
115© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_6

CHAPTER 6

Using Spatial Mapping

In this chapter, you’ll learn how to use one of the most defining features of Windows
Mixed Reality headsets like the HoloLens: spatial mapping. You’ll learn how to apply
spatial mapping in Unity using the HoloToolkit and unwrap some neat tricks that you can
do with spatial mapping. You’ll learn how to identify walls, floors, ceilings, and chairs.
You’ll also learn how to anchor digital objects to your physical environment, and how to
save those anchors so that your digital objects will persist where you left them, even after
closing and re-opening your app.

What Is Spatial Mapping?
Devices like the HoloLens are constantly tracking their environment and building a 3D
model of the area that they’re in. This is called spatial mapping. Without spatial mapping,
holograms wouldn’t be able to be set on floors and tables, or be pinned to walls. Objects
in other rooms would still be visible, degrading the user’s experience.

Spatial mapping is important for several reasons:

•	 Occlusion: This tells the HoloLens which holograms to hide from
view. For example, if you place a hologram in your hallway and
then walk into another room, the spatial map of that room’s walls
will prevent you from seeing the hologram in your hallway. If
there were no spatial map, you’d see the hologram as if it were
visible through your walls, causing an unrealistic experience.

•	 Placement: This allows users to interact with the spatial map—for
example, to pin items to your walls, allow characters to sit on your
sofa (as seen in Microsoft’s Fragments app), or automatically
decorate your surroundings.

•	 Persistence: This allows for holographic persistence, which is the
ability for holograms to stay where the user left them, even after
turning off the device. Your HoloLens will (remarkably) be able to
remember your space and restore any holograms you had placed
in that space.

Chapter 6 ■ Using spatial Mapping

116

•	 Physics: This allows objects to collide with or bounce off
your walls, furniture, and floors, resulting in a more realistic
experience.

•	 Navigation: Use gaze to allow game characters and other
holograms to follow along mapped surfaces.

For more information on spatial mapping and the sensors involved, see Chapter 1.

Spatial Mapping Tutorial
In this section, I walk you through setting up some basic spatial mapping capabilities.
I show which elements from the HoloToolkit are needed to enable spatial mapping and
provide some tips for a good experience.

Step 1: Set Up Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t done so already, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the TapToPlace test scene (or TapToPlace.unity) in your Project panel by
using the search bar or find it within the folder structure. Drag the test scene into your
Hierarchy, as shown in Figure 6-1. Be sure to unload (disable) all other scenes that you
might have open.

Figure 6-1. Open the TapTopPlace scene from the HoloToolkit to explore a basic
implementation of spatial mapping

http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using spatial Mapping

117

Step 2: Try It Out
The next step is to try it out by clicking the play button.

If you have a HoloLens or similar Windows Mixed Reality device, I highly recommend
using Unity’s holographic remote to device feature (see Chapter 3 for a discussion and
tutorial on holographic remoting) in order to experience spatial mapping of your physical
environment. You may also deploy the app to your HoloLens.

If you don’t have a device, or prefer not to use it for this test, be sure to use Simulate
in Editor with Unity’s holographic emulation (again, see Chapter 3 for more information
on this) in order for spatial mapping to work.

 ■ Tip When using the simulate in editor mode of Unity’s holographic emulation, Unity
will load in a 3D model of a room or area that you can use to test your spatial mapping
capabilities without using a headset. Unity provides several different rooms and spaces
that you can use. to chose a 3D space, use the room drop-down menu in the holographic
emulation window.

After clicking the play button, you’ll see the scene’s cube in your area, but you won’t
be able to see the spatial map. After tapping the cube, the spatial map will appear, and the
cube will follow your gaze, as shown in Figure 6-2. If wearing the HoloLens, you’ll see the
spatial map well aligned to your physical surroundings, as shown in Figure 6-3. When you
tap a second time, the spatial map will become invisible again.

