
271© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_10

CHAPTER 10

SportsStore: Completing the Cart

In this chapter, I continue to build the SportsStore example app. In the previous chapter, I added the basic
support for a shopping cart, and now I am going to improve on and complete that functionality.

Refining the Cart Model with a Service
I defined a Cart model class in the previous chapter and demonstrated how it can be stored using the
session feature, allowing the user to build up a set of products for purchase. The responsibility for managing
the persistence of the Cart class fell to the Cart controller, which explicitly defines methods for getting and
storing Cart objects.

The problem with this approach is that I will have to duplicate the code that obtains and stores Cart
objects in any component that uses them. In this section, I am going to use the services feature that sits at
the heart of ASP.NET Core to simplify the way that Cart objects are managed, freeing individual components
such as the Cart controller from needing to deal with the details directly.

Services are most commonly used to hide details of how interfaces are implemented from
the components that depend on them. You saw an example of this when I created a service for the
IProductRepository interface, which allowed me to seamlessly replace the fake repository class with the
Entity Framework Core repository. But services can be used to solve lots of other problems as well and can
be used to shape and reshape an application, even when you are working with concrete classes such as Cart.

Creating a Storage-Aware Cart Class
The first step in tidying up the way that the Cart class is used will be to create a subclass that is aware of how
to store itself using session state. I added a class file called SessionCart.cs to the Models folder and used it
to define the class shown in Listing 10-1.

Listing 10-1. The Contents of the SessionCart.cs File in the Models Folder

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Newtonsoft.Json;
using SportsStore.Infrastructure;

namespace SportsStore.Models {

 public class SessionCart: Cart {

https://doi.org/10.1007/978-1-4842-3150-0_10

Chapter 10 ■ SportSStore: Completing the Cart

272

 public static Cart GetCart(IServiceProvider services) {
 ISession session = services.GetRequiredService<IHttpContextAccessor>()?
 .HttpContext.Session;
 SessionCart cart = session?.GetJson<SessionCart>("Cart")
 ?? new SessionCart();
 cart.Session = session;
 return cart;
 }

 [JsonIgnore]
 public ISession Session { get; set; }

 public override void AddItem(Product product, int quantity) {
 base.AddItem(product, quantity);
 Session.SetJson("Cart", this);
 }

 public override void RemoveLine(Product product) {
 base.RemoveLine(product);
 Session.SetJson("Cart", this);
 }

 public override void Clear() {
 base.Clear();
 Session.Remove("Cart");
 }
 }
}

The SessionCart class subclasses the Cart class and overrides the AddItem, RemoveLine, and Clear
methods so they call the base implementations and then store the updated state in the session using the
extension methods on the ISession interface I defined in Chapter 9. The static GetCart method is a factory
for creating SessionCart objects and providing them with an ISession object so they can store themselves.

Getting hold of the ISession object is a little complicated. I have to obtain an instance of the
IHttpContextAccessor service, which provides me with access to an HttpContext object that, in turn,
provides me with the ISession. This indirect approach is required because the session isn’t provided as a
regular service.

Registering the Service
The next step is to create a service for the Cart class. My goal is to satisfy requests for Cart objects with
SessionCart objects that will seamlessly store themselves. You can see how I created the service in Listing 10-2.

Listing 10-2. Creating the Cart Service in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();

http://dx.doi.org/10.1007/978-1-4842-3150-0_9

Chapter 10 ■ SportSStore: Completing the Cart

273

 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

The AddScoped method specifies that the same object should be used to satisfy related requests for Cart
instances. How requests are related can be configured, but by default, it means that any Cart required by
components handling the same HTTP request will receive the same object.

Rather than provide the AddScoped method with a type mapping, as I did for the repository, I have
specified a lambda expression that will be invoked to satisfy Cart requests. The expression receives the
collection of services that have been registered and passes the collection to the GetCart method of the
SessionCart class. The result is that requests for the Cart service will be handled by creating SessionCart
objects, which will serialize themselves as session data when they are modified.

