
11© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_2

CHAPTER 2

Your First MVC Application

The best way to appreciate a software development framework is to jump right in and use it. In this chapter,
you’ll create a simple data-entry application using ASP.NET Core MVC. I take things one step at a time so
you can see how an MVC application is constructed. To keep things simple, I skip over some of the technical
details for the moment. But don’t worry. If you are new to MVC, you will find plenty to keep you interested.
Where I use something without explaining it, I provide a reference to the chapter in which you can find all
the details.

UPDATES TO THIS BOOK

Microsoft has an active development schedule for .NET Core and ASP.NET Core MVC, which means
that there may be new releases available by the time you read this book. It doesn’t seem fair to expect
readers to buy a new book every few months, especially since most changes are relatively minor.
Instead, I will post free updates to the GitHub repository for this book (https://github.com/apress/
pro-asp.net-core-mvc-2) for breaking changes caused by minor releases.

This kind of update is an experiment for me (and for Apress), and I don’t yet know what form those
updates may take—not least because I don’t know what the future major releases of ASP.NET Core MVC
will contain—but the goal is to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how
long I will produce them before folding them into a new edition of this book. Please keep an open mind
and check the repository for this book when new ASP.NET Core MVC versions are released. If you have
ideas about how the updates could be improved, then e-mail me at adam@adam-freeman.com and let
me know.

Installing Visual Studio
This book relies on Visual Studio 2017, which provides the development environment for ASP.NET Core
MVC projects. I use the free Visual Studio 2017 Community edition, which can be downloaded from
www.visualstudio.com. When installing Visual Studio 2017, you must select the .NET Core cross-platform
development workload, as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-3150-0_2
https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2
http://www.visualstudio.com/

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

12

 ■ Note Visual Studio 2017 predates the release of ASP.NET Core MVC 2. You must apply the latest updates if
you have installed Visual Studio for earlier versions of ASP.NET Core MVC. You can apply updates by running the
Visual Studio installer and selecting update for the Visual Studio edition you are using.

 ■ Tip Visual Studio only supports Windows. You can create ASP.NET Core MVC applications on other
platforms using Visual Studio Code. Visual Studio Code doesn’t provide all of the features of Visual Studio, but it
is an excellent editor and does everything required for MVC application development. See Chapter 13 for details.

Installing the .NET Core 2.0 SDK
The Visual Studio installation includes all of the features required for ASP.NET Core MVC development, but
it doesn’t include .NET Core 2.0, which must be downloaded and installed separately.

Go to https://www.microsoft.com/net/core and download and run the .NET Core SDK installer for
Windows. Once the installer has finished, open a new command prompt or PowerShell window and run the
following command to display the version of .NET that has been installed:

dotnet --version

Figure 2-1. Selecting the Visual Studio workload

http://dx.doi.org/10.1007/978-1-4842-3150-0_13
https://www.microsoft.com/net/core

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

13

If the installation has been successful, the result of this command will be 2.0.0.

Creating a New ASP.NET Core MVC Project
I am going to start by creating a new ASP.NET Core MVC project in Visual Studio. Select New ➤ Project from
the File menu to open the New Project dialog. If you navigate to the Installed ➤ Visual C# ➤ Web section
in the left panel, you will see the ASP.NET Core Web Application (.NET Core) project template. Select this
project type, as shown in Figure 2-2.

 ■ Tip The choice of project template can be confusing because their names are so similar. The ASP.NET
Web Application (.NET Framework) template is for creating projects using the legacy versions of ASP.NET and
the MVC Framework, which predated ASP.NET Core. The other two templates are for creating ASP.NET Core
applications, and they differ in the runtime they use, allowing you to select either the .NET Framework or .NET
Core. I explain the difference between them in Chapter 6, but I use the .NET Core option throughout this book,
so it is the one you should select to ensure that you get the same results from the example applications.

Enter PartyInvites in the Name field for the new project. Click the OK button to continue and you will
see another dialog box, shown in Figure 2-3, which asks you to set the initial content for the project. Ensure
that .NET Core and ASP.NET Core 2.0 are selected from the drop-down menus, as shown in the figure.

Figure 2-2. The ASP.NET Core Web Application project template

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

14

There are several template options, each of which creates a project with different starting content. For
this chapter, select the Web Application (Model-View-Controller) option, which sets up an MVC application
with predefined content to jump-start development.

 ■ Note This is the only chapter in which I use the Web Application (Model-View-Controller) project template.
I don’t like using predefined project templates because they encourage developers to treat some important
features, such as authentication, as black boxes. My goal in this book is to give you the knowledge to
understand and manage every aspect of your MVC applications, so I use the Empty template throughout the rest
of the book. This chapter is about getting started quickly, for which the Web Application (Model-View-Controller)
template is well-suited.

Click the Change Authentication button and ensure that the No Authentication option is selected, as
shown in Figure 2-4. This project doesn’t require any authentication, but I explain how to secure ASP.NET
applications in Chapters 28, 29, and 30.

Figure 2-3. Selecting the initial project configuration

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

15

Click OK to close the Change Authentication dialog. Ensure that the Enable Docker Support option is
unchecked and then click OK to create the PartyInvites project.

Once Visual Studio has created the project, you will see a number of files and folders displayed in the
Solution Explorer window, as shown in Figure 2-5. This is the default project structure for a new MVC project
created using the Web Application (Model-View-Controller) template, and you will soon understand the
purpose of each file and folder that Visual Studio creates.

 ■ Tip If you see a Pages folder, rather than Controllers, Models, and Views folders, then you have
selected the Web Application template and not the (confusingly similar) Web Application (Model-View-Controller)
template. I have no idea why Microsoft thought that such similar names were a good idea, but you will have to
delete the project you created and start over.