Figure 6-2. View of the spatial map, as seen through the Unity Editor

http://dx.doi.org/10.1007/978-1-4842-2769-5_3
http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 6 ■ Using spatial Mapping

118

As you can see, the rendering of the spatial map is a collection of vertices, edges, and
faces. It looks like a net covering your surroundings (later we’ll see how to change the
spatial mapping appearance). The 3D object generated by spatial mapping is often called
the spatial mapping mesh.

Step 3: Understand the Scene
Now that you’ve had the opportunity to experience spatial mapping, let’s dig into our
scene to learn about the key components that make spatial mapping possible.

Looking at the scene’s Hierarchy, we see some familiar items that we’ve already
learned about in Chapter 5, including the InputManager prefab and the BasicCursor
prefab. There is one unfamiliar item in our Hierarchy: the SpatialMapping prefab, as
shown in Figure 6-4.

Figure 6-3. When viewed through the HoloLens, the spatial map will align well with your
physical surroundings

http://dx.doi.org/10.1007/978-1-4842-2769-5_5

Chapter 6 ■ Using spatial Mapping

119

This small prefab, containing only three scripts, is all that’s responsible for spatial
mapping. You can easily find this prefab in the HoloToolkit and drag it into your project to
enable spatial mapping. This is yet another example of how the HoloToolkit makes it easy
for developers to quickly and efficiently set up a Windows Mixed Reality project.

Let’s walk through each of the three scripts in the SpatialMapping prefab.

•	 SpatialMappingObserver.cs: This script is responsible for
managing the surfaces observed on the HoloLens and renders
them so they can be displayed in the scene. You can adjust the
resolution of the spatial map in the Inspector panel using the
Triangles Per Cubic Meter field. You can also adjust how far out
from the HoloLens you want to observe by adjusting the Extents
variables, and you can specify how often to process spatial
mapping updates using the Time Between Updates field.

•	 SpatialMappingManager.cs: This script allows you to choose to
load a saved spatial mapping mesh or collect data in real time
from the HoloLens. To help with performance and avoid the
processor-intensive task of constantly scanning a room, it can
be beneficial to save the current room to memory and only scan
occasionally or as needed. In the Inspector panel, you may also
select the material to use for rendering the spatial mapping data.

•	 ObjectSurfaceObserver.cs: This script is used when you’re not
using a HoloLens device for spatial mapping but instead are using
a pre-existing 3D model of a room or area within the Unity Editor.
You can specify a custom 3D model in the Inspector panel.

Figure 6-4. The SpatialMapping prefab is all that’s needed to enable spatial mapping in
your project

Chapter 6 ■ Using spatial Mapping

120

In addition to the scripts in the SpatialMapping prefab, the Cube game object also
has a script attached to it called TapToPlace.cs, which is responsible for making the Cube
interactive and placeable on the spatial mapping mesh. There’s also a new script called
WorldAnchorManager.cs. If you click the Managers item in the Hierarchy, you’ll see this
script. I discuss world anchors and spatial anchors in greater depth later in this chapter.

Step 4: Use Spatial Mapping in Your Application
As mentioned in the previous step, enabling spatial mapping in your application is as easy
as dragging the SpatialMapping prefab from the HoloToolkit to your project Hierarchy.
Simply use the Project panel’s search bar to find the SpatialMapping prefab or navigate to
it in the directory, as shown in Figure 6-5.

Figure 6-5. To apply spatial mapping to your application, simply apply the
SpatialMapping prefab from the HoloToolkit to your scene’s Hierarchy

You must also enable SpatialPerception to your Unity application by going to
Edit ➤ Project Settings ➤ Player ➤ Settings for Windows Store ➤ Publishing Settings ➤
Capabilities. See Figure 6-6 for an illustration of this setting.

Chapter 6 ■ Using spatial Mapping

121

Spatial Plane Finding Tutorial
Rather than just applying a digital mesh “blanket” over physical surfaces, we can leverage
the HoloLens’ computational power to find planes in our environment. In this section,
I walk you through enabling plane finding in your application and discuss why plane
finding is important.

