kayak, Price: 275
Name: Lifejacket, Price: 48.95
Name: Soccer ball, Price: 19.50
Name: Corner flag, Price: 34.95

The problem with this approach is that it is prone to errors, either because the name was mistyped or
the code was refactored and the name in the string isn’t correctly updated. The result can be misleading,
which can be especially problematic for messages that are displayed to the user. C# supports the nameof
expression, in which the compiler takes responsibility for producing a name string, as shown in Listing 4-43.

Listing 4-43. Using nameof Expressions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

104

 public ViewResult Index() {

 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p =>
 $"{nameof(p.Name)}: {p.Name}, {nameof(p.Price)}: {p.Price}"));
 }
 }
}

The compiler processes a reference such as p.Name so that only the last part is included in the string,
producing the same output as in previous examples. Visual Studio includes IntelliSense support for nameof
expressions, so you will be prompted to select references, and expressions will be correctly updated when
you refactor code. Since the compiler is responsible for dealing with nameof, using an invalid reference
causes a compiler error, which prevents incorrect or outdated references from escaping notice.

Summary
In this chapter, I gave you an overview of the key C# language features that an effective MVC programmer
needs to know. C# is a sufficiently flexible language that there are usually different ways to approach any
problem, but these are the features that you will encounter most often during web application development
and see throughout the examples in this book. In the next chapter, I introduce the Razor view engine and
explain how it is used to generate dynamic content in MVC web applications.

	Chapter 4: Essential C# Features
	Preparing the Example Project
	Enabling ASP.NET Core MVC
	Creating the MVC Application Components
	Creating the Model
	Creating the Controller and View

	Using the Null Conditional Operator
	Chaining the Null Conditional Operator
	Combining the Conditional and Coalescing Operators

	Using Automatically Implemented Properties
	Using Auto-Implemented Property Initializers
	Creating Read-Only Automatically Implemented Properties

	Using String Interpolation
	Using Object and Collection Initializers
	Using an Index Initializer

	Pattern Matching
	Pattern Matching in Switch Statements

	Using Extension Methods
	Applying Extension Methods to an Interface
	Creating Filtering Extension Methods

	Using Lambda Expressions
	Defining Functions
	Using Lambda Expression Methods and Properties

	Using Type Inference and Anonymous Types
	Using Anonymous Types

	Using Asynchronous Methods
	Working with Tasks Directly
	Applying the async and await Keywords

	Getting Names
	Summary

