
295© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_11

CHAPTER 11

SportsStore: Administration

In this chapter, I continue to build the SportsStore application to give the site administrator a way of
managing orders and products.

Managing Orders
In the previous chapter, I added support for receiving orders from customers and storing them in a database.
In this chapter, I am going to create a simple administration tool that will let me view the orders that have
been received and mark them as shipped.

Enhancing the Model
The first change I need to make is to enhance the model so that I can record which orders have been
shipped. Listing 11-1 shows the addition of a new property to the Order class, which is defined in the
Order.cs file in the Models folder.

Listing 11-1.  Adding a Property in the Order.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public int OrderID { get; set; }
 [BindNever]
 public ICollection<CartLine> Lines { get; set; }

 [BindNever]
 public bool Shipped { get; set; }

 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }

https://doi.org/10.1007/978-1-4842-3150-0_11

Chapter 11 ■ SportsStore: Administration

296

 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

This iterative approach of extending and adapting the model to support different features is typical of MVC
development. In an ideal world, you would be able to completely define the model classes at the start of the
project and just build the application around them, but that happens only for the simplest of projects, and, in
practice, iterative development is to be expected as the understanding of what is required develops and evolves.

Entity Framework Core migrations make this process easier because you don’t have to manually keep
the database schema synchronized to the model class by writing your own SQL commands. To update the
database to reflect the addition of the Shipped property to the Order class, open a new command prompt or
PowerShell window, navigate to the SportsStore project folder (which is the one that contains the Startup.cs
file) and run the following command:

dotnet ef migrations add ShippedOrders

The migration will be applied automatically when the application is started and the SeedData class calls
the Migrate method provided by Entity Framework Core.

Adding the Actions and View
The functionality required to display and update the set of orders in the database is relatively simple because
it builds on the features and infrastructure that I created in previous chapters. In Listing 11-2, I have added
two new action methods to the Order controller.

Listing 11-2.  Adding Action Methods in the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

Chapter 11 ■ SportsStore: Administration

297

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 public ViewResult List() =>
 View(repository.Orders.Where(o => !o.Shipped));

 [HttpPost]
 public IActionResult MarkShipped(int orderID) {
 Order order = repository.Orders
 .FirstOrDefault(o => o.OrderID == orderID);
 if (order != null) {
 order.Shipped = true;
 repository.SaveOrder(order);
 }
 return RedirectToAction(nameof(List));
 }

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }
 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

The List method selects all the Order objects in the repository that have a Shipped value of false and
passes them to the default view. This is the action method that I will use to display a list of the unshipped
orders to the administrator.

The MarkShipped method will receive a POST request that specifies the ID of an order, which is used to
locate the corresponding Order object from the repository so that the Shipped property can be set to true
and saved.

To display the list of unshipped orders, I added a Razor view file called List.cshtml to the Views/Order
folder and added the markup shown in Listing 11-3. A table element is used to display some of the details
from each other, including details of which products have been purchased.

Chapter 11 ■ SportsStore: Administration

298

Listing 11-3.  The Contents of the List.cshtml File in the Views/Order Folder

@model IEnumerable<Order>

@{
 ViewBag.Title = "Orders";
 Layout = "_AdminLayout";
}

@if (Model.Count() > 0) {

 <table class="table table-bordered table-striped">
 <tr><th>Name</th><th>Zip</th><th colspan="2">Details</th><th></th></tr>
 @foreach (Order o in Model) {
 <tr>
 <td>@o.Name</td><td>@o.Zip</td><th>Product</th><th>Quantity</th>
 <td>
 <form asp-action="MarkShipped" method="post">
 <input type="hidden" name="orderId" value="@o.OrderID" />
 <button type="submit" class="btn btn-sm btn-danger">
 Ship
 </button>
 </form>
 </td>
 </tr>
 @foreach (CartLine line in o.Lines) {
 <tr>
 <td colspan="2"></td>
 <td>@line.Product.Name</td><td>@line.Quantity</td>
 <td></td>
 </tr>

 }
 }
 </table>
} else {
 <div class="text-center">No Unshipped Orders</div>
}

Each order is displayed with a Ship button that submits a form to the MarkShipped action method. I
specified a different layout for the List view using the Layout property, which overrides the layout specified
in the _ViewStart.cshtml file.