Step 1: Set Up the Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t already done so, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the PlaneFinding test scene (or PlaneFinding.unity) in your Project panel by
using the search bar or finding it within the folder structure. Drag the test scene into your
Hierarchy, as shown in Figure 6-7. Be sure to unload (disable) all other scenes that you
might have open.

Figure 6-6. Be sure to enable SpatialPerception in Unity’s Publishing settings for spatial
mapping to work

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using spatial Mapping

122

Upon loading the scene, you should see a 3D model of a room. You may notice that
this scene doesn’t use spatial mapping but rather the pre-existing room model. We’ll try
out plane finding on a real spatial mapping mesh later in this section.

Step 2: Try It Out
Go ahead and click the play button to start exploring the scene. This scene is intended to
be experienced within the Unity Editor, so we won’t be using the headset.

To see the identified planes, switch to the scene view while in Play mode. You will be
able to visualize the planes, as shown in Figure 6-8.

Figure 6-7. Open the PlaneFinding scene to explore the HoloToolkit’s spatial mapping
plane finding feature

Chapter 6 ■ Using spatial Mapping

123

While in the scene view, feel free to adjust the parameters for PlaneFindingTest.cs in
the Inspector panel (you’ll need to select the PlaneFinding item in the Hierarchy to see
the script).

This scene provides a controlled environment to test plane finding and allows you to
carefully explore parameters.

Step 3: Load the Spatial Processing Scene
Now that you’ve had the opportunity to explore a basic plan finding scene and
implementation, let’s expand this capability to an actual spatial mapping mesh. Find and
load the SpatialProcessing scene (SpatialProcessing.unity), as shown in Figure 6-9, and
unload the PlaneFinding scene.

Figure 6-8. Identified planes can be seen while the scene is running and you’re in the scene view

Chapter 6 ■ Using spatial Mapping

124

Step 5: Try Out the SpatialProcessing Scene
Try out the spatial processing scene by clicking the blue play button while using Unity’s
holographic emulation or deploying to your device. At first you’ll see the regular spatial
mapping mesh, but after a few seconds the spatial mapping mesh will be replaced
with large white rectangles representing the identified planes of the room, as shown in
Figure 6-10.

Figure 6-9. Load the SpatialProcessing scene and disable the PlaneFinding scene

Figure 6-10. After a few seconds, the spatial processing feature will identify planes and
replace the spatial mapping mesh with white planes

Chapter 6 ■ Using spatial Mapping

125

Step 6: Understand the SpatialProcessing Scene
When I first tried the SpatialProcessing scene while wearing the HoloLens, I was
overjoyed at seeing how perfectly aligned the planes were to my walls. SpatialProcessing
is made possible by the SpatialProcessing item in the Hierarchy, which includes three
important scripts, as shown in Figure 6-11.

Figure 6-11. The SpatialProcessing object (highlighted in blue) contains three important
scripts, as can be seen in the Inspector panel

Let’s walk through each of these three scripts to see how they come together for
visualizing planes in our environment:

•	 SpatialProcessingTest.cs: This script allows you to control a variety
of settings related to spatial processing. You’ll notice that you can
adjust these settings directly from the Inspector panel. The first
field is the Scan Time, which is the number of seconds to allow
the SurfaceObserver to scan the environment. The longer the
scan time, the more time you’ll have to build out a good spatial
mapping mesh of your environment. After the time expires, this
script will stop the SurfaceObserver (that is, stop scanning the
environment) and start the mesh processing. This script also
allows you to set the default material, which lets you visualize the
spatial mapping mesh during scanning. The secondary material
allows you to visualize the spatial mapping mesh after scanning
is complete. The Minimum Floors field is the minimum number
of floor planes needed to exit processing. If you set the minimum
number of floors to 1, but no floors are detected, the script will
continue trying to find a floor plane.