Figure 2-4. Selecting the authentication settings

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

16

You can run the application by selecting Start Debugging from the Debug menu (if it prompts you to
enable debugging, just click the OK button). When you do this, Visual Studio compiles the application,
uses an application server called IIS Express to run it, and opens a web browser to request the application
content. It can take Visual Studio some time to run the project for the first time, and when the process is
complete, you will see the results shown in Figure 2-6.

Figure 2-6. Running the example project

Figure 2-5. The initial file and folder structure of an ASP.NET Core MVC project

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

17

When Visual Studio creates a project with the Web Application (Model-View-Controller) template, it
adds some basic code and content, which is what you see when you run the application. Throughout the rest
of the chapter, I will replace this content to create a simple MVC application.

When you are finished, be sure to stop debugging by closing the browser window or by going back to
Visual Studio and selecting Stop Debugging from the Debug menu.

As you have just seen, Visual Studio opens the browser to display the project. You can select any
browser that you have installed by clicking the arrow to the right of the IIS Express toolbar button and
choosing from the list of options in the Web Browser menu, as shown in Figure 2-7.

From here on, I will use Google Chrome or Google Chrome Canary for all the screenshots in this book,
but you can use any modern browser to display the examples in the books, including Microsoft Edge.

Adding the Controller
In the MVC pattern, incoming requests are handled by controllers. In ASP.NET Core MVC, controllers are just
C# classes (usually inheriting from the Microsoft.AspNetCore.Mvc.Controller class, which is the built-in
MVC controller base class).

Each public method in a controller is known as an action method, meaning you can invoke it from
the Web via some URL to perform an action. The MVC convention is to put controllers in the Controllers
folder, which Visual Studio created when it set up the project.

 ■ Tip You do not need to follow this or most other MVC conventions, but I recommend that you do—not least
because it will help you make sense of the examples in this book.

Figure 2-7. Selecting a browser

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

18

Visual Studio adds a default controller class to the project, which you can see if you expand the
Controllers folder in the Solution Explorer. The file is called HomeController.cs. Controller classes contain
a name followed by the word Controller, which means that when you see a file called HomeController.
cs, you know that it contains a controller called Home, which is the default controller that is used in MVC
applications. Click the HomeController.cs file in the Solution Explorer so that Visual Studio opens it for
editing. You will see the C# code shown in Listing 2-1.

Listing 2-1. The Initial Contents of the HomeController.cs File in the Controllers Folder

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {
 public class HomeController : Controller {
 public IActionResult Index() {
 return View();
 }

 public IActionResult About() {
 ViewData["Message"] = "Your application description page.";

 return View();
 }

 public IActionResult Contact() {
 ViewData["Message"] = "Your contact page.";

 return View();
 }

 public IActionResult Error() {
 return View(new ErrorViewModel { RequestId = Activity.Current?.Id
 ?? HttpContext.TraceIdentifier });
 }
 }
}

Replace the code in the HomeController.cs file so that it matches Listing 2-2. I have removed all but
one of the methods, changed the result type and its implementation, and removed the using statements for
unused namespaces.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

19

Listing 2-2. Changing the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public string Index() {
 return "Hello World";
 }
 }
}

These changes don’t produce a dramatic effect, but they make for a nice demonstration. I have changed
the method called Index so that it returns the string Hello World. Run the project again by selecting Start
Debugging from the Visual Studio Debug menu.

 ■ Tip If you left the application running from the previous section, then select restart from the Debugging
menu or, if you prefer, select Stop Debugging and then Start Debugging.

The browser will make an HTTP request to the server. The default MVC configuration means that the
request will be handled using the Index method (known as an action method or just an action) and the result
from the method will be sent back to the browser, as shown in Figure 2-8.

 ■ Tip Notice that Visual Studio has directed the browser to port 57628. You will almost certainly see a
different port number in the url that your browser requests because Visual Studio allocates a random port
when the project is created. If you look in the Windows taskbar notification area, you will find an icon for IIS
Express. This is a cut-down version of the full IIS application server that is included with Visual Studio and is
used to deliver ASP.NET Core content and services during development. I'll show you how to deploy an MVC
project into a production environment in Chapter 12.

Figure 2-8. The output from the action method

http://dx.doi.org/10.1007/978-1-4842-3150-0_12

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

20

Understanding Routes
As well as models, views, and controllers, MVC applications use the ASP.NET routing system, which decides
how URLs map to controllers and actions. A route is a rule that is used to decide how a request is handled.
When Visual Studio creates the MVC project, it adds some default routes to get you started. You can request
any of the following URLs, and they will be directed to the Index action on the HomeController:

•	 /

•	 /Home

•	 /Home/Index

So, when a browser requests http://yoursite/ or http://yoursite/Home, it gets back the output
from HomeController’s Index method. You can try this yourself by changing the URL in the browser. At the
moment, it will be http://localhost:57628/, except that the port part may be different. If you append /
Home or /Home/Index to the URL, you will see the same Hello World result from the MVC application.

This is a good example of benefiting from following conventions implemented by ASP.NET Core MVC.
In this case, the convention is that I will have a controller called HomeController and it will be the starting
point for the MVC application. The default configuration that Visual Studio creates for a new project assumes
I will follow this convention. Since I did follow the convention, I automatically got support for the URLs in
the preceding list. If I had not followed the convention, I would need to modify the configuration to point to
whatever controller I had created instead. For this simple example, the default configuration is all I need.

Rendering Web Pages
The output from the previous example wasn’t HTML—it was just the string Hello World. To produce an
HTML response to a browser request, I need a view, which tells MVC how to generate a response to a request
from a browser.

Creating and Rendering a View
The first thing I need to do is modify my Index action method, as shown in Listing 2-3. The changes are
shown in bold, which is a convention I follow throughout this book to make the examples easier to follow.

