
1© Shirish Chavan 2017
S. Chavan, C Recipes, DOI 10.1007/978-1-4842-2967-5_1

CHAPTER 1

Welcome to C

C is a procedural programming language. The early history of C is closely parallel to
the history of UNIX. This is because C was specifically developed to write the operating
system UNIX, which was introduced by Bell Laboratories in 1969 as an alternative to
the Multics operating system for the PDP-7 computer. The original version of UNIX
was written in assembly language, but programs written in assembly language are less
portable than programs written in high-level languages; hence, the people at AT&T
decided to rewrite the operating system in a high-level language. This decision was
followed by the hunt of a suitable language, but there was no suitable high-level language
that would also permit bit-level programming.

During the same period (1970), Kenneth Thompson developed a language for
systems programming that was named B after its parent language BCPL (which was
developed by Martin Richards in 1967). In 1972, C made its first appearance, as an
improved version of B. Developed by Dennis Ritchie, C’s name is derived from B
(i.e., in the alphabet, the letter C follows the letter B, and in the name BCPL,
the letter C follows the letter B).

Ritchie, with a group of researchers working at Bell Laboratories, also created a
compiler for C. Unlike B, the C language is equipped with an extensive collection of
standard types. In 1973, the new version of UNIX was released in which more than 90
percent of the source code of UNIX was rewritten in C, which added to its portability.
With the arrival of this new version of UNIX, the computing community realized the
power of C. Following the publication of the book The C Programming Language in 1978
by Brian Kernighan and Dennis Ritchie, C shot to fame.

In 1983, the American National Standards Institute (ANSI) formed a committee,
named X3J11, to create a standard specification of C. In 1989, the standard was ratified as
ANSI X3.159-1989, “Programming Language C.” This version of C is usually called ANSI
C, Standard C, or just C89. In 1990, the ANSI C standard (with a few minor modifications)
was adopted by the International Standards Organization (ISO) as ISO/IEC 8999:1990.
This version is popularly known as C90. In 1995, C89 was modified, and an international
character set was added to it. In 1999, it was further modified and published as ISO
9899:1999. This standard is popularly called C99. In 2000, it was adopted as an ANSI
standard.

Electronic supplementary material  The online version of this chapter
(doi:10.1007/978-1-4842-2967-5_1) contains supplementary material, which is available
to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2967-5_1

Chapter 1 ■ Welcome to C

2

Programs, Software, and Operating System
Before proceeding, let me explain the meaning of the term computer program
(hereafter, simply program). Well, a program is nothing but a set of instructions to
be fed to a computer so the computer can do some desired work. The relationship
between a program and software can be expressed as follows:

program + portability + documentation + maintenance = software

Portability means the ability of a program to run on different platforms (e.g., the
Windows platform, UNIX platform, etc.). Documentation means a user’s manual and
comments inserted in a program. Maintenance means debugging and modifying the
program as per the requests of users.

Microsoft Windows is an operating system. It consists of a graphical user interface
(GUI). Graphical means pictorial, and interface means middleman, so a GUI is a pictorial
middleman between the user and the internal machinery of a computer that assists a
user (meaning a computer user). In a hotel, the waiter takes your order, approaches the
kitchen, collects the dish ordered by you, and serves you. Similarly, the operating system
takes your order, approaches the internal machinery of computer, and then serves you.

Machine Language and Assembly Language
A microprocessor can be aptly described as the brain of a personal computer. This
microprocessor is nothing but a single chip. Various microprocessors are available.
Microprocessor and central processing unit (CPU) are synonymous. A microprocessor
consists of an important component called an arithmetic and logic unit (ALU), which
performs all the computations. A salient feature of an ALU is that it understands only
machine language, which in turn consists of only two alphabets, namely, 0 and 1
(by contrast English consists of 26 letters). Here is a typical machine language instruction:

10111100010110

A few decades back, programmers did use machine language to write programs.
The then-keyboard consisted of only two keys, captioned 0 and 1. Writing a machine
language program and then typing it in a computer was a laborious and tedious job.
Then came the assembly languages, which eased the task of programmers. Assembly
languages are low-level languages. The following is a typical assembly language
statement (which performs a multiplication of two numbers), which is certainly more
readable than the machine language instruction given earlier:

MUL X, Y

If a machine language program consists of, say, 50 statements, then the
corresponding assembly language program would also consist of approximately 50
statements. As ALU understands only machine language, special software (called an
assembler) was developed to translate assembly language programs into machine
language programs.