To add the layout, I used the MVC View Layout Page item template to create a file called _AdminLayout.
cshtml in the Views/Shared folder, and I added the markup shown in Listing 11-4.

Listing 11-4.  The Contents of the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>

Chapter 11 ■ SportsStore: Administration

299

</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @RenderBody()
</body>
</html>

To see and manage the orders in the application, start the application, select some products, and then check
out. Then navigate to the /Order/List URL and you will see a summary of the order you created, as shown in
Figure 11-1. Click the Ship button; the database will be updated, and the list of pending orders will be empty.

■■ Note  At the moment, there is nothing to stop customers from requesting the /Order/List URL and
administering their own orders. I explain how to restrict access to action methods in Chapter 12.

Adding Catalog Management
The convention for managing more complex collections of items is to present the user with two types of
pages: a list page and an edit page, as shown in Figure 11-2.

Figure 11-1.  Managing orders

http://dx.doi.org/10.1007/978-1-4842-3150-0_12

Chapter 11 ■ SportsStore: Administration

300

Together, these pages allow a user to create, read, update, and delete items in the collection.
Collectively, these actions are known as CRUD. Developers need to implement CRUD so often that Visual
Studio scaffolding includes scenarios for creating CRUD controllers with predefined action methods
(I explained how to enable the scaffolding feature in Chapter 8). But like all the Visual Studio templates,
I think it is better to learn how to use the features of the ASP.NET Core MVC directly.

Creating a CRUD Controller
I am going to start by creating a separate controller for managing the product catalog. I added a class file
called AdminController.cs to the Controllers folder and added the code shown in Listing 11-5.

Listing 11-5.  The Contents of the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);
 }
}

The controller constructor declares a dependency on the IProductRepository interface, which will be
resolved when instances are created. The controller defines a single action method, Index, that calls the View
method to select the default view for the action, passing the set of products in the database as the view model.

Figure 11-2.  Sketch of a CRUD UI for the product catalog

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 11 ■ SportsStore: Administration

301

UNIT TEST: THE INDEX ACTION

The behavior that I care about for the Index method of the Admin controller is that it correctly returns the
Product objects that are in the repository. I can test this by creating a mock repository implementation and
comparing the test data with the data returned by the action method. Here is the unit test, which I placed
into a new unit test file called AdminControllerTests.cs in the SportsStore.UnitTests project:

using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class AdminControllerTests {

 [Fact]
 public void Index_Contains_All_Products() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create a controller
 AdminController target = new AdminController(mock.Object);

 // Action
 Product[] result
 = GetViewModel<IEnumerable<Product>>(target.Index())?.ToArray();

 // Assert
 Assert.Equal(3, result.Length);
 Assert.Equal("P1", result[0].Name);
 Assert.Equal("P2", result[1].Name);
 Assert.Equal("P3", result[2].Name);
 }

 private T GetViewModel<T>(IActionResult result) where T : class {
 return (result as ViewResult)?.ViewData.Model as T;
 }
 }
}

I added a GetViewModel method to the test to unpack the result from the action method and get the
view model data. I’ll be adding more tests that use this method later in the chapter.

Chapter 11 ■ SportsStore: Administration

302

Implementing the List View
The next step is to add a view for the Index action method of the Admin controller. I created the Views/Admin
folder and added a Razor file called Index.cshtml, the contents of which are shown in Listing 11-6.

Listing 11-6.  The Contents of the Index.cshtml File in the Views/Admin Folder

@model IEnumerable<Product>

@{
 ViewBag.Title = "All Products";
 Layout = "_AdminLayout";
}

<table class="table table-striped table-bordered table-sm">
 <tr>
 <th class="text-right">ID</th>
 <th>Name</th>
 <th class="text-right">Price</th>
 <th class="text-center">Actions</th>
 </tr>
 @foreach (var item in Model) {
 <tr>
 <td class="text-right">@item.ProductID</td>
 <td>@item.Name</td>
 <td class="text-right">@item.Price.ToString("c")</td>
 <td class="text-center">
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-productId="@item.ProductID">
 Edit

 <input type="hidden" name="ProductID" value="@item.ProductID" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
</table>
<div class="text-center">
 <a asp-action="Create" class="btn btn-primary">Add Product
</div>

This view contains a table that has a row for each product with cells that contain the name of the product,
the price, and buttons that will allow the product to be edited or deleted by sending requests to Edit and
Delete actions. In addition to the table, there is an Add Product button that targets the Create action. I’ll
add the Edit, Delete, and Create actions in the sections that follow, but you can see how the products are
displayed by starting the application and requesting the /Admin/Index URL, as shown in Figure 11-3.