Listing 2-3. Rendering a View in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 return View("MyView");
 }
 }
}

When I return a ViewResult object from an action method, I am instructing MVC to render a view. I
create the ViewResult object by calling the View method, specifying the name of the view that I want to use,
which is MyView. If you run the application, you can see MVC trying to find the view, as shown in the error
message displayed in Figure 2-9.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

21

This is a helpful error message. It explains that MVC could not find the view I specified for the action
method and also shows where it looked. Views are stored in the Views folder, organized into subfolders.
Views that are associated with the Home controller, for example, are stored in a folder called Views/Home.
Views that are not specific to a single controller are stored in a folder called Views/Shared. Visual Studio
creates the Home and Shared folders automatically when the Web Application (Model-View-Controller)
template is used and puts in some placeholder views to get the project started.

To create the view needed for this example, expand the Views folder in the Solution Explorer, right-click
the Home folder, and select Add ➤ New Item from the pop-up menu. Visual Studio will present you with a
list of item templates. Drill down to the ASP.NET Core ➤ Web ➤ ASP.NET category using the left pane and
then select the MVC View Page item in the central pane, as shown in Figure 2-10. (Don’t use the Razor Page
template, which is not related to the MVC Framework.)

 ■ Tip You will see some existing files in the Views folder, which were added to the project by Visual Studio to
provide some initial content, some of which you saw in Figure 2-6. You can ignore these files.

Figure 2-9. MVC trying to find a view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

22

Set the Name field to MyView.cshtml and click the Add button to create the view. Visual Studio will
create the Views/Home/MyView.cshtml file and open it for editing. The initial content of the view file is just
some comments and a placeholder. Replace them with the content shown in Listing 2-4.

 ■ Tip It is easy to end up creating the view file in the wrong folder. If you didn’t end up with a file called
MyView.cshtml in the Views/Home folder, then delete the file you did create and try again.

Listing 2-4. Replacing the Content of the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 Hello World (from the view)
 </div>
</body>

Figure 2-10. Creating a view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

23

</html>
The new contents of the view file are mostly HTML. The exception is the part that looks like
this:
...
@{
 Layout = null;
}
...

This is an expression that will be interpreted by the Razor view engine, which processes the contents of
views and generates HTML that is sent to the browser. This is a simple Razor expression, and it tells Razor
that I chose not to use a layout, which is like a template for the HTML that will be sent to the browser
(and which I describe in Chapter 5). I am going to ignore Razor for the moment and come back to it later.
To see the effect of creating the view, select Start Debugging from the Debug menu to run the application.
You should see the result in Figure 2-11.

When I first edited the Index action method, it returned a string value. This meant that MVC did
nothing except pass the string value as is to the browser. Now that the Index method returns a ViewResult,
MVC renders a view and returns the HTML it produces. I told MVC which view should be used, so it used
the naming convention to find it automatically. The convention is that the view has the name of the action
method and is contained in a folder named after the controller: /Views/Home/MyView.cshtml.

I can return other results from action methods besides strings and ViewResult objects. For
example, if I return a RedirectResult, the browser will be redirected to another URL. If I return an
HttpUnauthorizedResult, I can prompt the user to log in. These objects are collectively known as action
results. The action result system lets you encapsulate and reuse common responses in actions. I’ll tell you
more about them and explain the different ways they can be used in Chapter 17.

Adding Dynamic Output
The whole point of a web application platform is to construct and display dynamic output. In MVC, it is the
controller’s job to construct some data and pass it to the view, which is responsible for rendering it to HTML.

One way to pass data from the controller to the view is by using the ViewBag object, which is a member
of the Controller base class. ViewBag is a dynamic object to which you can assign arbitrary properties,
making those values available in whatever view is subsequently rendered. Listing 2-5 demonstrates passing
some simple dynamic data in this way in the HomeController.cs file.

Figure 2-11. Testing the view

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

24

Listing 2-5. Setting View Data in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }
 }
}

I provide data for the view when I assign a value to the ViewBag.Greeting property. The Greeting
property didn’t exist until the moment I assigned the value—this allows me to pass data from the controller
to the view in a free and fluid manner, without having to define classes ahead of time. I refer to the ViewBag.
Greeting property again in the view to get the data value, as illustrated in Listing 2-6, which shows the
corresponding change to the MyView.cshtml file.

Listing 2-6. Retrieving a ViewBag Data Value in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting World (from the view)
 </div>
</body>
</html>

The addition to the listing is a Razor expression that is evaluated when MVC uses the view to generate
a response. When I call the View method in the controller’s Index method, MVC locates the MyView.cshtml
view file and asks the Razor view engine to parse the file’s content. Razor looks for expressions like the one
I added in the listing and processes them. In this example, processing the expression means inserting the
value assigned to the ViewBag.Greeting property in the action method into the view.

There’s nothing special about the property name Greeting; you could replace this with any property name
and it would work the same, just as long as the name you use in the controller matches the name you use in the
view. You can pass multiple data values from your controller to the view by assigning values to more than one
property. You can see the effect of these changes by starting the project, as shown in Figure 2-12.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

25

Creating a Simple Data-Entry Application
In the rest of this chapter, I will explore more of the basic MVC features by building a simple data-entry
application. I am going to pick up the pace in this section. My goal is to demonstrate MVC in action, so I will
skip over some of the explanations as to how things work behind the scenes. But don’t worry; I’ll revisit these
topics in depth in later chapters.

Setting the Scene
Imagine that a friend has decided to host a New Year’s Eve party and that she has asked me to create a web
app that allows her invitees to electronically RSVP. She has asked for these four key features:

•	 A home page that shows information about the party

•	 A form that can be used to RSVP

•	 Validation for the RSVP form, which will display a thank-you page

•	 A summary page that shows who is coming to the party

In the following sections, I will build up the MVC project I created at the start of the chapter and add
these features. I can check the first item off the list by applying what I covered earlier and add some HTML
to my existing view to give details of the party. To get started, Listing 2-7 shows the additions I made to the
Views/Home/MyView.cshtml file.

Listing 2-7. Displaying Details of the Party in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>

Figure 2-12. A dynamic response from MVC

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

26

 @ViewBag.Greeting World (from the view)
 <p>We're going to have an exciting party.