I also added a service using the AddSingleton method, which specifies that the same object
should always be used. The service I created tells MVC to use the HttpContextAccessor class when
implementations of the IHttpContextAccessor interface are required. This service is required so I can
access the current session in the SessionCart class in Listing 10-1.

Simplifying the Cart Controller
The benefit of creating this kind of service is that it allows me to simplify the controllers where Cart objects
are used. In Listing 10-3, I have reworked the CartController class to take advantage of the new service.

Listing 10-3. Using the Cart Service in the CartController.cs File in the Controllers Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;
 private Cart cart;

 public CartController(IProductRepository repo, Cart cartService) {
 repository = repo;
 cart = cartService;
 }

 public ViewResult Index(string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = cart,
 ReturnUrl = returnUrl
 });
 }

Chapter 10 ■ SportSStore: Completing the Cart

274

 public RedirectToActionResult AddToCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);
 if (product != null) {
 cart.AddItem(product, 1);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToActionResult RemoveFromCart(int productId,
 string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 cart.RemoveLine(product);
 }
 return RedirectToAction("Index", new { returnUrl });
 }
 }
}

The CartController class indicates that it needs a Cart object by declaring a constructor argument,
which has allowed me to remove the methods that read and write data from the session and the steps
required to write updates. The result is a controller that is simpler and remains focused on its role in the
application without having to worry about how Cart objects are created or persisted. And, since services are
available throughout the application, any component can get hold of the user’s cart using the same technique.

Completing the Cart Functionality
Now that I have introduced the Cart service, it is time to complete the cart functionality by adding two new
features. The first will allow the customer to remove an item from the cart. The second feature will display a
summary of the cart at the top of the page.

Removing Items from the Cart
I already defined and tested the RemoveFromCart action method in the controller, so letting the customer
remove items is just a matter of exposing this method in a view, which I am going to do by adding a Remove
button in each row of the cart summary. Listing 10-4 shows the changes to the Views/Cart/Index.cshtml file.

Listing 10-4. Introducing a Remove Button to the Index.cshtml File in the Views/Cart Folder

@model CartIndexViewModel

<h2>Your cart</h2>
<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Item</th>

Chapter 10 ■ SportSStore: Completing the Cart

275

 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var line in Model.Cart.Lines) {
 <tr>
 <td class="text-center">@line.Quantity</td>
 <td class="text-left">@line.Product.Name</td>
 <td class="text-right">@line.Product.Price.ToString("c")</td>
 <td class="text-right">
 @((line.Quantity * line.Product.Price).ToString("c"))
 </td>
 <td>
 <form asp-action="RemoveFromCart" method="post">
 <input type="hidden" name="ProductID"
 value="@line.Product.ProductID" />
 <input type="hidden" name="returnUrl"
 value="@Model.ReturnUrl" />
 <button type="submit" class="btn btn-sm btn-danger">
 Remove
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 @Model.Cart.ComputeTotalValue().ToString("c")
 </td>
 </tr>
 </tfoot>
</table>

<div class="text-center">
 Continue shopping
</div>

I added a new column to each row of the table that contains a form with hidden input elements that
specify the product to be removed and the return URL, along with a button that submits the form.

You can see the Remove buttons at work by running the application and adding items to the shopping
cart. Remember that the cart already contains the functionality to remove it, which you can test by clicking
one of the new buttons, as shown in Figure 10-1.

Chapter 10 ■ SportSStore: Completing the Cart

276

Adding the Cart Summary Widget
I may have a functioning cart, but there is an issue with the way it is integrated into the interface. Customers
can tell what is in their cart only by viewing the cart summary screen. And they can view the cart summary
screen only by adding a new a new item to the cart.

