
429© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_15

CHAPTER 15

URL Routing

Early versions of ASP.NET assumed that there was a direct relationship between requested URLs and the
files on the server hard disk. The job of the server was to receive the request from the browser and deliver the
output from the corresponding file. This approach worked just fine for Web Forms, where each ASPX page is
both a file and a self-contained response to a request.

It doesn’t make sense for an MVC application, where requests are processed by action methods in
controller classes and there is no one-to-one correlation to the files on the disk.

To handle MVC URLs, the ASP.NET platform uses the routing system, which has been overhauled for
ASP.NET Core. In this chapter, I will show you how to use the routing system to create powerful and flexible
URL handling for your projects. As you will see, the routing system lets you create any pattern of URLs you
desire and express them in a clear and concise manner. The routing system has two functions.

•	 Examine an incoming URL and select the controller and action to handle the request.

•	 Generate outgoing URLs. These are the URLs that appear in the HTML rendered
from views so that a specific action will be invoked when the user clicks the link
(at which point it becomes an incoming URL again).

In this chapter, I will focus on defining routes and using them to process incoming URLs so that the
user can reach the controllers and actions. There are two ways to create routes in an MVC application:
convention-based routing and attribute routing. I explain both approaches in this chapter.

Then, in the next chapter, I will show you how to use those same routes to generate the outgoing URLs
you will need to include in your views, as well as show you how to customize the routing system and use a
related feature called areas. Table 15-1 puts routing into context.

Table 15-1.  Putting Routing in Context

Question Answer

What is it? The routing system is responsible for processing incoming requests and selecting
controllers and action methods to process them. The routing system is also used
to generate routes in views, known as outgoing URLs.

Why is it useful? The routing system allows requests to be handled flexibly without URLs being
tied to the structure of classes in the Visual Studio project.

How is it used? The mapping between URLs and the controllers and action methods is defined in
the Startup.cs file or by applying the Route attribute to controllers.

Are there any pitfalls or
limitations?

The routing configuration for a complex application can become hard to manage.

Are there any
alternatives?

No. The routing system is an integral part of ASP.NET Core.

https://doi.org/10.1007/978-1-4842-3150-0_15

Chapter 15 ■ URL Routing

430

Table 15-2 summarizes the chapter.

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called UrlsAndRoutes. To add support for the MVC Framework, developer error pages, and static
files, I add the statements shown in Listing 15-1 to the Startup class.

Listing 15-1.  Configuring the Application in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc();
 }
 }
}

Table 15-2.  Chapter Summary

Problem Solution Listing

Map between URLs and action methods Define a route 9

Allow URL segments to be omitted Define default values for route segments 10–12

Match URL segments that don’t have
corresponding routing variables

Define static segments 13–16

Pass URL segments to action methods Define custom segment variables 17–19

Allow URL segments for which there are no
default values to be omitted

Define optional segments 20–21

Define routes that match any number of URL
segments

Use a catchall segment 22–23

Restrict the URLs that a route can match Apply route constraints 24–33

Define a route within a controller Use attribute routing 34–38

Chapter 15 ■ URL Routing

431

Creating the Model Class
All the effort in this chapter is about matching request URLs to actions. The only model class I need passes
details about the controller and action method that has been selected to process a request. I created the
Models folder and added a class file called Result.cs, which I used to define the class shown in Listing 15-2.

Listing 15-2.  The Contents of the Result.cs File in the Models Folder

using System.Collections.Generic;

namespace UrlsAndRoutes.Models {

 public class Result {
 public string Controller { get; set; }

 public string Action { get; set; }

 public IDictionary<string, object> Data { get; }
 = new Dictionary<string, object>();
 }
}

The Controller and Action properties will be used to indicate how a request has been processed, and
the Data dictionary will be used to store other details about the request produced by the routing system.

Creating the Example Controllers
I need some simple controllers to demonstrate how routing works. I created the Controllers folder and
added a class file called HomeController.cs, the contents of which are shown in Listing 15-3.

Listing 15-3.  The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });
 }
}

The Index action method defined by the Home controller calls the View method to render a view called
Result (which I define in the next section) and provides a Result object as the model object. The properties
of the model object are set using the nameof function and will be used to indicate which controller and
action method have been used to service a request.

Chapter 15 ■ URL Routing

432

I followed the same pattern by adding a CustomerController.cs file to the Controllers folder and
using it to define the Customer controller shown in Listing 15-4.

Listing 15-4.  The Contents of the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(List)
 });
 }
}

The third and final controller is defined in a file called AdminController.cs, which I added to the
Controllers folder, as shown in Listing 15-5. It follows the same pattern as the other controllers.

Listing 15-5.  The Contents of the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class AdminController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(AdminController),
 Action = nameof(Index)
 });
 }
}

Creating the View
I specified the Result view in all the action methods defined in the previous section, which allows me to
create one view that will be shared by all the controllers. I created the Views/Shared folder and added a new
view called Result.cshtml to it, the contents of which are shown in Listing 15-6.