 (To do: sell it better. Add pictures or something.)
 </p>
 </div>
</body>
</html>

I am on my way. If you run the application, by selecting Start Debugging from the Debug menu,
you’ll see the details of the party (well, the placeholder for the details, but you get the idea), as shown in
Figure 2-13.

Designing a Data Model
In MVC, the M stands for model, and it is the most important part of the application. The model is the
representation of the real-world objects, processes, and rules that define the subject, known as the domain,
of the application. The model, often referred to as a domain model, contains the C# objects (known as
domain objects) that make up the universe of the application and the methods that manipulate them. The
views and controllers expose the domain to the clients in a consistent manner, and a well-designed MVC
application starts with a well-designed model, which is then the focal point as controllers and views are
added.

I don’t need a complex model for the PartyInvites project because it is such a simple application
and I need just one domain class that I will call GuestResponse. This object will be responsible for storing,
validating, and confirming a RSVP.

The MVC convention is that the classes that make up a model are placed inside a folder called Models,
which Visual Studio creates automatically when you use the Web Application (Model-View-Controller)
template.

To create the class file, right-click the Models folder in the Solution Explorer and select Add ➤ Class
from the pop-up menu. Set the name of the new class to GuestResponse.cs and click the Add button. Edit
the contents of the new class file to match Listing 2-8.

Figure 2-13. Adding to the view HTML

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

27

Listing 2-8. The Contents of the GuestResponse.cs File in the Models Folder

namespace PartyInvites.Models {

 public class GuestResponse {

 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
 }
}

 ■ Tip You may have noticed that the WillAttend property is a nullable bool, which means that it can be
true, false, or null. I explain the rationale for this in the “Adding Validation” section later in the chapter.

Creating a Second Action and a Strongly Typed View
One of my application goals is to include an RSVP form, which means I need to define an action method
that can receive requests for that form. A single controller class can define multiple action methods, and the
convention is to group related actions together in the same controller. Listing 2-9 shows the addition of a
new action method to the Home controller.

Listing 2-9. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 public ViewResult RsvpForm() {
 return View();
 }
 }
}

The RsvpForm action method calls the View method without an argument, which tells MVC to render
the default view associated with the action method, which is a view with the same name as the action
method, in this case, RsvpForm.cshtml.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

28

Right-click the Views/Home folder and select Add ➤ New Item from the pop-up menu. Select the MVC
View Page template, set the name of the new file to RsvpForm.cshtml, and click the Add button to create the
file. Change the content of the file so that it matches Listing 2-10.

Listing 2-10. Setting the Content of the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <div>
 This is the RsvpForm.cshtml View
 </div>
</body>
</html>

This content is mostly HTML but with the addition of a @model Razor expression, which is used to create
a strongly typed view. A strongly typed view is intended to render a specific model type, and if I specify the
type I want to work with (the GuestResponse class in the PartyInvites.Models namespace in this case),
MVC can create some helpful shortcuts to make it easier. I will take advantage of the strongly typed feature
shortly.

To test the new action method and its view, start the application by selecting Start Debugging from the
Debug menu and use the browser to navigate to the /Home/RsvpForm URL.

MVC will use the naming convention I described earlier to direct the request to the RsvpForm action
method defined by the Home controller. This action method tells MVC to render the default view, which,
with another application of the naming convention, renders RsvpForm.cshml from the Views/Home folder.
Figure 2-14 shows the result.

Figure 2-14. Rendering the second view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

29

Linking Action Methods
I want to be able to create a link from the MyView view so that guests can see the RsvpForm view without
having to know the URL that targets a specific action method, as shown in Listing 2-11.

Listing 2-11. Adding a Link to the RSVP Form in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting World (from the view)
 <p>We're going to have an exciting party.

 (To do: sell it better. Add pictures or something.)
 </p>
 <a asp-action="RsvpForm">RSVP Now
 </div>
</body>
</html>

The addition to the listing is an a element that has an asp-action attribute. The attribute is an example
of a tag helper attribute, which is an instruction for Razor that will be performed when the view is rendered.
The asp-action attribute is an instruction to add an href attribute to the a element that contains a URL for
an action method. I explain how tag helpers work in Chapters 24, 25, and 26, but this is the simplest type
of tag helper attribute for a elements, and it tells Razor to insert a URL for an action method defined by the
same controller for which the current view is being rendered. You can see the link that the helper creates by
starting the project, as shown in Figure 2-15.

Figure 2-15. Linking between action methods

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

30

Start the application and roll the mouse over the RSVP Now link the browser. You will see that the link
points to the following URL (allowing for the different port number that Visual Studio will have assigned to
your project):

http://localhost:57628/Home/RsvpForm

There is an important principle at work here, which is that you should use the features provided by
MVC to generate URLs, rather than hard-code them into your views. When the tag helper created the href
attribute for the a element, it inspected the configuration of the application to figure out what the URL
should be. This allows the configuration of the application to be changed to support different URL formats
without needing to update any views. I explain how this works in Chapter 15.

Building the Form
Now that I have created the strongly typed view and can reach it from the Index view, I am going to build out
the contents of the RsvpForm.cshtml file to make it into an HTML form for editing GuestResponse objects, as
shown in Listing 2-12.

Listing 2-12. Creating a Form View in the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <form asp-action="RsvpForm" method="post">
 <p>
 <label asp-for="Name">Your name:</label>
 <input asp-for="Name" />
 </p>
 <p>
 <label asp-for="Email">Your email:</label>
 <input asp-for="Email" />
 </p>
 <p>
 <label asp-for="Phone">Your phone:</label>
 <input asp-for="Phone" /></p>

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

31

 <p>
 <label>Will you attend?</label>
 <select asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </p>
 <button type="submit">Submit RSVP</button>
 </form>
</body>
</html>

I have defined a label and input element for each property of the GuestResponse model class (or, in
the case of the WillAttend property, a select element). Each element is associated with the model property
using the asp-for attribute, which is another tag helper attribute. The tag helper attributes configure the
elements to tie them to the model object. Here is an example of the HTML that the tag helpers produce and
that is sent to the browser:

<p>
 <label for="Name">Your name:</label>
 <input type="text" id="Name" name="Name" value="">
</p>

The asp-for attribute on the label element sets the value of the for attribute. The asp-for attribute
on the input element sets the id and name elements. This doesn’t look especially useful at the moment, but
you will see that associating elements with a model property offers additional advantages as the application
functionality is defined.