Chapter 11 ■ SportsStore: Administration

303

■■ Tip  The Edit button is inside the form element in Listing 11-6 so that the two buttons sit next to each other,
working around the spacing that Bootstrap applies. The Edit button will send an HTTP GET request to the server to
get the current details of a product; this doesn’t require a form element. However, since the Delete button will make
a change to the application state, I need to use an HTTP POST request—and that does require the form element.

Editing Products
To provide create and update features, I will add a product-editing page like the one shown in Figure 11-2.
These are the two parts of this job:

•	 Display a page that will allow the administrator to change values for the properties of
a product

•	 Add an action method that can process those changes when they are submitted

Figure 11-3.  Displaying the list of products

Chapter 11 ■ SportsStore: Administration

304

Creating the Edit Action Method
Listing 11-7 shows the Edit action method I added to the Admin controller, which will receive the HTTP
request sent by the browser when the user clicks an Edit button.

Listing 11-7.  Adding an Edit Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));
 }
}

This simple method finds the product with the ID that corresponds to the productId parameter and
passes it as a view model object to the View method.

UNIT TEST: THE EDIT ACTION METHOD

I want to test for two behaviors in the Edit action method. The first is that I get the product I ask for
when I provide a valid ID value to make sure that I am editing the product I expected. The second
behavior to test is that I do not get any product at all when I request an ID value that is not in the
repository. Here are the test methods I added to the AdminControllerTests.cs class file:

...
[Fact]
public void Can_Edit_Product() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

Chapter 11 ■ SportsStore: Administration

305

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product p1 = GetViewModel<Product>(target.Edit(1));
 Product p2 = GetViewModel<Product>(target.Edit(2));
 Product p3 = GetViewModel<Product>(target.Edit(3));

 // Assert
 Assert.Equal(1, p1.ProductID);
 Assert.Equal(2, p2.ProductID);
 Assert.Equal(3, p3.ProductID);
}

[Fact]
public void Cannot_Edit_Nonexistent_Product() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product result = GetViewModel<Product>(target.Edit(4));

 // Assert
 Assert.Null(result);
}
...

Creating the Edit View
Now that I have an action method, I can create a view for it to display. I added a Razor view file called
Edit.cshtml to the Views/Admin folder and added the markup shown in Listing 11-8.

Listing 11-8.  The Contents of the Edit.cshtml File in the Views/Admin Folder

@model Product
@{
 ViewBag.Title = "Edit Product";
 Layout = "_AdminLayout";
}

<form asp-action="Edit" method="post">
 <input type="hidden" asp-for="ProductID" />

Chapter 11 ■ SportsStore: Administration

306

 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Description"></label>
 <textarea asp-for="Description" class="form-control"></textarea>
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The view contains an HTML form that uses tag helpers to generate much of the content, including
setting the target for the form and a elements, setting the content of the label elements, and producing the
name, id, and value attributes for the input and textarea elements.

You can see the HTML produced by the view by starting the application, navigating to the /Admin/Index
URL, and clicking the Edit button for one of the products, as shown in Figure 11-4.

■■ Tip  I have used a hidden input element for the ProductID property for simplicity. The value of the
ProductID is generated by the database as a primary key when a new object is stored by Entity Framework
Core, and safely changing it can be a complex process. For most applications, the simplest approach is to
prevent the user from changing the value.

Chapter 11 ■ SportsStore: Administration

307

Updating the Product Repository
Before I can process edits, I need to enhance the product repository so that it is able to save changes. First,
I added a new method to the IProductRepository interface, as shown in Listing 11-9.