Chapter 1 ■ Welcome to C

3

Procedural Languages
A typical procedural language is closer to English than assembly language. For example,
here is a statement in the procedural language Pascal:

If (rollNumber = 147) Then Write ('Entry denied.');

The meaning of this statement, which is quite obvious, is as follows: if the value of
rollNumber is 147, then display the message “Entry denied.” on the screen. To translate
a procedural language program into a machine language program, software called a
compiler is used. Procedural languages are high-level languages.

Programmers use procedural languages in conjunction with the techniques of
structured programming. What is structured programming? In a broad sense, the term
structured programming refers to the movement that transformed the art of programming
into a rational science. It all began with a letter by Edsger Dijkstra, “Go To Statement
Considered Harmful,” published in the March 1968 issue of Communications of the ACM.
Structured programming rests on the following cornerstones:

•	 Modularity: Instead of writing a one big program, split your
program into a number of subprograms or modules.

•	 Information hiding: The interface of a module should exhibit only
the least possible information. For example, consider a module
that computes the square root of a number. The interface of this
module will accept a number and return the square root of that
number. The details of this module will remain hidden from the
users of this module.

•	 Abstraction: Abstraction is the process of hiding the details in
order to facilitate the understanding of a complex system. In a
way, abstraction is related to information hiding.

However, as programs grew larger and larger, it became clear that the techniques
of structured programming are necessary but not sufficient. Computer scientists then
turned to object-oriented programming in order to manage more complex projects.

Object-Oriented Languages
We use computer programs to solve real-life problems. The trouble with the structured
paradigm is that using it, you cannot simulate real-life problems on computers
conveniently. In a structured paradigm, you use data structures to simulate real-life
objects, but these data structures fall far short in simulating real-life objects. Car, house,
dog, and tree are the examples of real-life objects, and it is expected that a programming
language should be capable of simulating these objects to solve real-life problems. The
object-oriented paradigm tackles this problem at its root simply by providing software
objects to simulate real-life objects. An object provided by an object-oriented paradigm is
an instance of a class and possesses identity, properties, and behavior like real-life objects
do. For example, if Bird is a class, then parrot, peacock, sparrow, and eagle are objects

Chapter 1 ■ Welcome to C

4

or instances of the class Bird. Also, if Mammal is a class, then cat, dog, lion, and tiger
are objects or instances of the class Mammal. Compared to the structured paradigm, the
object-oriented paradigm is more capable of using existing code. Code means a program
or its part.

The object-oriented paradigm is as old as the structured paradigm. The movement
of the structured paradigm began with Dijkstra’s famous letter “Go To Statement
Considered Harmful” in 1968, whereas the object-oriented paradigm has its origin in
the programming language SIMULA 67, which appeared in 1967. However, the object-
oriented capabilities of SIMULA 67 were not very powerful. The first truly object-oriented
language was Smalltalk. In fact, the term object-oriented was coined through Smalltalk
literature. C is not object-oriented language; it is only a procedural language. In 1983
Bjarne Stroustrup added object-oriented capabilities to C and christened this new
language as C++, which was the first object-oriented language widely used and respected
by the computer industry. Today, the most popular object-oriented language is Java.
Object-oriented languages are high-level languages.

Terminology in Computers
In almost all sciences, the terminology is derived from languages like Greek or Latin.
Why? If you derive terminology from the English language, then there is a risk that
confusion may occur between the technical meaning and the current usage of that term.
In computers, however, terminology is derived from English, causing confusion to new
learners. English words such as tree, memory, core, root, folder, file, directory, virus, worm,
garbage, etc., are used as technical terms in the field of computers. You might be unaware
that particular term has some technical meaning attached to it apart from its current
nontechnical meaning. To avoid confusion, always have a good computer dictionary on
your desk. Whenever in doubt, refer to the dictionary.

Compiled and Interpreted Languages
When a computer scientist designs a new programming language, the major problem is
the implementation of that language on various platforms. There are two basic methods
for implementing a language, as follows:

•	 Compilation: Code in a high-level language is translated into
a low-level language. A file is created to store the compiled or
translated code. You are then required to execute the compiled
code by giving an appropriate command.

•	 Interpretation: Instructions in code are interpreted (executed),
one by one, by a virtual machine (or interpreter). No file is created.

These methods are now discussed in detail.