To solve this problem, I am going to add a widget that summarizes the contents of the cart and that can
be clicked to display the cart contents throughout the application. I will do this in much the same way that I
added the navigation widget—as a view component whose output I can include in the Razor shared layout.

Adding the Font Awesome Package
As part of the cart summary, I am going to display a button that allows the user to check out. Rather than
display the word checkout in the button, I want to use a cart symbol. Since I have no artistic skills, I am going
to use the Font Awesome package, which is an excellent set of open source icons that are integrated into
applications as fonts, where each character in the font is a different image. You can learn more about Font
Awesome, including inspecting the icons it contains, at http://fortawesome.github.io/Font-Awesome.

I selected the SportsStore project and clicked the Show All Items button at the top of the Solution
Explorer to reveal the bower.json file. I then added the Font Awesome package to the dependencies section,
as shown in Listing 10-5.

Listing 10-5. Adding the Font Awesome Package in the bower.json File in the SportsStore Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "fontawesome": "4.7.0"
 }
}

Figure 10-1. Removing an item from the shopping cart

http://fortawesome.github.io/Font-Awesome

Chapter 10 ■ SportSStore: Completing the Cart

277

When the bower.json file is saved, Visual Studio uses Bower to download and install the Font Awesome
package in the www/lib/fontawesome folder.

Creating the View Component Class and View
I added a class file called CartSummaryViewComponent.cs in the Components folder and used it to define the
view component shown in Listing 10-6.

Listing 10-6. The Contents of the CartSummaryViewComponent.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Components {

 public class CartSummaryViewComponent : ViewComponent {
 private Cart cart;

 public CartSummaryViewComponent(Cart cartService) {
 cart = cartService;
 }

 public IViewComponentResult Invoke() {
 return View(cart);
 }
 }
}

This view component is able to take advantage of the service that I created earlier in the chapter in order
to receive a Cart object as a constructor argument. The result is a simple view component class that passes
on the Cart object to the View method in order to generate the fragment of HTML that will be included in the
layout. To create the layout, I created the Views/Shared/Components/CartSummary folder, added to it a Razor
view file called Default.cshtml, and added the markup shown in Listing 10-7.

Listing 10-7. The Default.cshtml File in the Views/Shared/Components/CartSummary Folder

@model Cart

<div class="">
 @if (Model.Lines.Count() > 0) {
 <small class="navbar-text">
 Your cart:
 @Model.Lines.Sum(x => x.Quantity) item(s)
 @Model.ComputeTotalValue().ToString("c")
 </small>
 }
 <a class="btn btn-sm btn-secondary navbar-btn"
 asp-controller="Cart" asp-action="Index"
 asp-route-returnurl="@ViewContext.HttpContext.Request.PathAndQuery()">
 <i class="fa fa-shopping-cart"></i>

</div>

Chapter 10 ■ SportSStore: Completing the Cart

278

The view displays a button with the Font Awesome cart icon and, if there are items in the cart, provides
a snapshot that details the number of items and their total value. Now that I have a view component and a
view, I can modify the shared layout so that the cart summary is included in the responses generated by the
application’s controllers, as shown in Listing 10-8.

Listing 10-8. Adding the Cart Summary in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet"
 asp-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-href-exclude="**/*-reboot*,**/*-grid*" />
 <link rel="stylesheet" asp-href-include="/lib/fontawesome/css/*.css" />
 <title>SportsStore</title>
</head>
<body>
 <div class="navbar navbar-inverse bg-inverse" role="navigation">
 <div class="row">
 SPORTS STORE
 <div class="col-4 text-right">
 @await Component.InvokeAsync("CartSummary")
 </div>
 </div>
 </div>
 <div class="row m-1 p-1">
 <div id="categories" class="col-3">
 @await Component.InvokeAsync("NavigationMenu")
 </div>
 <div class="col-9">
 @RenderBody()
 </div>
 </div>
</body>
</html>

You can see the cart summary by starting the application. When the cart is empty, only the checkout
button is shown. If you add items to the cart, then the number of items and their combined cost are shown,
as illustrated in Figure 10-2. With this addition, customers know what is in their cart and have an obvious
way to check out from the store.