Listing 11-9.  Adding a Method to the IProductRespository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IProductRepository {

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);
 }
}

Figure 11-4.  Displaying product values for editing

Chapter 11 ■ SportsStore: Administration

308

I can then add the new method to the Entity Framework Core implementation of the repository, which
is defined in the EFProductRepository.cs file, as shown in Listing 11-10.

Listing 11-10.  Implementing the New Method in the EFProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class EFProductRepository : IProductRepository {
 private ApplicationDbContext context;

 public EFProductRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 context.Products.Add(product);
 } else {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == product.ProductID);
 if (dbEntry != null) {
 dbEntry.Name = product.Name;
 dbEntry.Description = product.Description;
 dbEntry.Price = product.Price;
 dbEntry.Category = product.Category;
 }
 }
 context.SaveChanges();
 }
 }
}

The implementation of the SaveChanges method adds a product to the repository if the ProductID is 0;
otherwise, it applies any changes to the existing entry in the database.

I do not want to go into details of Entity Framework Core because, as I explained earlier, it is a topic
in itself and not part of ASP.NET Core MVC. But there is something in the SaveProduct method that has a
bearing on the design of the MVC application.

I know I need to perform an update when I receive a Product parameter that has a ProductID that is not
zero. I do this by getting a Product object from the repository with the same ProductID and updating each of
the properties so they match the parameter object.

I can do this because Entity Framework Core keeps track of the objects that it creates from the database.
The object passed to the SaveChanges method is created by the MVC model binding feature, which means
that Entity Framework Core does not know anything about the new Product object and will not apply an
update to the database when it is modified. There are lots of ways of resolving this issue, and I have taken the
simplest one, which is to locate the corresponding object that Entity Framework Core does know about and
update it explicitly.

Chapter 11 ■ SportsStore: Administration

309

The addition of a new method in the IProductRepository interface has broken the fake repository
class—FakeProductRepository—that I created in Chapter 8. I used the fake repository to kick-start
the development process and demonstrate how services can be used to seamlessly replace interface
implementations without needing to modify the components that rely on them. I don’t need the fake
repository any further, and in Listing 11-11, you can see that I have removed the interface from the class
declaration so that I don’t have to keep modifying the class as I add repository features.

Listing 11-11.  Removing the Interface in the FakeProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class FakeProductRepository /* : IProductRepository */ {

 public IQueryable<Product> Products => new List<Product> {
 new Product { Name = "Football", Price = 25 },
 new Product { Name = "Surf board", Price = 179 },
 new Product { Name = "Running shoes", Price = 95 }
 }.AsQueryable<Product>();
 }
}

Handling Edit POST Requests
I am ready to implement an overload of the Edit action method in the Admin controller that will handle POST
requests when the administrator clicks the Save button. Listing 11-12 shows the new action method.

Listing 11-12.  Defining an Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 11 ■ SportsStore: Administration

310

 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }
 }
}

I check that the model binding process has been able to validate the data submitted by the user
by reading the value of the ModelState.IsValid property. If everything is OK, I save the changes to the
repository and redirect the user to the Index action so they see the modified list of products. If there is a
problem with the data, I render the default view again so that the user can make corrections.

After I have saved the changes in the repository, I store a message using the temp data feature, which is part
of the ASP.NET Core session state feature. This is a key/value dictionary similar to the session data and view bag
features I used previously. The key difference from session data is that temp data persists until it is read.

I cannot use ViewBag in this situation because ViewBag passes data between the controller and view
and it cannot hold data for longer than the current HTTP request. When an edit succeeds, the browser
is redirected to a new URL, so the ViewBag data is lost. I could use the session data feature, but then the
message would be persistent until I explicitly removed it, which I would rather not have to do.

So, the temp data feature is the perfect fit. The data is restricted to a single user’s session (so that users
do not see each other’s TempData) and will persist long enough for me to read it. I will read the data in the
view rendered by the action method to which I have redirected the user, which I define in the next section.

