
Beginning Windows
Mixed Reality
Programming

For HoloLens and Mixed Reality
Headsets
—
Blending 3D visualizations with
your physical environment
—
Sean Ong

Beginning Windows
Mixed Reality
Programming
For HoloLens and Mixed

Reality Headsets

Sean Ong

Beginning Windows Mixed Reality Programming: For HoloLens and Mixed Reality
Headsets

Sean Ong					
Tukwila, Washington, USA			

ISBN-13 (pbk): 978-1-4842-2768-8		 ISBN-13 (electronic): 978-1-4842-2769-5
DOI 10.1007/978-1-4842-2769-5

Library of Congress Control Number: 2017949686

Copyright © 2017 by Sean Ong

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by NASA

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Technical Reviewer: Bart Trzynadlowski
Coordinating Editor: Jill Balzano
Copy Editor: Corbin Collins

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/9781484227688. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484227688
http://www.apress.com/source-code

This book is dedicated to my mother, Connie. She’s perfect. Maybe a little
too perfect. If I didn’t know any better, I’d say she’s a hologram.

v

Contents at a Glance

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

Introduction: The Holographic Future�� xxi

■■Part I: Getting Started�� 1

■■�Chapter 1: Gear Up: The Necessary Hardware and
Software Tools��� 3

■■Chapter 2: Unity Crash Course��� 29

■■Part II: Building Holographic Experiences��������������������� 53

■■Chapter 3: Creating Your First Hologram��������������������������������������� 55

■■Chapter 4: Introduction to the HoloToolkit������������������������������������� 81

■■Chapter 5: Interacting with Holograms��� 95

■■Chapter 6: Using Spatial Mapping��� 115

■■Chapter 7: Spatial Sound��� 141

■■Part III: Growing as a Holographic Developer�������������� 153

■■Chapter 8: Awe-Inspiring Experiences�� 155

■■Chapter 9: Turning Holograms into Money���������������������������������� 195

■■Chapter 10: Community Resources��� 201

Index��� 217

vii

Contents

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

Introduction: The Holographic Future�� xxi

■■Part I: Getting Started�� 1

■■�Chapter 1: Gear Up: The Necessary Hardware and
Software Tools��� 3

Making Sure Your PC Is Ready��� 3

Using a HoloLens, Emulator, or Other Mixed Reality Hardware���������������� 5

Testing with the HoloLens��� 6

Testing with Emulation�� 7

Understanding the HoloLens and Other Windows Mixed Reality
Hardware�� 9

Inside-Out Tracking and Spatial Mapping�� 9

Spatial Sound�� 11

Transparent vs. Immersive Headsets�� 11

Downloading and Installing the Required and Optional
Software Tools�� 12

Installing Visual Studio�� 13

Installing Unity��� 18

Downloading the HoloToolkit��� 25

Summary�� 27

■ Contents

viii

■■Chapter 2: Unity Crash Course��� 29

What Is Unity?�� 29

Free vs. Paid Tiers of Unity�� 29

Your First Unity App�� 30

Step 1: Create a New Unity Project�� 30

Step 2: Save Your Scene�� 33

Step 3: Create a Ground Plane��� 34

Step 4: Rename Your Plane�� 36

Step 5: Reset Ground Plane Position��� 36

Step 6: Zoom to Your Ground Plane��� 37

Step 7: Scale Your Ground Plane��� 37

Step 8: Create the Ball��� 38

Step 9: Rename Your Ball�� 39

Step 10: Reset the Ball’s Position�� 39

Step 11: Zoom to Your Ball��� 39

Step 12: Raise the Ball’s Position�� 40

Step 13: Color the Ground Blue��� 40

Step 14: Add Physics to the Ball�� 44

Step 15: Enable Keyboard Control��� 45

Step 16: Testing Your App�� 50

Summary�� 51

■■Part II: Building Holographic Experiences��������������������� 53

■■Chapter 3: Creating Your First Hologram��������������������������������������� 55

Getting Unity Ready for Mixed Reality Development������������������������������ 55

Step 1: Import HoloToolkit to a New Unity Project��� 56

Step 2: Use HoloToolkit to Prepare Your Scene for Mixed Reality Development������ 57

■ Contents

ix

Your First Hologram�� 59

Step 1: Create a Cube�� 60

Step 2: Zoom to Your Cube�� 60

Step 3: Move the Cube Away from the Camera��� 61

Step 4: Resize the Cube��� 62

Step 5: Test Your App��� 63

Step 6: Install Your App on the HoloLens��� 64

Test Your App Using Holographic Remoting��� 72

Step 1: Install and Run the Holographic Remoting Player to Your HoloLens������������ 73

Step 2: Connect to Your HoloLens with Unity’s Holographic Remoting�������������������� 74

Step 3: Test Your App Using Holographic Remoting��� 76

Test Your App Using Holographic Simulation�� 76

Step 1: Enable Holographic Simulation��� 77

Step 2: Connect Your Controller��� 77

Step 3: Test Your App Using Holographic Simulation��� 78

Summary�� 78

■■Chapter 4: Introduction to the HoloToolkit������������������������������������� 81

What Is the HoloToolkit?��� 81

HoloToolkit Setup��� 81

HoloToolkit Components��� 84

HoloToolkit: Input��� 85

HoloToolkit: Sharing��� 88

HoloToolkit: Spatial Mapping��� 89

HoloToolkit: Spatial Understanding�� 89

HoloToolkit: Spatial Sound��� 90

HoloToolkit: Utilities��� 90

HoloToolkit: Build��� 91

■ Contents

x

HoloToolkit Online��� 92

The Two HoloToolkit Repositories�� 92

What Is GitHub?��� 92

HoloToolkit Help and Documentation��� 92

Summary�� 93

■■Chapter 5: Interacting with Holograms��� 95

Input Methods�� 95

Gaze Tutorial��� 96

Step 1: Set Up the Unity Scene�� 96

Step 2: Try the Scene��� 97

Step 3: Understand the Scene��� 98

Step 4: Use Gaze in Your Project�� 100

Gestures Tutorial�� 101

Step 1: Load the Test Scene�� 101

Step 2: Try It Out�� 101

Step 3: Use Air-Tap or Select Gesture�� 102

Step 4: Enter and Exit Focus�� 104

Step 5: Move Objects��� 105

Step 6: Implementing Gestures in Your Application��� 107

Voice Command Tutorial��� 107

Step 1: Load the Test Scene�� 108

Step 2: Try It Out�� 108

Step 3: Understand the Scene��� 109

Step 4: Add Your Own Voice Command�� 111

Step 5: Use Voice Commands in Your Own Project�� 112

Best Practices for Voice Commands�� 113

Other Hardware Input��� 113

Summary�� 114

■ Contents

xi

■■Chapter 6: Using Spatial Mapping��� 115

What Is Spatial Mapping?�� 115

Spatial Mapping Tutorial��� 116

Step 1: Set Up Unity Scene�� 116

Step 2: Try It Out�� 117

Step 3: Understand the Scene��� 118

Step 4: Use Spatial Mapping in Your Application��� 120

Spatial Plane Finding Tutorial��� 121

Step 1: Set Up the Unity Scene�� 121

Step 2: Try It Out�� 122

Step 3: Load the Spatial Processing Scene��� 123

Step 5: Try Out the SpatialProcessing Scene��� 124

Step 6: Understand the SpatialProcessing Scene��� 125

Step 7: Use Spatial Processing in Your Application��� 126

Occlusion Tutorial��� 127

Step 1: Load the TapToPlace Scene��� 127

Step 2: Apply Occlusion��� 127

Step 3: Try It Out�� 128

Step 4: Use Occlusion in Your Application��� 130

Spatial Understanding Tutorial��� 131

Step 1: Set Up the Unity Scene�� 131

Step 2: Try It Out�� 132

Step 3: Use Spatial Understanding in Your Application�� 134

Spatial Anchors and Persistence�� 136

How to Use Spatial Anchors��� 136

Hologram Persistence��� 137

A Note on Sharing Anchors�� 138

Summary�� 139

■ Contents

xii

■■Chapter 7: Spatial Sound��� 141

Spatial Sound Tutorial�� 142

Step 1: Set Up the Unity Scene�� 142

Step 2: Try It Out�� 142

Step 3: Understand the Scene��� 144

Step 4: Enable Spatial Sound in Your Application�� 148

Spatial Sound Design Considerations�� 150

When to Use Spatial Sound��� 151

What to Avoid When Using Spatial Sound�� 151

Summary�� 152

■■Part III: Growing as a Holographic Developer�������������� 153

■■Chapter 8: Awe-Inspiring Experiences�� 155

What Makes an App Awe-Inspiring?��� 155

Optimization and Performance��� 156

How to Monitor for Performance��� 157

Best Practices for Performance��� 159

Simplygon�� 165

Holographic Remoting��� 166

Stabilization Plane��� 166

Design and Magic��� 169

Best Practices for Design�� 169

Adding Magic: Vuforia�� 174

Capstone Project�� 176

Step 1: Import HoloToolkit to a New Unity Project��� 176

Step 2: Apply HoloLens Settings�� 177

Step 4: Insert and Configure InputManager��� 179

Step 5: Add a Cursor�� 179

Step 6: Create Responsive Ball�� 180

■ Contents

xiii

Step 7: Download Assets��� 184

Step 8: Create Your Lava Scene��� 186

Step 9: Add the Ability to Move Lava Scene��� 189

Step 10: Add and Configure Spatial Mapping�� 190

Step 11: Add Spatial Sound Effects��� 191

Step 12: Next Steps and Beyond��� 193

Summary�� 194

■■Chapter 9: Turning Holograms into Money���������������������������������� 195

Publishing Your App to the Windows Store��� 195

Freelancing�� 197

Finding Mixed Reality Freelance Opportunities��� 197

Increasing Your Chances of Winning a Contract�� 198

Future Opportunities Today�� 199

Summary�� 200

■■Chapter 10: Community Resources��� 201

Microsoft’s Official Mixed Reality Forum�� 201

HoloDevelopers Slack Team��� 203

What Is Slack?��� 203

What Is the HoloDevelopers Slack Team?��� 204

How to Join the HoloDevelopers Slack Team�� 205

Participating in the HoloDevelopers Slack Team��� 205

Other Online Communities and Resources��� 206

HoloLens Developers Facebook Group�� 206

Unity and Unity HoloLens Forum��� 208

HoloLens Subreddit��� 208

Next Reality News��� 209

YouTube��� 210

■ Contents

xiv

Local Events and Meetups��� 211

Europe Meetups��� 212

North America Meetups��� 213

Asia Pacific Meetups��� 214

Hackathons�� 214

Notable Industry Events��� 215

Summary�� 216

Index��� 217

xv

About the Author

Sean Ong is an author, engineer, entrepreneur, and
tech influencer who has written on topics ranging from
renewable energy to augmented reality. Sean’s love
for virtual and augmented reality began at the age of
five when he first tried the View-Master toy. Later, at
the age of 14, he coded his first virtual home tour. Sean
was among the first people to own a HoloLens and has
developed numerous experiences for the new platform
since its release. He is president of the Virtual Reality
and Augmented Reality Association’s Seattle chapter
and is well known in tech circles for his informative
tutorials and articles that have helped over seven
million people. He resides in Seattle, Washington,
with his wife and three kids and enjoys pushing the
boundaries of technology.

xvii

About the Technical
Reviewer

Bart Trzynadlowski has been programming since the
fifth grade. After taking a detour deep into the world
of semiconductor device physics and earning his
PhD in electrical engineering, he presently develops
low-latency software for a leading algorithmic options
trading desk. Excited by the potential of Mixed Reality,
Bart has been developing HoloLens apps in his spare
time since June 2016.

xix

Acknowledgments

I’d like to thank Bart Trzynadlowski for his thorough technical review of this book.
I also thank Dwayne Lamb and Jesse McCulloch for establishing amazing HoloLens
communities from which I attribute most of the HoloLens knowledge I have gained.
Finally, I want to thank Jonathan Gennick and Jill Balzano for their friendship,
persistence, and editorial support.

xxi

Introduction:
The Holographic Future

Congratulations! If you’re reading this, it means that you will probably be among the
very first people responsible for building the mixed reality and holographic future that
will dominate the next era of computing. For decades, science fiction has promised us
a future filled with holograms and virtual experiences. We are finally on the verge of a
technological revolution where our digital world intertwines with physical reality. This is
known as mixed reality.

Imagine a future scenario where no screens exist. Instead, when you sit down to
watch TV, a holographic screen appears on your wall. Because the screen is virtual, you
can resize it to be as big as you like. You could also move the screen to any other room,
or have it follow you around the house. You sit down at an empty desk, and several
holographic computer monitors appear, along with virtual photos, a calendar, and a
notepad. You’re now ready to check your e-mail, work on a spreadsheet, and get started
on a good day’s work. You no longer need to carry around a physical smartphone.
Instead, a holographic screen appears in your palm when needed. Holographic
computing has the potential to replace every screen, and there’s no reason to believe that
it won’t.

■■ Note T he holograms referred to in this book are digital holograms and do not operate
on the same optical principles of traditional holography.

Does this sound like sci-fi technology that’s still several years away? You may be
surprised to know that everything I just mentioned in this “future” scenario is completely
possible (and available) today with the Microsoft HoloLens. Figure I-1 illustrates how
I use the HoloLens as a virtual desk. If you had asked me about living in a holographic
world a few years ago, I would have predicted that we’d see capable devices within 15 to
20 years, and that would have been optimistic. But that all changed January 2015, when
Microsoft announced the HoloLens and the Windows Mixed Reality platform. It caught
the tech world off guard and inspired people to think about what a true holographic
future would look like.

■ Introduction: The Holographic Future

xxii

In my previous “future scenario” example, you’ll notice that I only give examples
of holographic 2D screens. To some, my examples may have sounded amazing or
revolutionary. They are, in fact, dull examples that don’t adequately capture what the
HoloLens and other holographic headsets can achieve. The challenge and opportunity of
building experiences for these headsets is unlike anything that the technology industry
has faced to date. Until now, the vast majority of software experiences have been
designed for flat, two-dimensional screens. Think of televisions, smartphones, tablets,
laptops, or even the flat page or screen on which you are reading this book. Video games,
3D movies, and other so-called “3D” advances over the past few years are nothing more
than a glorified 2D experience we view on our flat, rectangular screens.

The Windows Mixed Reality platform breaks this status quo by allowing us to
develop true three-dimensional applications in our real world. Early applications that
have emerged for the HoloLens suffer from developers “thinking inside the box” by
creating 2D experiences such as floating holographic screens or 2D menus and buttons
for navigation. Many in the industry believe that a functional and intuitive 3D user
experience has yet to be discovered and developed. As we go through the tutorials and
example projects in this book, we will pay particular attention to 3D design elements
while discussing ways to think outside the box and move beyond the 2D status quo.

Figure I-1.  The HoloLens enables an empty desk (top image) to be filled with holographic
computer monitors and desk decorations (bottom image)

■ Introduction: The Holographic Future

xxiii

It is a very exciting time to be a holographic developer. The devices are capable, the
computing paradigm is new, and ideas for good applications seem to be endless. We
holographic developers are the engineers, architects, and builders that will create the
forthcoming holographic world.

The holographic future is inevitable. As with all high-tech gadgets, devices like the
HoloLens will only become smaller and more powerful over time. I anticipate that it
won’t be more than a few years until we see holographic glasses that are as thin and light
as the Google Glass device that was announced in 2012.1 It’s not hard to image a future
where many (if not most) people will wear a pair of these holographic glasses, whether
or not they require prescription eyewear. Being equipped with these headsets will enable
us to augment physical reality with relevant information, have more immersive digital
experiences, and free us from the unnecessary screens that fill up our desks, walls,
pockets, and purses.

How important will holographic devices be in daily life? One could speculate that
most people in the near future might not be able to participate fully in society without a
pair of holographic glasses. At first, this might sound like a dystopian prediction of our
future. But think about how we use computers and smartphones today. It’s very difficult
to participate fully in today’s modern society if you don’t own or know how to use a
computer. A vast majority of jobs in the United States require the use of a computer.
We use e-mail and online messages as primary forms of communication. Surely, if
you told someone 30–40 years ago that they would not be able to fully participate in
a future society without owning or knowing how to use a computer, they would have
been hesitant about such a future. Yet many of us today probably can’t imagine daily life
without our trusty PC or smartphone. Likewise, in 20 years I think we’ll look back and
wonder how we ever lived without our trusty holographic glasses.

Perhaps I’ve given you a glimpse of the future. More importantly, I hope to have
inspired you to start thinking about the holographic apps and experiences that will fill
the world around us. All of us are relying on people like you to build our holographic
future. My motivation for writing this book is to get as many people started on
holographic development as possible. It’s written to be easily accessible, whether you’re
an experienced software developer or new to the world of programming. This book
is intended to get you started with everything you need to begin developing amazing
holographic experiences on the HoloLens and other Mixed Reality headsets.

This book is organized into ten chapters spread across three parts. In Part I, which
contains Chapters 1 and 2, you will be guided through the installation and explanation of
all the necessary software and tools for developing Windows Mixed Reality applications.

Everything you need to get started is contained in Chapter 1. You can begin
developing Mixed Reality apps with or without a HoloLens. Things I cover in Chapter 1
include the following:

•	 Making sure your PC is ready for Mixed Reality development

•	 Using a HoloLens, HoloLens Emulator, or other Mixed Reality
hardware

1Google Glass is a small device that projected notifications, images, and other information to a
small glass display near the user’s right eye. Unlike the HoloLens, it did not place 3D holographic
objects in the user’s world.

http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_1

■ Introduction: The Holographic Future

xxiv

•	 Downloading and installing the required and optional software
tools

•	 Understanding the HoloLens and other Windows Mixed Reality
hardware

Chapter 2 dives into the basics of Unity. Unity is the preferred software platform for
developing Windows Mixed Reality experiences. Things we’ll cover in Chapter 2 include
the following:

•	 Understanding Unity

•	 Creating your first application in Unity

•	 Unity and Windows Mixed Reality

In Part II, comprised of Chapters 3–7,we’ll start building holographic experiences.
This is where you’re guided through the fundamentals of creating a full-featured Mixed
Reality application.

You’ll learn how to make digital holograms in Chapter 3. You’ll be guided through
the creation of a basic holograms that can be viewed in the HoloLens. Here’s what
Chapter 3 covers:

•	 Preparing Unity for Windows Mixed Reality development

•	 Creating a cube in Unity

•	 Building and deploying the Unity application to the HoloLens

I discuss the HoloToolkit in Chapter 4. Manually preparing Unity for HoloLens
development can be cumbersome and prone to error. This chapter introduces the
HoloToolkit and how you can leverage this community resource:

•	 Understanding the HoloToolkit

•	 Downloading and using the HoloToolkit

In Chapter 5, we start interacting with holograms. I discuss the use of gestures, voice
commands, and other ways of interacting with Holographic content. Here’s what I cover
in Chapter 5:

•	 Voice commands

•	 Gestures

•	 Gaze

•	 Clickers and other accessories

Things start getting interesting in Chapter 6, where you begin to leverage the
power of the HoloLens by learning about using spatial mapping. I walk you through the
technology, concept, and utilization of spatial mapping in the context of holographic
applications. Chapter 6 covers the following topics:

•	 What is spatial mapping?

•	 How to use spatial mapping in projects

http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_3
http://dx.doi.org/10.1007/978-1-4842-2769-5_7
http://dx.doi.org/10.1007/978-1-4842-2769-5_3
http://dx.doi.org/10.1007/978-1-4842-2769-5_3
http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_5
http://dx.doi.org/10.1007/978-1-4842-2769-5_5
http://dx.doi.org/10.1007/978-1-4842-2769-5_6
http://dx.doi.org/10.1007/978-1-4842-2769-5_6

■ Introduction: The Holographic Future

xxv

•	 Spatial understanding

•	 Anchors and persistence

Chapter 7 talks about spatial sound. You’ll learn about the importance of spatial
sound and how to utilize it in your projects. We’ll discuss the following:

•	 What is spatial sound and how is it different than “regular”
sound?

•	 How to use spatial sound in projects

•	 Best practices for spatial sound

•	 Additional sound resources

Part III (Chapters 8–10) is about growing as a Mixed Reality developer. At this point
in the book, you’ll be familiar with the basics of creating a Mixed Reality application. The
three chapters introduce ways for you to optimize and enhance your experiences, publish
and monetize your apps, and join the broader holographic community for support and
visibility.

In Chapter 8, I discuss tips and tricks for awe-inspiring experiences. This chapter
provides you with a primer on elements that give holographic experiences additional flair
and magic, such as color choice, ambient elements, music, size, and more. Finally, we’ll
complete a capstone project together using key skills gained in this book. Here’s what’s
covered in Chapter 8:

•	 Optimization and performance

•	 Design

•	 Magic

•	 Capstone project

Let’s make some money! In Chapter 9, I discuss the details of publishing and
monetizing your applications. You’re presented with strategies for monetization, from
publishing your app in the Windows Store to freelancing as an independent Mixed Reality
developer. Here’s what Chapter 9 covers:

•	 Monetization with the Windows Store

•	 Freelancing

•	 Thinking big: revolutionary opportunities

In Chapter 10, I suggest community resources and additional information for
holographic developers. This chapter introduces resources that are available to you,
including relevant community forums and online groups, notable events, and other
information that will help during the development process:

•	 Why are community resources important?

•	 The official Windows Mixed Reality forums

•	 The HoloDevelopers Slack channel

http://dx.doi.org/10.1007/978-1-4842-2769-5_7
http://dx.doi.org/10.1007/978-1-4842-2769-5_8
http://dx.doi.org/10.1007/978-1-4842-2769-5_10
http://dx.doi.org/10.1007/978-1-4842-2769-5_8
http://dx.doi.org/10.1007/978-1-4842-2769-5_8
http://dx.doi.org/10.1007/978-1-4842-2769-5_9
http://dx.doi.org/10.1007/978-1-4842-2769-5_9
http://dx.doi.org/10.1007/978-1-4842-2769-5_10

■ Introduction: The Holographic Future

xxvi

•	 Events and local groups

•	 More information

As you embark on your journey to becoming one of the first Mixed Reality developers,
I encourage you to keep two things in mind. First, always think outside the box or outside
the “2D rectangle” that has dominated computing up until this point in time. Second,
understand that you are responsible for building a new industry and the holographic
world of tomorrow. You are a technological pioneer. Understanding this will inspire you to
reach new heights and explore new ways of creating amazing experiences.

PART I

Getting Started

3© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_1

CHAPTER 1

Gear Up: The Necessary
Hardware and Software
Tools

In this chapter, you’ll learn everything you need to be equipped for Mixed Reality
development. We’ll make sure your PC is ready for development and walk through some
recommended computer specifications. I provide a brief discussion on how your computer
hardware impacts Mixed Reality development and performance. We’ll also go over your
hardware and emulator options for testing your app during development. I provide an
overview of the HoloLens and some key features that you’ll want to be familiar with before
you start developing apps. Finally, you’ll be guided through installing all the necessary
software tools needed to dive into the world of making Mixed Reality experiences.

■■ Tip  You don’t need a HoloLens or Mixed Reality device to get started with development.
You can still test your apps through holographic emulation (discussed shortly).

Making Sure Your PC Is Ready
Before getting started, you need to make sure you have a computer capable of
handling Mixed Reality development. This section outlines the recommended system
requirements and provides some additional context around these requirements.
Fortunately, you don’t need a high-end PC setup to make HoloLens apps. Unsurprisingly,
Microsoft recommends Windows 10 as the operating system of choice. Other operating
systems also work, including Windows 8.1, Windows 8, Windows 7, and more. Several
HoloLens developers also have reported success developing on their Mac devices when
running Windows virtually.

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

4

Here are my recommended system specs for Mixed Reality development:

•	 64-bit Windows 10

•	 6 GB RAM

•	 30 GB available hard drive space

That’s intended to be a fairly small list to illustrate how you don’t need much to get
started. You may technically get away with even lower system specs, but then you’ll have
a very painful and slow experience and I would recommend against it.