Chapter 15 ■ URL Routing

433

Listing 15-6.  The Contents of the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
</body>
</html>

The view contains a table that displays the properties from the model object in a table that is styled
using Bootstrap. To add Bootstrap to the project, I used the Bower Configuration File item template to create
the bower.json file and added the Bootstrap package to the dependencies section, as shown in Listing 15-7.

Listing 15-7.  Adding the Bootstrap Package in the bower.json File in the UrlsAndRoutes Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing 15-8.

Listing 15-8.  The Contents of the _ViewImports.cshtml File in the Views Folder

@using UrlsAndRoutes.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The configuration in the Startup class doesn’t contain any instructions for how MVC should map HTTP
requests to controllers and actions. When you start the application, any URL that you request will result in a
404 - Not Found response, as shown in Figure 15-1.

Chapter 15 ■ URL Routing

434

Introducing URL Patterns
The routing system works its magic using a set of routes. These routes collectively comprise the URL schema
or scheme for an application, which is the set of URLs that your application will recognize and respond to.

I do not need to manually type out all of the individual URLs I am willing to support in my application.
Instead, each route contains a URL pattern, which is compared to incoming URLs. If an incoming URL
matches the pattern, then it is used by the routing system to process that URL. Here is a simple URL to get
started with:

http://mysite.com/Admin/Index

URLs can be broken down into segments. These are the parts of the URL, excluding the hostname and
query string, that are separated by the / character. In the example URL, there are two segments, as shown in
Figure 15-2.

The first segment contains the word Admin, and the second segment contains the word Index. To the
human eye, it is obvious that the first segment relates to the controller and the second segment relates to the
action. But, of course, I need to express this relationship using a URL pattern that can be understood by the
routing system. Here is a URL pattern that matches the example URL:

{controller}/{action}

When processing an incoming HTTP request, the job of the routing system is to match the URL that has
been requested to a pattern and extract values from the URL for the segment variables defined in the pattern.

The segment variables are expressed using braces (the { and } characters). The example pattern has two
segment variables with the names controller and action, so the value of the controller segment variable
will be Admin, and the value of the action segment variable will be Index.

Figure 15-1.  Running the example application

Figure 15-2.  The segments in an example URL

http://mysite.com/Admin/Index

Chapter 15 ■ URL Routing

435

An MVC application will usually have several routes, and the routing system will compare the incoming
URL to the URL pattern of each route until it finds a match. By default, a pattern will match any URL that has
the correct number of segments. For example, the pattern {controller}/{action} will match any URL that
has two segments, as described in Table 15-3.

Table 15-3 highlights two key behaviors of URL patterns.

•	 URL patterns are conservative about the number of segments they match. They will
match only URLs that have the same number of segments as the pattern. You can see
this in the second and third examples in the table.

•	 URL patterns are liberal about the contents of segments they match. If a URL has the
correct number of segments, the pattern will extract the value of each segment for a
segment variable, whatever it might be.

These are the default behaviors, which are the keys to understanding how URL patterns function. I show
you how to change the defaults later in this chapter.

Creating and Registering a Simple Route
Once you have a URL pattern in mind, you can use it to define a route. Routes are defined in the Startup.cs
file and are passed as arguments to the UseMvc method that is used to set up MVC in the Configure method.
Listing 15-9 shows a basic route that maps requests to the controllers in the example application.

Listing 15-9.  Defining a Basic Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Table 15-3.  Matching URLs

Request URL Segment Variables

http://mysite.com/Admin/Index controller = Admin action = Index

http://mysite.com/Admin No match—too few segments

http://mysite.com/Admin/Index/Soccer No match—too many segments

http://mysite.com/Admin/Index
http://mysite.com/Admin
http://mysite.com/Admin/Index/Soccer

Chapter 15 ■ URL Routing

436

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "default", template: "{controller}/{action}");
 });
 }
 }
}

Routes are created using a lambda expression passed as an argument to the UseMvc configuration
method. The expression receives an object that implements the IRouteBuilder interface from the
Microsoft.AspNetCore.Routing namespace, and routes are defined using the MapRoute extension method.
To make routes easier to understand, the convention is to specify argument names when calling the
MapRoute method, which is why I have explicitly named the name and template arguments in the listing.
The name argument specified a name for a route, and the template argument is used to define the pattern.

■■ Tip  Naming your routes is optional, and there is a philosophical argument that doing so sacrifices some of
the clean separation of concerns that otherwise comes from routing. I explain why this can be a problem in the
“Generating a URL from a Specific Route” section in Chapter 16.

You can see the effect of the changes I made to the routing by starting the example application. There is
no change when the application first starts—you will still see a 404 error—but if you navigate to a URL that
matches the {controller}/{action} pattern, you will see a result like the one shown in Figure 15-3, which
illustrates the effect of navigating to /Admin/Index.

The reason that the root URL for the application doesn’t work is that the route that I added to the
Startup.cs file doesn’t tell MVC how to select a controller class and action method when the requested URL
has no segments. I’ll fix this in the next section.

Figure 15-3.  Navigating using a simple route

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 15 ■ URL Routing

437

Defining Default Values
The example application returns a 404 message when the default URL is requested because it didn’t match
the pattern of the route defined in the Startup class. Since there are no segments in the default URL that
can be matched to the controller and action variables defined by the routing pattern, the routing system
doesn’t make a match.