Chapter 10 ■ SportSStore: Completing the Cart

279

Submitting Orders
I have now reached the final customer feature in SportsStore: the ability to check out and complete an order.
In the following sections, I will extend the domain model to provide support for capturing the shipping
details from a user and add the application support to process those details.

Creating the Model Class
I added a class file called Order.cs to the Models folder and edited it to match the contents shown in
Listing 10-9. This is the class I will use to represent the shipping details for a customer.

Listing 10-9. The Contents of the Order.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public int OrderID { get; set; }
 [BindNever]
 public ICollection<CartLine> Lines { get; set; }

 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

Figure 10-2. Displaying a summary of the cart

Chapter 10 ■ SportSStore: Completing the Cart

280

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

I am using the validation attributes from the System.ComponentModel.DataAnnotations namespace,
just as I did in Chapter 2. I describe validation further in Chapter 27.

I also use the BindNever attribute, which prevents the user from supplying values for these properties in
an HTTP request. This is a feature of the model binding system, which I describe in Chapter 26; it stops MVC
using values from the HTTP request to populate sensitive or important model properties.

Adding the Checkout Process
The goal is to reach the point where users are able to enter their shipping details and submit their order.
To start, I need to add a Checkout button to the cart summary view. Listing 10-10 shows the change I applied
to the Views/Cart/Index.cshtml file.

Listing 10-10. Adding the Checkout Now Button to the Index.cshtml File in the Views/Cart Folder

...
<div class="text-center">
 Continue shopping

 Checkout

</div>
...

This change generates a link that I have styled as a button and that, when clicked, calls the Checkout
action method of the Order controller, which I create in the following section. You can see how this button
appears in Figure 10-3.

http://dx.doi.org/10.1007/978-1-4842-3150-0_2
http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 10 ■ SportSStore: Completing the Cart

281

I now need to define the Order controller. I added a class file called OrderController.cs to the
Controllers folder and used it to define the class shown in Listing 10-11.

Listing 10-11. The Contents of the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class OrderController : Controller {

 public ViewResult Checkout() => View(new Order());
 }
}

The Checkout method returns the default view and passes a new ShippingDetails object as the view
model. To create the view, I created the Views/Order folder and added a Razor view file called Checkout.cs
html with the markup shown in Listing 10-12.

Figure 10-3. The Checkout button

Chapter 10 ■ SportSStore: Completing the Cart

282

Listing 10-12. The Contents of the Checkout.cshtml File in the Views/Order Folder

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name:</label><input asp-for="Name" class="form-control" />
 </div>
 <h3>Address</h3>
 <div class="form-group">
 <label>Line 1:</label><input asp-for="Line1" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 2:</label><input asp-for="Line2" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 3:</label><input asp-for="Line3" class="form-control" />
 </div>
 <div class="form-group">
 <label>City:</label><input asp-for="City" class="form-control" />
 </div>
 <div class="form-group">
 <label>State:</label><input asp-for="State" class="form-control" />
 </div>
 <div class="form-group">
 <label>Zip:</label><input asp-for="Zip" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label><input asp-for="Country" class="form-control" />
 </div>
 <h3>Options</h3>
 <div class="checkbox">
 <label>
 <input asp-for="GiftWrap" /> Gift wrap these items
 </label>
 </div>
 <div class="text-center">
 <input class="btn btn-primary" type="submit" value="Complete Order" />
 </div>
</form>

For each of the properties in the model, I have created a label element and an input element to
capture the user input, formatted with Bootstrap. The asp-for attribute on the input elements is handled
by a built-in tag helper that generates the type, id, name, and value attributes based on the specified model
property, as described in Chapter 24.