Chapter 1 ■ Welcome to C

5

Compilation
In compilation, the source code in a high-level language is translated into the machine
language of an actual machine. FORTRAN, Pascal, Ada, PL/1, COBOL, C, and C++ are
compiled languages. For example, consider a C program that displays the text “Hello”
on the screen. Say hello.c is the file that contains the source code of this program
(source code files in C have the extension .c). The C compiler compiles (or translates)
the source code and produces the executable file hello.exe. The file hello.exe contains
instructions in the machine language of the actual machine. You are now required to
execute the file hello.exe by giving an appropriate command, and execution of the file
hello.exe is not part of the compilation process. The executable file hello.exe that is
prepared on the Windows platform can be executed only on the Windows platform.
You simply cannot execute this file on the UNIX platform or the Linux platform.
However, C compilers for all platforms are available. Hence, you can load the appropriate
C compiler on a UNIX or Linux platform, compile the file hello.c to produce the
executable file hello.exe, and then execute it on that platform.

The major benefit of compiled languages is that the execution of compiled programs
is fast. The major drawback of compiled languages is that executable versions of
programs are platform dependent.

Interpretation
In interpretation, a virtual machine is created by adding a desired number of software
layers such that the source code in the high-level language is the “machine language
code” for this virtual machine. For example, the language BASIC is an interpreted
language. Consider a BASIC program that displays the text “Hello” on the screen. Say the
source code of this program is stored in the file hello.bas. The source code in hello.
bas is fed to the BASIC virtual machine, and instructions in hello.bas are interpreted
(executed) by the BASIC virtual machine one by one. Also note that programming
statements in hello.bas are machine language instructions for the BASIC virtual
machine. No new file is created in the interpretation process.

The major benefit of interpreted languages is that programs are platform
independent. The major drawback of interpreted languages is that the interpretation
(execution) of programs is slow. BASIC, LISP, SNOBOL4, APL, and Java are interpreted
languages.

In practice, a pure interpretation, as in the case of BASIC, is seldom used. In
almost all interpreted languages (e.g., Java), a combination of compilation and
interpretation is used. First, using a compiler, the source code in a high-level language
is translated into intermediate-level code. Second, a virtual machine is created such
that the intermediate-level code is machine language code for that virtual machine.
Intermediate-level code is then fed to a virtual machine for interpretation (execution).

Finally, notice that all scripting languages (e.g., Perl, JavaScript, VBScript,
AppleScript, etc.) are pure interpreted languages.

Chapter 1 ■ Welcome to C

6

Your First C Program
As a tradition, the first program in a typical C programming book is generally a “Hello, world”
program. Let’s follow this tradition and create and run (execute) your first program. This
program will display the text “Hello, world” on the screen. Type the following text (program)
in a C file and save it in the folder C:\Code with the file name hello.c:

#include <stdio.h>
main()
{
 printf("Hello, world\n") ;
 return(0) ;
}

Compile and execute this program, and the following line of text appears on the screen:

Hello, world

A language is called case-sensitive if the compiler or interpreter of the language
distinguishes between uppercase and lowercase letters. Pascal and BASIC are not case-
sensitive languages. C and C++ are case-sensitive languages.

•	 C is a case-sensitive language, and therefore you should not
confuse uppercase and lowercase letters. For example, if you type
Main instead of main, it will result in an error.

•	 Do not confuse the file name and program name. Here, hello.c is
the name of the file that contains the source code of the program,
whereas hello is the program name.

To explain how this program works (or any other program, for that matter), I need
to refer to individual lines of code (LOCs) in this program, and hence, I need to number
these lines. Therefore, I have rewritten the program hello with line numbers added to it
as comments (these are multiline comments), as shown here. This program produces the
same output as the program hello.

/* This program will produce the same output as program hello. Only
difference is that this program contains the comments. Comments are for the
convenience of programmers only. Compiler simply ignores these comments.*/
 /* BL */
#include <stdio.h> /* LOC 1 */
 /* BL */
main() /* LOC 2 */
{ /* LOC 3 */
 printf("Hello, world\n"); /* LOC 4 */
 return(0); /* LOC 5 */
} /* LOC 6 */

Chapter 1 ■ Welcome to C

7

There are two types of comments in C: multiline comments (also called block
comments) and single-line comments (also called line comments). Single-line comments
came from C++ and have been officially incorporated into C since C99.

Now notice the program hello rewritten with single-line comments inserted in it, as
shown here. This program produces the same output as the program hello.