I explained earlier that URL patterns will match only URLs with the specified number of segments. One
way to change this behavior is to use default values. A default value is applied when the URL doesn’t contain
a segment that can be matched by the routing pattern. Listing 15-10 defines a route that uses a default value.

Listing 15-10.  Providing a Default Value in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action}",
 defaults: new { action = "Index" });
 });
 }
 }
}

Default values are supplied as properties in an anonymous type, passed to the MapRoute method as the
defaults argument. In the listing, I provided a default value of Index for the action variable.

This route will match all two-segment URLs, as it did previously. For example, if the URL http://
mydomain.com/Home/Index is requested, the route will extract Home as the value for the controller and will
extract Index as the value for the action.

But now that there is a default value for the action segment, the route will also match single-segment
URLs. When processing a single-segment URL, the routing system will extract the controller value from the
URL and use the default value for the action variable. In this way, the user can request /Home and MVC will
invoke the Index action method on the Home controller, as shown in Figure 15-4.

http://mydomain.com/Home/Index
http://mydomain.com/Home/Index

Chapter 15 ■ URL Routing

438

Defining Inline Default Values
Default values can also be expressed as part of the URL pattern, which is a more concise way to express
routes, as shown in Listing 15-11. The inline syntax can be used only to provide defaults for variables that are
part of the URL pattern, but, as you will learn, it is often useful to be able to provide defaults outside of that
pattern. For this reason, it is useful to understand both ways of expressing defaults.

Listing 15-11.  Defining Inline Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action=Index}");
 });
 }
 }
}

Figure 15-4.  Using a default action

Chapter 15 ■ URL Routing

439

I can go further and match URLs that do not contain any segment variables at all, relying on just the
default values to identify the action and controller. And as an example, Listing 15-12 shows how I have
mapped the root URL for the application by providing default values for both segments.

Listing 15-12.  Providing Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");
 });
 }
 }
}

By providing default values for both the controller and action variables, the route will match URLs
that have zero, one, or two segments, as shown in Table 15-4.

The fewer segments received in the incoming URL, the more the route relies on the default values, up
until the point where a URL with no segments is matched using only default values.

Table 15-4.  Matching URLs

Segments Example Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All No match—too many segments

Chapter 15 ■ URL Routing

440

You can see the effect of the default values by starting the example app. When the browser requests the
root URL for the application, the default values for the controller and action segment variables will be used,
which will lead MVC to invoke the Index action method on the Home controller, as shown in Figure 15-5.

Using Static URL Segments
Not all the segments in a URL pattern need to be variables. You can also create patterns that have static
segments. Suppose that the application needs to match URLs that are prefixed with Public, like this:

http://mydomain.com/Public/Home/Index

This can be done by using a URL pattern like the one shown in Listing 15-13.

Listing 15-13.  Using Static Segments in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(

Figure 15-5.  Using default values to broaden the scope of a route

http://mydomain.com/Public/Home/Index

Chapter 15 ■ URL Routing

441

 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");
 });
 }
 }
}

This new pattern will match only URLs that contain three segments, the first of which must be Public.
The other two segments can contain any value and will be used for the controller and action variables.
If the last two segments are omitted, then the default values will be used.

You can also create URL patterns that have segments containing both static and variable elements, such
as the one shown in Listing 15-14.

Listing 15-14.  Mixing Segments in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

Chapter 15 ■ URL Routing

442

The pattern in this route matches any two-segment URL where the first segment starts with the letter X.
The value for controller is taken from the first segment, excluding the X. The action value is taken from
the second segment. You can see the effect of this route if you start the application and navigate to /XHome/
Index, the result of which is illustrated in Figure 15-6.

ROUTE ORDERING

In Listing 15-14, I defined a new route and placed it before all the others. I did this because routes are
applied in the order in which they are defined. The MapRoute method adds a route to the end of the
routing configuration, which means that routes are generally applied in the order in which they are
defined. I say “generally” because there are methods that insert routes in specific locations. I tend not
to use these methods because having routes applied in the order in which they are defined makes
understanding the routing for an application simpler.

The routing system tries to match an incoming URL against the URL pattern of the route that was
defined first and proceeds to the next route only if there is no match. The routes are tried in sequence
until a match is found or the set of routes has been exhausted. As a consequence, the most specific
routes must be defined first. The route I added in Listing 15-14 is more specific than the route that
follows. Suppose that I reversed the order of the routes, like this:

...
routes.MapRoute("MyRoute", "{controller=Home}/{action=Index}");
routes.MapRoute("", "X{controller}/{action}");
...

Then the first route, which matches any URL with zero, one, or two segments, will always be the one
that is used. The more specific route, which is now second in the list, will never be reached. The new
route excludes the leading X of a URL, but this won’t be done by the older route. Therefore, a URL such
as this:

http://mydomain.com/XHome/Index

will be targeted to a controller called XHome, assuming that there is an XHomeController class in the
application and it has an action method called Index.

Figure 15-6.  Mixing static and variable elements in a single segment

http://mydomain.com/XHome/Index

Chapter 15 ■ URL Routing

443

Static URL segments and default values can be combined to create an alias for a specific URL.
The URL schema that you use forms a contract with your users when you deploy your application, and if
you subsequently refactor an application, you need to preserve the previous URL format so that any URL
favorites, macros, or scripts the user has created continue to work.