If getting a capable device is of particular interest to you, I’ve included a deeper
discussion here of the various spec categories and what it means for your development
experience.

•	 RAM (Random Access Memory) is your computer’s way of
storing memory that’s quickly accessible. If you have a lot of
open windows, websites, and applications, then you’ll want to
have more RAM to speed up multitasking on your computer.
I recommend a minimum RAM size of 6 GB. For an optimal
experience, you should aim for 12–16 GB of RAM. This allows
you to have multiple (20+) browser tabs open, multiple windows
open, Unity, Visual Studio, your music application, and
background PC tasks running without slowing down your system.

•	 The processor or CPU is responsible for doing all the
computational work. When the processor starts working hard,
you’ll immediately notice the difference between a slow processor
and a fast one. These crucial times include compiling your app
(the computer’s way of converting the code you’ve written into
something your HoloLens can install and understand), loading
and working with complex 3D objects in Unity, and any other
processing work that involves many objects in your Unity scene.
I recommend the Intel Core i5 or Core i7 processors (or another
processor with similar speed).

•	 The OS (operating system) of your computer is typically Windows,
Mac OS, or Linux. As mentioned earlier, you can develop under a
range of Windows versions (and even Windows on a Mac), but the
recommended OS for Mixed Reality development is Windows 10.
Microsoft is heavily promoting the use of 3D in Windows via the
Windows 10 Creators Update made available in 2017. Tethered
Windows Mixed Reality headsets will also rely on Windows 10 to
work. Based on this, I consider it worthwhile to get a Windows 10
computer for Mixed Reality development.

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

5

•	 The GPU (Graphics Processing Unit) or graphics card is often
poorly understood and gets less attention than the other items
listed so far. Many laptops and low- to mid-end PCs don’t include
a dedicated graphics card but rather rely on graphics capabilities
that are built in to the processor (also known as integrated
graphics). When developing Mixed Reality applications, having a
GPU is not required but can boost editing performance, especially
when using Unity’s holographic emulation features, especially
when dealing with complex scenes and textures. That said, any
Unity application struggling to run on an integrated desktop GPU
is probably going to fare worse on the HoloLens itself, due to the
limited graphics capabilities of the headset.

If you intend to work with the HoloLens emulator (not to be confused with
holographic emulation within Unity—more on that in the next section), then you’ll
have higher system requirements. Because Unity has a simple and efficient holographic
emulation feature, you will likely not need to use the HoloLens emulator. Some reasons
for using the emulator may include testing HoloLens applications built outside of Unity
(for example, C++ or Direct3D) or for debugging with Visual Studio (which may save a few
minutes compared to deploying to the HoloLens device). If you need to use the emulator,
these are the minimum system requirements:

•	 64-bit Windows 10 Pro/Enterprise/Education Edition (not Home
Edition)

•	 CPU with a minimum of 4 cores

•	 8 GB RAM

•	 BIOS must support and enable Hardware-assisted virtualization,
Second Level Address Translation (SLAT), and hardware-based
Data Execution Prevention (DEP)

•	 GPU with DirectX 11.0 or later, WDDM 1.2 driver or later

Using a HoloLens, Emulator, or Other Mixed
Reality Hardware
In this section I discuss the hardware and software options for testing your Mixed Reality
applications. As mentioned, you don’t need an actual HoloLens or Mixed Reality headset
to get started with development. Even though I have a HoloLens device, I still regularly
use the Unity emulator and a gamepad to quickly test my applications as I work on
them. Of course, deploying your app to a HoloLens device is the ultimate way to verify
that your app behaves as expected and allows you to do some real-world testing. In this
section, I provide a general discussion of the advantages and disadvantages of the various
hardware and software options.

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

6

Testing with the HoloLens
Testing your applications with the HoloLens is best way to see and experience how your
Mixed Reality app performs in the real world. Until recently, users who wanted to test
their applications with the HoloLens needed to go through a long deployment procedure
that took roughly 20 minutes, depending on how large the app was. Now you can stream
directly from Unity to the HoloLens. This cuts down testing to seconds, versus the former
20+ minutes.

This streaming capability, called holographic remoting in Unity, is a special feature
that allows you to stream the app you are building to your HoloLens via WiFi. The
HoloLens scans your area, detects your voice and hand gestures, and sends all inputs
back to Unity (again, via WiFi) so that testing via streaming feels like you have the app
installed on your HoloLens.

Figure 1-1 illustrates what a typical holographic remoting setup looks like. The
primary benefit of streaming is the time savings. Typically, when developing applications,
you will make hundreds if not thousands of small changes to your code as your perfect
your app. It’s often necessary to do a quick test after each little change to make sure that
you are getting desired results. Being able to stream to the HoloLens instantly from Unity
(as opposed to installing the test app to the HoloLens, which can take about 20 minutes) is
a great way to save time. I walk through how to set up holographic streaming in Chapter 3.

Of course, testing your full app by installing it onto your HoloLens is recommended
to accurately gauge the app’s performance with your device’s hardware. This is especially
true if you will be publishing your app to the Windows Store, which is Microsoft’s online
shop for apps and media.

Figure 1-1.  Illustration of holographic remoting. The PC streams the app to the HoloLens
for viewing, without the need to install the test app on the HoloLens.

http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

7

Testing with Emulation
If you don’t have a Mixed Reality headset such as the HoloLens, you can still test
(and even publish) your application. There are published HoloLens apps (for example,
a 3D chess game) that were developed without the use of a HoloLens. This is possible with
holographic emulation, which is the ability to simulate a how the app would behave if your
computer were a Mixed Reality headset. Currently, there are two primary ways to emulate:

•	 Holographic simulation in Unity is an extremely fast way to
test your applications. It’s just as fast as holographic streaming
and allows you to use an Xbox controller or gamepad to “walk
around” and uses buttons as taps and gestures. Figure 1-2 shows
what holographic simulation typically looks like. I often use
holographic simulation if I don’t want to bother with wearing my
HoloLens, or if I need to test a quick action that doesn’t require
the use of the HoloLens. Holographic simulation includes several
3D models of rooms and areas, so you can still test your app’s
ability to recognize and interact with walls, floors, and other
surfaces. Both holographic simulation and holographic remoting
are found under the Holographic Emulation menu in Unity.
Tutorials on using Unity’s holographic emulation features are
provided in Chapter 3.

Figure 1-2.  Illustration of testing applications using holographic simulation and a
gamepad

http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

8

•	 The HoloLens emulator is a more powerful and full-featured
emulator than the one provided in Unity. The HoloLens emulator
requires strong system specifications (see previous section
for specifics) and allows you to test the performance of your
application. It includes all the UI elements of the HoloLens,
including access to the Windows Store, Settings menu, Device
Portal, and more. Unlike holographic simulation in Unity,
testing in the emulator takes roughly the same amount of time
as testing on the actual HoloLens because you are still required
to build your app and deploy/install it to the emulator. Using the
HoloLens emulator is a good idea if you don’t have a HoloLens
and want to put your app through some final, robust testing
before publishing your app to the Windows Store. Figure 1-3
shows what the HoloLens emulator looks like.

I don’t include a detailed step-by-step emulator installation tutorial in this book, but
I do have a step-by-step installation video, should you decide to install the emulator. You
can find it at www.youtube.com/watch?v=0ImaZ_Aqe3I.

In summary, I recommend regularly testing your application using Unity’s holographic
simulation for when the use of the HoloLens is not necessary (for example, testing an
animation or testing that something is moving as intended) and using Unity’s holographic
remoting when the use of the HoloLens is required (for example, testing gesture accuracy
or testing interaction with your room). I recommend deploying to your HoloLens or device
only occasionally to make sure there are no surprises, and also near the end of your project
to make sure things are performing well when installed on the actual device.

Figure 1-3.  HoloLens emulator running on a PC

http://www.youtube.com/watch?v=0ImaZ_Aqe3I

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

9

Understanding the HoloLens and Other Windows
Mixed Reality Hardware
This section covers some basics of the way the HoloLens works. An entire book could
be written on the technological miracle of the HoloLens and the science behind it, but I
cover just enough so that we can design the best app experiences for this and other Mixed
Reality headsets.

Inside-Out Tracking and Spatial Mapping
What sets the HoloLens and other Windows Mixed Reality headsets apart from other
popular headsets (as of this writing) is the ability to perform inside-out tracking, which is
the ability for the headset to track its environment without the need for external sensors.
Outside-in tracking headsets require the user to set up a few sensors around a room or
area, which allows the headset to know where it is as the user moves around. Inside-out
tracking avoids the cumbersome need to set up external sensors and can work in nearly
all environments. Some basic virtual reality headsets you may have heard about (Google
Cardboard, Samsung Gear VR) have no positional tracking, with only the ability to “look
around.” Figure 1-4 shows a diagram of the HoloLens cameras, several of which are used
for inside-out spatial tracking.

Figure 1-4.  HoloLens cameras and their functions

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

10

The HoloLens has six cameras on the headset, five of which are used to track its
environment (four environment tracking cameras and one depth camera, plus one
regular camera for recording video or taking pictures). The HoloLens is constantly
tracking its environment and building a 3D model of the area it’s in. This is called spatial
mapping. Spatial mapping is important for several reasons:

•	 It tells the HoloLens which holograms to hide from view. For
example, if you place a hologram in your hallway and then walk
into another room, the spatial map of that room’s walls will
prevent you from seeing the hologram in your hallway. If there
were no spatial map, you would see the hologram as if it were
visible through your walls, causing an unrealistic experience.

•	 It allows users to interact with the spatial map—for example, pin
items to your walls, allow characters to sit on your sofa (as seen
in Microsoft’s “Fragments” app), or automatically decorate your
surroundings.

•	 It allows for hologram persistence, which is the ability for
holograms to stay where the user left them—even after turning
off your device. Your HoloLens will (remarkably) be able to
remember your space and restore any holograms that you had
placed in that space.

Figure 1-5 illustrates how the HoloLens uses a mesh made of polygons to recreate a
digital version of the user’s surroundings.

Figure 1-5.  HoloLens using spatial mapping to track its environment

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

11

At the time of this writing, the spatial data available on Windows Mixed Reality
does not include raw access to the depth camera’s frame buffer but rather only a mesh
generated from that data. This means that it would be difficult, if not impossible, to
intercept raw depth data for use in your application—for example, for programming your
own gestures or hand recognition.

Spatial Sound
We rely heavily on our ears to precisely locate objects around us. In the context of Mixed
Reality, this is called spatial sound. The HoloLens has the ability to send spatial sound
to the user’s ears using a sound wave phase-shift approach. This increases the feeling of
immersion. Users can still hear objects (if the objects are intended to make noise) around
them, even if they can’t see those objects. This increases the user’s perception of these
objects and makes the holograms feel like they are actually in the user’s area.

Transparent vs. Immersive Headsets
Some Windows Mixed Reality devices like the HoloLens use transparent displays
that allow you to see holograms placed in your real world. Other devices, such as
Acer’s Windows Mixed Reality headset, are occluded, meaning that you can’t see your
surroundings. Instead, these headsets immerse you in a virtual world. Immersive
headsets still boast inside-out tracking, which is helpful for making the user aware of
walls or other obstructions while wearing the headset. Some immersive headsets may
also utilize spatial mapping, allowing the user to see a virtual representation of their
surroundings, although such headsets have not been announced at the time of this
writing. Figure 1-6 shows several examples of Windows Mixed Reality headsets.

Figure 1-6.  Examples of Windows Mixed Reality devices include both transparent headsets
such as the HoloLens and immersive headsets (source: Microsoft)

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

12

All existing devices as of this writing have a field-of-view (FOV) limitation, which means
that you can’t see holograms in all of your peripheral vision. As shown in Figure 1-7, the
HoloLens FOV limitation causes holograms to be limited to a small “window” through which
they can be viewed. As headset display technology improves, we can expect resolution to
increase and FOV limitations to reduce over time. The FOV limitation in today’s devices
means that you’ll need to be creative when designing your app to be as immersive as
possible. Using spatial sound is one key element to increasing the user’s perception of
holograms. Other visual cues (such as arrows pointing to holograms outside of the FOV) are
also strategies for helping the user. I discuss these in more detail in Part III.

Downloading and Installing the Required and
Optional Software Tools
This section guides through installing all the necessary software and tools for developing
Windows Mixed Reality applications. You only need two applications to get started with
Mixed Reality development: Unity and Visual Studio. In this book, I define and frame
everything in the context of Mixed Reality development. However, both these applications
are widely used in the software and gaming industries and have been around for many
years. Here’s a brief description of each:

•	 Unity is the preferred software platform for developing Windows
Mixed Reality experiences. All your app development happens
within Unity. It’s where you will program holograms to do things.
Outside the Mixed Reality world, Unity is widely used for game
development. This is excellent news because it means that there
are years of tutorials, resources, and forum discussions to help
answer almost any question you may have as you are developing
your Mixed Reality applications.

Figure 1-7.  HoloLens field-of-view limitation, photographed from behind the device

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

13

•	 Visual Studio is primarily responsible for editing the code of
your app and is also used to deploy your app to your Mixed
Reality headset for testing and debugging. Deploying simply
means installing the app to your headset. When your app is
complete, you may also use Visual Studio to deploy your app to
the Windows Store.

■■ Note  The tools shown in this book are updated regularly, so the screenshots may not
look exactly like the most current versions of these applications. Keep that in mind as you
follow the instructions.

In addition to installing Unity and Visual Studio, you will also need to download the
HoloToolkit. The HoloToolkit is not an application but rather a collection of useful Mixed
Reality scripts and features to import into Unity. Rest assured, I have an entire chapter
dedicated to the HoloToolkit and all it has to offer.

Installing Visual Studio
This section walks through how to download and set up Visual Studio for Mixed Reality
development. As of this writing, the version required for Mixed Reality development is
Visual Studio 2017 or Visual Studio 2015 Update 3. Versions are updated regularly, but the
installation process will be very similar between versions.

To check the latest version of Visual Studio for Mixed Reality development, use
Microsoft’s Installation Checklist, located at https://developer.microsoft.com/en-us/
windows/Mixed-Reality/install_the_tools. You will see a table, similar to the one
shown in Figure 1-8.

https://developer.microsoft.com/en-us/windows/Mixed-Reality/install_the_tools
https://developer.microsoft.com/en-us/windows/Mixed-Reality/install_the_tools

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

14

You can also download Visual Studio from https://developer.microsoft.com/
en-us/windows/downloads.

If you don’t already have a Visual Studio subscription, you can download the free
version of Visual Studio, also known as Visual Studio Community. Figure 1-9 shows what
the download button may look like.

Figure 1-9.  Click the “Free download” button for Visual Studio Community to begin your
download

Figure 1-8.  Be sure to check Microsoft’s installation checklist for the most recent versions of
tools to install. To download Visual Studio, click the corresponding title (circled).

https://developer.microsoft.com/en-us/windows/downloads
https://developer.microsoft.com/en-us/windows/downloads

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

15

Figure 1-10.  Save the Visual Studio installer to your PC

Figure 1-11.  After the installer has saved to your PC, run the installer

Save the Visual Studio installer to a location of your choice. After the download
is complete, you may run the Visual Studio installer to begin the installation process.
Figures 1-10 and 1-11 show how saving and running the installer appears in the Microsoft
Edge browser.

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

16

When you launch the Visual Studio installer, you will encounter a few seconds of
initialization followed by the option to select features, as shown in Figure 1-12a (for Visual
Studio 2017) and Figure 1-12b (for Visual Studio 2015). Although Visual Studio 2017 is the
latest edition as of this writing, I show both editions of Visual Studio here because both
are currently supported for Windows Mixed Reality development, and there have been
some reports of compatibility and stability issues with Visual Studio 2017, causing some
developers to remain on the 2015 edition.

In the features list of Visual Studio 2017, be sure to select the “Universal Windows
Platform development” checkbox. Also select the “Game development with Unity”
checkbox. You may deselect the Unity Editor checkbox in the right panel because you will
be installing the most current version of Unity later in this Chapter. Click Next or Install
after making the appropriate selections.

In the features list of Visual Studio 2015, be sure to select the Tools checkbox under
the Universal Windows App Development Tools category, as shown in Figure 1-12b. The
latest tools version as of this writing is 1.4.1. You may notice a higher version available. Be
sure to refer to Microsoft’s installation checklist (mentioned earlier) for the appropriate
tools version to select. Also select the most recent version of the Windows 10 SDK or the
recommended version from Microsoft’s installation checklist. Click Next after making the
appropriate selections. If you accidentally omitted an important selection, you can always
re-launch the Visual Studio installer and install the missing features at a later time.

Figure 1-12a.  For Visual Studio 2017, be sure you select “Universal Windows Platform
development” and “Game development with Unity”

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

17

After clicking Next once more to confirm your selections, Visual Studio will
begin downloading and installing your selected features. Visual Studio is a very large
application and could take several hours to download and install, depending on your
Internet connection, so prepare for the installation process to take a while. After the
installation has completed, you may be prompted to restart your PC. After restarting,
you may verify that the installation completed successfully by opening Visual Studio.
When you first open Visual Studio, it should look similar to the welcome page shown in
Figure 1-13, depending on your edition of Visual Studio.

Figure 1-12b.  For Visual Studio 2015 Update 3, be sure to enable Tools (version with the
highest number) and all Windows 10 SDK options

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

18

Congratulations! You have successfully installed Visual Studio. You don’t need to
do anything with Visual Studio for now. Later, when we deploy apps to our HoloLens via
Visual Studio, we will go through an initial pairing process. If you haven’t already, you
may need to log in to Visual Studio with your Microsoft account. Visual Studio may also
apply a license to your account to use Visual Studio. Next, we will install Unity.

Installing Unity
This section walks through how to download and set up Unity for Mixed Reality
development. As of this writing, the version required for Mixed Reality development is
Unity 5.5. Versions are updated regularly, but the installation process will be very similar
between versions.

To check the latest version of Unity for Mixed Reality development, use Microsoft’s
installation checklist, located at https://developer.microsoft.com/en-us/windows/
Mixed-Reality/install_the_tools. You will see a table, similar to the one shown in
Figure 1-14.

Figure 1-13.  You may optionally verify that Visual Studio installed correctly by launching
it after setup is complete

https://developer.microsoft.com/en-us/windows/Mixed-Reality/install_the_tools
https://developer.microsoft.com/en-us/windows/Mixed-Reality/install_the_tools

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

19

You can also download Unity from https://store.unity.com/download.
Once you arrive at Unity’s download page, you will see a download button similar

to the one shown in Figure 1-15. Save the installer to your PC (Figure 1-16) and run the
installer once the download has completed (Figure 1-17).

Figure 1-14.  Be sure to check Microsoft’s installation checklist for the most recent versions
of tools to install. To download Unity, click the corresponding title (circled).

Figure 1-15.  Download the latest version of Unity from the Unity website

https://store.unity.com/download

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

20

After launching the Unity installer, you will be greeted with the Download Assistant,
as shown in Figure 1-18. Click Next to begin the installation process.

Figure 1-17.  After the download is complete, run the Unity installer

Figure 1-16.  Save the installer to your PC

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

21

On the next page, the Unity installer will show you the License Agreement. If you accept
the terms of the agreement, check the checkbox and click Next, as shown in Figure 1-19.

Figure 1-18.  Launch the Unity installer and click Next

Figure 1-19.  Read and accept the Unity License Agreement and click Next to continue

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

22

On the next screen, choose either the 64-bit edition or the 32-bit edition and click
Next to continue, as shown in Figure 1-20. In general, you can select either 32-bit or 64-
bit without any noticeable difference. If you have a 64-bit operating system, running the
64-bit edition of Unity will allow you greater access to RAM, and therefore enable better
performance when editing extremely large scenes. For the HoloLens, though, it’s unlikely
that you will be developing extremely large scenes. The 32-bit edition may have better
compatibility with some third-party plugins, should you ever decide to install plugins.

On the next screen, you’ll be presented with several options to select. You should
only have to select two additional options beyond the default selections:

•	 Windows Store .NET Scripting Backend

•	 Windows Store IL2CPP Scripting Backend

Make sure that Microsoft Visual Studio Tools for Unity is also checked (it should
already be checked by default). See Figure 1-21 for all items that need to be checked
before proceeding. Click Next to proceed.

Figure 1-20.  Choose 32-bit or 64-bit and click Next to continue

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

23

As shown in Figure 1-22, Unity will begin to download and install the selected
components. This may take several hours, depending on the speed of your Internet
connection. Be prepared for a long wait. Once the installation is complete, click the Finish
button.

Figure 1-21.  Be sure to select the required components shown in this figure. Click Next to
continue.

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

24

Congratulations! You now have Unity installed on your PC. Before using Unity, you will
be required to create a Unity account (if you don’t already have one). If you need to create a
new Unity account, click the blue “create one” link as shown in Figure 1-23. Your web browser
will open a page where you can sign up for a new Unity account, as shown in Figure 1-24.

Figure 1-22.  The downloading and installation of Unity components may take a long time

Figure 1-23.  Log in to your existing Unity account or create a new one if you don’t have an
account

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

25

Downloading the HoloToolkit
This section walks you through downloading the HoloToolkit, which isn’t a program but
rather a collection of useful scripts and features to import into Unity. To download the
HoloToolkit Unity package, go to https://github.com/Microsoft/HoloToolkit-Unity/
releases.

Note T here are actually two HoloToolkit repositories online. The first is called HoloToolkit,
and the second is called HoloToolkit-Unity. You can get them at the following links:

HoloToolkit: https://github.com/Microsoft/HoloToolkit

HoloToolkit-Unity: https://github.com/Microsoft/HoloToolkit-Unity

Figure 1-24.  Unity will open a web page where you can sign up for a new Unity account

https://github.com/Microsoft/HoloToolkit-Unity/releases
https://github.com/Microsoft/HoloToolkit-Unity/releases
https://github.com/Microsoft/HoloToolkit
https://github.com/Microsoft/HoloToolkit-Unity

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

26

The HoloToolkit-Unity repository contains Unity-specific components and will be what we
focus on throughout this book. The “regular” HoloToolkit is a generalized version of the
HoloToolkit for developers that use other platforms for development. It contains the core C++
code base that many of the HoloToolkit-Unity features are built upon or are merely wrappers
around. Throughout this book, I refer to the HoloToolkit-Unity as just the HoloToolkit.

Make sure you download the latest release of the HoloToolkit, typically located near
the top of the page. Be sure that the HoloToolkit version you download is compatible
with the version of Unity you downloaded. Typically, compatibility is announced in the
title of the HoloToolkit version, as shown in Figure 1-25. To download the HoloToolkit
Unity package, click the download link that has the extension .unitypackage. For example,
in Figure 1-25, the appropriate download link (circled) is named HoloToolkit-Unity-
v1.5.5.0.unitypackge.

Save the HoloToolkit to your PC. We will import this package into Unity later.

Figure 1-25.  Browse to the HoloToolkit download page and download the HoloToolkit
Unity Package, circled here

Chapter 1 ■ Gear Up: The Necessary Hardware and Software Tools

27

Summary
You now have everything you need to get started with Mixed Reality development! In the
upcoming chapters, we’ll learn some basics of Unity, make our very first Mixed Reality
application, and then start diving into the details of making amazing Mixed Reality
experiences. Let’s recap what you’ve learned in this chapter:

•	 I discussed the recommended PC hardware specifications for
developing Mixed Reality experiences.

•	 We talked about various ways to test your Mixed Reality apps,
including using headsets and emulation.

•	 We took a brief hardware tour of the HoloLens and other
Windows Mixed Reality headsets, and what makes them unique.

•	 Finally, we went through step-by-step installation instructions for
Visual Studio, Unity, and the HoloToolkit.

29© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_2

CHAPTER 2

Unity Crash Course

In this chapter, we’ll dive into the world of Unity, the preferred software platform for
developing Mixed Reality applications. If you want to master Mixed Reality development,
you first need to master Unity. We’ll take a tour of Unity and understand what Unity is
used for. I’ll also walk you through building your very first Unity app.