Of more immediate use is the asp-action attribute applied to the form element, which uses the
application’s URL routing configuration to set the action attribute to a URL that will target a specific action
method, like this:

<form method="post" action="/Home/RsvpForm">

As with the helper attribute I applied to the a element, the benefit of this approach is that you can
change the system of URLs that the application uses and the content generated by the tag helpers will reflect
the changes automatically.

You can see the form by running the application and clicking the RSVP Now link, as shown in Figure 2-16.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

32

Receiving Form Data
I have not yet told MVC what I want to do when the form is posted to the server. As things stand, clicking the
Submit RSVP button just clears any values you have entered into the form. That is because the form posts
back to the RsvpForm action method in the Home controller, which just tells MVC to render the view again.
To receive and process submitted form data, I am going to use a core controller feature. I will add a second
RsvpForm action method to create the following:

•	 A method that responds to HTTP GET requests: A GET request is what a browser
issues normally each time someone clicks a link. This version of the action will be
responsible for displaying the initial blank form when someone first visits /Home/
RsvpForm.

•	 A method that responds to HTTP POST requests: By default, forms rendered using
Html.BeginForm() are submitted by the browser as a POST request. This version of
the action will be responsible for receiving submitted data and deciding what to do
with it.

Handing GET and POST requests in separate C# methods helps to keep my controller code tidy since the
two methods have different responsibilities. Both action methods are invoked by the same URL, but MVC
makes sure that the appropriate method is called, based on whether I am dealing with a GET or POST request.
Listing 2-13 shows the changes to the HomeController class.

Listing 2-13. Adding a Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

Figure 2-16. Adding an HTML form to the application

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

33

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 // TODO: store response from guest
 return View();
 }
 }
}

I have added the HttpGet attribute to the existing RsvpForm action method. This tells MVC that this
method should be used only for GET requests. I then added an overloaded version of the RsvpForm method,
which accepts a GuestResponse object. I applied the HttpPost attribute to this method, which tells MVC
that the new method will deal with POST requests. I explain how these additions to the listing work in the
following sections. I also imported the PartyInvites.Models namespace—this is just so I can refer to the
GuestResponse model type without needing to qualify the class name.

Using Model Binding
The first overload of the RsvpForm action method renders the same view as before—the RsvpForm.cshtml
file—to generate the form shown in Figure 2-16. The second overload is more interesting because of the
parameter, but given that the action method will be invoked in response to an HTTP POST request and that
the GuestResponse type is a C# class, how are the two connected?

The answer is model binding, a useful MVC feature whereby incoming data is parsed and the key/value
pairs in the HTTP request are used to populate properties of domain model types.

Model binding is a powerful and customizable feature that eliminates the grind of dealing with HTTP
requests directly and lets you work with C# objects rather than dealing with individual data values sent by
the browser. The GuestResponse object that is passed as the parameter to the action method is automatically
populated with the data from the form fields. I dive into the detail of model binding, including how it can be
customized, in Chapter 26.

One of the application goals is to present a summary page with details of who is attending, which means
that I need to keep track of the responses that I receive. I am going to do this by creating an in-memory
collection of objects. This isn’t useful in a real application because the response data will be lost when the
application is stopped or restarted, but this approach will allow me to keep the focus on MVC and create an
application that can easily be reset to its initial state.

 ■ Tip I demonstrate how MVC can be used to store and access data persistently in Chapter 8 as part of a
more realistic example application called SportsStore.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_8

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

34

I added a file to the project by right-clicking the Models folder and selecting Add ➤ Class from the pop-
up menu. I set the name of the file to Repository.cs and used it to define the class shown in Listing 2-14.

Listing 2-14. The Contents of the Repository.cs File in the Models Folder

using System.Collections.Generic;

namespace PartyInvites.Models {
 public static class Repository {
 private static List<GuestResponse> responses = new List<GuestResponse>();

 public static IEnumerable<GuestResponse> Responses {
 get {
 return responses;
 }
 }

 public static void AddResponse(GuestResponse response) {
 responses.Add(response);
 }
 }
}

The Repository class and its members are set to static, which will make it easy for me to store and
retrieve data from different places in the application. MVC provides a more sophisticated approach for
defining common functionality, called dependency injection, which I describe in Chapter 18, but a static
class is a good way to get started for a simple application like this one.

Storing Responses
Now that I have somewhere to store the data, I can update the action method that receives the HTTP POST
requests, as shown in Listing 2-15.

Listing 2-15. Updating an Action Method in the HomeController.cs File

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

35

 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 }
 }
}

All I have to do to deal with the form data sent in a request is to work with the GuestResponse object
that is passed to the action method—in this case, to pass it as an argument to the Repository.AddResponse
method so that the response can be stored.

WHY MODEL BINDING IS NOT LIKE WEB FORMS

In Chapter 1, I explained that one of the disadvantages of traditional ASP.NET Web Forms is that it hides
the details of HTTP and HTMl from the developers. You may be wondering whether the MVC model
binding that I used to create a GuestResponse object from an HTTP PoST request in listing 2-15 is
doing the same thing.

It isn’t. Model binding frees me from the tedious and error-prone task of having to inspect an HTTP
request and extract all the data values that I require, but (and this is the important part) if I wanted to
process a request manually, I could do so because MVC provides easy access to all of the request data.
Nothing is hidden from the developer, but there are a number of useful features that make working with
HTTP and HTMl simpler and easier; however, using these features is optional.