Imagine that there used to be a controller called Shop, which has now been replaced by the Home
controller. Listing 15-15 shows how I can create a route to preserve the old URL schema.

Listing 15-15.  Segments and Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "ShopSchema",
 template: "Shop/{action}",
 defaults: new { controller = "Home" });

 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

The route matches any two-segment URL where the first segment is Shop. The action value is taken
from the second URL segment. The URL pattern doesn’t contain a variable segment for controller, so the
default value is used. The defaults argument provides the controller value because there is no segment to
which the value can be applied to as part of the URL pattern.

Chapter 15 ■ URL Routing

444

The result is that a request for an action on the Shop controller is translated to a request for the Home
controller. You can see the effect of this route by starting the app and navigating to the /Shop/Index URL. As
Figure 15-7 shows, the new route causes MVC to target the Index action method in the Home controller.

I can go one step further and create aliases for action methods that have been refactored away as well
and are no longer present in the controller. To do this, I create a static URL and provide the controller and
action values as defaults, as shown in Listing 15-16.

Listing 15-16.  Aliasing a Controller and an Action in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 routes.MapRoute(
 name: "ShopSchema2",
 template: "Shop/OldAction",
 defaults: new { controller = "Home", action = "Index" });

Figure 15-7.  Creating an alias to preserve URL schemas

Chapter 15 ■ URL Routing

445

 routes.MapRoute(
 name: "ShopSchema",
 template: "Shop/{action}",
 defaults: new { controller = "Home" });

 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

Notice that the new route is defined first because it is more specific than the routes that follow.
If a request for Shop/OldAction were processed by the next defined route, for example, I may get a different
result from the one I want if there is a controller with an OldAction action method.

Defining Custom Segment Variables
The controller and action segment variables have special meaning in MVC applications and correspond
to the controller and action method that will be used to service the request. These are only the built-in
segment variables, and custom segment variables can also be defined, as shown in Listing 15-17. (I have
removed the existing routes from the previous section so I can start over).

Listing 15-17.  Defining Additional Variables in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();

Chapter 15 ■ URL Routing

446

 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id=DefaultId}");
 });
 }
 }
}

The URL pattern defines the standard controller and action variables, as well as a custom variable
called id. This route will match any zero-to-three-segment URL. The contents of the third segment will be
assigned to the id variable, and if there is no third segment, the default value will be used.

■■ Caution  Some names are reserved and not available for custom segment variable names. These are
controller, action, area, and page. The meaning of the first two is obvious. I explain areas in the next
chapter, and page is used by the Razor Pages feature.

The Controller class, which is the base for controllers, defines a RouteData property that returns a
Microsoft.AspNetCore.Routing.RouteData object that provides details about the routing system and the
way that the current request has been routed. Within a controller, I can access any of the segment variables
in an action method by using the RouteData.Values property, which returns a dictionary containing
the segment variables. To demonstrate, I have added an action method to the Home controller called
CustomVariable, as shown in Listing 15-18.

Listing 15-18.  Accessing a Segment Variable in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable() {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = RouteData.Values["id"];
 return View("Result", r);
 }
 }
}

Chapter 15 ■ URL Routing

447

This action method obtains the value of the custom id variable in the route URL pattern using the
RouteData.Values property, which returns a dictionary of the variables produced by the routing system.
The custom variable is added to the view model object and can be seen by running the application and
requesting the following URL:

/Home/CustomVariable/Hello

The routing template matches the third segment in this URL as the value for the id variable, producing
the results shown in Figure 15-8.

The URL pattern in Listing 15-17 defines a default value for the id segment, which means that the route
can also match URLs that have two segments. You can see the use of the default value by requesting this URL:

/Home/CustomVariable

The routing system uses the default value for the custom variable, as shown in Figure 15-9.

Figure 15-8.  Displaying the value of a custom segment variable

Figure 15-9.  The default value for a custom segment variable

Chapter 15 ■ URL Routing

448

Using Custom Variables as Action Method Parameters
Using the RouteData.Values collection is only one way to access custom route variables, and the other
way can be more elegant. If an action method defines parameters with names that match the URL pattern
variables, MVC will automatically pass the values obtained from the URL as arguments to the action method.

The custom variable defined in the route in Listing 15-17 is called id. I can modify the CustomVariable
action method in the Home controller so that it has a parameter of the same name, as shown in Listing 15-19.

Listing 15-19.  Adding an Action Parameter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = id;
 return View("Result", r);
 }
 }
}

When the routing system matches a URL against the route defined in Listing 15-17, the value of the third
segment in the URL is assigned to the custom variable id. MVC compares the list of segment variables with
the list of action method parameters and, if the names match, passes the values from the URL to the method.

The type of the id parameter is a string, but MVC will try to convert the URL value to whatever
parameter type is used. If the action method declared the id parameter as an int or a DateTime, then it
would receive the value from the URL converted to an instance of that type. This is an elegant and useful
feature that removes the need for me to handle the conversion myself. You can see the effect of the action
method parameter by starting the application and requesting /Home/CustomVariable/Hello, which
produces the result shown in Figure 15-10. If you omit the third segment, then the action method will be
provided with the default segment value, which is also shown in the figure.