Chapter 6 ■ Using spatial Mapping

126

•	 SurfaceMeshesToPlanes.cs: This script is responsible for finding
planes from the mesh and generating planes. In the Inspector, you
may set the MinArea, which is the minimum area required before
a plane will be created. A larger number means you’ll have larger
but fewer planes in your scene, whereas a smaller number means
you’ll create plans for smaller surfaces in your scene. There are
also two drop-down lists in the Inspector where you can specify
which types of surfaces to draw planes for and which types of
surfaces to destroy. The snapToGravityThreshhold variable
(in the script but not shown in the Inspector) is used to align
planes with gravity so that they appear more level. The Surface
Plane prefab determines the appearance of the planes. Feel free to
edit this prefab if you want to modify the plane appearances—for
example, if you want to have the floor planes be a different color
from the wall planes.

•	 RemoveSurfaceVertices.cs: This script is responsible for removing
vertices (removing parts of the spatial mapping mesh) that fall
within boundaries that you specify. You may want to remove
vertices if you need holes in your spatial mapping mesh or
if you want to reduce polygon count in order to improve the
performance of your application. In our SpatialProcessing scene,
the SpatialProcessingTest.cs script uses the planes generated
by SurfaceMeshesToPlanes.cs as the boundaries. It sends these
boundaries to the RemoveSurfaceVertices.cs script, which then
removes the spatial mapping mesh near the generated planes.
The Bounds Expansion parameter that is visible in the Inspector
allows you to expand the boundaries you provide, to remove more
vertices around the boundaries.

 ■ Tip Because the surfaceMeshestoplanes script allows you to specify plane types
(walls, floor, celling, table, and so on), you can selectively send some of these planes to the
removesurfaceVertices script. this is useful if you’d like to selectively remove parts of your
spatial mapping mesh—for example, if you’d like to remove only your ceiling.

Step 7: Use Spatial Processing in Your Application
To enable spatial processing in your application, you need to do the following:

•	 Make sure to enable spatial mapping, as described in the previous
tutorial.

•	 Make sure to enable spatial perception, as described in the
previous tutorial.

Chapter 6 ■ Using spatial Mapping

127

•	 Find and add the SpatialProcessingTest.cs script to your Hierarchy
to control scan times and mesh visualization.

•	 Find and add the SurfaceMeshesToPlanes.cs script to your
Hierarchy. Adjust settings in the Inspector panel as needed by
your project.

•	 Optionally, you may also find and add the
RemoveSurfaceVertices.cs script to your Hierarchy to remove
parts of your meshes that you replace with a plane.

Spatial processing is excellent for scenarios where you need to identify planes
without necessarily visualizing them. For example, if I need to place a hologram on the
floor, I can use spatial processing to identify and create an invisible floor plane and then
proceed to place holograms on the floor. Other examples include placing objects on walls,
hanging holograms from the ceiling, calculating headset height above the floor, and more.

Occlusion Tutorial
In this section, I walk you through implementing occlusion to your spatial mapping
mesh. As mentioned, occlusion allows parts of objects that are fully or partially behind
walls and other surfaces to become invisible, just as they would in the physical world.
This increases your holograms’ realism and improves your user’s experience.

Step 1: Load the TapToPlace Scene
Let’s reload the TapToPlace scene that we started with at the beginning of this chapter,
shown back in Figure 6-1. Feel free to try out the application again. You will notice that
the cube is visible, regardless of whether it’s in your space or behind a physical wall.

Step 2: Apply Occlusion
Next, we want to apply a new material that will allow our spatial mapping mesh to block
objects behind it while appearing invisible when viewed through the HoloLens or other
device. The HoloToolkit provides a useful item to achieve this. Browse or search for the
Occlusion material in your HoloToolkit folders within the Project panel. Once you locate
it, drag it to the Surface Material field of the SpatialMappingManager.cs script within the
Inspector panel, as shown in Figure 6-12.

Chapter 6 ■ Using spatial Mapping

128

Step 3: Try It Out
As before, use holographic remoting to test the app with the new Occlusion material.
Initially, the occlusion material won’t be rendered until you tap the cube. While in Placing
mode (with the cube following your gaze), the occlusion material will be rendered.
Because the material is transparent, you won’t directly see the spatial mapping mesh, but
you will see that part of the cube will be occluded by its environment.