UNIT TEST: EDIT SUBMISSIONS

For the POST-processing Edit action method, I need to make sure that valid updates to the Product
object, which is received as the method argument, are passed to the product repository to be saved.
I also want to check that invalid updates (where a model validation error exists) are not passed to the
repository. Here are the test methods, which I added to the AdminControllerTests.cs file:

...
[Fact]
public void Can_Save_Valid_Changes() {
 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create mock temp data
 Mock<ITempDataDictionary> tempData = new Mock<ITempDataDictionary>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object) {
 TempData = tempData.Object
 };
 // Arrange - create a product
 Product product = new Product { Name = "Test" };

 // Act - try to save the product
 IActionResult result = target.Edit(product);

Chapter 11 ■ SportsStore: Administration

311

 // Assert - check that the repository was called
 mock.Verify(m => m.SaveProduct(product));
 // Assert - check the result type is a redirection
 Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Index", (result as RedirectToActionResult).ActionName);
}

[Fact]
public void Cannot_Save_Invalid_Changes() {
 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);
 // Arrange - create a product
 Product product = new Product { Name = "Test" };
 // Arrange - add an error to the model state
 target.ModelState.AddModelError("error", "error");

 // Act - try to save the product
 IActionResult result = target.Edit(product);

 // Assert - check that the repository was not called
 mock.Verify(m => m.SaveProduct(It.IsAny<Product>()), Times.Never());
 // Assert - check the method result type
 Assert.IsType<ViewResult>(result);
}
...

Displaying a Confirmation Message
I am going to deal with the message I stored using TempData in the _AdminLayout.cshtml layout file, as
shown in Listing 11-13. By handling the message in the template, I can create messages in any view that uses
the template without needing to create additional Razor expressions.

Listing 11-13.  Handling the ViewBag Message in the _AdminLayout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

Chapter 11 ■ SportsStore: Administration

312

■■ Tip  The benefit of dealing with the message in the template like this is that users will see it displayed on
whatever page is rendered after they have saved a change. At the moment, I return them to the list of products,
but I could change the workflow to render some other view, and the users will still see the message (as long as
the next view also uses the same layout).

I now have all the pieces in place to edit products. To see how it all works, start the application, navigate
to the /Admin/Index URL, click the Edit button, and make a change. Click the Save button. You will be
redirected to the /Admin/Index URL, and the TempData message will be displayed, as shown in Figure 11-5.
The message will disappear if you reload the product list screen because TempData is deleted when it is read.
That is convenient since I do not want old messages hanging around.

Adding Model Validation
I have reached the point where I need to add validation rules to the model classes. At the moment, the
administrator could enter negative prices or blank descriptions, and SportsStore would happily store that
data in the database. Whether or not the bad data would be successfully persisted would depend on whether
it conformed to the constraints in the SQL tables created by Entity Framework Core, and that is not enough
protection for most applications. To guard against bad data values, I decorated the properties of the Product
class with attributes, as shown in Listing 11-14, just as I did for the Order class in Chapter 10.

Figure 11-5.  Editing a product and seeing the TempData message

http://dx.doi.org/10.1007/978-1-4842-3150-0_10

Chapter 11 ■ SportsStore: Administration

313

Listing 11-14.  Applying Validation Attributes in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Product {
 public int ProductID { get; set; }

 [Required(ErrorMessage = "Please enter a product name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter a description")]
 public string Description { get; set; }

 [Required]
 [Range(0.01, double.MaxValue,
 ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [Required(ErrorMessage = "Please specify a category")]
 public string Category { get; set; }
 }
}

In Chapter 10, I used a tag helper to display a summary of validation errors at the top of the form.
For this example, I am going to use a similar approach, but I am going to display error messages next to
individual form elements in the Edit view, as shown in Listing 11-15.

Listing 11-15.  Adding Validation Error Elements in the Edit.cshtml File in the Views/Admin Folder

@model Product
@{
 ViewBag.Title = "Edit Product";
 Layout = "_AdminLayout";
}

<form asp-action="Edit" method="post">
 <input type="hidden" asp-for="ProductID" />
 <div class="form-group">
 <label asp-for="Name"></label>
 <div></div>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Description"></label>
 <div></div>
 <textarea asp-for="Description" class="form-control"></textarea>
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>

http://dx.doi.org/10.1007/978-1-4842-3150-0_10

Chapter 11 ■ SportsStore: Administration

314

 <div></div>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <div></div>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

When applied to a span element, the asp-validation-for attribute applies a tag helper that will add a
validation error message for the specified property if there are any validation problems.