■■ Note  MVC uses the model binding feature to convert the values contained in the URL to .NET types, and
model binding can handle much more complex situations than shown in this example. I describe model binding
in Chapter 26.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 15 ■ URL Routing

449

Defining Optional URL Segments
An optional URL segment is one that the user does not need to specify and for which no default value is
specified. An optional segment is denoted by a question mark (the ? character) after the segment name, as
shown in Listing 15-20.

Listing 15-20.  Specifying an Optional Segment in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

This route will match URLs whether or not the id segment has been supplied. Table 15-5 shows how
this works for different URLs.

Figure 15-10.  Accessing segment variables using action method parameters

Chapter 15 ■ URL Routing

450

As you can see from the table, the id variable is added to the set of variables only when there is a
corresponding segment in the incoming URL. This feature is useful if you need to know whether the user
supplied a value for a segment variable. When no value has been supplied for an optional segment variable,
the value of the corresponding parameter will be null. I have updated the Home controller to respond when
no value is provided for the id segment variable in Listing 15-21.

Listing 15-21.  Checking for a Segment in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = id ?? "<no value>";
 return View("Result", r);
 }
 }
}

Figure 15-11 shows the result of starting the application and navigating to the /Home/CustomVariable
URL, which doesn’t include a value for the id segment variable.

Table 15-5.  Matching URLs with an Optional Segment Variable

Segments Example URL Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All controller = Customer action = List id = All

4 /Customer/List/All/Delete No match—too many segments

Chapter 15 ■ URL Routing

451

UNDERSTANDING THE DEFAULT ROUTING CONFIGURATION

When you add MVC to the Startup class, you can do so using the UseMvcWithDefaultRoute method.
This is just a convenience method for setting up the most common routing configuration and is
equivalent to the following code:

...
app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});
...

This default configuration matches URLs that target controller classes and action method by name, with
an optional id segment. If the controller or action segments are missing, then default values are
used to target the Home controller and the Index action method, respectively.

Defining Variable-Length Routes
Another way of changing the default conservatism of URL patterns is to accept a variable number of URL
segments. This allows you to route URLs of arbitrary lengths in a single route. You define support for variable
segments by designating one of the segment variables as a catchall, done by prefixing it with an asterisk (the
* character), as shown in Listing 15-22.

Listing 15-22.  Designating a Catchall Variable in the Startup.cs File in the UrlsAndRoutes Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {

 public class Startup {

Figure 15-11.  Detecting when a URL doesn’t contain a value for an optional segment variable

Chapter 15 ■ URL Routing

452

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id?}/{*catchall}");
 });
 }
 }
}

I have extended the route from the previous example to add a catchall segment variable, which I
imaginatively called catchall. This route will now match any URL, irrespective of the number of segments
it contains or the value of any of those segments. The first three segments are used to set values for the
controller, action, and id variables, respectively. If the URL contains additional segments, they are all
assigned to the catchall variable, as shown in Table 15-6.

In Listing 15-23, I have updated the Customer controller so that the List action passes the value of the
catchall variable to the view via the model object.

Listing 15-23.  Updating an Action in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

Table 15-6.  Matching URLs with a Catchall Segment Variable

Segments Example URL Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All controller = Customer action = List id = All

4 /Customer/List/All/Delete controller = Customer action = List id = All
catchall = Delete

5 /Customer/List/All/Delete/Perm controller = Customer action = List id = All
catchall = Delete/Perm

Chapter 15 ■ URL Routing

453

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["Id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

To test the catchall segment, run the application and request the following URL:

/Customer/List/Hello/1/2/3

There is no upper limit to the number of segments that the URL pattern in this route will match.
Figure 15-12 shows the effect of the catchall segment. Notice that the segments captured by the catchall are
presented in the form segment/segment/segment and that I am responsible for processing the string to break
out the individual segments.

Constraining Routes
At the start of the chapter, I described how URL patterns are conservative when they match the number of
segments in the URL and liberal when they match the content of segments. The previous few sections have
explained different techniques for controlling the degree of conservatism: making a route match more or
fewer segments using default values, optional variables, and so on.

It is now time to look at how to control the liberalism in matching the content of URL segments, namely,
how to restrict the set of URLs that a route will match against. Listing 15-24 demonstrates the use of a simple
constraint that limits the URLs that a route will match.

Listing 15-24.  Constraining a Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;

Figure 15-12.  Using a catchall segment

Chapter 15 ■ URL Routing

454

using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:int?}");
 });
 }
 }
}

Constraints are separated from the segment variable name with a colon (the : character).
The constraint in the listing is int, and it has been applied to the id segment. This is an example of an
inline constraint, which is defined as part of the URL pattern applied to a single segment:

...
template: "{controller}/{action}/{id:int?}",
...

The int constraint only allows the URL pattern to match segments whose value can be parsed to an
integer value. The id segment is optional, so the route will match segments that omit the id segment, but if
the segment is present, then it must be an integer value, as summarized in Table 15-7.