This may seem like a subtle difference, but as you learn more about MVC, you will see that the
development experience is completely different from traditional Web Forms and that you are always
aware of how the requests your application receives are handled.

The call to the View method in the RsvpForm action method tells MVC to render a view called Thanks
and to pass the GuestResponse object to the view. To create the view, right-click the Views/Home folder in the
Solution Explorer and select Add ➤ New Item from the pop-up menu. Select the MVC View Page template in
the ASP.NET category, set the name to Thanks.cshtml, and click the Add button. Visual Studio will create the
Views/Home/Thanks.cshtml file and open it for editing. Change the contents of the file to match Listing 2-16.

Listing 2-16. The Contents of the Thanks.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>

http://dx.doi.org/10.1007/978-1-4842-3150-0_1

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

36

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
</head>
<body>
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 <p>Click <a asp-action="ListResponses">here to see who is coming.</p>
</body>
</html>

The Thanks.cshtml view uses Razor to display content based on the value of the GuestResponse
properties that I passed to the View method in the RsvpForm action method. The Razor @model expression
specifies the domain model type with which the view is strongly typed.

To access the value of a property in the domain object, I use Model.PropertyName. For example, to get
the value of the Name property, I call Model.Name. Don’t worry if the Razor syntax doesn’t make sense—I
explain it in more detail in Chapter 5.

Now that I have created the Thanks view, I have a basic working example of handling a form with MVC.
Start the application in Visual Studio by selecting Start Debugging from the Debug menu, click the RSVP
Now link, add some data to the form, and click the Submit RSVP button. You will see the result shown in
Figure 2-17 (although it will differ if your name is not Joe or you said you could not attend).

Figure 2-17. The Thanks view

http://dx.doi.org/10.1007/978-1-4842-3150-0_5

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

37

Displaying the Responses
At the end of the Thanks.cshtml view, I added an a element to create a link to display the list of people who
are coming to the party. I used the asp-action tag helper attribute to create a URL that targets an action
method called ListResponses, like this:

...
<p>Click <a asp-action="ListResponses">here to see who is coming.</p>
...

If you hover the mouse over the link that is displayed by the browser, you will see that it targets the /
Home/ListResponses URL. This doesn’t correspond to any of the action methods in the Home controller, and
if you click the link, you will see a 404 Not Found error page

I am going to fix the problem by creating the action method that the URL targets in the Home controller,
as shown in Listing 2-17.

Listing 2-17. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 }

 public ViewResult ListResponses() {
 return View(Repository.Responses.Where(r => r.WillAttend == true));
 }
 }
}

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

38

The new action method is called ListResponses, and it calls the View method, using the
Repository.Responses property as the argument. This is how an action method provides data to a
strongly typed view. The collection of GuestResponse objects is filtered using LINQ so that only positive
responses are used.

The ListResponses action method doesn’t specify the name of the view that should be used to display
the collection of GuestResponse objects, which means that the default naming convention will be used and
MVC will look for a view called ListResponses.cshtml in the Views/Home and Views/Shared folders. To
create the view, right-click the Views/Home folder in the Solution Explorer and select Add ➤ New Item from
the pop-up menu. Select the MVC View Page template, set the name to ListResponses.cshtml, and click the
Add button. Edit the contents of the new view to match Listing 2-18.

Listing 2-18. Displaying the Acceptances in the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Responses</title>
</head>
<body>
 <h2>Here is the list of people attending the party</h2>
 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>
 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr>
 <td>@r.Name</td>
 <td>@r.Email</td>
 <td>@r.Phone</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

39

Razor view files have the cshtml file extension because they are a mix of C# code and HTML elements.
You can see this in Listing 2-18 where I have used a foreach loop to process each of the GuestResponse
objects that the action method passes to the view using the View method. Unlike a normal C# foreach
loop, the body of a Razor foreach loop contains HTML elements that are added to the response that will be
sent back to the browser. In this view, each GuestResponse object generates a tr element that contains td
elements populated with the value of an object property.

To see the list at work, run the application by selecting Start Debugging from the Start menu, submit
some form data, and then click the link to see the list of responses. You will see a summary of the data you
have entered since the application was started, as shown in Figure 2-18. The view does not present the data
in an appealing way, but it is enough for the moment, and I will address the styling of the application later in
this chapter.

Adding Validation
I am now in a position to add data validation to my application. Without validation, users could enter
nonsense data or even submit an empty form. In an MVC application, you typically apply validation to the
domain model rather than in the user interface. This means that you define validation in one place, but it
takes effect anywhere in the application that the model class is used. MVC supports declarative validation
rules defined with attributes from the System.ComponentModel.DataAnnotations namespace, meaning
that validation constraints are expressed using the standard C# attribute features. Listing 2-19 shows how I
applied these attributes to the GuestResponse model class.

Listing 2-19. Applying Validation in the GuestResponse.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {

 public class GuestResponse {

 [Required(ErrorMessage = "Please enter your name")]
 public string Name { get; set; }

Figure 2-18. Showing a list of party attendees

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

40

 [Required(ErrorMessage = "Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage = "Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage = "Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
 }
}

MVC automatically detects the attributes and uses them to validate data during the model-binding
process. I imported the namespace that contains the validation attributes, so I can refer to them without
needing to qualify their names.

 ■ Tip As noted earlier, I used a nullable bool for the WillAttend property. I did this so that I could apply the
Required validation attribute. If I had used a regular bool, the value I received through model binding could be
only true or false, and I would not be able to tell whether the user had selected a value. A nullable bool has
three possible values: true, false, and null. The browser sends a null value if the user has not selected a
value, and this causes the Required attribute to report a validation error. This is a nice example of how MVC
elegantly blends C# features with HTMl and HTTP.

I check to see whether there has been a validation problem using the ModelState.IsValid property in
the controller class. Listing 2-20 shows how I have done this in the POST-enabled RsvpForm action method in
the Home controller class.