The tag helpers will insert an error message into the span element and add the element to the input-
validation-error class, which makes it easy to apply CSS styles to error message elements, as shown in
Listing 11-16.

Listing 11-16.  Adding CSS to the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
 <style>
 .input-validation-error { border-color: red; background-color: #fee ; }
 </style>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success mt-1">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

The CSS style I defined selects elements that are members of the input-validation-error class and
applies a red border and background color.

■■ Tip  Explicitly setting styles when using a CSS library like Bootstrap can cause inconsistencies when content
themes are applied. In Chapter 27, I show an alternative approach that uses JavaScript code to apply Bootstrap
classes to elements with validation errors, which keeps everything consistent but is also more complex.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 11 ■ SportsStore: Administration

315

You can apply the validation message tag helpers anywhere in the view, but it is conventional (and
sensible) to put it somewhere near the problem element to give the user some context. Figure 11-6 shows
the validation messages and cues that are displayed, which you can see by running the application, editing a
product, and submitting invalid data.

Enabling Client-Side Validation
Currently, data validation is applied only when the administration user submits edits to the server, but
most users expect immediate feedback if there are problems with the data they have entered. This is why
developers often want to perform client-side validation, where the data is checked in the browser using
JavaScript. MVC applications can perform client-side validation based on the data annotations I applied to
the domain model class.

The first step is to add the JavaScript libraries that provide the client-side feature to the application,
which is done in the bower.json file, as shown in Listing 11-17.

Figure 11-6.  Data validation when editing products

Chapter 11 ■ SportsStore: Administration

316

Listing 11-17.  Adding JavaScript Packages in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "fontawesome": "4.7.0",
 "jquery": "3.2.1",
 "jquery-validation": "1.17.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Client-side validation is built on top of the popular jQuery library, which simplifies working with the
browser’s DOM API. The next step is to add the JavaScript files to the layout so they are loaded when the
SportsStore administration features are used, as shown in Listing 11-18.

Listing 11-18.  Adding the Validation Libraries to the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
 <style>
 .input-validation-error { border-color: red; background-color: #fee ; }
 </style>
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script src="/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 <script
 src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">
 </script>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success mt-1">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

Enabling client-side validation doesn’t cause any visual change, but the constraints specified by the
attributes applied to the C# model class are enforced at the browser, preventing the user from submitting the
form with bad data and providing immediate feedback when there is a problem. See Chapter 27 for more details.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 11 ■ SportsStore: Administration

317

Creating New Products
Next, I will implement the Create action method, which is the one specified by the Add Product link in the
main product list page. This will allow the administrator to add new items to the product catalog. Adding
the ability to create new products will require one small addition to the application. This is a great example
of the power and flexibility of a well-structured MVC application. First, add the Create method, shown in
Listing 11-19, to the Admin controller.

Listing 11-19.  Adding the Create Action to the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }

 public ViewResult Create() => View("Edit", new Product());
 }
}

The Create method does not render its default view. Instead, it specifies that the Edit view should be used.
It is perfectly acceptable for one action method to use a view that is usually associated with another view. In this
case, I provide a new Product object as the view model so that the Edit view is populated with empty fields.

Chapter 11 ■ SportsStore: Administration

318

■■ Note  I have not added a unit test for this action method. Doing so would only be testing the ASP.NET Core
MVC ability to process the result from the action method result, which is something you can take for granted.
(Tests are not usually written for framework features unless you suspect there is a defect.)

That is the only change that is required because the Edit action method is already set up to receive
Product objects from the model binding system and store them in the database. You can test this
functionality by starting the application, navigating to /Admin/Index, clicking the Add Product button, and
populating and submitting the form. The details you specify in the form will be used to create a new product
in the database, which will then appear in the list, as shown in Figure 11-7.

Deleting Products
Adding support for deleting items is also simple. The first step is to add a new method to the
IProductRepository interface, as shown in Listing 11-20.