Table 15-7.  Matching URLs with a Constraint

Example URL Maps To

/ controller = Home
action = Index
id = null

/Home/CustomVariable/Hello No match—id segment cannot be parsed to an int value.

/Home/CustomVariable/1 controller = Home
action = CustomVariable
id = 1

/Home/CustomVariable/1/2 No match—too many segments

Chapter 15 ■ URL Routing

455

Constraints can also be specified outside of the URL pattern, using the constraints argument to the
MapRoute method when defining a route. This technique is useful if you prefer to keep the URL pattern
separate from its constraints or if you prefer to follow the routing style used by earlier versions of MVC,
which did not support inline constraints. Listing 15-25 shows the same integer constraint on the id
segment variable, expressed using a separate constraint. When using this format, the default values are also
expressed externally.

Listing 15-25.  Expressing a Constraint in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { id = new IntRouteConstraint() });
 });
 }
 }
}

The constraints argument to the MapRoute method is defined using an anonymous type whose
property names correspond to the segment variable being constrained. The Microsoft.AspNetCore.
Routing.Constraints namespace contains a set of classes that can be used to define individual constraints.
In Listing 15-25, the constraints argument is configured to use an IntRouteConstraint object for the id
segment, creating the same effect as the inline constraint shown in Listing 15-24.

Table 15-8 describes the complete set of constraint classes in the Microsoft.AspNetCore.Routing.
Constraints namespace and their inline equivalents for the constraints that can be applied to single
segments in the URL pattern, some of which I describe in the sections that follow.

Chapter 15 ■ URL Routing

456

■■ Tip  You can restrict access to action methods to requests made with specific HTTP verbs, such as GET or
POST, using a set of attributes provided by MVC, such as the HttpGet and HttpPost attributes. See Chapter 7
for details of using these attributes to handle forms in controllers, and see Chapter 20 for a full list of the
attributes available.

Table 15-8.  Segment-Level Route Constraints

Inline Constraint Description Class Name

alpha Matches alphabet characters,
irrespective of case (A–Z, a–z)

AlphaRouteConstraint()

bool Matches a value that can be
parsed into a bool

BoolRouteConstraint()

datetime Matches a value that can be
parsed into a DateTime

DateTimeRouteConstraint()

decimal Matches a value that can be
parsed into a decimal

DecimalRouteConstraint()

double Matches a value that can be
parsed into a double

DoubleRouteConstraint()

float Matches a value that can be
parsed into a float

FloatRouteConstraint()

guid Matches a value to a globally
unique identifier

GuidRouteConstraint()

int Matches a value that can be
parsed into an int

IntRouteConstraint()

length(len) length(min, max) Matches a value with the specified
number of characters or that is
between min and max characters
in length (inclusive)

LengthRouteConstraint(len)
LengthRouteConstraint
(min, max)

long Matches a value that can be
parsed into a long

LongRouteConstraint()

maxlength(len) Matches a string with no more
than len characters

MaxLengthRouteConstraint(len)

max(val) Matches an int value if the value
is less than val

MaxRouteConstraint(val)

minlength(len) Matches a string with at least len
characters

MinLengthRouteConstraint(len)

min(val) Matches an int value if the value
is more than val

MinRouteConstraint(val)

range(min, max) Matches an int value if the value
is between min and max (inclusive)

RangeRouteConstraint
(min, max)

regex(expr) Matches a regular expression RegexRouteConstraint(expr)

http://dx.doi.org/10.1007/978-1-4842-3150-0_7
http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 15 ■ URL Routing

457

Constraining a Route Using a Regular Expression
The constraint that offers the most flexibility is regex, which matches a segment using a regular expression.
In Listing 15-26, I have constrained the controller segment to limit the range of URLs that it will match.

Listing 15-26.  Using a Regular Expression in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller:regex(^H.*)=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The constraint I used restricts the route so that it will only match URLs where the controller segment
starts with the letter H.

■■ Note  Default values are applied before constraints are checked. So, for example, if I request the URL /,
the default value for controller, which is Home, is applied. The constraints are then checked, and since the
controller value begins with H, the default URL will match the route.

Regular expressions can constrain a route so that only specific values for a URL segment will cause a
match. This is done using the bar (|) character, as shown in Listing 15-27. (I split the URL pattern into two so
that it will fit onto the page, which you won’t need to worry about in a real project).

Chapter 15 ■ URL Routing

458

Listing 15-27.  Constraining a Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller:regex(^H.*)=Home}/"
 + "{action:regex(^Index$|^About$)=Index}/{id?}");
 });
 }
 }
}

This constraint will allow the route to match only URLs where the value of the action segment is Index
or About. Constraints are applied together, so the restrictions imposed on the value of the action variable are
combined with those imposed on the controller variable. This means that the route in Listing 15-27 will match
URLs only when the controller variable begins with the letter H and the action variable is Index or About.

Using Type and Value Constraints
Most of the constraints are used to restrict routes so they only match URLs with segments that can be
converted to specified types or have a specific format. The int constraint I used at the start of this section
is a good example: it will match routes only when the value of the constrained segment can be parsed to a
.NET int value. Listing 15-28 demonstrates the use of the range constraint, which restricts a route so that it
matches URLs only when a segment value can be converted to an int and falls between specified values.