You can see the effect of the new action method and view by starting the application, clicking the cart
button at the top of the page, and then clicking the Checkout button, as shown in Figure 10-4. You can also
reach this point by requesting the /Cart/Checkout URL.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 10 ■ SportSStore: Completing the Cart

283

Figure 10-4. The shipping details form

Chapter 10 ■ SportSStore: Completing the Cart

284

Implementing Order Processing
I will process orders by writing them to the database. Most e-commerce sites would not simply stop there, of
course, and I have not provided support for processing credit cards or other forms of payment. But I want to
keep things focused on MVC, so a simple database entry will do.

Extending the Database
Adding a new kind of model to the database is simple once the basic plumbing that I created in Chapter 8 is
in place. First, I added a new property to the database context class, as shown in Listing 10-13.

Listing 10-13. Adding a Property in the ApplicationDbContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore.Models {

 public class ApplicationDbContext : DbContext {

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Order> Orders { get; set; }
 }
}

This change is enough for Entity Framework Core to create a database migration that will allow Order
objects to be stored in the database. To create the migration, open a new command prompt or PowerShell
window, navigate to the SportsStore project folder (which contains the Startup.cs file), and run the
following command:

dotnet ef migrations add Orders

This command tells Entity Framework Core to take a new snapshot of the application data model, work
out how it differs from the previous database version, and generate a new migration called Orders. The new
migration will be applied automatically when the application starts because SeedData calls the Migrate
method provided by Entity Framework Core.

RESETTING THE DATABASE

When you are making frequent changes to the model, there will come a point when your migrations
and your database schema get out of sync. the easiest thing to do is delete the database and start over.
however, this applies only during development, of course, because you will lose any data you have stored.

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 10 ■ SportSStore: Completing the Cart

285

to delete the database, run the following command in the SportsStore project folder:

dotnet ef database drop --force

once the database has been removed, run the following command from the SportsStore folder to re-
create the database and apply the migrations you have created by running the following command:

dotnet ef database update

this will reset the database so that it accurately reflects your model and allow you to return to
developing your application.

Creating the Order Repository
I am going to follow the same pattern I used for the product repository to provide access to the Order objects.
I added a class file called IOrderRepository.cs to the Models folder and used it to define the interface
shown in Listing 10-14.

Listing 10-14. The Contents of the IOrderRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IOrderRepository {

 IQueryable<Order> Orders { get; }
 void SaveOrder(Order order);
 }
}

To implement the order repository interface, I added a class file called EFOrderRepository.cs to the
Models folder and defined the class shown in Listing 10-15.

Listing 10-15. The Contents of the EFOrderRepository.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Models {

 public class EFOrderRepository : IOrderRepository {
 private ApplicationDbContext context;

 public EFOrderRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

Chapter 10 ■ SportSStore: Completing the Cart

286

 public IQueryable<Order> Orders => context.Orders
 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);

 public void SaveOrder(Order order) {
 context.AttachRange(order.Lines.Select(l => l.Product));
 if (order.OrderID == 0) {
 context.Orders.Add(order);
 }
 context.SaveChanges();
 }
 }
}

This class implements IOrderRepository using Entity Framework Core, allowing the set of Order
objects that have been stored to be retrieved and allowing orders to be created or changed.

UNDERSTANDING THE ORDER REPOSITORY

there is a little extra work required to implement the repository for the orders in listing 10-15. entity
Framework Core requires instruction to load related data if it spans multiple tables. in the listing, i
used the Include and ThenInclude methods to specify that when an Order object is read from the
database, the collection associated with the Lines property should also be loaded along with each
Product object associated with each collection object.