What Is Unity?
Before we begin, you might be wondering what Unity is and how people use it. Unity is a
powerful program for building both 2D and 3D games and apps. It is very popular among
game developers, especially mobile game developers. As of Q3 2016, more than 5 billion
Unity games have been downloaded. Unity also supports a wide range of platforms.
A few examples include iOS, Android, PlayStation, Nintendo, Xbox One, Windows, Mac,
HoloLens, Oculus, and many more.

A very basic Mixed Reality workflow in Unity look like this:

•	 Import your 3D objects and other items (called assets) into Unity.

•	 Program how you will interact with the objects and how the
objects will interact with you, other objects, and the world.

•	 Test your app.

•	 Export your app so you can install it on your device.

Unity is a very large, nuanced platform. In this book, we’ll only cover the essential
parts of Unity needed for Mixed Reality development. As you continue to grow as a
Windows Mixed Reality developer, you’ll invest much of your time into mastering Unity
and programming for Unity.

Free vs. Paid Tiers of Unity
Several pricing tiers of Unity are available for developers. Most individuals looking to
learn Unity can get started with a personal (free) account. However, there are restrictions
and benefits to be aware of for the various pricing levels. Table 2-1 explains these tiers.

Chapter 2 ■ Unity Crash Course

30

Your First Unity App
In this section, we’ll build our very first Unity application—a game to control a rolling
ball with your keyboard. As we walk through creating your first Unity app, You will also
become familiar with some basic Unity components and learn about the Unity interface.
Because this tutorial is intended to familiarize you with Unity, we won’t be making a
Mixed Reality application yet (we’ll do that in the next chapter).

Before we begin, be sure that you have already installed Unity and set up your unity
account per the instructions in Chapter 1.

■■ Tip  This basic Unity tutorial is known as the Roll-A-Ball tutorial. It’s recommended for
all Unity beginners. In addition to following along in this book, you can also access a video
of this tutorial at the following link. For users new to Unity and 3D application development,
I recommend completing the full tutorial: https://unity3d.com/learn/tutorials/
projects/roll-ball-tutorial.

Step 1: Create a New Unity Project
Every Unity (and Mixed Reality) project begins with creating a new Unity Project.
To start a new project, launch Unity and select the NEW icon as shown in Figure 2-1.
If you haven’t already, you may need to enter in your account information (created in
Chapter 1) prior to seeing the screen shown in Figure 2-1.

Table 2-1.  Unity Pricing Tiers

Pricing Tier Restrictions and Benefits

Unity Personal (Free) You can only use this tier if your company makes
less than $100K per year (including investor
funding).

Your app is forced to have Unity’s logo when
launched (splash screen).

Unity Plus ($35/person monthly) You can only use this tier if your company makes
less than $200K per year (including investor
funding).

You can use a custom (or no) splash screen.

Additional Plus services

Unity Pro ($125/person monthly) No revenue/finding cap.

You can use a custom (or no) splash screen.

Additional Pro services.

http://dx.doi.org/10.1007/978-1-4842-2769-5_1
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial
http://dx.doi.org/10.1007/978-1-4842-2769-5_1

Chapter 2 ■ Unity Crash Course

31

Alternatively, if you’re already within a Unity project, you can create a new project
by going to File ➤ New Project, as shown in Figure 2-2.

Figure 2-1.  Click the NEW icon to start a new Unity project

Figure 2-2.  You can also start a new Unity project by going to File ➤ New Project

Chapter 2 ■ Unity Crash Course

32

Unity will then open a pop-up window where you can set up your new project.
As shown in Figure 2-3, give your new project a name. I chose FirstApp. If you want,
you can also select a different location for your project to be stored. The project should
already be a 3D project, but if not, be sure to select the 3D option button. When done,
click the Complete Project button.

Figure 2-3.  Tell Unity about your new project. Be sure to select 3D and give your new
project a name.

■■ Warning A void storing your Unity project on an SD card or MicroSD card. Visual Studio
won’t be able to properly build your project if it’s on an SD card, due to an unknown bug. You
may store your Unity project on an external hard drive.

You will now see a new empty project—something similar to Figure 2-4. This is called
the Unity Editor and it’s where most of your project editing will take place. Figure 2-4 also
provides brief descriptions for important panels contained within the editor.

Chapter 2 ■ Unity Crash Course

33

In your Scene panel, you will see something that resembles a blue sky and a brown
or grey ground. This is your empty scene. Right now, it only contains some light (the sun
icon) to illuminate the scene and the camera through which you see the world when
operating the game (the camera icon).

Step 2: Save Your Scene
Before we begin editing this empty scene, let’s save the scene. Go to File ➤ Save Scenes.
Figure 2-4 shows where to find the Save Scenes option. A dialog box will pop up, allowing
you to name your scene and choose a location to save it. Name your scene MiniGame
and feel free to use the default location. You can name your scene with any name, but
I recommend using the same name I use so that it will be easier for you to follow along
as we go though this tutorial.

Figure 2-4.  The Unity Editor window contains several important panels. This is where
most Unity project editing occurs.

Chapter 2 ■ Unity Crash Course

34

The scene is now saved as MiniGame.Unity in your assets folder. In your Hierarchy
panel, you should now see your scene named MiniGame with two objects under it
(Main Camera and Directional Light).

Figure 2-6.  Your new scene should have two default objects under it in the Hierarchy panel

Step 3: Create a Ground Plane
We can now start building out our game scene. First, we’ll need to create the ground plane
for the ball to roll on. Click the MiniGame scene in the Hierarchy so that it’s highlighted
(to ensure that you’re not highlighting the Main Camera or Directional Light). Go to
GameObject ➤ 3D Object ➤ Plane. See Figure 2-7 for where to access the Plane object.

Figure 2-5.  Save your scene before editing it

Chapter 2 ■ Unity Crash Course

35

The Plane object you just created will appear in your scene panel as a white plane
on the ground. It will also appear in your Hierarchy panel, as shown in Figure 2-8.
Objects in the Hierarchy are referred to as game objects.

Figure 2-7.  Create a new plane for the ground

Chapter 2 ■ Unity Crash Course

36

Step 4: Rename Your Plane
Let’s rename our Plane game object to Ground. To do this, highlight (click) the Plane
game object in the Hierarchy once. After waiting one second, click the Plane game object
again. You will now be able to edit the name of the game object. You may also rename
the object by right-clicking and selecting Rename. Rename it to Ground, as shown in
Figure 2-9.

Figure 2-8.  Illustration of what the Plane object looks like after it is created

Figure 2-9.  Rename the Plane game object to Ground

Step 5: Reset Ground Plane Position
Next, let’s reset the position of our Ground game object to 0,0,0. In the Inspector panel,
click the gear icon for the Transform element. After the context menu opens, select Reset,
as shown in Figure 2-10.

Chapter 2 ■ Unity Crash Course

37

Step 6: Zoom to Your Ground Plane
In the Hierarchy, select the Ground game object and press F on your keyboard. Doing this
activates the Frame Selected command, which causes the scene window to zoom in or
zoom out so that the game object you selected fills your scene window.

■■ Tip  If you can’t find your object in the scene, just select the game object’s name in the
Hierarchy and Type F to automatically zoom to your object. This command is also helpful for
quickly zooming to very large or very small objects in your scene.

Step 7: Scale Your Ground Plane
Next, we’ll learn how to scale game objects by scaling the Ground plane. To scale an
object means to resize it. There are several different ways to scale game objects. I’ve listed
some common methods below, and Figure 2-11 illustrates where to find these scaling
commands:

•	 Press the scale icon and then click and drag one of the colored
axes on the game object. Dragging the red axis scales in
the X-direction, green for the Y-directions, and blue for the
Z-direction.

•	 Press R on your keyboard as a shortcut to pressing the scale icon.

Figure 2-10.  Reset the Ground game object’s position

Chapter 2 ■ Unity Crash Course

38

•	 Click and drag the X, Y, or Z titles of the Scale fields.

•	 Directly type in the scale of your choice in the Scale fields.

Figure 2-11.  There are many ways to scale your game object

Scale your object so that the X, Y, and Z axes are all set to a scale of 1.

Step 8: Create the Ball
Remember, we’re creating a game called Roll-A-Ball. You will be controlling a rolling ball
on a flat surface. To create a ball, we need to add a sphere to our scene. Adding a sphere
is similar to adding a plane. Click our scene, MiniGame (to make sure we’ve not selected
another game object), and then go to GameObject ➤ 3D Object ➤ Sphere. Figure 2-12
illustrates where to find this command.

Chapter 2 ■ Unity Crash Course

39

Step 9: Rename Your Ball
Rename your ball by selecting the Sphere game object in the Hierarchy and clicking it
again after one second, just like you renamed your Plane in Step 4. Name your sphere
Player.

Step 10: Reset the Ball’s Position
Next, let’s reset the position of our Player game object (our ball) to 0,0,0. In the Inspector
panel, click the gear icon for the Transform element. After the context menu opens, select
Reset, just as we did in Step 5 (see Figure 2-10.)

Step 11: Zoom to Your Ball
In the Hierarchy, select the Player game object and press F on your keyboard to zoom in
or zoom out so that the ball fills your scene window.

Figure 2-12.  Create a Sphere game object for your ball

Chapter 2 ■ Unity Crash Course

40

Step 12: Raise the Ball’s Position
As you can see in the scene, the ball is halfway into the Ground plane. Moving a game
object’s position is similar to scaling it (see Step 7). Figure 2-13 shows several options for
moving an object’s position. Raise the Player game object up 0.5 units. After doing so, the
ball will rest perfectly on the surface of the Ground plane, as shown in Figure 2-13.

Figure 2-13.  There are a variety of ways to position game objects within Unity

Step 13: Color the Ground Blue
So far, you’ve created the ground plane and a ball. The default color of the objects you’ve
created is white. Let’s change some colors so that we can distinguish better between the
Player ball and the Ground plane. Within Unity, there are many options for modifying the
appearance of your object. There’s an intricate world of textures, materials, and shaders.
This chapter won’t cover these. For now, let’s apply a simple material to our Ground
plane. First, let’s create a folder to organize our materials. It’s always a good practice
to keep your project files organized, which will help avoid confusion and speed up
development work, especially in very large and complex projects. To create a folder, click
the Create drop-down list in the Project panel and select Folder, as shown in Figure 2-14.

Chapter 2 ■ Unity Crash Course

41

Once the folder is created, rename the folder to Materials, as shown in Figure 2-15.

Figure 2-14.  Creating a new folder in Unity

Figure 2-15.  After renaming, you will now have a Materials folder in your project list

Next, we will create the material. Select the Materials folder you just created so that
it’s highlighted. Using the same Create drop-down menu that you used to create the
materials folder, create a new material, as shown in Figure 2-16. The new material you
created should now be inside the Materials folder (because the Materials folder was
selected when you created the new material). Rename the Material to Background in the
same way you’ve renamed other items during this tutorial.

Chapter 2 ■ Unity Crash Course

42

Next, select your new Background material and open the Albedo setting in the
Inspector, as shown in Figure 2-17. To open the Albedo setting, click the colored box
(the default color is white) to the right of the word Albedo. Don’t click the eyedropper
icon or the grey box on the left side of Albedo. A pop-up window will open where you can
select various color options for your material, as shown in Figure 2-17.

Figure 2-16.  Creating a new material

Figure 2-17.  Select the Background material’s Albedo setting to change its color

Chapter 2 ■ Unity Crash Course

43

Within the pop-up color window, choose a dark blue color. You may need to drag
the Hue bar to blue and then select a color within the square color box, as shown in
Figure 2-18. Of course, you may choose any color you like.

Figure 2-18.  Choose a dark blue color by changing the Hue and Brightness/Saturation
settings. You may also type in the specific numerical values shown

Next, apply the blue Background material to the Ground plane by dragging the
material from the Project window to the Ground plane, as shown in Figure 2-19.
The ground plane should become blue, allowing the ball to stand out better.

Chapter 2 ■ Unity Crash Course

44

Step 14: Add Physics to the Ball
Because this game will involve rolling our ball on our Ground plane, we want our ball to
behave somewhat like a ball would in the real world. This means we want to use Physics.
To use Physics, select our ball (which is the Player game object) in the Hierarchy, click the
Add Component button in the Inspector, and select Physics ➤ Rigidbody. See Figure 2-20
for the location of these menu items. Rigidbodies are a fundamental component of the
Unity physics engine and are responsible for storing various state variables needed for the
equations of motion.

Figure 2-19.  Drag and drop your blue Background material from the Project panel to the
Ground plane, and the Ground plane will turn blue

Chapter 2 ■ Unity Crash Course

45

Step 15: Enable Keyboard Control
We want to be able to move our ball using our keyboard as a game controller. To achieve
this, we will need to apply some code to our ball. In Unity, our code documents are called
scripts. Let’s stay organized by creating a new folder to store our scripts, just as we created
a new folder to store our materials in Step 13.

•	 To create the new folder, go to your Project panel and click
Create ➤ Folder. Be sure that the scripts folder is created in the
Assets folder and not inside the Materials folder.

•	 Rename your new folder Scripts.

Next, we want to add a new script to our ball:

•	 Select the Player game object.

•	 Click the Add Component button in the Inspector.

•	 Scroll to the bottom of the list and select New Script.

•	 In the next window that opens, be sure that the language of the
script is set to C Sharp (usually spelled C#).

•	 Name your script PlayerController.

•	 Click the Create and Add button.

Figure 2-20.  Add the Rigidbody component to the Player game object to apply Physics to
our ball

Chapter 2 ■ Unity Crash Course

46

Next, we’ll program our Player game object to respond to keyboard control:

•	 Select the Player game object in the Hierarchy.

Figure 2-21 illustrates how to add and name your new script.

Figure 2-21.  Create a new script for your Player game object called PlayerController

Figure 2-22.  Drag and drop the PlayerController script inside your Scripts folder to stay
organized

You’ll notice in your Project panel that the new script you just created was not placed
inside your Scripts folder. Drag and drop the PlayerController script inside your Scripts
folder, as shown in Figure 2-22. Getting into the habit of staying organized is important.

Chapter 2 ■ Unity Crash Course

47

Figure 2-23.  Double-click the PlayerController script to open it in Visual Studio for editing

•	 Double-click the PlayerController script in the Inspector, as
shown in Figure 2-23. Visual Studio should now launch, so you
can start editing your script.

You should have already downloaded, installed, and set up Visual Studio in Chapter 1.
If you haven’t already set up your account in Visual Studio, you will be asked to sign in or
set up a new account. Once Visual Studio opens your PlayerController script, you should
see a window similar to Figure 2-24.

http://dx.doi.org/10.1007/978-1-4842-2769-5_1

Chapter 2 ■ Unity Crash Course

48

In Visual Studio, go ahead and erase all the code you see and replace it with the code
in Listing 2-1.

Listing 2-1.  Code for moving the ball

using UnityEngine;
using System.Collections;

public class PlayerController : MonoBehaviour {

 public float speed;

 private Rigidbody rb;

 void Start ()
 {
 rb = GetComponent<Rigidbody>();
 }

Figure 2-24.  Example of what you should see after Visual Studio opens your
PlayerController script

Chapter 2 ■ Unity Crash Course

49

 void FixedUpdate ()
 {
 float moveHorizontal = Input.GetAxis ("Horizontal");
 float moveVertical = Input.GetAxis ("Vertical");

 Vector3 movement = new Vector3 (moveHorizontal, 0.0f, moveVertical);

 rb.AddForce (movement * speed);
 }
}

Your Visual Studio window should now look like Figure 2-25 (the same code is
shown in Figure 2-25 and Listing 2-1). Save your code by clicking the Save All icon,
circled in Figure 2-25.

Figure 2-25.  Replace all the default code in PlayerController with the code provided. Save
your script by clicking the save all icon, circled in red.

I won’t go into the explanation of this code in this tutorial, because this chapter is
primarily intended to familiarize yourself with Unity’s workflow. In later chapters, as
we begin developing Mixed Reality applications, I will walk through scripts in detail so
that you understand how the code works. If you are still curious how the previous code
works, you’ll find a detailed video walk-through of it at https://unity3d.com/learn/
tutorials/projects/roll-ball-tutorial/moving-player?playlist=17141.

https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial/moving-player?playlist=17141
https://unity3d.com/learn/tutorials/projects/roll-ball-tutorial/moving-player?playlist=17141

Chapter 2 ■ Unity Crash Course

50

Step 16: Testing Your App
Next, we’ll test our new app to ensure everything works as designed. Go back into the
Unity editor and select the Player game object in the Hierarchy. You’ll notice a new field
has appeared under the Player Controller in the Inspector, as shown in Figure 2-26. This
is due to the new script that we programmed. Specifically, the addition of the line Public
float speed allows the value of Speed to be changed in the Inspector. For this to show up
in the Inspector panel, you will need to save your script and allow Unity a few seconds to
process the saved changes and update the Inspector panel. Change the value of Speed to
10 and click the play button (located above the scene panel), as shown in Figure 2-26.

Figure 2-26.  Set the Player’s Speed to 10 in the Inspector and then click the play button (top)
to test your new app

After clicking play, you will enter Game mode, where you will view the game through
the scene’s camera. Go ahead and try pressing the left, right, up, and down arrow keys on
your keyboard and watch the ball move! If you fall off the edge of the Ground plane, you
can always reset the game by clicking play again to stop the game, and then clicking play
once more to enter the game. Feel free to explore how changing the speed of your Player
impacts gameplay.

Chapter 2 ■ Unity Crash Course

51

Summary
Congratulations! You have successfully completed your very first Unity application. Here
are some things we’ve learned in this chapter:

•	 We discussed some basic information about what Unity is.

•	 We looked at Unity’s pricing tiers.

•	 We learned about the Unity’s editor interface.

•	 We learned how to create new game objects.

•	 We learned how to scale and move game objects.

•	 We learned how to apply materials to game objects.

•	 We learned how to apply physics to game objects.

•	 We learned how to create and apply scripts to game objects.

•	 We created and tested our first Unity app.

Now that you’re familiar with the basics of Unity, we can start exploring how to
create Mixed Reality experiences with this powerful platform. Unity is a very large and
nuanced tool, and you will spend much of your time as a Mixed Reality developer refining
your Unity skills. As we walk through Mixed Reality development in upcoming chapters,
we’ll also dive deeper into various Unity topics.

PART II

Building Holographic
Experiences

55© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_3

CHAPTER 3

Creating Your First
Hologram

In this chapter, you’ll build your very first holographic experience. We’ll begin by setting
up Unity for Mixed Reality development using the HoloToolkit. After creating our first
hologram, we’ll test our app by deploying directly to our HoloLens using Visual Studio.
We’ll also test the app using Unity’s holographic remoting and holographic simulation.

Getting Unity Ready for Mixed Reality
Development
Before we begin creating our first hologram, we need to make sure Unity is ready for
Mixed Reality development. There are several settings in Unity that need to be changed
for our apps to work on the HoloLens and other Mixed Reality devices. For example,
in Chapter 2’s Unity tutorial, you may have noticed a grey/brown floor and blue sky in
the scene. We usually won’t want this digital floor and sky to appear in all our Mixed
Reality experiences, so we need to black out our background so that it doesn’t appear in
our device. We also need to adjust our camera settings, so that each eye sees a slightly
different perspective of our scene, which will allow users to perceive depth when wearing
the headset. These are just a few examples of settings that need to change to prepare
Unity for Mixed Reality development. All these settings can be changed manually, but it
would be very tedious and time consuming to do this each time you create a new Mixed
Reality project.

Fortunately, Microsoft provides a community resource called the HoloToolkit,
which helps you automatically set up Unity for making Mixed Reality apps. There’s an
entire chapter on the HoloToolkit in this book, so I won’t cover all it has to offer in this
chapter. The following steps will walk you through preparing your scene for Mixed Reality
development.

http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 3 ■ Creating Your First Hologram

56

■■ Note  The HoloToolkit is updated regularly, and some elements may have changed
since these instructions were written. Be sure to check the HoloToolkit documentation for
updated instructions if you can’t find the objects I refer to in this tutorial. You can find the
HoloToolkit instructions at https://github.com/Microsoft/HoloToolkit-Unity/blob/
master/GettingStarted.md.

Step 1: Import HoloToolkit to a New Unity Project
Before proceeding, be sure you’ve already downloaded and saved the HoloToolkit Unity
package per the instructions in Chapter 1.

•	 Create a new Unity project (see Chapter 2 if you need a reminder
on how to do this) and name it Holo World. Important: Save your
scene and give it a name. If you don’t save your scene, you won’t
be able to apply HoloLens settings in Step 2.

•	 From the menu bar, go to Assets ➤ Import Package ➤ Custom
Package. In the pop-up window that appears, browse to the
HoloToolkit that you downloaded in Chapter 1. See Figure 3-1 for
an illustration of these menu items.

Figure 3-1.  Import the HoloToolkit package you downloaded in Chapter 1

•	 Unity will take a minute to prepare the package you selected and
then show you another pop-up window where you can select or
deselect package items. Go ahead and leave everything checked
(everything should be checked by default) and click the Import
button, as shown in Figure 3-2.

https://github.com/Microsoft/HoloToolkit-Unity/blob/master/GettingStarted.md
https://github.com/Microsoft/HoloToolkit-Unity/blob/master/GettingStarted.md
http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_1

Chapter 3 ■ Creating Your First Hologram

57

Step 2: Use HoloToolkit to Prepare Your Scene for Mixed
Reality Development
After completing Step 1, you should now see a HoloToolkit menu item in your menu bar,
as shown in Figure 3-3.

•	 From the menu bar, select HoloToolkit ➤ Configure ➤ Apply
HoloLens Scene Settings. This will make the scene background
black (when in the Game tab) and modify camera settings. Click
the Apply button in the pop-up window that appears. Important:
Save your scene.

Figure 3-2.  Click Import to import the HoloToolkit package

Chapter 3 ■ Creating Your First Hologram

58

•	 From the menu bar, select HoloToolkit ➤ Configure ➤ Apply
HoloLens Project Settings. This will convert the Unity project
to a Windows Direct 3D (D3D) project, optimize quality, and
enable Virtual Reality support. Click the Apply button in the
pop-up window that appears. Unity will require you to reload
your project. If you didn’t save your scene from the previous step,
you will lose all changes to the scene and need to apply scene
settings again.

■■ Tip A fter choosing to apply settings from the HoloToolkit menu, a pop-up window
appears showing settings to apply. Click each item to learn more about it.

•	 Remove the Main Camera and Directional Light game objects
from the Hierarchy by right-clicking each item and choosing
Delete from the context menu.

•	 To insert our new camera, go to the Project panel, and browse to
HoloToolkit ➤ Input ➤ Prefabs. Drag and drop HoloLensCamera.
prefab into the Hierarchy, as shown in Figure 3-4.

•	 Save your scene.

Figure 3-3.  You now have a shiny new HoloToolkit menu item. Be sure to apply HoloLens
scene settings and project settings

Chapter 3 ■ Creating Your First Hologram

59

Congratulations! Your scene is now ready for holograms. Before starting each
new Mixed Reality project in the future, you’ll want to repeat these basic preparation
instructions. And although you can keep using the same HoloToolkit package you
downloaded, it’s always a good idea to regularly check for updates to the HoloToolkit.
New features are added all the time, and bugs are constantly being fixed. You can explore
the HoloToolkit at https://github.com/Microsoft/HoloToolkit-Unity. Be sure to look
around this page for reports of bugs, recent fixes, updates and more.

Your First Hologram
Your scene should now be completely black when in game view. You will still be able to
see a floor grid and horizon when in the scene view. If you were to deploy this “app” to
your HoloLens, you would see nothing. In this section, we’ll create a simple cube object,
which will serve as our first hologram.

Figure 3-4.  After deleting the Main Camera and Directional Light objects, insert the
HoloLensCamera prefab into the Hierarchy

https://github.com/Microsoft/HoloToolkit-Unity

Chapter 3 ■ Creating Your First Hologram

60

■■ Note I n the context of Windows Mixed Reality, a hologram is any visible game object.
To stay consistent with Microsoft’s naming conventions, I generally call any visible game object
or 3D model a hologram, but I may use these terms interchangeably throughout this book.