Listing 15-28.  Constraining Based on Type and Value in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;

Chapter 15 ■ URL Routing

459

using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:range(10,20)?}");
 });
 }
 }
}

The constraint in this example has been applied to the optional id segment. The constraint will be
ignored if the request URL doesn’t have at least three segments. If the id segment is present, the route will
match the URL only if the segment value can be converted to an int and the value is between 10 and 20. The
range constraint is inclusive, meaning that values of 10 and 20 are considered to be within the range.

Combining Constraints
If you need to apply multiple constraints to a single segment, then you chain them together so that each
constraint is separated by a colon, as shown in Listing 15-29.

Listing 15-29.  Combining Inline Constraints in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Chapter 15 ■ URL Routing

460

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}"
 + "/{id:alpha:minlength(6)?}");
 });
 }
 }
}

In this listing, I have applied both the alpha and minlength constraints to the id segment. The question
mark that denotes an optional segment is applied after all of the constraints. The effect of combining these
constraints is that the route will match URLs only where the id segment is omitted (because it is optional) or
when it is present and contains at least six alphabet characters.

If you are not using inline constraints, then you must use the Microsoft.AspNetCore.Routing.
CompositeRouteConstraint class, which allows multiple constraints to be associated with a single property in
an anonymously typed object. Listing 15-30 shows the combination of constraints that I used in Listing 15-29.

Listing 15-30.  Combining Separate Constraints in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new {
 id = new CompositeRouteConstraint(
 new IRouteConstraint[] {

Chapter 15 ■ URL Routing

461

 new AlphaRouteConstraint(),
 new MinLengthRouteConstraint(6)
 })
 });
 });
 }
 }
}

The constructor for the CompositeRouteConstraint class accepts an enumeration of objects that
implement the IRouteConstraint objects, which is the interface that defines route constraints. The routing
system will allow the route to match a URL only if all the constraints are satisfied.

Defining a Custom Constraint
If the standard constraints are not sufficient for your needs, you can define your own custom constraints by
implementing the IRouteConstraint interface, which is defined in the Microsoft.AspNetCore.Routing
namespace. To demonstrate this feature, I added an Infrastructure folder to the example project and
created a new class file called WeekDayConstraint.cs, the contents of which are shown in Listing 15-31.

Listing 15-31.  The Contents of the WeekDayConstraint.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Routing;
using System.Linq;

namespace UrlsAndRoutes.Infrastructure {
 public class WeekDayConstraint : IRouteConstraint {
 private static string[] Days = new[] { "mon", "tue", "wed", "thu",
 "fri", "sat", "sun" };

 public bool Match(HttpContext httpContext, IRouter route,
 string routeKey, RouteValueDictionary values,
 RouteDirection routeDirection) {

 return Days.Contains(values[routeKey]?.ToString().ToLowerInvariant());
 }
 }
}

The IRouteConstraint interface defines the Match method, which is called to allow a constraint to
decide whether a request should be matched by the route. The parameters for the Match method provide
access to the request from the client, the route, the name of the segment that is being constrained, the
segment variables that have been extracted from the URL, and whether the request is to check for an
incoming or outgoing URL (I explain outgoing URLs in Chapter 16).

In the example, I use the routeKey parameter to get the value of the segment variable to which the
constraint has been applied from the values parameter, convert it to a lowercase string, and see whether it
matches one of the days of the week that are defined in the static Days field. Listing 15-32 applies the new
constraint to the example route using the separate technique.

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 15 ■ URL Routing

462

Listing 15-32.  Applying a Custom Constraint in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { id = new WeekDayConstraint() });
 });
 }
 }
}

This route will match a URL only if the id segment is absent (such as /Customer/List) or if it matches
one of the days of the week defined in the constraint class (such as /Customer/List/Fri).

Defining an Inline Custom Constraint
Setting up a custom constraint so that it can be used inline requires an additional configuration step, as
shown in Listing 15-33.

Listing 15-33.  Using a Custom Constraint Inline in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

Chapter 15 ■ URL Routing

463

using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:weekday?}");
 });
 }
 }
}

In the ConfigureService method I configure the RouteOptions object, which controls some of the
behaviors of the routing system. The ConstraintMap property returns the dictionary that is used to translate
the names of inline constraints to the IRouteConstraint implementation classes that provide the constraint
logic. I add a new mapping to the dictionary so that I can refer to the WeekDayConstraint class inline as
weekday, like this:

...
template: "{controller=Home}/{action=Index}/{id:weekday?}",
...

The effect of the constraint is the same, but setting up the mapping allows custom classes to be used inline.

Using Attribute Routing
All the examples so far in this chapter have been defined using a technique known as convention-based
routing. MVC also supports for a technique known as attribute routing, in which routes are defined by C#
attributes that are applied directly to the controller classes. In the sections that follow, I show you how to
create and configure routes using attributes, which can be mixed freely with the convention-based routes
shown in earlier examples.

Preparing for Attribute Routing
Attribute routing is enabled when you call the UseMvc method in the Startup.cs file. MVC examines the
controller classes in the application, finds any that have routing attributes, and creates routes for them.