// This program will produce the same output as program hello. Only
difference is that this
// program contains the comments. Comments are for the convenience of
programmers only.
// Compiler simply ignores these comments.
 // BL
#include <stdio.h> // LOC 1
 // BL
main() // LOC 2
{ // LOC 3
 printf("Hello, world\n"); // LOC 4
 return(0); // LOC 5
} // LOC 6

Traditionally, C textbooks use only multiline comments and avoid single-line comments.
I will follow this convention in this book. In the remaining part of this chapter, I will cover
implicit type conversions, explicit type conversions, and the salient features of C.

Salient Features of C
C is a popular language. The following features are responsible for its huge popularity:

•	 C is a small language. It has only 32 keywords. Hence, it can be
learned quickly.

•	 It has a powerful library of built-in functions. C derives its
strength from this library.

•	 It is a portable language. A C program written for one platform
(say, Windows) can be ported to another platform with minor
changes (say, Solaris).

•	 C programs execute fast. Thus, C programs are used where
efficiency matters.

•	 All the constructs required for structured programming are
available in C.

•	 Good number of constructs required for low-level programming
are available in C, hence C can be used for systems programming.

•	 Pointers are available in C, which add to its power.

Chapter 1 ■ Welcome to C

8

•	 The facility of recursion is available in C for solving tricky
problems.

•	 C has the ability to extend itself. Programmers can add the
functions coded by them to a library of functions.

•	 C is almost a strongly typed language.

Implicit Type Conversion
In an assignment statement, the quantity that appears on the right side is called the
r-value, and the quantity that appears on the left side is called the l-value. In every
assignment statement, you ensure that the data type of the l-value is the same as that
of the r-value. For an example, see the assignment statement given here (assume intN to
be the int variable):

intN = 350; /* L1, now value of intN is 350 */

Here, L1 means LOC 1. To save the space, I may use the letter L to denote LOC in
code. In LOC 1, the l-value is intN, and the r-value is 350; their data type is the same:
int. When the compiler compiles such a statement, it checks the types of both sides of
the assignment statement without forgetting. This duty of the compiler is termed type
checking. What happens if the types of both sides are not the same? Type conversion
occurs! In type conversion, the type of the value on the right side is changed to that of the
left side before assignment. Type conversions can be classified into two categories.

•	 Implicit or automatic type conversion (discussed in this section)

•	 Explicit type conversion (discussed in the next section)

Notice the LOC given here (assume dblN to be the double variable):

dblN = 35; /* L2, OK, now value of dblN is 35.000000 */

In this LOC, the type of dblN is double, and the type of numeric constant 35 is
int. Here, the compiler promotes the data type of 35 from int (source type) to double
(destination type), and then it assigns the double type constant 35.000000 to dblN. This is
known as implicit type conversion or automatic type conversion. In implicit (or automatic)
type conversion, type conversion occurs automatically.

In type conversion, the type of the r-value is called the source type, and the type of
the l-value is called the destination type. If the range of the destination type is wider than
the range of the source type, then this type of type conversion is called widening type
conversion. If the range of the destination type is narrower than the range of source type,
then this type of type conversion is called narrowing type conversion. The type conversion
in LOC 2 is a widening type conversion because a range of double (destination type) is
wider than a range of int (source type).

Chapter 1 ■ Welcome to C

9

Here is one more example of implicit type conversion (assume intN to be the int
variable):

intN = 14.85; /* L3, OK, now value of intN is 14 */

In this LOC, the type of numeric constant 14.85 is double, and the type of inN is int.
Here, the compiler demotes the data type of 14.85 from double to int, it truncates and
discards its fractional part, and then it assigns the whole-number part, 14, to intN. The
type conversion in LOC 3 is a narrowing type conversion.

Here is one more example of implicit type conversion:

dblN = 2/4.0; /* L4, OK, now value of dblN is 0.500000 */

In this LOC, the r-value is an expression that in turn consists of the division of
numeric constant 2 by numeric constant 4.0. But the type of numeric constant 2 is int,
and the type of numeric constant 4.0 is double. Here, the compiler promotes the type of
numeric constant 2 from int to double, and then the division of floating-point numbers
2.0 / 4.0 is performed. The result 0.5 is assigned to dblN.

■■ Note  When different types are mixed in an expression or in an assignment statement,
then the compiler performs automatic type conversion while evaluating the expression or
performing the assignment. While performing type conversions, the compiler tries its best to
prevent the loss of information. But sometimes loss of information is unavoidable.