Figure 11-7.  Adding a new product to the catalog

Chapter 11 ■ SportsStore: Administration

319

Listing 11-20.  Adding a Method to Delete Products to the IProductRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IProductRepository {

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);

 Product DeleteProduct(int productID);
 }
}

Next, I implement this method in the Entity Framework Core repository class, EFProductRepository, as
shown in Listing 11-21.

Listing 11-21.  Implementing Deletion Support in the EFProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class EFProductRepository : IProductRepository {
 private ApplicationDbContext context;

 public EFProductRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 context.Products.Add(product);
 } else {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == product.ProductID);
 if (dbEntry != null) {
 dbEntry.Name = product.Name;
 dbEntry.Description = product.Description;
 dbEntry.Price = product.Price;
 dbEntry.Category = product.Category;
 }
 }
 context.SaveChanges();
 }

Chapter 11 ■ SportsStore: Administration

320

 public Product DeleteProduct(int productID) {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == productID);
 if (dbEntry != null) {
 context.Products.Remove(dbEntry);
 context.SaveChanges();
 }
 return dbEntry;
 }
 }
}

The final step is to implement a Delete action method in the Admin controller. This action method should
support only POST requests because deleting objects is not an idempotent operation. As I explain in Chapter 16,
browsers and caches are free to make GET requests without the user’s explicit consent, so I must be careful to
avoid making changes as a consequence of GET requests. Listing 11-22 shows the new action method.

Listing 11-22.  Adding the Delete Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 11 ■ SportsStore: Administration

321

 public IActionResult Create() => View("Edit", new Product());

 [HttpPost]
 public IActionResult Delete(int productId) {
 Product deletedProduct = repository.DeleteProduct(productId);
 if (deletedProduct != null) {
 TempData["message"] = $"{deletedProduct.Name} was deleted";
 }
 return RedirectToAction("Index");
 }
 }
}

UNIT TEST: DELETING PRODUCTS

I want to test the basic behavior of the Delete action method, which is that when a valid ProductID
is passed as a parameter, the action method calls the DeleteProduct method of the repository
and passes the correct ProductID value to be deleted. Here is the test that I added to the
AdminControllerTests.cs file:

...
[Fact]
public void Can_Delete_Valid_Products() {
 // Arrange - create a Product
 Product prod = new Product { ProductID = 2, Name = "Test" };

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 prod,
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act - delete the product
 target.Delete(prod.ProductID);

 // Assert - ensure that the repository delete method was
 // called with the correct Product
 mock.Verify(m => m.DeleteProduct(prod.ProductID));
}

...

Chapter 11 ■ SportsStore: Administration

322

You can see the delete feature by starting the application, navigating to /Admin/Index, and clicking one
of the Delete buttons in the product list page, as shown in Figure 11-8. As shown in the figure, I have taken
advantage of the TempData variable to display a message when a product is deleted from the catalog.

■■ Note  You will find that you get an error if you delete a product for which you have previously created an
order. When an Order object is stored in the database, it is transformed into an entry in a database table that
contains a reference to the Product object with which it is associated, known as a foreign key relationship.
The means that, by default, the database won’t allow a Product object to be deleted if an Order has been
created for that Product because doing so would create an inconsistency in the database. There are a number
of ways to approach this issue, including automatically deleting Order objects when the Product they relate
to is deleted or changing the relationship between Product and Order objects. See the Entity Framework Core
documentation for details.

Summary
In this chapter, I introduced the administration capability and showed you how to implement CRUD
operations that allow the administrator to create, read, update, and delete products from the repository and
mark orders as shipped. In the next chapter, I show you how to secure the administration functions so that
they are not available to all users, and I deploy the SportsStore application into production.

Figure 11-8.  Deleting a product from the catalog

	Chapter 11: SportsStore: Administration
	Managing Orders
	Enhancing the Model
	Adding the Actions and View

	Adding Catalog Management
	Creating a CRUD Controller
	Implementing the List View
	Editing Products
	Creating the Edit Action Method
	Creating the Edit View
	Updating the Product Repository
	Handling Edit POST Requests
	Displaying a Confirmation Message
	Adding Model Validation
	Enabling Client-Side Validation

	Creating New Products
	Deleting Products

	Summary