Listing 2-20. Checking for Validation Errors in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

41

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 if (ModelState.IsValid) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 } else {
 // there is a validation error
 return View();
 }
 }

 public ViewResult ListResponses() {
 return View(Repository.Responses.Where(r => r.WillAttend == true));
 }
 }
}

The Controller base class provides a property called ModelState that provides information about the
conversion of HTTP request data into C# objects. If the ModelState.IsValid property returns true, then I
know that MVC has been able to satisfy the validation constraints I specified through the attributes on the
GuestResponse class. When this happens, I render the Thanks view, just as I did previously.

If the ModelState.IsValid property returns false, then I know that there are validation errors. The
object returned by the ModelState property provides details of each problem that has been encountered, but
I don’t need to get into that level of detail because I can rely on a useful feature that automates the process of
asking the user to address any problems by calling the View method without any parameters.

When MVC renders a view, Razor has access to the details of any validation errors associated with the
request, and tag helpers can access the details to display validation errors to the user. Listing 2-21 shows the
addition of validation tag helper attributes to the RsvpForm view.

Listing 2-21. Adding a Validation Summary to the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <form asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <p>
 <label asp-for="Name">Your name:</label>
 <input asp-for="Name" />
 </p>
 <p>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

42

 <label asp-for="Email">Your email:</label>
 <input asp-for="Email" />
 </p>
 <p>
 <label asp-for="Phone">Your phone:</label>
 <input asp-for="Phone" /></p>
 <p>
 <label>Will you attend?</label>
 <select asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </p>
 <button type="submit">Submit RSVP</button>
 </form>
</body>
</html>

The asp-validation-summary attribute is applied to a div element, and it displays a list of validation
errors when the view is rendered. The value for the asp-validation-summary attribute is a value from an
enumeration called ValidationSummary, which specifies what types of validation errors the summary will
contain. I specified All, which is a good starting point for most applications, and I describe the other values
and explain how they work in Chapter 27.

To see how the validation summary works, run the application, fill out the Name field, and submit the
form without entering any other data. You will see a summary of validation errors, as shown in Figure 2-19.

Figure 2-19. Displaying validation errors

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

43

The RsvpForm action method will not render the Thanks view until all of the validation constraints
applied to the GuestResponse class have been satisfied. Notice that the data entered into the Name field was
preserved and displayed again when Razor rendered the view with the validation summary. This is another
benefit of model binding, and it simplifies working with form data.

 ■ Note If you have worked with ASP.NET Web Forms, you will know that Web Forms has a concept of server
controls that retain state by serializing values into a hidden form field called __VIEWSTATE. MVC model binding
is not related to the Web Forms concepts of server controls, postbacks, or View State. MVC does not inject a
hidden __VIEWSTATE field into your rendered HTMl pages. Instead, it includes the data by setting the value
attributes of the input element.

Highlighting Invalid Fields
The tag helper attributes that associate model properties with elements have a handy feature that can be
used in conjunction with model binding. When a model class property has failed validation, the helper
attributes will generate slightly different HTML. Here is the input element that is generated for the Phone
field when there is no validation error:

<input type="text" data-val="true" data-val-required="Please enter your phone number"
id="Phone" name="Phone" value="">

For comparison, here is the same HTML element after the user has submitted the form without entering
any data into the text field (which is a validation error because I applied the Required validation attribute to
the Phone property of the GuestResponse class):

<input type="text" class="input-validation-error" data-val="true"
 data-val-required="Please enter your phone number" id="Phone"
 name="Phone" value="">

I have highlighted the difference: the asp-for tag helper attribute added the input element to a class
called input-validation-error. I can take advantage of this feature by creating a stylesheet that contains
CSS styles for this class and the others that different HTML helper attributes use.

The convention in MVC projects is that static content delivered to clients is placed into the wwwroot
folder, organized by content type, so that CSS stylesheets go into the wwwroot/css folder, JavaScript files go
into the wwwroot/js folder, and so on.

To create the stylesheet, right-click the wwwroot/css folder in the Visual Studio Solution Explorer, select
Add ➤ New Item, navigate to the ASP.NET Core ➤ Web ➤ Content section, and select Style Sheet from the
list of templates, as shown in Figure 2-20.

 ■ Tip Visual Studio creates a site.css file in the wwwroot/css folder when a project is created using the
Web Application template. You can ignore this file, which I don’t use in this chapter.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

44

Set the name of the file to styles.css, click the Add button to create the stylesheet, and edit the new file
so that it contains the styles shown in Listing 2-22.

Listing 2-22. The Contents of the styles.css File in the wwwroot/css Folder

.field-validation-error {color: #f00;}

.field-validation-valid { display: none;}

.input-validation-error { border: 1px solid #f00; background-color: #fee; }

.validation-summary-errors { font-weight: bold; color: #f00;}

.validation-summary-valid { display: none;}
To apply this stylesheet, I have added a link element to the head section of the RsvpForm
view, as shown in Listing 2-23.

Listing 2-23. Applying a Stylesheet in the RsvpForm.cshtml File in the Views/Home Folder

...
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/css/styles.css" />
</head>
...

The link element uses the href attribute to specify the location of the stylesheet. Notice that the
wwwroot folder is omitted from the URL. The default configuration for ASP.NET includes support for serving
static content, such as images, CSS stylesheets, and JavaScript files, and it maps requests to the wwwroot
folder automatically. I describe the ASP.NET and MVC configuration process in Chapter 14.

 ■ Tip There is a special tag helper for dealing with stylesheets that can be useful if you have a lot of files to
manage. See Chapter 25 for details.

Figure 2-20. Creating a CSS stylesheet

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_25

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

45

With the application of the stylesheet, a more visually obvious validation error will be displayed when
data is submitted that causes a validation error, as shown in Figure 2-21.