For example, in LOC 3, there is a loss of information (double type numeric constant
14.85 converted to an int type numeric constant 14). There is no loss of information
in widening type conversion, but there is some loss of information in narrowing type
conversion. Widening type conversions are always permitted by the compiler happily.
Narrowing type conversions are also permitted by the compiler but with reluctance, and
sometimes warnings are displayed by the compiler. Type conversions that do not make
sense are simply not permitted. Some type conversions are permitted during compile time,
but the error is reported during runtime. For example, notice the piece of code given here:

double dblN1 = 1.7e+300; /* LOC K */
float fltN1; /* LOC L */
fltN1 = dblN1; /* LOC M */
printf("Value of fltN1 %e\n", fltN1); /* LOC N */

The compiler compiles this piece of code successfully without any warning.
However, when you execute this piece of code, then instead of the expected output, the
following lines of text are displayed on the screen:

Floating point error: Overflow.
Abnormal program termination

Chapter 1 ■ Welcome to C

10

The program “crashes” during the execution of LOC M in which narrowing type
conversion is attempted. When a program is terminated abruptly during runtime, in
programmers’ language we say that the program crashed.

Different languages allow the mixing of types to different extents. Language that
freely allows the mixing of different types without any restriction is called a weakly typed
language or a language with weak typing. A language that does not allow the mixing of
different types at all is called a strongly typed language or a language with strong typing.

■■ Note  C is almost a strongly typed language.

C’s strong type checking is evident in a function call. If a function expects an int type
argument and you pass a string of characters to that function as an argument (instead of
the int type argument), then the compiler reports an error and halts the compilation of
the program, confirming that C is a strongly typed language.

Notice that I used the term almost in the previous Note because, to a certain extent,
implicit type conversion is allowed in C, which makes C an “almost” strongly typed
language, rather than a perfectly strongly typed language.

Explicit Type Conversion
Instead of leaving the type conversion at the mercy of the compiler, you can perform the
type conversion explicitly. This operation is called explicit type conversion, casting, or
coercion. The operator used in casting is called cast. Notice the LOC given here (assume
intN to be an int variable):

intN = (int)14.85; /* L1, OK, casting operation performed */

In this LOC, the casting operation is performed on the numeric constant 14.85. An
operator cast is nothing but (int). In this operation, the type of 14.85 is changed from
double to int, its fractional part is truncated and discarded, and the whole-number part,
14, is returned as a numeric constant of type int, which in turn is assigned to intN. Here
is the generic syntax of a casting operation or explicit type conversion:

(desiredType)expression

Here, desiredType is any valid type such as char, short int, int, long int, float,
double, etc. In this syntax, the cast operator is nothing but (desiredType). Notice
that parentheses are required and are part of a cast operator. The effect of this casting
operation is that the type of expression is changed to desiredType.

Chapter 1 ■ Welcome to C

11

In LOC 1, a casting operation is performed on the numeric constant, but it can well
be performed on variables. Notice the piece of code given here:

int intN; /* L2 */
double dblN = 3.7; /* L3 */
intN = (int)dblN; /* L4 */
printf("Value of intN is: %d\n", intN); /* L5 */
printf("Value of dblN is: %lf\n", dblN); /* L6 */
printf("Value of dbln with cast (int) is: %d\n", (int)dblN); /* L7 */

This piece of code, after execution, displays the following lines of text on the screen:

Value of intN is: 3
Value of dblN is: 3.700000
Value of dbln with cast (int) is: 3

In this piece of code, a casting operation is performed on the variable dblN twice,
first in LOC 4 and second in LOC 7. Notice that after performing the casting operation
on dblN, the value of dblN remains unaffected. Actually, the casting operation is not
performed on dblN; the value stored in dblN is retrieved, and then the casting operation
is performed on that retrieved value (i.e., on the numeric constant 3.7). No wonder, after
performing the casting operation on dblN with operator (int) in LOC 4, the variable dblN
has remained unaffected as is evident after execution of LOC 6. The execution of LOC 6
displays the value of dblN to be 3.7. In LOC 7, the argument to the printf() function is
not a variable but an expression, as shown here:

(int)dblN

In this first chapter of this book, I discussed various issues related to the C language.
In the remaining chapters of the book, you will see all the C recipes. The purpose of a
cookbook is to provide you readymade solutions (i.e., recipes) to your problems and in
this book also you will find readymade solutions catering to needs of readers at all levels.

	Chapter 1: Welcome to C
	Programs, Software, and Operating System
	Machine Language and Assembly Language
	Procedural Languages
	Object-Oriented Languages
	Terminology in Computers
	Compiled and Interpreted Languages
	Compilation
	Interpretation

	Your First C Program
	Salient Features of C
	Implicit Type Conversion
	Explicit Type Conversion