...
public IQueryable<Order> Orders => context.Orders
 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);
...

this ensures that i receive all the data objects that i need without having to perform the queries and
assemble the data directly.

an additional step is required when i store an Order object in the database. When the user’s cart data
is deserialized from the session store, the JSon package creates new objects that are not known to
entity Framework Core, which then tries to write all the objects into the database. For the Product
objects, this means that entity Framework Core tries to write objects that have already been stored,
which causes an error. to avoid this problem, i notify entity Framework Core that the objects exist and
shouldn’t be stored in the database unless they are modified, as follows:

...
context.AttachRange(order.Lines.Select(l => l.Product));
...

this ensures that entity Framework Core won’t try to write the deserialized Product objects that are
associated with the Order object.

Chapter 10 ■ SportSStore: Completing the Cart

287

In Listing 10-16, I have registered the order repository as a service in the ConfigureServices method of
the Startup class.

Listing 10-16. Registering the Order Repository Service in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddTransient<IOrderRepository, EFOrderRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

Completing the Order Controller
To complete the OrderController class, I need to modify the constructor so that it receives the services it
requires to process an order, and I need to add a new action method that will handle the HTTP form POST
request when the user clicks the Complete Order button. Listing 10-17 shows both changes.

Listing 10-17. Completing the Controller in the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }

Chapter 10 ■ SportSStore: Completing the Cart

288

 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

The Checkout action method is decorated with the HttpPost attribute, which means that it will be
invoked for a POST request—in this case, when the user submits the form. Once again, I am relying on the
model binding system so that I can receive the Order object, which I then complete using data from the Cart
and store in the repository.

MVC checks the validation constraints that I applied to the Order class using the data annotation
attributes, and any validation problems are passed to the action method through the ModelState property.
I can see whether there are any problems by checking the ModelState.IsValid property. I call the
ModelState.AddModelError method to register an error message if there are no items in the cart. I will
explain how to display such errors shortly, and I have much more to say about model binding and validation
in Chapters 27 and 28.

UNIT TEST: ORDER PROCESSING

to perform unit testing for the OrderController class, i need to test the behavior of the POST version
of the Checkout method. although the method looks short and simple, the use of mVC model binding
means that there is a lot going on behind the scenes that needs to be tested.

i want to process an order only if there are items in the cart and the customer has provided valid
shipping details. Under all other circumstances, the customer should be shown an error. here is the
first test method, which i defined in a class file called OrderControllerTests.cs in the SportsStore.
Tests project:

using Microsoft.AspNetCore.Mvc;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class OrderControllerTests {

 [Fact]
 public void Cannot_Checkout_Empty_Cart() {

http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 10 ■ SportSStore: Completing the Cart

289

 // Arrange - create a mock repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create an empty cart
 Cart cart = new Cart();
 // Arrange - create the order
 Order order = new Order();
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act
 ViewResult result = target.Checkout(order) as ViewResult;

 // Assert - check that the order hasn't been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view
 Assert.True(string.IsNullOrEmpty(result.ViewName));
 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
 }
 }
}

this test ensures that i cannot check out with an empty cart. i check this by ensuring that SaveOrder
of the mock IOrderRepository implementation is never called, that the view the method returns is the
default view (which will redisplay the data entered by customers and give them a chance to correct it), and
that the model state being passed to the view has been marked as invalid. this may seem like a belt-and-
braces set of assertions, but i need all three to be sure that i have the right behavior. the next test method
works in much the same way but injects an error into the view model to simulate a problem reported by
the model binder (which would happen in production when the customer enters invalid shipping data):

...
[Fact]
public void Cannot_Checkout_Invalid_ShippingDetails() {

 // Arrange - create a mock order repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);
 // Arrange - add an error to the model
 target.ModelState.AddModelError("error", "error");

 // Act - try to checkout
 ViewResult result = target.Checkout(new Order()) as ViewResult;

 // Assert - check that the order hasn't been passed stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view
 Assert.True(string.IsNullOrEmpty(result.ViewName));

Chapter 10 ■ SportSStore: Completing the Cart

290

 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
}
...

having established that an empty cart or invalid details will prevent an order from being processed, i
need to ensure that i process orders when appropriate. here is the test:

...
[Fact]
public void Can_Checkout_And_Submit_Order() {
 // Arrange - create a mock order repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act - try to checkout
 RedirectToActionResult result =
 target.Checkout(new Order()) as RedirectToActionResult;

 // Assert - check that the order has been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Once);
 // Assert - check that the method is redirecting to the Completed action
 Assert.Equal("Completed", result.ActionName);
}
...

i did not need to test that i can identify valid shipping details. this is handled for me automatically by the
model binder using the attributes applied to the properties of the Order class.