Step 1: Create a Cube
In Chapter 2, you created a plane and a sphere within Unity. Use the same approach
to create a cube game object in your scene. In addition to the approach you learned in
Chapter 2, you can also create a cube by right-clicking an empty place in the Hierarchy
and in the pop-up context menu selecting 3D Object ➤ Cube, as shown in Figure 3-5.

Figure 3-5.  Create a cube in the Hierarchy

Step 2: Zoom to Your Cube
If you haven’t already done so, be sure to switch to the scene view so that you can view
objects in your scene. You can switch between views by clicking the tabs that are above
the visualization window, as shown in Figure 3-6. Zoom to your cube by selecting the
Cube game object in your Hierarchy and pressing the F key. Your scene should look
similar to Figure 3-6.

http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 3 ■ Creating Your First Hologram

61

Step 3: Move the Cube Away from the Camera
Next, we’ll want to move the Cube game object away from the camera. In Unity, think of
the camera as your eyes. You view your app through the camera. You’ll notice in the scene
(refer to Figure 3-6) that both the cube and the camera are in the same place. This means
that when you launch this application, you won’t be able to see the cube because your
eyes will be inside it! We need to move the cube a short distance in front of our face.

■■ Tip  When positioning objects in Unity, 1 unit represents approximately 1 meter
(3.3 feet) in the real world.

Let’s move the cube about 2 units in front of our face, which is about 2 meters in the
real world:

•	 Select the Cube in the Hierarchy

•	 In the Inspector, change the Position to 2, as shown in Figure 3-7.

As you can see in Figure 3-7, the cube is now 2 units in front of the camera.

Figure 3-6.  Zooming to your Cube

Chapter 3 ■ Creating Your First Hologram

62

Step 4: Resize the Cube
Currently, our cube has a scale of 1 x 1 x 1, meaning it’s approximately 1 meter on each
side. Let’s make it so we can view the entire cube within our field of view.

Use the approach in Step 7 of Chapter 2 to scale (resize) your cube down to 0.2 x 0.2 x
0.2, as shown in Figure 3-8.

Figure 3-8.  Scaling the cube down in size to make it easier to see

Figure 3-7.  Moving the Cube 2 units in front of the camera

http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 3 ■ Creating Your First Hologram

63

Step 5: Test Your App
It’s important to regularly test your app as you develop it to ensure that it’s behaving as
you intend. Unity provides a very quick way of testing your app. To begin, simply click the
play button located near the top of the Unity Editor, as shown in Figure 3-9. When you
click Play, you should see your cube surrounded by a black background.

Figure 3-9.  Clicking play to quickly test your app

The HoloLensCamera prefab that you imported into your scene near the beginning
of this chapter also includes the ability to “move around” in your scene. Try it by pressing
the left/right/up/down arrows on your keyboard while in Game mode (you may need to
click the Game window before the keys work). You can also right-click your mouse to drag
the camera’s view. Be careful when pressing keys, as the movement can be very fast and
you may lose sight of your cube. If that happens, just restart your app test.

Click the play button again to exit Game mode. This was a very quick and easy way
to test your app. We didn’t utilize holographic simulation or holographic remoting when
we clicked play, so we weren’t able to test all aspects of a full Mixed Reality experience,
such as gestures, spatial mapping, object manipulations, and more. You’ll learn about
holographic remoting and simulation (collectively called holographic emulation in Unity)
later in this chapter.

Chapter 3 ■ Creating Your First Hologram

64

Step 6: Install Your App on the HoloLens
Now that we’ve tested our Cube app, let’s install it on our HoloLens to experience our first
hologram in person:

•	 Be sure that you’ve exited out of Game mode from the previous
step. The play button should be black when you’re not in Game
mode; it’s blue when you’re in Game mode.

•	 In your menu bar, go to File ➤ Build Settings

•	 A pop-up window will appear, as shown in Figure 3-10.

Figure 3-10.  Export your first Mixed Reality app using the Build Settings window in Unity

•	 Be sure to click the Add Open Scenes button to add your current
scene to the list of scenes to build.

Chapter 3 ■ Creating Your First Hologram

65

•	 If you applied all the HoloLens projects settings at the beginning
of this chapter correctly, then the remaining settings should not
need to be modified. Review to make sure the Platform is set to
Windows Store, the SDK is set to Windows 10, the Target device
is set to HoloLens, the UWP Build Type is set to D3D, and that
“Build and Run on” is set to Local Machine. See Figure 3-10 for
how these settings should appear.

•	 Click the Build button.

•	 After you click Build, another pop-up window will appear. Create
a new folder and name it. I typically name my folder App. Click
your newly created folder and click the Select Folder button as
shown in Figure 3-11.

Figure 3-11.  Create a new folder to contain your app

•	 Unity will spend a few seconds building your new app and
placing project files in the new folder you created. After Unity
has completed building your app, a pop-up window will appear,
showing the new folder you created. Open this folder.

•	 Double-click Holo World.sln to open your project in Visual
Studio. (Your file may be named differently if you didn’t name
your project Holo World).

Chapter 3 ■ Creating Your First Hologram

66

•	 We will use Visual Studio to deploy (install) our app to our
HoloLens. But first, we need to enable Developer mode on the
HoloLens. Turn on your HoloLens and open the Settings app.
Select the Update & Security menu item, as shown in Figure 3-12.

Figure 3-12.  In the Settings app, go to the Update & Security menu item

•	 Once in the Update & Security menu, navigate to the “For
developers” section and ensure that Developer mode is turned
on, as shown in Figure 3-13.

Chapter 3 ■ Creating Your First Hologram

67

•	 Make sure that your HoloLens is connected to the same WiFi
network as your development PC.

•	 On your PC, set your configuration to Release and your platform
to x86, as shown in Figure 3-14.

Figure 3-13.  Navigate to the “For developers” section and enable Developer mode

Figure 3-14.  Set your configuration to Release and your platform to x86

Chapter 3 ■ Creating Your First Hologram

68

•	 Set your target device to Remote Machine, as shown in Figure 3-15.

Figure 3-15.  Set your target to Remote Machine

Figure 3-16.  Where to find your HoloLens IP address in the Settings app

•	 A pop-up window will appear, where you can enter the IP address
of your HoloLens. If you don’t know your IP address, you can
access it on your HoloLens by going to Settings ➤ Network &
Internet ➤ Advanced Options. See Figure 3-16 for guidance on
where to find the IP address in your HoloLens Settings app.

Chapter 3 ■ Creating Your First Hologram

69

•	 Once you know your HoloLens IP address, enter it in the Remote
Connections pop-up window in Visual Studio and click the Select
button, as shown in Figure 3-17.

Figure 3-17.  Enter your HoloLens IP address into Visual Studio’s Remote Connections
window

•	 You are now ready to deploy your app to your HoloLens. In
the Debug menu, select Start Without Debugging, as shown in
Figure 3-18.

Chapter 3 ■ Creating Your First Hologram

70

•	 If this is your first time deploying to your HoloLens from this PC,
you will be prompted to pair your HoloLens with Visual Studio,
as shown in Figure 3-19. To pair your HoloLens, go back to the
“For developers” section of your HoloLens Settings app and
click the Pair button, as can be seen back in Figure 3-13. You
will see numbers appear on your HoloLens (see Figure 3-20 for
an illustration of this), which you can then type into the pop-up
window in Visual Studio.

Figure 3-18.  Start the app deployment process by going to Debug ➤ Start Without
Debugging

Chapter 3 ■ Creating Your First Hologram

71

•	 After entering your HoloLens PIN into Visual Studio on your PC,
you may dismiss the PIN pop-up on your HoloLens by clicking
the Done button.

Figure 3-20.  After clicking the Pair button, your HoloLens will display a PIN for you to
enter into Visual Studio on your PC. Note: Of course, your PIN will be different than the one
shown in this figure.

Figure 3-19.  Visual Studio will prompt you for a PIN if this is the first time you’re
deploying to your HoloLens from this PC

Chapter 3 ■ Creating Your First Hologram

72

•	 Visual Studio will begin deploying your app to the HoloLens.
You should see some output text in Visual Studio indicating that
your app was successfully deployed to the HoloLens, similar
to Figure 3-21. If you receive any error messages and a failed
deployment, please check the output to see what the error
messages are. Check to make sure you followed all the steps in
this tutorial. Even if you followed all the steps correctly, there
may be other reasons why a deployment may fail. For example, if
you run out of disk space on your drive, or if Visual Studio wasn’t
installed correctly. If a mysterious error is preventing a successful
deployment, I’ve found that restarting your computer and
HoloLens often helps resolve the issue. Other potential solutions
include rebuilding your App folder (deleting all contents and
rebuilding from Unity) or re-entering your HoloLens IP address
into Visual Studio.

Figure 3-21.  Example of text displayed by Visual Studio if deployment to the HoloLens is
successful

•	 You should now be experiencing your very first Mixed Reality app.
Congratulations! Feel free to walk around your hologram (cube)
and look at it from various angles. What happens when you try
to touch it? Is your hologram behind your computer monitor or
wall? If so, restart your app while facing an open area.

•	 Your app is now installed on your HoloLens—which means you’ll
see it appear in your apps list as Holo World (if you named it Holo
World, as I did in this tutorial).

Test Your App Using Holographic Remoting
This section discusses how to use Unity’s holographic remoting feature to speed up
development. In the previous step, we deployed our app to the HoloLens for testing.
Although that’s the most robust way to test your app, you may have noticed that it was
time consuming and somewhat tedious. It’s an inefficient way to test your app after each

Chapter 3 ■ Creating Your First Hologram

73

change you make to your project. A much faster way to test your app on your HoloLens
is to use Unity’s holographic remoting. With holographic remoting, your app is streamed
(via WiFi) from Unity to your HoloLens without needing to go through Visual Studio.

Step 1: Install and Run the Holographic Remoting Player
to Your HoloLens
If you haven’t done so already, you’ll need to install the Holographic Remoting Player app
on your HoloLens.

•	 On your HoloLens, open the Store app.

•	 In the Store’s search bar, start typing in remoting. In the search
results, you will see an app called Holographic Remoting Player,
as shown in Figure 3-22.

Figure 3-22.  Search for the Holographic Remoting Player app and install it on your
HoloLens

Chapter 3 ■ Creating Your First Hologram

74

Step 2: Connect to Your HoloLens with Unity’s
Holographic Remoting

•	 In Unity on your PC, go to Window ➤ Holographic Emulation, as
shown in Figure 3-24.

•	 After installing the Holographic Remoting Player app, launch
the app. You will see a welcome screen showing your device’s IP
address, as shown in Figure 3-23.

Figure 3-23.  You’ll see this screen upon launching the Holographic Remoting Player app
on your HoloLens

Chapter 3 ■ Creating Your First Hologram

75

Figure 3-24.  In Unity, open the Holographic Emulation window

•	 A pop-up window will appear where you can select your
Holographic Emulation settings. For Emulation Mode, select
Remote to Device. For the Remote Machine IP Address, enter the
IP address that you see displayed on your HoloLens (be sure the
Holographic Remoting App player is running). See Figure 3-25
for an example of the Holographic Emulation window in Unity.
After entering your IP address, you may need to uncheck and
check one of the checkboxes for the changes to take effect, due to
a bug. Try that workaround, if you’re unable to connect to your
HoloLens.

Chapter 3 ■ Creating Your First Hologram

76

•	 Click the Connect button to connect to your HoloLens. If the
connection was successful, the Connection Status in Unity’s
Holographic Emulation window should indicate that it’s
connected. You should see a blank screen (nothing/transparent)
in your HoloLens. If you have music or audio playing on your PC,
you may hear it on your HoloLens speakers.

Step 3: Test Your App Using Holographic Remoting
To test your application, click the play button in the Unity editor (refer back to Figure 3-9,
from a previous example). Your hologram will instantly appear in your HoloLens, as if it
were installed on your HoloLens.

■■ Tip  For the best holographic remoting experiences, be sure to have a strong WiFi
connection. A poor connection will cause lagging and/or pixilation issues. Using a PC with a
powerful graphics card will also help with performance when streaming complex scenes to
your HoloLens.

As you can see, holographic remoting is a very fast and efficient way to test your
app on your HoloLens. Later, we’ll see that holographic remoting also supports gesture
recognition from your HoloLens, as well as voice commands.

Test Your App Using Holographic Simulation
In this section, we’ll walk through how to use holographic simulation within Unity when
testing your apps. So far, you’ve already learned how to deploy apps to your HoloLens
via Visual Studio. You also learned a much faster approach for streaming apps to your
HoloLens with holographic remoting. Another approach to quickly test your app

Figure 3-25.  Example of Unity’s Holographic Emulation window

Chapter 3 ■ Creating Your First Hologram

77

(when using your HoloLens device is not required) is called holographic simulation.
As discussed in Chapter 1, holographic simulation allows you to use a controller,such as
the Xbox One controller to walk around and control your app from within Unity.

You may be wondering how this is different from simply clicking the play button in
Unity without holographic simulation enabled. Here are some key advantages of using
holographic simulation over testing your app without emulation within the Unity editor:

•	 You can select between several rooms/areas in order to simulate
spatial mapping.

•	 Holographic simulation supports voice and gesture simulation.

•	 You can easily use a wireless controller to walk around and
control your app.

Let’s walk through how to set up holographic simulation to test your app.

Step 1: Enable Holographic Simulation
•	 Open the holographic emulation window by clicking

Window ➤ Holographic Emulation.

•	 In the Holographic Emulation pop-up window that appears,
select Simulate in Editor for the Emulation Mode, as shown in
Figure 3-26. You don’t need to modify the Room or Gesture Hand
for the Cube app.

Figure 3-26.  To enable holographic simulation, set Emulation Mode to Simulate in Editor
within the Holographic Emulation window

Step 2: Connect Your Controller
In order to walk around, look around, and control your app, you’ll need to connect a
gamepad or game controller, such as the Xbox One controller. Please see instructions
specific to your controller to connect it to your PC. Unity will automatically recognize
your controller once connected. No setup is required in Unity for your controller.

http://dx.doi.org/10.1007/978-1-4842-2769-5_1

Chapter 3 ■ Creating Your First Hologram

78

Step 3: Test Your App Using Holographic Simulation
Click the play button in the Unity editor to begin testing your app using holographic
simulation. If your app isn’t responding to your controller, be sure to check that your
game window has focus by clicking it. If you accidentally clicked another part of the Unity
editor, or clicked out of Unity, the app won’t respond to your controller.

Holographic emulation loads a virtual model of a room that your app can interact
with. Figure 3-27 shows what the spatial mapping mesh looks like when an application
has the ability to make the spatial map visible. Note that you won’t be able to see the
spatial map in the application we developed in this chapter. I cover spatial mapping
extensively in Chapter 6.

Figure 3-27.  Holographic simulation loads a virtual room where you are able to test
spatial mapping features without leaving Unity

Summary
Congratulations! Having created your very first hologram, you’re well on your way to
becoming a Mixed Reality developer. Creating and seeing your first hologram is a very
satisfying experience. Let’s recap what was covered in this chapter:

•	 You learned how to prepare Unity for holographic development
using the HoloToolkit.

•	 You learned how to place a hologram into a scene.

http://dx.doi.org/10.1007/978-1-4842-2769-5_6

Chapter 3 ■ Creating Your First Hologram

79

•	 You learned how to install your app on a HoloLens by deploying it
using Visual Studio.

•	 You learned how to stream your app to your HoloLens using
Unity’s holographic remoting.

•	 You learned how to test your app using Unity’s holographic
simulation.

The tutorials in this chapter serve as the building blocks for all Mixed Reality
development workflows.

81© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_4

CHAPTER 4

Introduction to the
HoloToolkit

This chapter covers more about the HoloToolkit and its importance for Mixed Reality
development. We’ll learn about the various components and test scenes included with
the HoloToolkit, and how we can leverage this community resource for development.

What Is the HoloToolkit?
From Microsoft’s HoloLens documentation, you might think that the HoloToolkit is an
optional toolkit for enhancing your development experience. In fact, the HoloToolkit is an
essential part of HoloLens development. The HoloToolkit provides developers with all the
tools needed to get started developing Mixed Reality applications. It does everything from
preparing Unity’s settings to enabling gestures and spatial mapping. The HoloToolkit also
contains many useful example scenes for developers to explore and understand how to
use various parts of the HoloToolkit.

The HoloToolkit is a community resource that is overseen by Microsoft and other
trusted individuals/groups. Anyone, including you, can contribute content to the
HoloToolkit (it will first need to be vetted before being incorporated). As such, the
HoloToolkit is constantly being updated and improved. In fact, it has already vastly
improved between the time I starting writing this book and the moment I started writing
this chapter. After learning of some of the useful HoloToolkit features in this chapter,
I recommend exploring the HoloToolkit repository online to learn about any additional
changes. Toward the end of this chapter, I walk you through navigating the online
HoloToolkit repository.

HoloToolkit Setup
This section walks you through downloading and installing the HoloToolkit. To download
the HoloToolkit Unity package, go to https://github.com/Microsoft/HoloToolkit-
Unity/releases.

https://github.com/Microsoft/HoloToolkit-Unity/releases
https://github.com/Microsoft/HoloToolkit-Unity/releases

Chapter 4 ■ Introduction to the HoloToolkit

82

Make sure you download the latest release of the HoloToolkit, typically located near
the top of the page. Be sure that the HoloToolkit version you download is compatible with
the version of Unity you downloaded. Typically, compatibility is announced in the title
of the HoloToolkit version, as shown in Figure 4-1. To download the HoloToolkit Unity
package, click the download link with the file extension .unitypackage. For example,
in Figure 4-1, the appropriate download link (circled) is named HoloToolkit-Unity-
v1.5.5.0.unitypackge.

Figure 4-1.  Browse to the HoloToolkit download page and download the HoloToolkit
Unity Package, circled in this figure

Save the HoloToolkit to your PC. In your Unity project’s menu bar, go to Assets ➤
Import Package ➤ Custom Package. In the pop-up window that appears, browse to the
HoloToolkit you just downloaded. Figure 4-2 shows these menu items.

Chapter 4 ■ Introduction to the HoloToolkit

83

Unity will take a minute to prepare the package you selected and then show you
another pop-up window where you can select or de-select package items. Go ahead and
leave everything checked (everything should be checked by default) and click the Import
button, as shown in Figure 4-3.

Figure 4-2.  Import the HoloToolkit package you downloaded in Chapter 1

Figure 4-3.  Click the Import button to import the HoloToolkit package

http://dx.doi.org/10.1007/978-1-4842-2769-5_1

Chapter 4 ■ Introduction to the HoloToolkit

84

After completing these steps, the HoloToolkit will now be installed to your project.

■■ Note  You’ll need to import the HoloToolkit every time you start a new Unity project.

HoloToolkit Components
We’re now at the exciting part of the chapter where I walk you through the various
components of the HoloToolkit. The HoloToolkit includes seven feature areas. Table 4-1
lists each feature area and provides a brief description.

Table 4-1.  HoloToolkit Features and Descriptions

Feature Area Description

Input Allows developers to include input in their apps, such as
gestures, clickers, gaze, and voice commands.

Sharing Allows developers to make shared experiences. This allows
many users to see and experience the same app together.

Spatial Mapping Tools to enable and use spatial mapping. This allows your
application to interact with the physical environment, such
as walls, floors, and objects nearby.

Spatial Understanding Allows your application to understand the physical
environment. For example, it can differentiate between
chairs, tables, and other common structures.

Spatial Sound Allows developers to include spatial sound capabilities,
so that objects sound as if they are physically in your
environment.

Utilities A collection of useful utilities, such as frame rate viewers,
object locators, ability for objects to follow you, menu items
for configuring Unity, and more.

Build Time-saving features that enable the ability to quickly build
and deploy projects directly from Unity without having to
first go through Visual Studio.

The following subsections discuss highlights of each of the seven feature categories.
Upcoming chapters cover some of these features in greater detail—in fact, some features
have entire chapters devoted to them.

Chapter 4 ■ Introduction to the HoloToolkit

85

HoloToolkit: Input
The input features in HoloToolkit provide developers with the ability to interact with
holograms. It includes a collection of scripts that allow your app to recognize gestures
(such as the air-tap gesture and the hold gesture), inputs from devices such as clickers,
gaze capabilities, and voice commands. Chapter 5 covers these input methods in much
greater detail. Under the input features, you’ll also find cursors that you can use for your
Mixed Reality projects.

There are a wide range of test scenes where you can test various features included
in the input feature set. Test scenes are an excellent way to explore HoloToolkit features
and gain inspiration for your own projects. I often use test scenes as templates for my
own projects. There are dozens of test scenes across all HoloToolkit features. Let’s walk
through how to explore one of these test scenes.

■■ Tip  Test scenes are a great way to see HoloToolkit items in action and learn how to
implement them. You can also use a test scene as a template for your next project.

Running a Test Scene
Test scenes are typically located in a project folder called Scenes. Within the input feature
area, you can find the scenes folder by going to Assets ➤ HoloToolkit ➤ Input ➤ Tests ➤
Scenes, as shown in Figure 4-4. Each of the seven feature groups may have a slightly
different folder organization. Folder organization within the HoloToolkit is evolving
over time, so be sure to explore the project folders or check the latest HoloToolkit
documentation if you can’t find the test scenes in your version of the HoloToolkit.

Figure 4-4.  Navigate to the Scenes folder in each HoloToolkit feature to try out various test scenes

http://dx.doi.org/10.1007/978-1-4842-2769-5_5

Chapter 4 ■ Introduction to the HoloToolkit

86

As shown in Figure 4-4, asset names in your project panel may be shortened
(a partial name will be displayed, followed by …). To see the full name, you may adjust the
icon view by adjusting the slider, as shown at the bottom right corner of Figure 4-4.

Scene names are typically self-explanatory, but sometimes you may want to know
additional details before trying a scene. The best place to learn more about each test
scene is in the HoloToolkit documentation on GitHub. For example, to learn more about
the scene called InputTapTest, you can start by going to the HoloToolkit-Unity page at
https://github.com/Microsoft/HoloToolkit-Unity.

Scroll down to the README.md section as shown in Figure 4-5 and click Input,
since our scene is located in the inputs section. You’ll see a long page with detailed
documentation on all the resources provided within the Input feature set.

Figure 4-5.  The HoloToolkit-Unity page on GitHub contains useful documentation on all
features

Scroll down to the Tests section, where you can find the name of the test scene you’re
interested in and read more about it. As shown in Figure 4-6, the InputTapTest.unity
scene shows how to respond to user’s gaze using the Input module and how to respond to
the user’s tap gesture.

https://github.com/Microsoft/HoloToolkit-Unity

Chapter 4 ■ Introduction to the HoloToolkit

87

In the Unity Editor, choose the scene you’re interested in trying (in our case,
the InputTapTest scene) and drag it from the Project panel to an empty area in your
Hierarchy, as shown in Figure 4-7.

Figure 4-6.  The HoloToolkit provides a brief description for all test scenes

Chapter 4 ■ Introduction to the HoloToolkit

88

To avoid conflicts, disable any other open scenes by right-clicking the other scenes
and selecting Unload Scene from the context menu. Unloading a scene will temporarily
disable it, making it quick and easy to toggle scenes. You may also choose to Remove
Scene if you no longer want to work with a scene. You can still reimport the scene from
your Project panel if you didn’t intend to remove the scene from your Unity project.

Now that you have your test scene loaded, feel free to try it out by clicking the
play button. You may also deploy it to your HoloLens or stream it to your device using
holographic emulation. This is a great opportunity to explore the code being used and
see how the test project works. Many test scenes are included with the HoloToolkit,
and I recommend you try as many of them as possible.

HoloToolkit: Sharing
One of the more powerful features included with the HoloToolkit is the sharing module.
The sharing module allows multiple people to share the same Mixed Reality experience,
locally or remotely. For example, several people wearing Mixed Reality headsets in the
same room will be able to see and interact with the same holograms together. For remote
users, the sharing module allows users to see avatars of each other, hear each other,
interact, and collaborate. Figure 4-8 is an example of what such a share collaboration
might look like.

Figure 4-7.  To explore a test scene, drag it into your Hierarchy

Chapter 4 ■ Introduction to the HoloToolkit

89

Several test scenes are included in this module to help you familiarize yourself with
setting up a shared holographic experience.