As soon as you release the cube (by tapping it again), the spatial mapping mesh will
no longer be rendered, and the cube will no longer be occluded by your surroundings.
Go ahead and manually turn on occlusion while the application is running in Unity by
checking the Draw Visual Meshes box for the SpatialMappingManager.cs script in the
Inspector panel, as shown in Figure 6-13.

Figure 6-12. Apply the Occlusion material to the Surface Material field of the Spatial
Mapping Manager script

Chapter 6 ■ Using spatial Mapping

129

As you can see from my tests, the cube was fully visible when there were no
obstructions between me and the cube (Figure 6-14), but the cube was partially visible
when obstructions were present (Figure 6-15).

Figure 6-14. The white cube appears full when there are no obstructions

Figure 6-13. While the application is being simulated in Unity, check the Draw Visual
Meshes checkbox to force the occlusion material to be rendered

Chapter 6 ■ Using spatial Mapping

130

Because no processing or smoothing of the spatial mapping mesh occurs in this
scene, you’ll notice some imperfections in the spatial mapping mesh, as can be seen in
Figure 6-15, with the sharp artifacts. Replacing the spatial mapping mesh with smooth
planes and other smoothing techniques can help with occlusion and visualization.

Step 4: Use Occlusion in Your Application
Occlusion is an essential part of Mixed Reality development, especially for projects that
utilize spatial mapping. Without occlusion, distant holograms in other rooms or behind
objects would still be visible, causing the experience to be confusing and unnatural.

To apply occlusion to your project, you need to render your spatial mapping mesh
using the Occlusion material found in the HoloToolkit, as shown in Step 2 of this section.

A more advanced treatment of the spatial mapping mesh may utilize multiple
materials throughout your app. For example, your application may start out using one
material that’s visible (such as during a room-scanning phase of your app) and then later
switch to the invisible occlusion material.

You may actively switch between materials for spatial mapping when scripting by
using the SpatialMappingManager.SetSurfaceMaterial() function. See the following
code for an example of this implementation:

if (condition == true)
{
 SpatialMappingManager.SetSurfaceMaterial(surfaceMaterial);
}

Figure 6-15. When obstructed (in this case by boxes), only the unobstructed part of the
cube is visible

Chapter 6 ■ Using spatial Mapping

131

In the preceding code, surfaceMaterial is a previously assigned material. You
may, for example, declare it as public Material SurfaceMaterial and drag and drop a
material using the Unity Editor’s Inspector panel, as we did earlier in this tutorial.

Spatial Understanding Tutorial
In this section, I walk through how to enable spatial understanding for your application.
One of the most powerful examples that the HoloToolkit has to offer is the Spatial
Understanding example. Spatial understanding can be thought of as a much more
powerful version of the plane finding feature covered earlier in this chapter.

Here are a few things that spatial understanding allows you to do:

•	 Place objects on floors, ceilings, and walls

•	 Place objects in the air away from you or near you, without
touching walls

•	 Place objects on the floor away from you or near you

•	 Find the largest wall and place objects on it

•	 Find sittable surfaces (so you can have characters sit on
anyone’s chair)

•	 Identify chairs and couches

•	 Identify large empty surfaces

•	 Allows users to “paint” their spatial mesh to limit the
scanned area

•	 Smoothe the spatial mapping mesh

Step 1: Set Up the Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t done so already, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the SpatialUnderstandingExample test scene (or SpatialUnderstandingExample.
unity) in your Project panel by using the search bar or find it within the folder structure.
Drag the test scene into your Hierarchy, as shown in Figure 6-16. Be sure to unload
(disable) all other scenes that you might have open.