Displaying Validation Errors
MVC will use the validation attributes applied to the Order class to validate user data. However, I need to
make a simple change to display any problems. This relies on another built-in tag helper that inspects the
validation state of the data provided by the user and adds warning messages for each problem that has been
discovered. Listing 10-18 shows the addition of an HTML element that will be processed by the tag helper to
the Checkout.cshtml file.

Chapter 10 ■ SportSStore: Completing the Cart

291

Listing 10-18. Adding a Validation Summary to the Checkout.cshtml File in the Views/Order Folder

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
...

With this simple change, validation errors are reported to the user. To see the effect, go to the /Order/
Checkout URL and try to check out without selecting any products or filling in any shipping details, as shown
in Figure 10-5. The tag helper that generates these messages is part of the model validation system, which I
describe in detail in Chapter 27.

Figure 10-5. Displaying validation messages

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 10 ■ SportSStore: Completing the Cart

292

 ■ Tip the data submitted by the user is sent to the server before it is validated, which is known as server-
side validation and for which mVC has excellent support. the problem with server-side validation is that the
user isn’t told about errors until after the data has been sent to the server and processed and the result page
has been generated—something that can take a few seconds on a busy server. For this reason, server-side
validation is usually complemented by client-side validation, where JavaScript is used to check the values that
the user has entered before the form data is sent to the server. i describe client-side validation in Chapter 27.

Displaying a Summary Page
To complete the checkout process, I need to create the view that will be shown when the browser is
redirected to the Completed action on the Order controller. I added a Razor view file called Completed.
cshtml to the Views/Order folder and added the markup shown in Listing 10-19.

Listing 10-19. The Contents of the Completed.cshtml File in the Views/Order Folder

<h2>Thanks!</h2>
<p>Thanks for placing your order.</p>
<p>We'll ship your goods as soon as possible.</p>

I don’t need to make any code changes to integrate this view into the application because I already
added the required statements when I defined the Completed action method. Now customers can go
through the entire process, from selecting products to checking out. If they provide valid shipping details
(and have items in their cart), they will see the summary page when they click the Complete Order button,
as shown in Figure 10-6.

Figure 10-6. The completed order summary view

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 10 ■ SportSStore: Completing the Cart

293

Summary
I have completed all the major parts of the customer-facing portion of SportsStore. It might not be enough to
worry Amazon, but I have a product catalog that can be browsed by category and page, a neat shopping cart,
and a simple checkout process.

The well-separated architecture means I can easily change the behavior of any piece of the application
without causing problems or inconsistencies elsewhere. For example, I could change the way that orders are
stored and it would not have any impact on the shopping cart, the product catalog, or any other area of the
application. In the next chapter, I add the features required to administer the SportsStore application.

	Chapter 10: SportsStore: Completing the Cart
	Refining the Cart Model with a Service
	Creating a Storage-Aware Cart Class
	Registering the Service
	Simplifying the Cart Controller

	Completing the Cart Functionality
	Removing Items from the Cart
	Adding the Cart Summary Widget
	Adding the Font Awesome Package
	Creating the View Component Class and View

	Submitting Orders
	Creating the Model Class
	Adding the Checkout Process
	Implementing Order Processing
	Extending the Database
	Creating the Order Repository

	Completing the Order Controller
	Displaying Validation Errors
	Displaying a Summary Page

	Summary