HoloToolkit: Spatial Mapping
The HoloToolkit’s spatial mapping module provides you with the resources you need
to include spatial mapping capabilities into your project. Spatial mapping uses the
sensors on a Mixed Reality headset to create a virtual map of the physical surroundings.
The HoloToolkit provides resources to use this map or mesh to hide or occlude objects
behind the mesh, interact with the mesh, and visualize the mesh. Chapter 6 covers spatial
mapping in depth.

HoloToolkit: Spatial Understanding
Spatial understanding is a remarkable capability included with the HoloToolkit that
enables our Mixed Reality experiences to “understand” the spatial environment. Based
on the precise measurements taken with spatial mapping, this module interprets the
spatial mesh and guesses which parts of the mesh are walls, tables, chairs, and more.
Mixed Reality applications can use this feature in many ways. For example, you might
have a holographic character or avatar sit on a chair in your room during a game. To
achieve this, you’ll need the spatial understanding module to find the part of a room that
is a sitting surface, as shown in Figure 4-9. Chapter 6 covers spatial understanding.

Figure 4-8.  HoloToolkit’s sharing module allows Mixed Reality experiences to be shared
both locally and remotely (source: Microsoft)

http://dx.doi.org/10.1007/978-1-4842-2769-5_6
http://dx.doi.org/10.1007/978-1-4842-2769-5_6

Chapter 4 ■ Introduction to the HoloToolkit

90

HoloToolkit: Spatial Sound
The HoloToolkit’s spatial sound module provides you with the resources you need
to include spatial sound capabilities into your project. We rely heavily on our ears to
precisely locate objects around us. In the context of Mixed Reality, this is called spatial
sound. Spatial sound is essential for increasing the feeling of immersion and realism.

The HoloToolkit’s spatial sound module includes capabilities such as audio
occlusion (the ability to accurately reduce an object’s audio when it’s behind another
hologram), the ability to tune the audio based on the size and shape of the physical room,
3D positioning of audio, and other advanced audio settings. Chapter 7 covers the details
and implementation of spatial sound.

HoloToolkit: Utilities
The HoloToolkit’s utilities module provides several useful utilities that can be used in
your Mixed Reality applications. I recommend exploring this module in the HoloToolkit
and reading the online documentation for the most up-to-date listing of utilities, because
utilities are added to this module regularly. The following is a description of some of
the most common and useful utilities included in the HoloToolkit. This is far from an
exhaustive list, but it will give you a taste for the type of utilities included in this module:

•	 FPSDisplay.prefab: This is a “billboard” or floating screen that
follows you in your application and displays your app’s frames
per second (FPS). When your device’s performance struggles due
to a complex scene or heavy processing requirements, the first
noticeable effect is a reduction in FPS. Having a FPS billboard
helps you keep an eye on your app’s FPS so you can optimize it
during development.

Figure 4-9.  The spatial understanding module being used to find the sitting surface of a chair

http://dx.doi.org/10.1007/978-1-4842-2769-5_7

Chapter 4 ■ Introduction to the HoloToolkit

91

•	 HeadsUpDirectionIndivator.prefab: Sometimes you want to
prompt users about where to look to find relevant holograms in
your applications. This useful utility lets you include an arrow in
your app that points the user to look in the right directions.

•	 Toolbar configuration items: Remember the HoloToolkit toolbar
items you used to get Unity ready for Mixed Reality development
in Chapter 2? That was a feature of the HoloToolkit’s utilities
module. This useful utility makes it easy for developers to quickly
apply important settings to the project, camera, and scene.

•	 Billboard.cs: Apply this useful script to billboards in your app
so that the billboards are always facing the user, even if the user
moves.

•	 Tagalong.cs: Do you want a hologram to follow you in your
application? Simply apply this tagalong script to the object you
want to have follow you.

HoloToolkit: Build
The HoloToolkit’s build module saves you time by allowing you to build, save, and deploy
your app directly from Unity without needing to open Visual Studio. After importing
the HoloToolkit, you’ll gain access to the build window, located under the HoloToolkit
menu item in the menu bar. As shown in Figure 4-10, the build window provides you with
multiple options to build, save, or deploy your app.

Figure 4-10.  The build window included in the HoloToolkit lets developers quickly build
and deploy apps to devices without first needing to go through Visual Studio

http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 4 ■ Introduction to the HoloToolkit

92

HoloToolkit Online
As mentioned previously, the HoloToolkit is constantly being updated and improved by
its community of developers. In this section, you’ll learn about the online HoloToolkit
repository so that you can keep updated on the latest updates, issues, and improvements.

The Two HoloToolkit Repositories
There are actually two HoloToolkit repositories online. The first is called HoloToolkit, and
the second is HoloToolkit-Unity. You can them at the following links:

•	 HoloToolkit: https://github.com/Microsoft/HoloToolkit

•	 HoloToolkit-Unity: https://github.com/Microsoft/
HoloToolkit-Unity

The “regular” HoloToolkit is a generalized version of the HoloToolkit that contains
the core C++ code base that many of the Unity toolkit features are built on top of or are
merely wrappers around. This version of the HoloToolkit is often used by developers that
use platforms other than Unity for development.

The HoloToolkit-Unity repository contains Unity-specific components and will be
what we focus on throughout this book.

What Is GitHub?
GitHub is a commonly used website among developers for storing and sharing software
project files. It allows for careful monitoring and approval/rejection of changes to project
files, making it an ideal platform when many developers are using and modifying a
project at the same time.

HoloToolkit Help and Documentation
As of this writing, finding all documentation for HoloToolkit components is admittedly
challenging and somewhat fragmented. I’ve included a few links here to help you quickly
access documentation for the HoloToolkit:

•	 https://github.com/Microsoft/HoloToolkit-Unity/blob/
master/README.md: The “readme” section of HoloToolkit-Unity
contains detailed documentation on each of the seven features/
modules included in the HoloToolkit.

https://github.com/Microsoft/HoloToolkit
https://github.com/Microsoft/HoloToolkit-Unity
https://github.com/Microsoft/HoloToolkit-Unity
https://github.com/Microsoft/HoloToolkit-Unity/blob/master/README.md
https://github.com/Microsoft/HoloToolkit-Unity/blob/master/README.md

Chapter 4 ■ Introduction to the HoloToolkit

93

•	 https://github.com/Microsoft/HoloToolkit-Unity/wiki:
The wiki of HoloToolkit-Unity contains some additional context
and background for several features. I recommend reading the
material here first, before reading the detailed documentation
from the readme sections. The HoloToolkit wiki includes some
links in the home page and some additional links in the Pages
bar on the right of the wiki’s web page. Don’t forget to check out
https://github.com/Microsoft/HoloToolkit-Unity/wiki/
HoloToolkit-Menu to learn more about the HoloToolkit menu.

•	 https://github.com/Microsoft/HoloToolkit-Unity/blob/
master/GettingStarted.md: The “getting started” instructions for
the HoloToolkit include some basic information to help you set
up a new project.

•	 https://github.com/Microsoft/HoloToolkit-Unity/issues:
The issues section of the HoloToolkit is important for
understanding any outstanding issues that you may experience
while using the HoloToolkit. If you discover any new issues, this is
also where you can report them.

Summary
This chapter familiarized you with the seven HoloToolkit features or modules. You
learned what the HoloToolkit is and got a sense of its importance when developing Mixed
Reality experiences. You saw how to download and install the HoloToolkit, how to try test
scenes that are included with the HoloToolkit, and how to navigate the online repository.

The HoloToolkit is an active community resource that’s constantly changing and
evolving. New features are added almost daily, and old features are depreciated (deleted
or made obsolete). As such, I recommend you explore the HoloToolkit and discover any
new and amazing features that may have been added. And as you continue your Mixed
Reality journey, you will likely contribute new and exciting content to the HoloToolkit
that will benefit other users too.

https://github.com/Microsoft/HoloToolkit-Unity/wiki
https://github.com/Microsoft/HoloToolkit-Unity/wiki/HoloToolkit-Menu
https://github.com/Microsoft/HoloToolkit-Unity/wiki/HoloToolkit-Menu
https://github.com/Microsoft/HoloToolkit-Unity/blob/master/GettingStarted.md
https://github.com/Microsoft/HoloToolkit-Unity/blob/master/GettingStarted.md
https://github.com/Microsoft/HoloToolkit-Unity/issues

95© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_5

CHAPTER 5

Interacting with Holograms

In this chapter, you’ll learn about input mechanisms used with Mixed Reality
development. There are several ways in which users can interact with holograms and
other elements within an application. These include hand gestures, voice commands,
gaze, and controllers. We’ll walk through each input method and learn how to use input
resources found in the HoloToolkit.

Input Methods
Each input method used with Windows Mixed Reality has its benefits and limitations.
The following list provides a description for each input category:

•	 Gaze: The use of Gaze in Windows Mixed Reality is the primary
method by which the user focuses on holograms and objects. In
fact, gaze is as essential to Mixed Reality as the mouse is to the PC.
You use the mouse to point at objects on your PC screen. In the
same way, you use your gaze (the direction you look) to point to
objects in 3D space. On a PC screen, the location of your mouse
is represented by a cursor or arrow. The gaze cursor is typically
represented by a small dot or donut-shaped object. Currently,
gaze is controlled by the movements of your head and not the
physical gaze of your eyes. There are many ways to use gaze in
Mixed Reality, such as pointing at objects, pointing at far-away
locations (for use in teleportation), and having objects follow
your gaze.

•	 Gestures: Gestures involve the use of your hands to control and
manipulate your experience within Mixed Reality. Windows
Mixed Reality devices such as the HoloLens heavily rely on the
use of gestures for interacting with holograms. As of this writing,
there are a limited selection of gestures, including the select or
air-tap gesture, home or bloom gesture, hold, manipulation, and
navigation. You’ll learn about how to use each of these in this
chapter.

Chapter 5 ■ Interacting with Holograms

96

■■ Note S ome Mixed Reality headsets may not have the sensors to support gestures and
instead rely on motion controllers as their primary form of input.

•	 Voice: Voice input is the use of voice commands to interact with
your Mixed Reality experience. Voice commands are extremely
useful when developing Mixed Reality applications because they
allow a high-level of control and customization without creating
a cluttered UI. Users can say a word or series of words to select
objects, activate features, and enhance their experience. Voice
can also be used to dictate words and sentences (speech-to-text)
for fast text input instead of using a keyboard.

•	 Motion controllers: Motion controllers are the primary input
method for immersive Windows Mixed Reality headsets.
Motion controllers are handheld controllers with precise spatial
positioning features for accurately interacting with virtual objects.

•	 Other hardware: In addition to the primary input methods listed
already, there is a wide range of hardware options that can be
used with Windows Mixed Reality headsets. These include
devices such as Bluetooth keyboards and mice, Bluetooth
gamepads, clickers, and other Bluetooth accessories.

Later in this chapter, I’ll walk you through how to utilize each input method in your
Mixed Reality application.

Gaze Tutorial
This section covers some key elements used with the gaze input method. I’ll show
you how to use cursors to represent your gaze and provide an overview of how gaze is
implemented in code.

Step 1: Set Up the Unity Scene
For this tutorial, we’ll use a test scene from the HoloToolkit. If you haven’t already, be sure
to set up Unity for Mixed Reality development as described in Chapter 4. You may also
refer to Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the Cursor test scene (or cursor.unity) in your project panel by using the search
bar or locating it within the folder structure. Drag the test scene into your Hierarchy, as
shown in Figure 5-1. Be sure to unload (disable) all other scenes that you might have
open.

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 5 ■ Interacting with Holograms

97

Step 2: Try the Scene
Within the Cursor scene, you should only see a sphere. Go ahead and try the scene
by clicking the play button. Feel free to test within the Unity Editor—use holographic
remoting to your device or deploy the application to your device.

When you’re looking at the sphere (gazing at the sphere), your cursor becomes a
torus (donut shape), as shown in Figure 5-2. When you gaze off the sphere, your cursor
becomes a fuzzy dot, as shown in Figure 5-3.

Figure 5-1.  Open the Cursor test scene from the HoloToolkit

Figure 5-2.  When playing the scene, your gaze cursor will turn into a torus and follow the
contour of the sphere

Chapter 5 ■ Interacting with Holograms

98

■■ Tip  By default, the test scene includes the ability for you to easily navigate your scene
using your mouse and keyboard. This is useful if you want to do a quick test without
your headset. Hold down the right mouse button and move the mouse to simulate head
movements for gaze. Hold the Shift button or spacebar to simulate holding your hand in front
of the HoloLens. Left-click to simulate an air-tap gesture (while holding Shift or spacebar).
Use the keyboard arrow keys to walk around your environment.

Go ahead and stop the simulation when you’re done testing the scene by clicking the
play button again.

Step 3: Understand the Scene
Now that you’ve experienced the test scene and had some fun, it’s time to understand
how this scene works and how you can use elements from this scene in your own project.
Let’s start with the Hierarchy and work our way through the elements shown.

There are two primary objects in this scene that are important for gaze. The first
is the InputManager object, which contains several important scripts, as shown in
Figure 5-4. The second is the Cursor object, which contains two cursors: one for when
your gaze is pointing to a hologram (the CursorOnHolograms object) and another for
when your gaze is not pointing at a hologram (CursorOffHolograms object), as shown
in the Hierarchy in Figure 5-4. Many of the other objects shown relate to gesture inputs,
Unity Editor navigation options, and other features that we’ll cover later.

Figure 5-3.  When your gaze is not pointed at the sphere, your cursor becomes a fuzzy dot

Chapter 5 ■ Interacting with Holograms

99

If you highlight the InputManager object in the Hierarchy, you’ll see several scripts
in the Inspector (see Figure 5-4). The most important of these is the GazeManager.cs
script (circled). The Gaze Manager manages everything related to a gaze ray that can
interact with other objects. The Gaze Manager creates an invisible ray or “beam” from
the HoloLens, pointing in the direction the user is facing. The Gaze Manager script also
captures information about the object that the ray hits and which objects to ignore.

The ray only extends as far out as the Max Gaze Collision Distance value that you can
specify in the Inspector (see Figure 5-4). If a hologram is farther away than this distance,
the ray won’t touch the hologram, even if the user is looking directly at the hologram.

Stabilization scripts are important gaze-related scripts within the InputManager
object that help reduce the jitter or shakiness of the experience.

Because the gaze ray is invisible, we want to use a cursor to represent where the user
is gazing and whether the gaze ray is touching a hologram that’s in front of the user. For
this, we can see the cursor prefab, which is highlighted in the Hierarchy in Figure 5-5.
The cursor prefab is a nice package that works seamlessly with the Gaze Manager script.
It represents the end of your gaze ray with a fuzzy dot when the gaze ray is not touching
a hologram. As mentioned, if the gaze ray touches a hologram, a donut-shaped cursor
appears at the point where the gaze ray touches the hologram (refer to Figures 5-2 and
Figure 5-3 for examples). The ObjectCursor.cs script obtains the gaze ray status from the
GazeManager.cs script and controls the behavior of the cursor.

Figure 5-4.  Important objects in the Cursor scene for the gaze input method

Chapter 5 ■ Interacting with Holograms

100

I encourage you to explore the various cursor settings in this prefab to see how the
behavior of your cursor changes as you adjust values.

Step 4: Use Gaze in Your Project
Now that you have a basic understanding of the important components of the gaze input
method and the cursor, you that some required scripts and objects are needed to create
your own gaze and cursor functionality. Let’s review what these are:

•	 InputManager prefab: Contains the GazeManager.cs script for
gaze and stabilization scripts to reduce jitter and improve visual
performance.

•	 Cursor prefab: Contains scripts and cursor objects to help users
visualize the endpoint of the gaze ray and when the gaze ray
touches a hologram.

One option for applying these settings to a new project scene is to search for
(or navigate to) these prefabs and drag them into your Hierarchy. Often it’s far more
efficient to start with a pre-existing scene that already includes these core items and then
use that “template scene” as a foundation for building your application. The Cursor test
scene used in this section does not contains other core functionality (such as gesture and
voice input capabilities) and is therefore too limited to be used as an effective template.
As we walk through other input methods in this chapter, we will arrive at a full-featured
test scene that you can repeatedly use as your template scene each time your start a
new project.

Figure 5-5.  The cursor prefab (highlighted in blue) equips your project with a handy cursor

Chapter 5 ■ Interacting with Holograms

101

Gestures Tutorial
In this section, I’ll walk you through using gestures in your application. We’ll explore the
various classes of gestures and the use cases in which each are appropriate. We’ll take a
look at the code to see how gestures are implemented.

Step 1: Load the Test Scene
For this tutorial, we’ll be loading the InputManagerTest.unity scene. As you’ve done with
previous test scenes, search or browse for the InputManagerTest and drag it into your
Hierarchy, as shown in Figure 5-6. Unload any other scenes that you might have open.

Figure 5-6.  Open the InputManagerTest scene. This wonderful test scene is a playground
for experimenting with gestures and inputs.

As shown in Figure 5-6, you’ll immediately be greeted with a friendly display
reminiscent of an intriguing science fair display.

Step 2: Try It Out
As before, go ahead and try this test scene out by clicking the play button in the Editor,
remoting to your device, or deploying to your device. Some features highlighted in this
demo include pop-up menus, cursor functionality, the ability to tap objects, the ability to
drag/move objects, and more.

Chapter 5 ■ Interacting with Holograms

102

Are you interested in learning more about something you see in the demo? After you
exit the demo (by clicking play again), you can select objects of interest within the scene
window and view the Inspector to explore which scripts and components are responsible
for the object’s behavior. In Figure 5-7, I select the red cube in order to view the object’s
components in the Inspector panel on the right.

Figure 5-7.  To learn more about how each object and feature works in this test scene,
highlight the object of interest and explore the components in the Inspector panel on the right

There are many features of interest in this scene. The previous section already
covered some of the cursor and gaze-related topics. We’ll walk through some other key
features in the next few steps.

Step 3: Use Air-Tap or Select Gesture
The most important gesture for Windows Mixed Reality devices is the select gesture. For
the HoloLens, this is synonymous with the air-tap gesture. It’s equivalent to the mouse
click on a PC.

Let’s explore one of the objects in our test scene that responds to the select gesture.
As shown in Figure 5-8, there are three squares in the middle panel that change color
when they’re selected or air-tapped.

Chapter 5 ■ Interacting with Holograms

103

When you select any of the three square objects, you will notice only one component
in the Inspector panel—the TestButton.cs script, as shown in Figure 5-9.

Figure 5-8.  Each of the three squares in the middle panel responds to the air-tap or select
gesture by changing color

Figure 5-9.  Select one of the three squares in the Unity editor to display the object’s
components in the Inspector panel

Open the TestButton.cs script in Visual Studio by double-clicking the script in the
Editor or in the Project panel. As mentioned in the script’s summary text, this script can
be added to any object (including objects in your projects) in order to make it intractable.

Chapter 5 ■ Interacting with Holograms

104

■■ Note O ften, HoloToolkit scripts don’t work independently. You’ll need to ensure that the
necessary prefabs and scripts are loaded into your scene. For example, any gesture-related
script relies on the presence of the InputManager prefab in your scene.

There’s a lot of C# code in the TestButton.cs script. Let’s look at the core piece that
activates upon detection of an air-tap or select gesture. Note that I’ve removed the code in
the function in order for us to focus on the important pieces:

public void OnInputClicked(InputEventData eventData)
{
 //Do Stuff Here!
}

Add this piece to any of your scripts to perform tasks when you click/select/air-tap
an object that contains your script. You’ll also need the InputManager prefab in your
scene as well as proper setup of your script (such as inclusion of appropriate HoloToolkit
namespace and IInputClickHandler class, as seen at the beginning of the TestButton.cs
script).

Step 4: Enter and Exit Focus
You’ll notice that each of the three squares from Step 3 responds to the user’s gaze by
increasing in size when gazed upon and decreasing in size when no longer gazed upon.
This behavior is made possible by the following pieces in the TestButton.cs script:

public void OnFocusEnter()
{
 // Do something when your gaze enters the object
}

public void OnFocusExit()
{
 // Do something when your gaze exits the object
}

The OnFocusEnter() function is activated when the user’s gaze enters the object that
this function references. The OnFocusExit() function is activated when the user’s gaze
exits the object.

There are limitless opportunities for these functions! To name a few examples:

•	 Play a noise when gazing on an object

•	 Change an object’s color when gazing on it

•	 Make an object smaller or larger when gazing on it

•	 Make objects disappear when gazing on it

Chapter 5 ■ Interacting with Holograms

105

As with other input scripts in this section, these functions cannot be used in
isolation. You will also need the InputManager prefab in your scene as well as proper
setup of your script (such as inclusion of appropriate HoloToolkit namespace and
IInputClickHandler class, as seen at the beginning of the TestButton.cs script).

Step 5: Move Objects
If you haven’t already, try moving the red cube and sphere near the bottom of the test
scene’s exploratory area, as shown in Figure 5-10. You can move these objects by tapping
on a gazed object, holding your finger down and moving your hand. Make sure that
you’re playing the scene in the Editor or remoting to your device, or that the application is
deployed to your device.

Figure 5-10.  Movable objects in the test scene can be moved by tapping and holding with
your finger and moving your hand

Objects are made movable by adding a script called HandDraggable.cs. Figure 5-11
shows the Inspector panel for the Movable Sphere object in the test scene. For your own
project, be sure that the InputManager prefab is already added to your scene, because the
HandDraggable.cs script relies on it. As shown in Figure 5-11, the script contains several
customizable options in the Inspector panel. Let’s walk through these:

Chapter 5 ■ Interacting with Holograms

106

•	 Host Transform: If you want to move an object other than the
object that the script is attached to, you reference the object
that you want to move in this field. An example application for
Host Transform is a virtual joystick, where a user may control a
joystick, but another object (perhaps a game character) may be
the object that moves.

•	 Distance Scale: Think of this as a sensitivity factor. If the scale is
very large, then small movements of your hand will be multiplied
by this scale and mean very large movements for your object.
For very fine manipulations, keep this scale small. For very large
movements, increase the scale. You will need to explore various
values to find a good range for your project.

•	 Is Keep Upright: Enable this to keep the object oriented upright as
you move it around.

•	 Is Orient Towards User: Enable this to always orient the object
toward the user as it is being moved.

•	 Is Dragging Enabled: Enable this to allow the object to move when
dragged.

Figure 5-11.  Making an object movable is easy. Just add the HoloToolkit’s HandDraggable.
cs script to any game object that you want to make movable.

It’s important to ensure that a collider is attached to the object you want to control.
The collider allows your gaze to “collide” with the object and lets gestures be directed to
the object on which you’re focused. In Figure 5-11, you see the selected sphere’s collider
as Sphere Collider in the Inspector panel.

Chapter 5 ■ Interacting with Holograms

107

Step 6: Implementing Gestures in Your Application
Now that you have a basic understanding of the gesture input methods, you know that
required scripts and objects are needed to create your own gesture functionality. Let’s
review what these are:

•	 InputManager prefab: Contains the InputManager.cs script that
tells your application how to direct gesture events. Contains the
GazeManager.cs script for gaze and stabilization scripts to reduce
jitter and improve visual performance.

•	 Cursor prefab: Contains scripts and cursor objects to help users
visualize the endpoint of the gaze ray and when the gaze ray
touches a hologram. Gaze and cursors are necessary for gestures
to function and are useful for telling your application which
object you’re currently focusing on, which is generally the object
that will also receive gesture events.

•	 HandDraggable.cs: If this script is attached to an object in the
scene, it allows that object to become draggable with a gesture or
to control another object’s movements.

•	 Gesture/gaze code elements: These are elements that can be
included in your code to respond to gesture and gaze events.
A few examples are OnInputClicked() for responding to air-taps
or select gestures, OnFocusEnter() for gazing on an object, and
OnFocusExit() for gazing off an object.