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using spatial Mapping

132

Step 2: Try It Out
For this example scene, I highly recommend taking the time to build and deploy to your
HoloLens or similar headset. Spatial understanding is an awe-inspiring example provided
by the HoloToolkit and is best experienced on your device, without lag or limitation, and
in a larger area of your home or office with interesting features nearby (table, chair, open
area, walls, ceiling). If you prefer, you may still try out this scene from within the Unity
Editor using holographic emulation or remoting to your device.

The application will first ask you to scan your environment. You’ll immediately
notice a very smooth implementation of the spatial mapping mesh, with well-leveled
meshes on walls, floors, and ceilings. See Figure 6-17 for an example of the spatial
mapping mesh used by spatial understanding.

Figure 6-16. Open the SpatialUnderstandingExample scene to explore the HoloToolkit’s
spatial understanding features

Chapter 6 ■ Using spatial Mapping

133

Next, you may notice that a menu item has been placed on a wall near you, as
shown in Figure 6-18. I recommend exploring all buttons and tabs in this menu to gain
familiarity with what spatial understanding has to offer.

Figure 6-17. The spatial mapping mesh processing by spatial understanding is
remarkably smooth

Figure 6-18. Explore all buttons and tabs offered in the spatial understanding menu.
Prepare to be amazed!

Chapter 6 ■ Using spatial Mapping

134

When selecting buttons, a typical experience will involve rectangular objects flying
from the menu to recognized surfaces around your mapped room.

Step 3: Use Spatial Understanding in Your Application
Entire chapters could be written about the inner workings of spatial understanding and
all the ways developers could leverage it in their applications. In this step, I point out the
key components needed to enable spatial understanding in your application and how to
get started with it.

Enabling spatial understanding involves the following:

•	 Making sure spatial mapping is enabled, as shown previously in
this chapter

•	 Locating the SpatialUnderstanding prefab and loading it into your
scene’s Hierarchy

The spatial understanding prefab contains three scripts, as shown in Figure 6-19.

Figure 6-19. The SpatialUnderstanding prefab contains three important scripts

In simple terms, here is what each of the scripts are responsible for:

•	 SpatialUnderstanding.cs: This is responsible for managing the
spatial understanding scanning process.

•	 SpatialUnderstandingSourceMesh.cs: This is responsible for
providing the source (raw) spatial mapping mesh to the spatial
understanding feature.

•	 SpatialUnderstandingCustomMesh.cs: This is responsible for
generating the custom spatial mapping mesh, during spatial
understanding processing and after it’s complete.

To learn how to utilize all the data generated for the spatial understanding process,
you’ll want to dig into the following scripts: SpaceVisualizer.cs and LevelSolver.cs. These
scripts are not part of the Spatial Understanding prefab or module, but they are part of the

Chapter 6 ■ Using spatial Mapping

135

Spatial Understanding Example scene, provided to show developers how to utilize spatial
understanding data.

Let’s look at one example code snippet from SpaceVisualizer.cs:

public void Query_Topology_FindLargeWall()
{
 ClearGeometry();

 // Only if we're enabled
 if (!SpatialUnderstanding.Instance.AllowSpatialUnderstanding)
 {
 return;
 }

 // Query
 IntPtr wallPtr = SpatialUnderstanding.Instance.UnderstandingDLL.

PinObject(resultsTopology);
 int wallCount = SpatialUnderstandingDllTopology.QueryTopology_

FindLargestWall(
 wallPtr);
 if (wallCount == 0)
 {
 AppState.Instance.SpaceQueryDescription = "Find Largest Wall (0)";
 return;
 }

 // Add the line boxes
 float timeDelay = (float)lineBoxList.Count * AnimatedBox.DelayPerItem;
 lineBoxList.Add(
 new AnimatedBox(
 timeDelay,
 resultsTopology[0].position,
 Quaternion.LookRotation(resultsTopology[0].normal, Vector3.up),
 Color.magenta,
 new Vector3(resultsTopology[0].width, resultsTopology[0].length,

0.05f) * 0.5f)
);
 AppState.Instance.SpaceQueryDescription = "Find Largest Wall (1)";
}

This function helps to find the largest wall in the room and places a pink
rectangle over the position of the largest wall. The key pieces of code here are
resultsTopology[0].position and resultsTopology[0].normal, where we can directly
get the information about the largest wall and place objects on or near it. I encourage you
to look through these scripts and use the code as inspiration for use in your own projects.