Styling the Content
All of the functional goals for the application are complete, but the overall appearance of the application
is poor. When you create a project using the Web Application template, as I did for the example in this
chapter, Visual Studio installs some common client-side development packages. While I am not a fan of
using template projects, I do like the client-side libraries that Microsoft has chosen. One of them is called
Bootstrap, which is a nice CSS framework originally developed by Twitter that has become a major open
source project in its own right and which has become a mainstay of web application development.

 ■ Note Bootstrap 3 is the current version as I write this, but version 4 is under development. Microsoft may
choose to update the version of Bootstrap used by the Web Application template in later releases of Visual
Studio, which may cause the content to display differently. This won’t be a problem for the other chapters in the
book because I show you how to explicitly specify a package version so that you get the expected results.

Styling the Welcome View
The basic Bootstrap features work by applying classes to elements that correspond to CSS selectors defined
in the files added to the wwwroot/lib/bootstrap folder. You can get full details of the classes that Bootstrap
defines from http://getbootstrap.com, but you can see how I have applied some basic styling to the
MyView.cshtml view file in Listing 2-24.

Figure 2-21. Automatically highlighted validation errors

http://getbootstrap.com/

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

46

Listing 2-24. Adding Bootstrap to the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="text-center">
 <h3>We're going to have an exciting party!</h3>
 <h4>And you are invited</h4>
 RSVP Now
 </div>
</body>
</html>

I have added a link element whose href attribute loads the bootstrap.css file from the wwwroot/lib/
bootstrap/dist/css folder. The convention is that third-party CSS and JavaScript packages are installed
into the wwwroot/lib folder, and I describe the tool that is used to manage these packages in Chapter 6.

Having imported the Bootstrap stylesheets, I need to style my elements. This is a simple example, so I
only need to use a small number of Bootstrap CSS classes: text-center, btn, and btn-primary.

The text-center class centers the content of an element and its children. The btn class styles a button,
input, or a element as a pretty button, and the btn-primary class specifies which of a range of colors I want
the button to be. You can see the effect by running the application, as shown in Figure 2-22.

Figure 2-22. Styling a view

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

47

It will be obvious to you that I am not a web designer. In fact, as a child, I was excused from art lessons on
the basis that I had absolutely no talent whatsoever. This had the happy result of making more time for math
lessons but meant that my artistic skills have not developed beyond those of the average 10-year-old child. For
a real project, I would seek a professional to help design and style the content, but for this example, I am going
it alone, and that means applying Bootstrap with as much restraint and consistency as I can muster.

Styling the RsvpForm View
Bootstrap defines classes that can be used to style forms. I am not going to go into detail, but you can see
how I have applied these classes in Listing 2-25.

Listing 2-25. Adding Bootstrap to the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/css/styles.css" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="panel panel-success">
 <div class="panel-heading text-center"><h4>RSVP</h4></div>
 <div class="panel-body">
 <form class="p-a-1" asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <div class="form-group">
 <label asp-for="Name">Your name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Email">Your email:</label>
 <input class="form-control" asp-for="Email" />
 </div>
 <div class="form-group">
 <label asp-for="Phone">Your phone:</label>
 <input class="form-control" asp-for="Phone" />
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 <select class="form-control" asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

48

 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">
 Submit RSVP
 </button>
 </div>
 </form>
 </div>
 </div>
</body>
</html>

The Bootstrap classes in this example create a header, just to give structure to the layout. To style the
form, I have used the form-group class, which is used to style the element that contains the label and the
associated input or select element. You can see the effect of the styles in Figure 2-23.

Figure 2-23. Styling the RsvpForm view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

49

Styling the Thanks View
The next view file to style is Thanks.cshtml, and you can see how I have done this in Listing 2-26, using CSS
classes that are similar to the ones I used for the other views. To make an application easier to manage, it is
a good principle to avoid duplicating code and markup wherever possible. MVC provides several features to
help reduce duplication, which I describe in later chapters. These features include Razor layouts (Chapter
5), partial views (Chapter 21), and view components (Chapter 22).

Listing 2-26. Applying Bootstrap to the Thanks.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body class="text-center">
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 Click here
 to see who is coming.
</body>
</html>

Figure 2-24 shows the effect of the styles.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

50

Styling the List View
The final view to style is ListResponses, which presents the list of attendees. Styling the content follows the
same basic approach as used for all Bootstrap styles, as shown in Listing 2-27.

Listing 2-27. Adding Bootstrap to the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
 <title>Responses</title>
</head>
<body>
 <div class="panel-body">
 <h2>Here is the list of people attending the party</h2>
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>

Figure 2-24. Styling the Thanks view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

51

 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr>
 <td>@r.Name</td>
 <td>@r.Email</td>
 <td>@r.Phone</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

Figure 2-25 shows the way that the table of attendees is presented. Adding these styles to the view
completes the example application, which now meets all of the development goals and has an improved
appearance.

Summary
In this chapter, I created a new MVC project and used it to construct a simple data-entry application, giving
you a first glimpse of the ASP.NET Core MVC architecture and approach. I skipped some key features
(including Razor syntax, routing, and testing), but I return to these topics in depth in later chapters. In the
next chapter, I describe the MVC design patterns, which form the foundation for effective development with
ASP.NET Core MVC.

Figure 2-25. Styling the ListResponses view

	Chapter 2: Your First MVC Application
	Installing Visual Studio
	Installing the .NET Core 2.0 SDK
	Creating a New ASP.NET Core MVC Project
	Adding the Controller
	Understanding Routes

	Rendering Web Pages
	Creating and Rendering a View
	Adding Dynamic Output

	Creating a Simple Data-Entry Application
	Setting the Scene
	Designing a Data Model
	Creating a Second Action and a Strongly Typed View
	Linking Action Methods
	Building the Form
	Receiving Form Data
	Using Model Binding
	Storing Responses

	Displaying the Responses
	Adding Validation
	Highlighting Invalid Fields

	Styling the Content
	Styling the Welcome View
	Styling the RsvpForm View
	Styling the Thanks View
	Styling the List View

	Summary