The InputManagerTest scene that we’ve been exploring in this section is an excellent
template scene to use when starting new projects. It contains the essential prefabs just
listed and several unique examples that you can modify or expand for your project.
As you gain experience, you may also consider building your own template scene that
contains components you regularly use. If you want to start with one of the test scenes
provided with the HoloToolkit, modify it, and save it as your own template scene, you may
do so by selecting the scene in your Hierarchy and in the menu bar clicking File ➤ Save
Scene As.

Voice Command Tutorial
This section walks you through key elements needed to enable voice commands in your
Mixed Reality application. Voice commands are extremely useful when developing Mixed
Reality applications because they allow a high level of control and customization without
creating a cluttered UI. Users can say a word or series of words to select objects, activate
features, and enhance their experience.

Often, my arms get fatigued when air-tapping for long periods of time. When this
happens, I switch to using voice commands by saying “select” instead of air-tapping. This
is one example of the power of voice commands. Well-thought-out use of voice in your
application is key to making a good user experience.

Chapter 5 ■ Interacting with Holograms

108

As before, we’ll start with a HoloToolkit test scene to explore how voice commands
work for Windows Mixed Reality.

Step 1: Load the Test Scene
For this tutorial, we’ll be loading the FocusedObjectKeywords.unity scene. As you’ve
done with previous test scenes, search or browse for the FocusedObjectKeyword and drag
it into your hierarchy, as shown in Figure 5-12. Don’t forget to unload any other scenes
that you might have open.

Figure 5-12.  Open the FocusedObjectKeyword test scene to explore how to use voice
commands in your application

Step 2: Try It Out
As before, go ahead and try out this test scene by clicking the play button in the Editor,
remoting to your device, or deploying to your device.

■■ Important  Be sure to add the microphone capabilities in your app when using voice
commands. In Unity, you can check the Microphone option at Edit ➤ Project Settings ➤
Player ➤ Settings for Windows Store ➤ Publishing Settings ➤ Capabilities.

Chapter 5 ■ Interacting with Holograms

109

Upon starting the test scene, you should see a few game objecs, such as cubes and
spheres. When you gaze on an object, it will be highlighted in red, as shown in Figure 5-13.
When your gaze is focused on an object, try saying out loud, “Make bigger,” or, “Make smaller,”
and watch as the selected objects resize. If you’re testing via the Unity Editor, the voice
commands should work if you have a microphone attached to your PC (or if you have build-in
microphone or microphone integrated into your webcam).

Figure 5-13.  Upon playing the test scene, you’ll see several objects. Gaze on an object to
highlight it and try saying out loud, “Make bigger,” or, “Make smaller”

Step 3: Understand the Scene
Now that you’ve had some fun trying out voice commands, let’s take a deeper look at
what makes this experience possible. As shown in Figure 5-14, several items are included
in the Hierarchy of the FocusedObjectKeywords test scene.

Chapter 5 ■ Interacting with Holograms

110

By now, you should be very familiar with some of the objects shown, such as the
InputManager prefab and the Cursor prefab. You will also see FocusedGridGenerator in
the Hierarchy, which is a prefab that generates the grid of cubes and spheres. Although
that generator is not the focus of this section, I encourage you to explore the scripts and
methods that make spawning objects possible.

The key prefab in this scene is the FocusedObjectKeywordManager prefab. As
you can see in Figure 5-14, the prefab contains two scripts: KeywordManager.cs and
FocusedObjectMessageSender.cs. Here’s a basic overview of how this prefab works:

	 1.	 First, the KeywordManager.cs script starts the keyword
recognizer, so that your microphone is constantly listening for
the voice commands that you provide it in the Inspector. In
this case, the pre-loaded voice commands are Make Smaller
and Make Bigger.

	 2.	 When you say a voice command or phrase, KeywordManager.
cs will check to see if it matches the provided word or phrase.
If there’s a match, the script will trigger a message. For
example, the message associated with the Make Bigger voice
command is OnMakeBigger.

	 3.	 The FocusedObjectMessageSender.cs script is responsible
for sending the message triggered in #2 to the object that is
currently being gazed upon.

	 4.	 Once the message is sent to the object, the object must have
a script to respond to the message. In our case, each of the
spawned objects has OnMakeSmaller() and OnMakeBigger()
methods in its ScaleObjectMessageReceiver.cs script.

Figure 5-14.  Voice commands are made possible by the FocusedObjectKeywordManager
prefab

Chapter 5 ■ Interacting with Holograms

111

Step 4: Add Your Own Voice Command
The best way to learn how something works is to try it yourself. Let’s add another voice
command to the existing set. The objects currently grow when you say, “Make bigger,”
and they shrink when you say, “Make smaller.” Let’s add a voice command for Move Up to
have the objects move upward.

In the FocusedObjectKeywordManager prefab, look for the KeywordManager.cs
script and edit the Size field in the Inspector from 2 to 3, as shown in Figure 5-15. This
means we’re changing the number of voice commands from two to three.

Figure 5-15.  Add your own voice command by increasing the Size field and customizing
keywords in the KeywordManager.cs script

Once you increase the Size to 3, you’ll notice that a new keyword entry appears in
the Inspector. You may need to expand the new entry to edit it. Go ahead and change the
Keyword field to Move Up. The keyword is the voice command. Be careful not to put any
spaces before the keyword, because that would prevent the code from recognizing your
voice command.

Under the Response section, add the message OnMoveUp, as shown in Figure 5-15.
Note that my use of Move Up and OnMoveUp are completely arbitrary—you could also
write your own custom keywords and messages.

■■ Tip  If you wanted multiple voice commands to trigger the same action, you can keep
adding keywords while keeping the same message. For example, you could add Move Up,
Move Upward, and Go Up, and for each keyword use the same message of OnMoveUp.

Chapter 5 ■ Interacting with Holograms

112

Now every time you say, “Move up,” a message of OnMoveUp will be sent to the
object you’re gazing upon. However, the objects in the scene won’t know what to do when
they receive the OnMoveUp message. We need to add a method called OnMoveUp() to the
script on the game object. Let’s take a look at the script attached to the game objects.

You can find the script by searching your Project panel for
ScaleObjectMessageReceiver.cs or you can find it in the Inspector by going to the
FocusedGridGenerator prefab in your Hierarchy and then double-clicking either
FocusedObjectCube or FocusedObjectSphere in the Inspector panel. You’ll see
ScaleObjectMessageReceiver.cs attached to the object.

When you open this script, you’ll see both the OnMakeBigger() and
OnMakeSmaller() methods. Go ahead and create the OnMoveUp() method by typing in the
following code:

public void OnMoveUp()
{
 transform.Translate(0.0f, 0.2f, 0.0f);
}

This small addition simply moves the object upward (in the Y-direction) by 0.2 units.
Go ahead and try out your shiny new voice command. Gaze on each object and say,

“Move up,” and you’ll see the object move up.

Step 5: Use Voice Commands in Your Own Project
Congratulations! You’ve successfully uncovered how voice commands work with
Windows Mixed Reality and how to add your own voice commands to the existing test
scene. Adding voice commands to a new scene or a different scene is a simple process.
Let’s review what you need to do to enable voice commands in your own project:

•	 Add the FocusedObjectKeywordManager prefab from the
HoloToolkit to your scene.

•	 Within this prefab, change the Size variable to be the number
of keywords or voice commands that you would like to have.
A keyword can be a word or a phrase.

•	 Once you specify the number of keywords, specify what each
keyword will be (the voice command that the user will say out loud).

•	 For each keyword, be sure to specify at least one message. The
message will be sent to the object on which you gaze. You can
also press the + button near the lower right corner of the keyword
manager script responses in the inspector panel (See Figure 5-15) to
add additional objects and messages—for example, if you wanted
to implement a universal voice command, regardless of gaze.

Implementing voice commands in Windows Mixed Reality is relatively simple
yet greatly enhances the user experience of your application. Next I discuss some best
practices for using voice in your application.

Chapter 5 ■ Interacting with Holograms

113

Best Practices for Voice Commands
Voice commands are an excellent way for users to interact with Mixed Reality
applications. Here are some best practices to keep in mind for implementing voice in
your application:

•	 Use keywords that have two or more syllables. This helps voice
recognition for a wide range of accents.

•	 Design your app for users accidentally triggering voice
commands. Allow users to undo an action, where appropriate
(for example, when deleting an object by accident).

•	 Make sure all voice commands are distinctive. If two or more
commands sound similar, the voice recognizer may activate the
wrong command.

•	 Make sure your voice commands are easily recognized across a
range of accents whenever possible.

•	 Voice commands are a wonderful way to quickly access nested
menus or other situations in which multiple gestures may be
required.

•	 Consider providing the user with a list of voice commands if the
UI doesn’t already reveal what they are.

•	 Put a microphone icon next to buttons that can be tapped or
activated with a voice command. If possible, make all buttons and
UI elements voice-enabled.

Other Hardware Input
A wide range of hardware options can be used with Windows Mixed Reality headsets.
These include devices such as motion controllers, Bluetooth keyboards and mice,
Bluetooth gamepads, clickers, and other Bluetooth accessories.

Although it’s considered a best practice to avoid using traditional PC hardware
(keyboards and mice) for Mixed Reality experiences, there may be some applications
where these input methods are appropriate.

Gamepads are an excellent choice for applications that may involve moving a
third-person object, such as a game character, holographic helicopter, or holographic
race car.

Motion controllers are wireless handheld controllers with six degrees of freedom for
accurate placement and manipulation of 3D objects. They are an excellent form of input
for immersive Mixed Reality Headsets. These controllers were first announced at the
Microsoft Build conference in 2017 but were not yet available at the time of this writing.

Chapter 5 ■ Interacting with Holograms

114

Summary
Congratulations! This chapter covered the primary forms of input for Windows Mixed
Reality headsets. We walked through several tutorials on how gaze, gestures, and voice
commands work with Mixed Reality. We learned how to enable these features in our
own application and how to leverage the HoloToolkit to easily implement powerful input
features.

As you continue your Mixed Reality development journey, keep in mind that the
industry is still in its infancy. Everyone generally agrees that input methods for Mixed
Reality devices are somewhat clunky and awkward at times, lacking precision and
elegance. Think about what an ideal input experience would be like, and don’t be afraid
to try out new ways of interacting with your virtual environment. You never know who will
introduce an input method as relevant to Mixed Reality as the mouse was to the PC.

115© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_6

CHAPTER 6

Using Spatial Mapping

In this chapter, you’ll learn how to use one of the most defining features of Windows
Mixed Reality headsets like the HoloLens: spatial mapping. You’ll learn how to apply
spatial mapping in Unity using the HoloToolkit and unwrap some neat tricks that you can
do with spatial mapping. You’ll learn how to identify walls, floors, ceilings, and chairs.
You’ll also learn how to anchor digital objects to your physical environment, and how to
save those anchors so that your digital objects will persist where you left them, even after
closing and re-opening your app.

What Is Spatial Mapping?
Devices like the HoloLens are constantly tracking their environment and building a 3D
model of the area that they’re in. This is called spatial mapping. Without spatial mapping,
holograms wouldn’t be able to be set on floors and tables, or be pinned to walls. Objects
in other rooms would still be visible, degrading the user’s experience.

Spatial mapping is important for several reasons:

•	 Occlusion: This tells the HoloLens which holograms to hide from
view. For example, if you place a hologram in your hallway and
then walk into another room, the spatial map of that room’s walls
will prevent you from seeing the hologram in your hallway. If
there were no spatial map, you’d see the hologram as if it were
visible through your walls, causing an unrealistic experience.

•	 Placement: This allows users to interact with the spatial map—for
example, to pin items to your walls, allow characters to sit on your
sofa (as seen in Microsoft’s Fragments app), or automatically
decorate your surroundings.

•	 Persistence: This allows for holographic persistence, which is the
ability for holograms to stay where the user left them, even after
turning off the device. Your HoloLens will (remarkably) be able to
remember your space and restore any holograms you had placed
in that space.

Chapter 6 ■ Using Spatial Mapping

116

•	 Physics: This allows objects to collide with or bounce off
your walls, furniture, and floors, resulting in a more realistic
experience.

•	 Navigation: Use gaze to allow game characters and other
holograms to follow along mapped surfaces.

For more information on spatial mapping and the sensors involved, see Chapter 1.

Spatial Mapping Tutorial
In this section, I walk you through setting up some basic spatial mapping capabilities.
I show which elements from the HoloToolkit are needed to enable spatial mapping and
provide some tips for a good experience.

Step 1: Set Up Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t done so already, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the TapToPlace test scene (or TapToPlace.unity) in your Project panel by
using the search bar or find it within the folder structure. Drag the test scene into your
Hierarchy, as shown in Figure 6-1. Be sure to unload (disable) all other scenes that you
might have open.

Figure 6-1.  Open the TapTopPlace scene from the HoloToolkit to explore a basic
implementation of spatial mapping

http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using Spatial Mapping

117

Step 2: Try It Out
The next step is to try it out by clicking the play button.

If you have a HoloLens or similar Windows Mixed Reality device, I highly recommend
using Unity’s holographic remote to device feature (see Chapter 3 for a discussion and
tutorial on holographic remoting) in order to experience spatial mapping of your physical
environment. You may also deploy the app to your HoloLens.

If you don’t have a device, or prefer not to use it for this test, be sure to use Simulate
in Editor with Unity’s holographic emulation (again, see Chapter 3 for more information
on this) in order for spatial mapping to work.

■■ Tip  When using the Simulate in Editor mode of Unity’s holographic emulation, Unity
will load in a 3D model of a room or area that you can use to test your spatial mapping
capabilities without using a headset. Unity provides several different rooms and spaces
that you can use. To chose a 3D space, use the Room drop-down menu in the holographic
emulation window.

After clicking the play button, you’ll see the scene’s cube in your area, but you won’t
be able to see the spatial map. After tapping the cube, the spatial map will appear, and the
cube will follow your gaze, as shown in Figure 6-2. If wearing the HoloLens, you’ll see the
spatial map well aligned to your physical surroundings, as shown in Figure 6-3. When you
tap a second time, the spatial map will become invisible again.

Figure 6-2.  View of the spatial map, as seen through the Unity Editor

http://dx.doi.org/10.1007/978-1-4842-2769-5_3
http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 6 ■ Using Spatial Mapping

118

As you can see, the rendering of the spatial map is a collection of vertices, edges, and
faces. It looks like a net covering your surroundings (later we’ll see how to change the
spatial mapping appearance). The 3D object generated by spatial mapping is often called
the spatial mapping mesh.

Step 3: Understand the Scene
Now that you’ve had the opportunity to experience spatial mapping, let’s dig into our
scene to learn about the key components that make spatial mapping possible.

Looking at the scene’s Hierarchy, we see some familiar items that we’ve already
learned about in Chapter 5, including the InputManager prefab and the BasicCursor
prefab. There is one unfamiliar item in our Hierarchy: the SpatialMapping prefab, as
shown in Figure 6-4.

Figure 6-3.  When viewed through the HoloLens, the spatial map will align well with your
physical surroundings

http://dx.doi.org/10.1007/978-1-4842-2769-5_5

Chapter 6 ■ Using Spatial Mapping

119

This small prefab, containing only three scripts, is all that’s responsible for spatial
mapping. You can easily find this prefab in the HoloToolkit and drag it into your project to
enable spatial mapping. This is yet another example of how the HoloToolkit makes it easy
for developers to quickly and efficiently set up a Windows Mixed Reality project.

Let’s walk through each of the three scripts in the SpatialMapping prefab.

•	 SpatialMappingObserver.cs: This script is responsible for
managing the surfaces observed on the HoloLens and renders
them so they can be displayed in the scene. You can adjust the
resolution of the spatial map in the Inspector panel using the
Triangles Per Cubic Meter field. You can also adjust how far out
from the HoloLens you want to observe by adjusting the Extents
variables, and you can specify how often to process spatial
mapping updates using the Time Between Updates field.

•	 SpatialMappingManager.cs: This script allows you to choose to
load a saved spatial mapping mesh or collect data in real time
from the HoloLens. To help with performance and avoid the
processor-intensive task of constantly scanning a room, it can
be beneficial to save the current room to memory and only scan
occasionally or as needed. In the Inspector panel, you may also
select the material to use for rendering the spatial mapping data.

•	 ObjectSurfaceObserver.cs: This script is used when you’re not
using a HoloLens device for spatial mapping but instead are using
a pre-existing 3D model of a room or area within the Unity Editor.
You can specify a custom 3D model in the Inspector panel.

Figure 6-4.  The SpatialMapping prefab is all that’s needed to enable spatial mapping in
your project

Chapter 6 ■ Using Spatial Mapping

120

In addition to the scripts in the SpatialMapping prefab, the Cube game object also
has a script attached to it called TapToPlace.cs, which is responsible for making the Cube
interactive and placeable on the spatial mapping mesh. There’s also a new script called
WorldAnchorManager.cs. If you click the Managers item in the Hierarchy, you’ll see this
script. I discuss world anchors and spatial anchors in greater depth later in this chapter.

Step 4: Use Spatial Mapping in Your Application
As mentioned in the previous step, enabling spatial mapping in your application is as easy
as dragging the SpatialMapping prefab from the HoloToolkit to your project Hierarchy.
Simply use the Project panel’s search bar to find the SpatialMapping prefab or navigate to
it in the directory, as shown in Figure 6-5.

Figure 6-5.  To apply spatial mapping to your application, simply apply the
SpatialMapping prefab from the HoloToolkit to your scene’s Hierarchy

You must also enable SpatialPerception to your Unity application by going to
Edit ➤ Project Settings ➤ Player ➤ Settings for Windows Store ➤ Publishing Settings ➤
Capabilities. See Figure 6-6 for an illustration of this setting.

Chapter 6 ■ Using Spatial Mapping

121

Spatial Plane Finding Tutorial
Rather than just applying a digital mesh “blanket” over physical surfaces, we can leverage
the HoloLens’ computational power to find planes in our environment. In this section,
I walk you through enabling plane finding in your application and discuss why plane
finding is important.

Step 1: Set Up the Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t already done so, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the PlaneFinding test scene (or PlaneFinding.unity) in your Project panel by
using the search bar or finding it within the folder structure. Drag the test scene into your
Hierarchy, as shown in Figure 6-7. Be sure to unload (disable) all other scenes that you
might have open.

Figure 6-6.  Be sure to enable SpatialPerception in Unity’s Publishing settings for spatial
mapping to work

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using Spatial Mapping

122

Upon loading the scene, you should see a 3D model of a room. You may notice that
this scene doesn’t use spatial mapping but rather the pre-existing room model. We’ll try
out plane finding on a real spatial mapping mesh later in this section.

Step 2: Try It Out
Go ahead and click the play button to start exploring the scene. This scene is intended to
be experienced within the Unity Editor, so we won’t be using the headset.

To see the identified planes, switch to the scene view while in Play mode. You will be
able to visualize the planes, as shown in Figure 6-8.

Figure 6-7.  Open the PlaneFinding scene to explore the HoloToolkit’s spatial mapping
plane finding feature

Chapter 6 ■ Using Spatial Mapping

123

While in the scene view, feel free to adjust the parameters for PlaneFindingTest.cs in
the Inspector panel (you’ll need to select the PlaneFinding item in the Hierarchy to see
the script).

This scene provides a controlled environment to test plane finding and allows you to
carefully explore parameters.

Step 3: Load the Spatial Processing Scene
Now that you’ve had the opportunity to explore a basic plan finding scene and
implementation, let’s expand this capability to an actual spatial mapping mesh. Find and
load the SpatialProcessing scene (SpatialProcessing.unity), as shown in Figure 6-9, and
unload the PlaneFinding scene.

Figure 6-8.  Identified planes can be seen while the scene is running and you’re in the scene view

Chapter 6 ■ Using Spatial Mapping

124

Step 5: Try Out the SpatialProcessing Scene
Try out the spatial processing scene by clicking the blue play button while using Unity’s
holographic emulation or deploying to your device. At first you’ll see the regular spatial
mapping mesh, but after a few seconds the spatial mapping mesh will be replaced
with large white rectangles representing the identified planes of the room, as shown in
Figure 6-10.

Figure 6-9.  Load the SpatialProcessing scene and disable the PlaneFinding scene

Figure 6-10.  After a few seconds, the spatial processing feature will identify planes and
replace the spatial mapping mesh with white planes

Chapter 6 ■ Using Spatial Mapping

125

Step 6: Understand the SpatialProcessing Scene
When I first tried the SpatialProcessing scene while wearing the HoloLens, I was
overjoyed at seeing how perfectly aligned the planes were to my walls. SpatialProcessing
is made possible by the SpatialProcessing item in the Hierarchy, which includes three
important scripts, as shown in Figure 6-11.

Figure 6-11.  The SpatialProcessing object (highlighted in blue) contains three important
scripts, as can be seen in the Inspector panel

Let’s walk through each of these three scripts to see how they come together for
visualizing planes in our environment:

•	 SpatialProcessingTest.cs: This script allows you to control a variety
of settings related to spatial processing. You’ll notice that you can
adjust these settings directly from the Inspector panel. The first
field is the Scan Time, which is the number of seconds to allow
the SurfaceObserver to scan the environment. The longer the
scan time, the more time you’ll have to build out a good spatial
mapping mesh of your environment. After the time expires, this
script will stop the SurfaceObserver (that is, stop scanning the
environment) and start the mesh processing. This script also
allows you to set the default material, which lets you visualize the
spatial mapping mesh during scanning. The secondary material
allows you to visualize the spatial mapping mesh after scanning
is complete. The Minimum Floors field is the minimum number
of floor planes needed to exit processing. If you set the minimum
number of floors to 1, but no floors are detected, the script will
continue trying to find a floor plane.

Chapter 6 ■ Using Spatial Mapping

126

•	 SurfaceMeshesToPlanes.cs: This script is responsible for finding
planes from the mesh and generating planes. In the Inspector, you
may set the MinArea, which is the minimum area required before
a plane will be created. A larger number means you’ll have larger
but fewer planes in your scene, whereas a smaller number means
you’ll create plans for smaller surfaces in your scene. There are
also two drop-down lists in the Inspector where you can specify
which types of surfaces to draw planes for and which types of
surfaces to destroy. The snapToGravityThreshhold variable
(in the script but not shown in the Inspector) is used to align
planes with gravity so that they appear more level. The Surface
Plane prefab determines the appearance of the planes. Feel free to
edit this prefab if you want to modify the plane appearances—for
example, if you want to have the floor planes be a different color
from the wall planes.

•	 RemoveSurfaceVertices.cs: This script is responsible for removing
vertices (removing parts of the spatial mapping mesh) that fall
within boundaries that you specify. You may want to remove
vertices if you need holes in your spatial mapping mesh or
if you want to reduce polygon count in order to improve the
performance of your application. In our SpatialProcessing scene,
the SpatialProcessingTest.cs script uses the planes generated
by SurfaceMeshesToPlanes.cs as the boundaries. It sends these
boundaries to the RemoveSurfaceVertices.cs script, which then
removes the spatial mapping mesh near the generated planes.
The Bounds Expansion parameter that is visible in the Inspector
allows you to expand the boundaries you provide, to remove more
vertices around the boundaries.

■■ Tip  Because the SurfaceMeshesToPlanes script allows you to specify plane types
(walls, floor, celling, table, and so on), you can selectively send some of these planes to the
RemoveSurfaceVertices script. This is useful if you’d like to selectively remove parts of your
spatial mapping mesh—for example, if you’d like to remove only your ceiling.

Step 7: Use Spatial Processing in Your Application
To enable spatial processing in your application, you need to do the following:

•	 Make sure to enable spatial mapping, as described in the previous
tutorial.

•	 Make sure to enable spatial perception, as described in the
previous tutorial.

Chapter 6 ■ Using Spatial Mapping

127

•	 Find and add the SpatialProcessingTest.cs script to your Hierarchy
to control scan times and mesh visualization.

•	 Find and add the SurfaceMeshesToPlanes.cs script to your
Hierarchy. Adjust settings in the Inspector panel as needed by
your project.

•	 Optionally, you may also find and add the
RemoveSurfaceVertices.cs script to your Hierarchy to remove
parts of your meshes that you replace with a plane.