Chapter 6 ■ Using spatial Mapping

136

Interesting things to try:

•	 Have an avatar sit on a chair or sofa at your friend’s house.

•	 Put a holographic clock on your wall.

•	 Place a holographic dinner on your dining room table, complete
with food, plates, silverware, and more.

•	 Create Roman pillars that extend from your floor to the ceiling.

Spatial Anchors and Persistence
This section briefly discusses the importance of spatial anchors. I walk you through how
to use spatial anchors in your Unity project and provide some best practices when using
spatial anchors.

Spatial anchors are locations in your application that are anchored to the real world.
This is part of what makes Mixed Reality possible. Without spatial anchors, the virtual
experience viewed through your device would become increasingly disconnected with
reality over time. The HoloLens and other similar Mixed Reality devices do their best
to scan and recreate your physical world using spatial mapping. However, this process
isn’t perfect, and the spatial map may be improving and adjusting over time. These
adjustments would cause your holograms to appear to be shifting away from where you
placed them, unless you “anchored” the holograms to the spatial map using a spatial
anchor.

How to Use Spatial Anchors
Attaching and removing spatial anchors is a relatively simple process. A spatial anchor is
called a world anchor in Unity. To attach an anchor to your game object, use the following
method:

WorldAnchor anchor = gameObject.AddComponent<WorldAnchor>();

To remove an anchor from a game object that you don’t intend to move, use Destroy:

Destroy(gameObject.GetComponent<WorldAnchor>());

To remove an anchor from a game object that you intend to move, use DestroyImmediate:

DestroyImmediate(gameObject.GetComponent<WorldAnchor>());

We need to destroy anchors on game objects because (as the name implies) anchors
prevent us from moving objects. To move an anchored object in your scene, you first
need to immediately destroy the anchor, move it, then create the anchor again. See the
following code example:

Chapter 6 ■ Using spatial Mapping

137

DestroyImmediate(gameObject.GetComponent<WorldAnchor>());
gameObject.transform.position = new Vector3(2, 2, 2);
WorldAnchor anchor = gameObject.AddComponent<WorldAnchor>();

Hologram Persistence
What if you could save a spatial anchor to your device’s memory and load it the next time
your application starts? If you did that, your holograms and objects would be exactly
where you placed them in the physical world, even after closing and re-opening your
application. The good news is that this feature, called persistence, is available and widely
used with spatial anchors.

You can save spatial anchors to your device in a place called the WorldAnchorStore.
Most of the hard work is done for us using a script in the HoloToolkit called
WorldAnchorManager.cs.

Include the WorldAnchorManager in your scene by finding it in the Project panel
and dragging it to an item in your Hierarchy, such as a Managers object, as shown in
Figure 6-20.

Figure 6-20. Include the WorldAnchorManager.cs script in your scene for a simplified
spatial anchor and persistence experience

In Figure 6-20, you’ll notice that I’m in the TapToPlace test scene from the
HoloToolkit that we’ve been working with in this chapter. The TapToPlace scene already
utilizes the WorldAnchorManager.cs script and the TapToPlace.cs script (attached to the
cube). Feel free to dive into the scripts in this scene to explore how hologram persistence
is set up in a working scene.

Chapter 6 ■ Using spatial Mapping

138

 ■ Note to experience persistence across app sessions, you need to deploy the application
to your device or run your application in the hololens emulator outside of Unity. persistence
won’t work when using the Unity editor or holographic emulation within Unity.