Chapter 15 ■ URL Routing

464

For this section of the chapter, I have returned the example application to the default routing
configuration described in the “Understanding the Default Routing Configuration” sidebar, as shown in
Listing 15-34.

Listing 15-34.  Using the Default Routing Configuration in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The default route will match URLs using the following pattern:

{controller}/{action}/{id?}

Applying Attribute Routing
The Route attribute is used to specify routes for individual controllers and actions. In Listing 15-35, I have
applied the Route attribute to the CustomerController class.

Chapter 15 ■ URL Routing

465

Listing 15-35.  Applying the Route Attribute in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 [Route("myroute")]
 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

The Route attribute works by defining a route to the action method or controller it is applied to. In the
listing, I applied the attribute to the Index action method and specified myroute as the route that should
be used. The effect is to change the set of routes that are used to reach the action methods defined by the
Customer controller, as described in Table 15-9.

There are two important points to note. The first is that when you use the Route attribute, the value you
provide to configure the attribute is used to define a complete route so that myroute becomes the complete
URL to reach the Index action method. The second point to note is that using the Route attribute prevents
the default routing configuration from being used so that the Index action method can no longer be reached
by using the /Customer/Index URL.

Changing the Name of an Action Method
Defining a unique route for a single action method isn’t useful in most applications, but the Route attribute
can also be used more flexibly. In Listing 15-36, I have used the special [controller] token in the route to
refer to the controller and set up the base section of the route.

Table 15-9.  The Routes for the Customer Controller

Route Description

/Customer/List This URL targets the List action method, relying on the default route in the Startup.
cs file.

/myroute This URL targets the Index action method.

Chapter 15 ■ URL Routing

466

■■ Tip  You can also change the name of an action using the ActionName attribute, which I describe in
Chapter 31.

Listing 15-36.  Renaming an Action in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 [Route("[controller]/MyAction")]
 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

Using the [controller] token in the argument for the Route attribute is rather like using a nameof
expression and allows for the route to the controller to be specified without hard-coding the class name.
Table 15-10 describes the effect of the attribute in Listing 15-36.

Creating a More Complex Route
The Route attribute can also be applied to the controller class, allowing for the structure of the route to be
defined, as shown in Listing 15-37.

Table 15-10.  The Routes for the Customer Controller

Route Description

/Customer/List This URL targets the List action method.

/Customer/MyAction This URL targets the Index action method.

http://dx.doi.org/10.1007/978-1-4842-3150-0_31

Chapter 15 ■ URL Routing

467

Listing 15-37.  Applying the Route Attribute in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 [Route("app/[controller]/actions/[action]/{id?}")]
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

This route defines mixes static segments and variable segments and uses the [controller] and
[action] tokens to refer to the names of the controller class and the action methods. Table 15-11 shows the
effect of the route.

Applying Route Constraints
Routes defined using attributes can be constrained just like those defined in the Startup.cs file, using
the same inline technique used for convention-based routes. In Listing 15-38, I have applied the custom
constraint created earlier in the chapter to the optional id segment defined with the Route attribute.

Table 15-11.  The Routes for the Customer Controller

Route Description

app/customer/actions/index This URL targets the Index action method.

app/customer/actions/index/myid This URL targets the Index action method with the optional id
segment set to myid.

app/customer/actions/list This URL targets the List action method.

app/customer/actions/list/myid This URL targets the List action method with the optional id
segment set to myid.

Chapter 15 ■ URL Routing

468

Listing 15-38.  Constraining a Route in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 [Route("app/[controller]/actions/[action]/{id:weekday?}")]
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

You can use all the constraints described in Table 15-8 or, as shown in the listing, use custom
constraints that have been registered with the RouteOptions service. Multiple constraints can be applied by
chaining them together and separating them with colons.

Summary
In this chapter, I took an in-depth look at the routing system. You have seen how routes are defined by
convention or with attributes. You have seen how incoming URLs are matched and handled and how to
customize routes by changing the way that they match URL segments and by using default values and
optional segments. I also showed you how to constrain routes to narrow the range of requests that they will
match, both using built-in constraints and using custom constraint classes.

In the next chapter, I show you how to generate outgoing URLs from routes in your views and how to use
the areas feature, which relies on the routing system and which can be used to manage large and complex
MVC applications.

	Chapter 15: URL Routing
	Preparing the Example Project
	Creating the Model Class
	Creating the Example Controllers
	Creating the View

	Introducing URL Patterns
	Creating and Registering a Simple Route
	Defining Default Values
	Defining Inline Default Values

	Using Static URL Segments
	Defining Custom Segment Variables
	Using Custom Variables as Action Method Parameters
	Defining Optional URL Segments
	Defining Variable-Length Routes

	Constraining Routes
	Constraining a Route Using a Regular Expression
	Using Type and Value Constraints
	Combining Constraints
	Defining a Custom Constraint
	Defining an Inline Custom Constraint

	Using Attribute Routing
	Preparing for Attribute Routing
	Applying Attribute Routing
	Changing the Name of an Action Method
	Creating a More Complex Route

	Applying Route Constraints

	Summary