Spatial processing is excellent for scenarios where you need to identify planes
without necessarily visualizing them. For example, if I need to place a hologram on the
floor, I can use spatial processing to identify and create an invisible floor plane and then
proceed to place holograms on the floor. Other examples include placing objects on walls,
hanging holograms from the ceiling, calculating headset height above the floor, and more.

Occlusion Tutorial
In this section, I walk you through implementing occlusion to your spatial mapping
mesh. As mentioned, occlusion allows parts of objects that are fully or partially behind
walls and other surfaces to become invisible, just as they would in the physical world.
This increases your holograms’ realism and improves your user’s experience.

Step 1: Load the TapToPlace Scene
Let’s reload the TapToPlace scene that we started with at the beginning of this chapter,
shown back in Figure 6-1. Feel free to try out the application again. You will notice that
the cube is visible, regardless of whether it’s in your space or behind a physical wall.

Step 2: Apply Occlusion
Next, we want to apply a new material that will allow our spatial mapping mesh to block
objects behind it while appearing invisible when viewed through the HoloLens or other
device. The HoloToolkit provides a useful item to achieve this. Browse or search for the
Occlusion material in your HoloToolkit folders within the Project panel. Once you locate
it, drag it to the Surface Material field of the SpatialMappingManager.cs script within the
Inspector panel, as shown in Figure 6-12.

Chapter 6 ■ Using Spatial Mapping

128

Step 3: Try It Out
As before, use holographic remoting to test the app with the new Occlusion material.
Initially, the occlusion material won’t be rendered until you tap the cube. While in Placing
mode (with the cube following your gaze), the occlusion material will be rendered.
Because the material is transparent, you won’t directly see the spatial mapping mesh, but
you will see that part of the cube will be occluded by its environment.

As soon as you release the cube (by tapping it again), the spatial mapping mesh will
no longer be rendered, and the cube will no longer be occluded by your surroundings.
Go ahead and manually turn on occlusion while the application is running in Unity by
checking the Draw Visual Meshes box for the SpatialMappingManager.cs script in the
Inspector panel, as shown in Figure 6-13.

Figure 6-12.  Apply the Occlusion material to the Surface Material field of the Spatial
Mapping Manager script

Chapter 6 ■ Using Spatial Mapping

129

As you can see from my tests, the cube was fully visible when there were no
obstructions between me and the cube (Figure 6-14), but the cube was partially visible
when obstructions were present (Figure 6-15).

Figure 6-14.  The white cube appears full when there are no obstructions

Figure 6-13.  While the application is being simulated in Unity, check the Draw Visual
Meshes checkbox to force the occlusion material to be rendered

Chapter 6 ■ Using Spatial Mapping

130

Because no processing or smoothing of the spatial mapping mesh occurs in this
scene, you’ll notice some imperfections in the spatial mapping mesh, as can be seen in
Figure 6-15, with the sharp artifacts. Replacing the spatial mapping mesh with smooth
planes and other smoothing techniques can help with occlusion and visualization.

Step 4: Use Occlusion in Your Application
Occlusion is an essential part of Mixed Reality development, especially for projects that
utilize spatial mapping. Without occlusion, distant holograms in other rooms or behind
objects would still be visible, causing the experience to be confusing and unnatural.

To apply occlusion to your project, you need to render your spatial mapping mesh
using the Occlusion material found in the HoloToolkit, as shown in Step 2 of this section.

A more advanced treatment of the spatial mapping mesh may utilize multiple
materials throughout your app. For example, your application may start out using one
material that’s visible (such as during a room-scanning phase of your app) and then later
switch to the invisible occlusion material.

You may actively switch between materials for spatial mapping when scripting by
using the SpatialMappingManager.SetSurfaceMaterial() function. See the following
code for an example of this implementation:

if (condition == true)
{
 SpatialMappingManager.SetSurfaceMaterial(surfaceMaterial);
}

Figure 6-15.  When obstructed (in this case by boxes), only the unobstructed part of the
cube is visible

Chapter 6 ■ Using Spatial Mapping

131

In the preceding code, surfaceMaterial is a previously assigned material. You
may, for example, declare it as public Material SurfaceMaterial and drag and drop a
material using the Unity Editor’s Inspector panel, as we did earlier in this tutorial.

Spatial Understanding Tutorial
In this section, I walk through how to enable spatial understanding for your application.
One of the most powerful examples that the HoloToolkit has to offer is the Spatial
Understanding example. Spatial understanding can be thought of as a much more
powerful version of the plane finding feature covered earlier in this chapter.

Here are a few things that spatial understanding allows you to do:

•	 Place objects on floors, ceilings, and walls

•	 Place objects in the air away from you or near you, without
touching walls

•	 Place objects on the floor away from you or near you

•	 Find the largest wall and place objects on it

•	 Find sittable surfaces (so you can have characters sit on
anyone’s chair)

•	 Identify chairs and couches

•	 Identify large empty surfaces

•	 Allows users to “paint” their spatial mesh to limit the
scanned area

•	 Smoothe the spatial mapping mesh

Step 1: Set Up the Unity Scene
This tutorial uses a test scene from the HoloToolkit. If you haven’t done so already, be
sure to set up Unity for Mixed Reality development as described in Chapter 4. Refer to
Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the SpatialUnderstandingExample test scene (or SpatialUnderstandingExample.
unity) in your Project panel by using the search bar or find it within the folder structure.
Drag the test scene into your Hierarchy, as shown in Figure 6-16. Be sure to unload
(disable) all other scenes that you might have open.

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 6 ■ Using Spatial Mapping

132

Step 2: Try It Out
For this example scene, I highly recommend taking the time to build and deploy to your
HoloLens or similar headset. Spatial understanding is an awe-inspiring example provided
by the HoloToolkit and is best experienced on your device, without lag or limitation, and
in a larger area of your home or office with interesting features nearby (table, chair, open
area, walls, ceiling). If you prefer, you may still try out this scene from within the Unity
Editor using holographic emulation or remoting to your device.

The application will first ask you to scan your environment. You’ll immediately
notice a very smooth implementation of the spatial mapping mesh, with well-leveled
meshes on walls, floors, and ceilings. See Figure 6-17 for an example of the spatial
mapping mesh used by spatial understanding.

Figure 6-16.  Open the SpatialUnderstandingExample scene to explore the HoloToolkit’s
spatial understanding features

Chapter 6 ■ Using Spatial Mapping

133

Next, you may notice that a menu item has been placed on a wall near you, as
shown in Figure 6-18. I recommend exploring all buttons and tabs in this menu to gain
familiarity with what spatial understanding has to offer.

Figure 6-17.  The spatial mapping mesh processing by spatial understanding is
remarkably smooth

Figure 6-18.  Explore all buttons and tabs offered in the spatial understanding menu.
Prepare to be amazed!

Chapter 6 ■ Using Spatial Mapping

134

When selecting buttons, a typical experience will involve rectangular objects flying
from the menu to recognized surfaces around your mapped room.

Step 3: Use Spatial Understanding in Your Application
Entire chapters could be written about the inner workings of spatial understanding and
all the ways developers could leverage it in their applications. In this step, I point out the
key components needed to enable spatial understanding in your application and how to
get started with it.

Enabling spatial understanding involves the following:

•	 Making sure spatial mapping is enabled, as shown previously in
this chapter

•	 Locating the SpatialUnderstanding prefab and loading it into your
scene’s Hierarchy

The spatial understanding prefab contains three scripts, as shown in Figure 6-19.

Figure 6-19.  The SpatialUnderstanding prefab contains three important scripts

In simple terms, here is what each of the scripts are responsible for:

•	 SpatialUnderstanding.cs: This is responsible for managing the
spatial understanding scanning process.

•	 SpatialUnderstandingSourceMesh.cs: This is responsible for
providing the source (raw) spatial mapping mesh to the spatial
understanding feature.

•	 SpatialUnderstandingCustomMesh.cs: This is responsible for
generating the custom spatial mapping mesh, during spatial
understanding processing and after it’s complete.

To learn how to utilize all the data generated for the spatial understanding process,
you’ll want to dig into the following scripts: SpaceVisualizer.cs and LevelSolver.cs. These
scripts are not part of the Spatial Understanding prefab or module, but they are part of the

Chapter 6 ■ Using Spatial Mapping

135

Spatial Understanding Example scene, provided to show developers how to utilize spatial
understanding data.

Let’s look at one example code snippet from SpaceVisualizer.cs:

public void Query_Topology_FindLargeWall()
{
 ClearGeometry();

 // Only if we're enabled
 if (!SpatialUnderstanding.Instance.AllowSpatialUnderstanding)
 {
 return;
 }

 // Query
 �IntPtr wallPtr = SpatialUnderstanding.Instance.UnderstandingDLL.

PinObject(resultsTopology);
 �int wallCount = SpatialUnderstandingDllTopology.QueryTopology_

FindLargestWall(
 wallPtr);
 if (wallCount == 0)
 {
 AppState.Instance.SpaceQueryDescription = "Find Largest Wall (0)";
 return;
 }

 // Add the line boxes
 float timeDelay = (float)lineBoxList.Count * AnimatedBox.DelayPerItem;
 lineBoxList.Add(
 new AnimatedBox(
 timeDelay,
 resultsTopology[0].position,
 Quaternion.LookRotation(resultsTopology[0].normal, Vector3.up),
 Color.magenta,
 �new Vector3(resultsTopology[0].width, resultsTopology[0].length,

0.05f) * 0.5f)
);
 AppState.Instance.SpaceQueryDescription = "Find Largest Wall (1)";
}

This function helps to find the largest wall in the room and places a pink
rectangle over the position of the largest wall. The key pieces of code here are
resultsTopology[0].position and resultsTopology[0].normal, where we can directly
get the information about the largest wall and place objects on or near it. I encourage you
to look through these scripts and use the code as inspiration for use in your own projects.

Chapter 6 ■ Using Spatial Mapping

136

Interesting things to try:

•	 Have an avatar sit on a chair or sofa at your friend’s house.

•	 Put a holographic clock on your wall.

•	 Place a holographic dinner on your dining room table, complete
with food, plates, silverware, and more.

•	 Create Roman pillars that extend from your floor to the ceiling.

Spatial Anchors and Persistence
This section briefly discusses the importance of spatial anchors. I walk you through how
to use spatial anchors in your Unity project and provide some best practices when using
spatial anchors.

Spatial anchors are locations in your application that are anchored to the real world.
This is part of what makes Mixed Reality possible. Without spatial anchors, the virtual
experience viewed through your device would become increasingly disconnected with
reality over time. The HoloLens and other similar Mixed Reality devices do their best
to scan and recreate your physical world using spatial mapping. However, this process
isn’t perfect, and the spatial map may be improving and adjusting over time. These
adjustments would cause your holograms to appear to be shifting away from where you
placed them, unless you “anchored” the holograms to the spatial map using a spatial
anchor.

How to Use Spatial Anchors
Attaching and removing spatial anchors is a relatively simple process. A spatial anchor is
called a world anchor in Unity. To attach an anchor to your game object, use the following
method:

WorldAnchor anchor = gameObject.AddComponent<WorldAnchor>();

To remove an anchor from a game object that you don’t intend to move, use Destroy:

Destroy(gameObject.GetComponent<WorldAnchor>());

To remove an anchor from a game object that you intend to move, use DestroyImmediate:

DestroyImmediate(gameObject.GetComponent<WorldAnchor>());

We need to destroy anchors on game objects because (as the name implies) anchors
prevent us from moving objects. To move an anchored object in your scene, you first
need to immediately destroy the anchor, move it, then create the anchor again. See the
following code example:

Chapter 6 ■ Using Spatial Mapping

137

DestroyImmediate(gameObject.GetComponent<WorldAnchor>());
gameObject.transform.position = new Vector3(2, 2, 2);
WorldAnchor anchor = gameObject.AddComponent<WorldAnchor>();

Hologram Persistence
What if you could save a spatial anchor to your device’s memory and load it the next time
your application starts? If you did that, your holograms and objects would be exactly
where you placed them in the physical world, even after closing and re-opening your
application. The good news is that this feature, called persistence, is available and widely
used with spatial anchors.

You can save spatial anchors to your device in a place called the WorldAnchorStore.
Most of the hard work is done for us using a script in the HoloToolkit called
WorldAnchorManager.cs.

Include the WorldAnchorManager in your scene by finding it in the Project panel
and dragging it to an item in your Hierarchy, such as a Managers object, as shown in
Figure 6-20.

Figure 6-20.  Include the WorldAnchorManager.cs script in your scene for a simplified
spatial anchor and persistence experience

In Figure 6-20, you’ll notice that I’m in the TapToPlace test scene from the
HoloToolkit that we’ve been working with in this chapter. The TapToPlace scene already
utilizes the WorldAnchorManager.cs script and the TapToPlace.cs script (attached to the
cube). Feel free to dive into the scripts in this scene to explore how hologram persistence
is set up in a working scene.

Chapter 6 ■ Using Spatial Mapping

138

■■ Note T o experience persistence across app sessions, you need to deploy the application
to your device or run your application in the HoloLens emulator outside of Unity. Persistence
won’t work when using the Unity Editor or holographic emulation within Unity.

With the WorldAnchorManager.cs script attached to your project, you’ll be able to
call its functions from other scripts. I include a few useful examples here. In the following
examples, anchorManager refers to the WorldAnchorManager script:

anchorManager = WorldAnchorManager.Instance;

Use the following code to attach an anchor to your game object and save it to the
WorldAnchorStore using a custom anchor name SavedAnchorFriendlyName that you can
use to later retrieve the anchor in another app session:

anchorManager.AttachAnchor(gameObject, SavedAnchorFriendlyName);

To remove the anchor (perhaps while moving the object), you can use the following code:

anchorManager.RemoveAnchor(gameObject);

To load an existing anchor and attach it to a game object, use the same AttachAnchor
code that we use to create anchors:

anchorManager.AttachAnchor(gameObject, SavedAnchorFriendlyName);

If the anchor store already has an anchor with the custom name you provided, it will
load the anchor instead of creating a new one.

If you want to get all the existing anchor names in the anchor store and iterate
through them, use the following code:

var ids = anchorManager.AnchorStore.GetAllIds();

foreach (var id in ids)
 {
 anchorManager.AttachAnchor(gameObject, id);
 }

A Note on Sharing Anchors
Not only do you have the ability to save anchors to your device, you can also transfer
anchors to other devices. When two or more devices that are in the same physical room
share anchors (and associated data), they see holograms and objects in the same place as
everyone else. This allows for truly awe-inspiring shared sessions where multiple people
can collaborate on the same project or view the same experience together.

Chapter 6 ■ Using Spatial Mapping

139

Summary
Congratulations! You’re now equipped with core knowledge about spatial mapping and
can start taking advantage of some cool spatial mapping tools. Let’s review what you
learned in this chapter:

•	 What spatial mapping is

•	 All about the SpatialMapping prefab and all associated scripts

•	 How to enable spatial mapping in your application

•	 How to use spatial mapping to find and identify planes in your
environment

•	 How to occlude objects using spatial mapping for a more realistic
effect

•	 How to use spatial understanding to unleash the power of spatial
mapping, identify objects and surfaces in your environment, and
place objects on key surfaces in your environment

•	 All about spatial anchors and how to use them in your application

•	 How to persist objects and holograms across app sessions

You may not have thought there was so much to cover in a chapter about spatial
mapping. Spatial mapping is extremely important for Mixed Reality. In fact, it’s the
headset’s understanding of the physical environment that warrants the mixed in Mixed
Reality, allowing our applications to mix the virtual and physical worlds together.

We’ve only touched the tip of the iceberg with regard to spatial mapping. Many
untapped opportunities are waiting to be explored and implemented. Here are just a few
examples of spatial mapping ideas I’ve heard mentioned:

•	 Expanding the spatial mapping mesh to make your room or area
appear larger than it actually is

•	 Virtually painting your walls and furniture to see what various
color options would look like

•	 Making holes in your walls to give the sensation that you can see
through them

As you continue your developer journey, think about creative ways you can leverage
spatial mapping and all associated tools. Be sure to think outside the box. Keep in mind
that your spatial mapping mesh doesn’t need to obey the laws of physics like your real
walls and furniture do. The sky is the limit to what you can achieve.

141© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_7

CHAPTER 7

Spatial Sound

This chapter covers how to make the most of spatial sound in your applications. We rely
heavily on our ears to precisely locate real objects around us. Our sense of hearing is able
to detect extremely small differences in the arrival of sound waves at each of our ears in
order to locate the position of the sound source in 3D space.

In the context of mixed reality, this is called spatial sound. Developers can leverage
Mixed Reality audio tools that perform complex calculations in order to spatialize sound.
These tools determine how sound waves should be modified and adjusted for each ear
in order to “trick” our brains into hearing the sound as if it came from a specific point
in 3D space and not from the speakers themselves. This vastly increases the feeling of
immersion. Users will still be able to hear virtual objects (if the objects are intended
to make noise) around them, even if they can’t see those objects. This is especially
important for devices like the HoloLens, where the field of view is limited and users
might not see holograms in their entire peripheral vision.

Here are different ways developers can leverage spatial sound:

•	 Increase immersion: Make the user feel like they are immersed in
an experience where the holograms are all around them.

•	 Call attention to holograms that are outside the field of view: Play
audio from a hologram that can’t be seen by users in order to
prompt the user to look in the direction of that hologram.

•	 Provide a better interactive experience: When the user interacts
with holograms or user interface elements in a Mixed Reality
application, having spatial audio cues or effects coming from the
point of interaction increases the sense of realism. Think of how
satisfying it is to hear the “snap” of a light switch. You can now
recreate this satisfaction in your application using spatial sound.

■■ Note  Spatial sound only works in Windows 10. If you’re developing your Mixed Reality
application on a previous version of Windows, spatial sound won’t work.

Chapter 7 ■ Spatial Sound

142

Spatial Sound Tutorial
In this section, I walk you through a tutorial on how spatial mapping works in a Mixed
Reality application.

Step 1: Set Up the Unity Scene
For this tutorial, we’ll use a test scene from the HoloToolkit. If you haven’t done so
already, be sure to set up Unity for Mixed Reality development as described in Chapter 4.
Refer to Chapter 4 for a refresher on how to run HoloToolkit test scenes in Unity.

Find the AudioOcclusionTest test scene (or AudioOcclusionTest.unity) in your
Project panel by using the search bar or find it within the folder structure. Drag the test
scene into your Hierarchy, as shown in Figure 7-1. Be sure to unload (disable) all other
scenes that you might have open.

Figure 7-1.  Load the AudioOcclusionTest scene from the HoloToolkit by dragging it into
your Hierarchy

Upon loading the test scene in Unity, you’ll notice a blue square (the Occluder)
with a sphere (the Emitter) behind it. The Emitter is responsible for emitting the sound
you will hear when you test this scene. The blue Occluder is responsible for occluding
audio. More on that in Step 3.

Step 2: Try It Out
To experience the spatial sound from this test scene, you can use Unity’s holographic
emulation feature to remotely connect to your HoloLens or headset. You may also deploy
the application to your headset using Visual Studio.

http://dx.doi.org/10.1007/978-1-4842-2769-5_4
http://dx.doi.org/10.1007/978-1-4842-2769-5_4

Chapter 7 ■ Spatial Sound

143

When you’re ready, go ahead and click the play button to test the application.
When you first start the application, you’ll begin to hear a singing voice that is somewhat
muffled.

■■ Note  If you’re using Unity’s holographic emulation and remoting to test this scene, be
sure to turn down your PC’s volume completely so that you only hear the audio through your
headset. This allows you to fully experience the spatial sound effect without other speakers
interfering with the experience.

The sound of the voice is muffled when the Occluder (the blue square) is between
you and the sphere, as shown in Figure 7-2. When you walk around the square so that it’s
not between you and the sphere (as shown in Figure 7-3), you’ll hear the singing voice
loud and clear coming from the sphere.

Figure 7-2.  When you first simulate the test scene, you’ll see a blue square in front of you
and hear a muffled singing voice

Chapter 7 ■ Spatial Sound

144

Try walking around to various parts of your room or area and try turning your head
in various directions. Remarkably, you can hear the singing voices coming from the exact
position of the sphere.

■■ Fun Experiment  While the app is running, try closing your eyes, walking around in a
few circles, and then putting your fist exactly where you hear the audio source. Now open
your eyes. Amazingly, your fist will be at the same exact spot as the sphere. This shows the
amazing ability for the brain to spatialize sound, even without visual cues. It also shows the
amazing ability for the HoloLens to digitally spatialize sound and sync the audio location to
the hologram location.

Step 3: Understand the Scene
Now that you’ve had some time to try out spatial sound, let’s dig a little deeper in the
scene to understand all the components that make it work. The only two objects of
interest in the Hierarchy are the Emitter object and the Occluder object, as shown in
Figure 7-4.

Figure 7-3.  As you walk around the blue square, you’ll notice that the source of the singing
voice is a blue sphere. You’ll hear the singing voice louder and clearer when the blue square
is not obstructing the sound.

Chapter 7 ■ Spatial Sound

145

First, let’s look at the Occluder game object. After selecting the Occluder, you’ll
notice a script called AudioOccluder.cs in the Inspector panel, as shown in Figure 7-5.
The AudioOccluder.cs script is a useful script provided in the HoloToolkit that allows
objects to occlude spatialized audio sources.

Figure 7-4.  The AudioOcclusionTest scene has two objects that we focus on in this tutorial:
the Emitter and the Occluder

Figure 7-5.  The Occluder object contains the AudioOccluder.cs script, allowing it to
“occlude” any sound sources behind it

Chapter 7 ■ Spatial Sound

146

Let’s see why audio occlusion is a useful feature of spatial sound. Think about a band
playing music in a room. When you walk out of the room and close the door, you may still
hear the band playing, but it will be muffled and a bit quieter. When you open the room’s
door again, the sound is loud and crisp. The AudioOccluder.cs script allows developers to
mimic this behavior in Mixed Reality applications to increase realism for users.

When you attach the AudioOccluder.cs script to an object, the object will muffle
and lower the volume on any spatialized audio sources, if the Occluder object is between
you (the camera) and the audio sources or emitters. You can adjust a few of the script’s
parameters from the Inspector panel:

•	 The Cutoff Frequency parameter allows you to adjust the muffle
of the occluded sound. This is essentially a low-pass filter.

•	 The Volume Pass Through parameter allows you to adjust how
much volume to allow through the Occluder.

■■ Try It Out  If you’re using holographic remoting in Unity, try to adjust the cutoff
frequency and volume pass through in the Unity Editor to experience how the sound
changes in the HoloLens.

The second key object in the hierarchy is the Emitter. The Emitter game object
(the blue sphere) is the most important object in this scene, because the audio source is
attached to this object and is where the sound is spatialized. After selecting this object in
the Hierarchy, you’ll notice a somewhat busy Inspector panel containing a few important
components, as shown back in Figure 7-4.

The first vital component is the audio source component. When this component is
attached to a game object, it causes it to behave as an audio source. It allows you to select
the audio file, spatialize the audio source, adjust the volume, and add effects to your
audio. Let’s look a few key parameters (as shown in Figure 7-6) of the audio source that
you can adjust in the Inspector panel:

•	 AudioClip: You may specify the audio file or asset—for example,
a .wav or .mp3 file.

•	 Mute: Check this box to mute the audio. Useful for toggling within
your project’s scripts.

•	 Spatialize: Check this box to spatialize your audio.

•	 Play On Awake: Check this box to play the audio source when the
scene loads.

•	 Loop: Check this box to loop the audio indefinitely .

•	 Priority: Allows you to set the priority of the audio file. A larger
number means a lower priority, and a smaller number means
a higher priority. If there are too many audio sources, then only
sources with the highest priorities will be heard.

Chapter 7 ■ Spatial Sound

147

•	 Volume: Allows you to set the volume of your audio source.

•	 Pitch: Allows you to speed up or slow down your audio source.

•	 Spatial Blend: Allows you to set the degree to which your audio
source is treated as a 3D spatial audio source. Set the value to 1 for
spatial sound in the HoloLens.