With the WorldAnchorManager.cs script attached to your project, you’ll be able to
call its functions from other scripts. I include a few useful examples here. In the following
examples, anchorManager refers to the WorldAnchorManager script:

anchorManager = WorldAnchorManager.Instance;

Use the following code to attach an anchor to your game object and save it to the
WorldAnchorStore using a custom anchor name SavedAnchorFriendlyName that you can
use to later retrieve the anchor in another app session:

anchorManager.AttachAnchor(gameObject, SavedAnchorFriendlyName);

To remove the anchor (perhaps while moving the object), you can use the following code:

anchorManager.RemoveAnchor(gameObject);

To load an existing anchor and attach it to a game object, use the same AttachAnchor
code that we use to create anchors:

anchorManager.AttachAnchor(gameObject, SavedAnchorFriendlyName);

If the anchor store already has an anchor with the custom name you provided, it will
load the anchor instead of creating a new one.

If you want to get all the existing anchor names in the anchor store and iterate
through them, use the following code:

var ids = anchorManager.AnchorStore.GetAllIds();

foreach (var id in ids)
 {
 anchorManager.AttachAnchor(gameObject, id);
 }

A Note on Sharing Anchors
Not only do you have the ability to save anchors to your device, you can also transfer
anchors to other devices. When two or more devices that are in the same physical room
share anchors (and associated data), they see holograms and objects in the same place as
everyone else. This allows for truly awe-inspiring shared sessions where multiple people
can collaborate on the same project or view the same experience together.

Chapter 6 ■ Using spatial Mapping

139

Summary
Congratulations! You’re now equipped with core knowledge about spatial mapping and
can start taking advantage of some cool spatial mapping tools. Let’s review what you
learned in this chapter:

•	 What spatial mapping is

•	 All about the SpatialMapping prefab and all associated scripts

•	 How to enable spatial mapping in your application

•	 How to use spatial mapping to find and identify planes in your
environment

•	 How to occlude objects using spatial mapping for a more realistic
effect

•	 How to use spatial understanding to unleash the power of spatial
mapping, identify objects and surfaces in your environment, and
place objects on key surfaces in your environment

•	 All about spatial anchors and how to use them in your application

•	 How to persist objects and holograms across app sessions

You may not have thought there was so much to cover in a chapter about spatial
mapping. Spatial mapping is extremely important for Mixed Reality. In fact, it’s the
headset’s understanding of the physical environment that warrants the mixed in Mixed
Reality, allowing our applications to mix the virtual and physical worlds together.

We’ve only touched the tip of the iceberg with regard to spatial mapping. Many
untapped opportunities are waiting to be explored and implemented. Here are just a few
examples of spatial mapping ideas I’ve heard mentioned:

•	 Expanding the spatial mapping mesh to make your room or area
appear larger than it actually is

•	 Virtually painting your walls and furniture to see what various
color options would look like

•	 Making holes in your walls to give the sensation that you can see
through them

As you continue your developer journey, think about creative ways you can leverage
spatial mapping and all associated tools. Be sure to think outside the box. Keep in mind
that your spatial mapping mesh doesn’t need to obey the laws of physics like your real
walls and furniture do. The sky is the limit to what you can achieve.

	Chapter 6: Using Spatial Mapping
	What Is Spatial Mapping?
	Spatial Mapping Tutorial
	Step 1: Set Up Unity Scene
	Step 2: Try It Out
	Step 3: Understand the Scene
	Step 4: Use Spatial Mapping in Your Application

	Spatial Plane Finding Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try It Out
	Step 3: Load the Spatial Processing Scene
	Step 5: Try Out the SpatialProcessing Scene
	Step 6: Understand the SpatialProcessing Scene
	Step 7: Use Spatial Processing in Your Application

	Occlusion Tutorial
	Step 1: Load the TapToPlace Scene
	Step 2: Apply Occlusion
	Step 3: Try It Out
	Step 4: Use Occlusion in Your Application

	Spatial Understanding Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try It Out
	Step 3: Use Spatial Understanding in Your Application

	Spatial Anchors and Persistence
	How to Use Spatial Anchors
	Hologram Persistence
	A Note on Sharing Anchors

	Summary