Figure 7-6.  Adjustable parameters of the Audio Source component as shown in the
Inspector panel of Unity’s Editor

The second vital component attached to the Emitter game object is the AudioEmitter.
cs script. This script allows the audio source to be influenced by other game objects in the
scene. For example, the Occluder game object (containing the AudioOccluder.cs script)
is able to influence this audio source because of the AudioEmitter.cs script. Let’s look
at some of the script’s parameters (see Figure 7-7) that can be adjusted in the Inspector
panel:

Chapter 7 ■ Spatial Sound

148

•	 Update Interval: The time, in seconds, between audio influence
updates. To update each frame, set the value to 0. A longer time
period provides better performance for your application, but also
increases the time delay for activating the influencer.

•	 Max Distance: The maximum distance, in meters, for this object
to look when finding the user or influencers.

•	 Max Objects: The maximum number of objects to consider when
looking for influencers.

Figure 7-8.  Enable spatial audio in Unity’s Audio settings. Be sure to select the MS HRTF
Spatializer and set the System Sample Rate to 48000.

Figure 7-7.  Adjustable parameters of the AudioEmitter.cs script, as seen in the Inspector
panel of Unity’s Editor

Step 4: Enable Spatial Sound in Your Application
Now that you’ve learned about some of the key elements of spatial sound and
experienced a working example from the HoloToolkit, let’s see how to implement spatial
sound in your own application.

First, you need to enable spatial sound in Unity’s settings. Go to Edit ➤ Audio ➤
Spatializer and select the Microsoft HRTF extension in the Spatializer Plugin drop-down,
as shown in Figure 7-8. Set the System Sample Rate to 48000.

Chapter 7 ■ Spatial Sound

149

Now you need to attach an audio source to any game object that you want to behave
as an audio source. You can do this by selecting your game object, clicking the Add
Component button at the bottom of your game object’s Inspector panel, and searching
for and attaching the audio source component, as shown in Figure 7-9. As you can see in
that figure, I created a new Cube game object in the AudioOcclusionTest scene that we’ve
been working with to illustrate creating spatial sound on a new game object.

Figure 7-9.  Attach an Audio Source component to the game object you want to behave as
an audio source

Next, you need to configure the audio source for spatial sound. There are three
parameters in the Audio Source component that you need to set, as shown in Figure 7-10.
These are the changes you need to make:

•	 Enable the Spatialize checkbox

•	 Set the Spatial Blend to a value of 1

•	 Set Volume Rolloff to Custom Rolloff. You may need to expand the
3D Sound Settings item to see this parameter.

Chapter 7 ■ Spatial Sound

150

That’s all it takes to enable spatial sound in your application. Feel free to drop an
audio file from your assets into the AudioClip area and try it out with your headset.

To turn an object into an audio Occluder, simply attach the AudioEmitter.cs script to
the game object that contains the audio source and attach the AudioOccluder.cs script to
the object that you want to behave as the audio Occluder.

■■ Note T he audio listener component is also required to be attached to the camera for
audio occlusion and spatial sound to work. By default, it’s included with the HoloLensCamera
prefab in the HoloToolkit.

Spatial Sound Design Considerations
This section discusses some design considerations and best practices for using spatial
sound in your application. I talk about when to use spatial sound and also things to avoid
when using spatial sound.

Figure 7-10.  Modify the three parameters shown in the Audio Source component to
spatialize your sound

Chapter 7 ■ Spatial Sound

151

When to Use Spatial Sound
Whenever possible, use spatial sound to help guide users. With such a small field of view,
devices like the HoloLens can often frustrate users who are trying to find an object of
interest. Although a visual arrow can be used to help a user find a hologram to look at, it’s
much better to leverage our instinctual ability to look in the direction of a sound we hear.

■■ Tip  When using spatial sound for guiding users or locating objects, use low- or
mid-range audio frequencies. Have you ever tried locating a cricket by its chirp? It’s extremely
difficult because crickets chirp at a very high frequency. Our brains calculate the location
of the sound based on how the sound waves arrive at each ear. Larger sound waves
(lower frequencies) are easier to decipher than smaller sound waves (higher frequencies).

Increase the realism and immersion of a Mixed Reality experience by attaching
appropriate spatial sounds whenever possible. I use the world appropriate because
misuse of spatial sound can be annoying and jarring. Avoid loud, obnoxious noises. Add
subtle audio effects to objects that collide, to buttons that are pressed, and to holograms
that move. Think of spatial sound as a shadow. We don’t really think about shadows on a
regular basis, but when shadows are removed from real objects, a scene appears strange
and “off.” In the same way, the lack of appropriate audio effects in a virtual environment
makes it seem inauthentic. The presence of spatial sound may go unnoticed, but like
shadows, it’s necessary to complete the experience. The intention behind spatial sound
shouldn’t be to call attention to the sound itself but rather to make the user comfortable
and immersed in the experience.

Whenever possible, you should spatialize all sound in your Mixed Reality
application. After all, in physical reality all sound is spatialized, meaning it comes from
a source or series of sources. Mixed Reality applications should immerse users in a 3D
experience—not just visually, but audibly too.

What to Avoid When Using Spatial Sound
As with digital holograms, you can do things with spatial sound in Unity that defy the laws
of physics. Sometimes these effects can add a special edge to your application. But if not
carefully tested and considered, they may create an unnatural or even uncomfortable
experience for users.

Invisible audio sources or Emitters should rarely be used, if ever. When attaching an
audio source to an invisible object, our sense of hearing can precisely locate the source
of the audio. But when the user looks at the location where the sound is coming from and
doesn’t see any visible objects, it can be an unnerving experience.

Don’t mix too many sounds together and avoid overpowering spatial sounds
with 2D sounds. As discussed early in this chapter, devices use subtle modifications of
sound waves to achieve the spatial sound effect. When these are masked or drowned
out by ambient noises, such as background music, the spatial sound experience can be

Chapter 7 ■ Spatial Sound

152

degraded. When mixing multiple sound sources is needed, be sure the spatial sounds are
louder than any ambient sounds.

Try to minimize the use synthesized or artificial sounds. When a sound in unnatural,
users may not have a strong intuition on the source of the sound. Better to use natural
sounds like the chirp of a bird, the click of a button, the voice of a person, and other
recorded sounds. Take advantage of human intuition or expectation when designing your
spatial sound experience. For example, a human voice is likely to be found at a human
height range, so use a voice to guide the user to look at something that is approximately at
eye level. Use the sound of rustling tree leaves or birds for objects above the user.

Summary
Congratulations! In this chapter, you learned how spatial sound in Mixed Reality
development works. We walked through a working spatial sound example included in
the HoloToolkit, learned how to implement spatial sound in your application, and talked
about some best practices for designing spatial sound into your application. You’re now
equipped with the tools needed to start implementing a great spatial audio experience
into your application.

When developing an application, it’s easy for sound design to be deprioritized or
forgotten altogether. However, I can’t express enough the importance of good sound design
when developing for Mixed Reality. I still remember a strong piece of advice I received from
a professor during a course I took on video editing:

People will forgive bad video if there’s good audio. People will not forgive
bad audio, even if the video is excellent.—Fred Metzger

Sound design is extremely important and should be considered as part of your
application design from the very beginning—not as an afterthought.

PART III

Growing as a Holographic
Developer

155© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_8

CHAPTER 8

Awe-Inspiring Experiences

This chapter goes over some tips and tricks on creating awe-inspiring Mixed Reality
experiences. By now, you’ve learned all the basics you need to make compelling
applications. Dozens of books could be written on advanced Mixed Reality development
and techniques—and even more Mixed Reality techniques are yet to be discovered. In
this chapter I give you a taste of some things you can do to enhance your applications and
experiences by introducing you to some design concepts, HoloLens project samples,
and some third-party tools you can use.

What Makes an App Awe-Inspiring?
There’s a certain feeling of awe and magic when you experience a well-made application.
The Microsoft published experiences do a great job of showcasing what’s possible
with the HoloLens. Applications like Fragments, RoboRaid, HoloStudio, HoloTours,
Actiongram, and Galaxy Explorer provide an unforgettable experience for users. These
apps run smoothly, take full advantage of spatial sound and spatial mapping, and make
excellent use of shaders and colors.

Here are some key features of an awe-inspiring experience:

•	 An awe-inspiring app allows the user to forget about the headset
and feel immersed in the experience. It fully takes advantage of
spatial sound and spatial mapping so that holograms feel like they
are really in the user’s environment.

•	 It provides stunning visuals, as opposed to boring or plain visuals.
It uses transparency, light, colors, and motion appropriately.

•	 It runs smoothly and maximizes frame rate. A choppy frame
rate causes users to be disoriented and the experience to feel
artificial. A smooth frame rate (60 frames per second) makes the
application feel real and responsive.

•	 It provides an element of magic, or the ability to do something
the user didn’t think was possible. A few examples of this are
using image recognition to identify objects in the user’s scene,
using spatial understanding to allow digital characters to sit on
real sofas and chairs, and being able to use voice commands in
unexpected ways.

Chapter 8 ■ Awe-Inspiring Experiences

156

Though Microsoft and a handful of Mixed Reality studios have published what I
would consider awe-inspiring experiences, I want to reiterate one of the big assumptions
of this book, which is that we’re all still very early in determining best practices for Mixed
Reality. There’s still so much left to discover. The few tips and tricks I highlight in this
chapter shouldn’t be considered the best achievable but rather the minimum starting
point from which to improve.

Many Mixed Reality developers (myself included) obtain inspiration from movies
with a lot of special effects, such as science fiction movies. When watching these movies,
you’ll find many great ideas for what makes a hologram look amazing. You’ll see colors
and textures that elicit awe, excellent examples of fluid animations and transitions, and
sound effects that work well.

Optimization and Performance
In this section, I walk you through best practices for optimizing your Mixed Reality
application. The key metric in optimization is frame rate, or frames per second (FPS).
Other crucial factors include CPU usage and impact on battery life, but it’s the frame
rate of your application that directly impacts how the user experiences your application.
Frame rate can make the difference between a choppy, frustrating experience and
smooth, wonderful one.

Optimizing for performance is one of those necessary but annoying aspects of
development. When asked about my experiences developing for the HoloLens, I often tell
people this:

I can make just about anything I want in Mixed Reality. That’s the
easy part. What’s hard is optimizing for the best performance.

I’ve talked to countless HoloLens and Mixed Reality developers, and all developers,
both the experienced and beginners, suffer with the pain of optimization. That’s because
all devices—whether it’s a HoloLens, immersive headset, or powerful gaming PC—have
limits to the amount of content they can render before running into hardware and
performance limitations. As developers, it’s easy to want to include high-detail
3D models, extravagant colors, extremely realistic lighting effects, and complex
animations. But all these additions take processing power to render, and when you have
too much content in your experience, your device responds with a drop in frame rate.

In essence, optimization of your application is a form of art. You need to learn the
perfect balance between content and performance. Maximizing the look and feel of your
content while maintaining 60 FPS is the ultimate goal of performance optimization in any
Mixed Reality experience.

Although you should always strive to achieve 60 FPS, you may notice that lower
frame rates (30–60 FPS) may be acceptable, depending on the use case. When you’re
out of optimization options, you may need to make a difficult decision to include certain
features or objects at the expense of frame rate.

Chapter 8 ■ Awe-Inspiring Experiences

157

■■ Note  Because the HoloLens is a self-contained holographic computer (not tethered
to a more powerful PC), it has more performance constraints than tethered Mixed Reality
headsets. Because of this, the performance optimization conversation in this section will be
focused on the HoloLens. Performance will be less of an issue when using tethered headsets
connected to a powerful gaming PC. That said, all performance suggestions given can help
when optimizing any experience, both small and large. Also, when developing for tethered
headsets, it’s important to consider individuals who may be running your application on a
less powerful PC. I recommend testing on a minimum-specification PC for performance
monitoring when developing for tethered Mixed Reality headsets.

How to Monitor for Performance
Before we dive into best practices, you should first know how to measure the performance
of your applications. The best place to see all performance metrics of the HoloLens is
through the Windows Device Portal. To access the Windows Device Portal, make sure
your headset is turned on and either connected to the same WiFi network as your PC or
connected via USB cable.

Ensure that you have already set up Developer mode on your device (as discussed
in Chapter 3) and that the Device Portal option is enabled. You can find the Device Portal
setting in your HoloLens at Settings ➤ Update and Security ➤ For Developers ➤ Device
Portal.

If your device is connected to your PC via the included USB cable, you may type the
address 127.0.0.1:10080 into your web browser. If you’re using WiFi, you may type in the
IP address of your headset. If you don’t know your IP address, you can access it on your
HoloLens by going to Settings ➤ Network & Internet ➤ Advanced Options. See Figure 8-1
for guidance on where to find the IP address in your HoloLens’s Settings app.

Figure 8-1.  Where to find your HoloLens’s IP address in the Settings app

http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 8 ■ Awe-Inspiring Experiences

158

Once you log in to the Windows Device Portal, navigate to System Performance in
the menu bar on the left. You’ll see real-time performance tracking and metrics, as shown
in Figure 8-2.

Figure 8-2.  You can track real-time performance metrics for the HoloLens via the
Windows Device Portal

When within the Device Portal, you’ll see several metrics:

•	 System Power: This is the total power consumption of the
HoloLens. Monitor this to ensure that power consumption is kept
within the green and orange areas. Be sure to measure system
power when the device isn’t charging, because it won’t measure
while charging.

•	 SoC Power: The combined power consumption of only the CPU,
GPU, and memory unit. As with System Power, be sure SoC power
is kept within the green and orange areas.

•	 Frame Rate: The rendered frames per second of your 3D
application. If you’re developing a 2D application that will run
within the Windows shell, the frame rate will be the frame rate of
the shell, not your 2D application.

•	 CPU: Shows the load of your central processing unit.

•	 GPU: Shows the load of your graphics processing unit. It indicates
the percentage of time that the GPU is active with tasks.

•	 I/O: Shows the disk usage for all processes.

Chapter 8 ■ Awe-Inspiring Experiences

159

•	 Network: Shows the network/WiFi usage for all processes.

•	 Memory: Shows the total memory committed by all processes on
your device. To see memory usage for an individual process, see
the Processes tab in the Windows Device Portal. Note that if your
application exceeds 900 MB of memory, it will be terminated.

Although maintaining a high FPS is key, considering the preceding metrics
when optimizing your application is also important. If you maintain 60 FPS, but your
application is very demanding on these other metrics, your device may overheat, which
will cause your application to be terminated. Here, in a nutshell, are the essential
performance targets for the HoloLens:

•	 Maintain frame rate at 60 FPS

•	 Keep power consumption within orange and green areas

•	 Keep memory usage of your application under 900 MB

Another excellent tool for monitoring performance of your application during
development is the FPSDisplay prefab included in the HoloToolkit. Search or browse for
this prefab and drag it into your Hierarchy to have an always-on display of your 60-frame
average FPS. Be sure to remove the prefab before publishing your app!

Best Practices for Performance
As mentioned earlier in this section, performance optimization is a big challenge, even
for experienced developers. The guidelines provided here will help when optimizing,
but you should be prepared to spend a good chunk of time on optimizing and
troubleshooting performance issues.

Start Monitoring and Optimizing Early
As a rule of thumb, you should consider performance and optimization very early in
your development cycle. If you start too late, you may have a difficult time identifying
objects in your scene that are causing performance issues. If you start out with a smooth
application at the beginning, you’ll be able easily identify when additions to your project
start to impact performance. You’ll only be able to accurately test performance when
deployed to your device. Playing your device in the Unity Editor won’t give you many
insights regarding the actual frame rate and hardware usage when your application is
deployed to your headset. This might feel like you’re spending more time deploying and
testing up front, but it will save you time troubleshooting performance issues later in your
development cycle.

Optimize Polygons and Textures
All 3D objects rendered by the HoloLens are made up of triangles or polygons, including the
spatial mapping mesh. Although polygon count isn’t the only factor affecting performance
on the HoloLens, it’s one of the easiest ways to begin optimizing your experience.

Chapter 8 ■ Awe-Inspiring Experiences

160

Models with many polygons are typically referred to as high-poly, whereas models
with fewer polygons are low-poly. There’s no strict definition for the number of polygons
that constitute high- or low-poly models—it depends on the size and complexity of the
model. In general, high-poly models appear smooth and curved, whereas low-poly
models appear somewhat blocky.

High-poly 3D models are sure to slow down your frame rate. Low-poly models,
when combined with other best practices, will allow your experience to perform well. In
general, the HoloLens can render up to about 80,000 triangles while maintaining 60 FPS
if optimal shaders are used. Frame rate drops to about 30 FPS with 200,000 triangles. In
most cases, you’ll want to stay safely in the 20,000–60,000 triangle range to give yourself
some room to work with.

Figure 8-3 shows a few different views of a 3D model of an apple. The apple on the
left is high-poly, and the apple on the right is low-poly. You can see that the high-poly
apple looks much smoother and more realistic than the low-poly model. In the middle
row of Figure 8-3, I turned on the wireframe so you can visualize the individual triangles
that comprise each 3D model. In the top row, the high-poly apple uses the standard
shader, allowing it to look shiny, but also impacting performance negatively. The low-poly
apple in the top row uses the legacy diffuse shader, making it look dull but allowing for
much better performance. In the bottom row, I swap the shaders between the two apples
to illustrate that shaders can make low-poly models look better and vice versa.

Figure 8-3.  Showing how polygon count and shader can impact visual appearance of
3D models

Chapter 8 ■ Awe-Inspiring Experiences

161

As you can see, optimizing your HoloLens application sometimes means making
difficult tradeoffs between visually appealing models and fast performance. There
are tricks to making low-poly models look stunning, even without fancy shaders. 3D
artists can color model textures to give them an illusion of appearing shiny or extremely
detailed. For example, in Figure 8-4, the sofa appears to have a high level of detail, with
folds in the cushion and light reflections at the edges. But the sofa model is actually a
low-poly model, as shown in the lower image. The cushion folds and reflections
came from the texture image applied to the 3D model. I was able to achieve both high
performance and a stunning visual of a sofa in the HoloLens because I was able to
minimize my polygon count and use a fast shader.

Figure 8-4.  Low-poly models can be given the appearance of looking detailed with some
creativity in the texture image applied

As much as possible, you should strive to use one texture per model, as opposed
to creating a model comprised of many texture files. You should also minimize shader
switching. Try to use the same type of shader for all objects in view.

Chapter 8 ■ Awe-Inspiring Experiences

162

Use Level of Detail Rendering
Level of detail (LOD) rendering is a performance technique whereby you reduce the
polygon count and appearance of objects that are further away from view. It’s a waste
of computing power to render a high-quality model that’s far from the user, Because
the model will appear small when far away and the user won’t be able to appreciate the
model’s detail. Unity provides a component called LOD group that allows you to change
how an object is rendered at various distances. Figure 8-5 shows what this component
looks like in Unity. You may add various levels of detail by right-clicking the colored bars,
dragging each bar to specify distance from the camera, and adding models of varying
polygon counts and shaders for each LOD. For more information, see https://docs.
unity3d.com/Manual/class-LODGroup.html.

Figure 8-5.  Unity’s LOD group component allows you to specify how your model will be
rendered based on distance from the camera. You can render a lower-quality model when
the camera is far from the object.

Use Culling
Another effective performance strategy is called culling, which means to not render
models that won’t be seen. By default, Unity uses frustum culling, which means that
anything outside of the user’s view, or frustum, isn’t rendered. Figure 8-6 illustrates the
camera’s frustum, shown with the white lines. Avoiding rendering objects outside of the
camera’s view limits what needs to be drawn and increases performance.

https://docs.unity3d.com/Manual/class-LODGroup.html
https://docs.unity3d.com/Manual/class-LODGroup.html

Chapter 8 ■ Awe-Inspiring Experiences

163

Another type of culling is called occlusion culling, which allows you to not render
objects that are being obstructed by other objects in your scene, thereby reducing the
load on your device and increasing performance. To enable occlusion culling, go to
Window ➤ Occlusion Culling and click the Bake button in the window, as shown in
Figure 8-7. You’ll also need to ensure that the Occlusion Culling setting is enabled in
your camera. For more on occlusion culling, see: https://docs.unity3d.com/Manual/
OcclusionCulling.html.

Figure 8-6.  Frustum culling ensures that anything outside of the camera’s frustum (shown
in white here) isn’t rendered

Figure 8-7.  You may enable occlusion culling by going to Window ➤ Occlusion Culling.
Occlusion culling increases performance by preventing obstructed objects from being rendered.

https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/OcclusionCulling.html

Chapter 8 ■ Awe-Inspiring Experiences

164

Enable Single-Pass Instanced Rendering
Hidden in your player settings (Edit ➤ Project Settings ➤ Player ➤ Other Settings), you’ll
find an option to change your stereo rendering method between Multi Pass and Single
Pass Instanced. This option significantly reduces CPU processing time by rendering both
eyes at the same time instead of one at a time. Figure 8-8 shows where you can find the
stereo render setting. For more on Single Pass Instanced rendering, see https://docs.
unity3d.com/Manual/SinglePassStereoRendering.html.

Figure 8-8.  You can switch between stereo rendering modes in your player settings

■■ Warning N ot all shaders are compatible with Single Pass Instanced rendering. If you’re
using shaders outside of those included with the HoloToolkit, keep an eye out for differing
views between your left and right eyes. If this happens, you may need to revert to Multi Pass
rendering or update your shaders as described at https://docs.unity3d.com/Manual/
SinglePassStereoRendering.html.

https://docs.unity3d.com/Manual/SinglePassStereoRendering.html
https://docs.unity3d.com/Manual/SinglePassStereoRendering.html
https://docs.unity3d.com/Manual/SinglePassStereoRendering.html
https://docs.unity3d.com/Manual/SinglePassStereoRendering.html

Chapter 8 ■ Awe-Inspiring Experiences

165

Optimize Shaders
Shaders are scripts or programs that perform calculations responsible for producing
light levels, darkness, color, reflectivity, and special effects for objects. Shaders are
an extremely important factor for how your object appears, but they can significantly
contribute to performance issues in your application, arguably more so than your object’s
polygon count.

For best performance, several shaders are included with the HoloToolkit that
are meant to focus on increased speed. Some of these shaders are FastConfigurable,
LambertianConfigurable, StandardFast, VertexLitConfigurable, and more. Check the
HoloToolkit documentation on GitHub for a complete description for each shader
included in the HoloToolkit at https://github.com/Microsoft/HoloToolkit-Unity/
tree/master/Assets/HoloToolkit/Utilities.

Typically, any special object visualization you would like to achieve in your
experience will require a shader that decreases performance. Examples of special
object visualizations include highly reflective metals or mirrored surfaces, glass-like or
transparent objects, and glowing or neon-like effects on objects.

The topic of shaders and shader optimization is a big one in the 3D modeling
and graphics industries. Many books have been written on the topic, and advanced
developers will inevitably need to write custom shaders to perform specific visualizations
while maintaining good performance. I won’t go into the details of writing your own
shaders in this book. For beginners, I recommend leveraging the various shaders offered
in the HoloToolkit. For advanced tips and guidelines when working with or writing your
own shaders, Microsoft’s Mixed Reality documentation provides many good shader
suggestions at https://developer.microsoft.com/en-us/windows/mixed-reality/
performance_recommendations_for_hololens_apps.

Simplygon
What if you have a 3D model you’d like to use but it has too many polygons and contains
large texture files? Simplygon is a tool (acquired by Microsoft in 2016) that allows users
to reduce the number of polygons and reduce the complexity of textures of a 3D model
without noticeably impacting the visual appearance of the model. Figure 8-9 shows an
example of the Simplygon user interface. Simplygon also provides a plugin for Unity
that allows you to optimize models from within Unity. To sign up for an account and
download Simplygon for free, visit https://account.simplygon.com/#/downloads.

https://github.com/Microsoft/HoloToolkit-Unity/tree/master/Assets/HoloToolkit/Utilities
https://github.com/Microsoft/HoloToolkit-Unity/tree/master/Assets/HoloToolkit/Utilities
https://developer.microsoft.com/en-us/windows/mixed-reality/performance_recommendations_for_hololens_apps
https://developer.microsoft.com/en-us/windows/mixed-reality/performance_recommendations_for_hololens_apps
https://account.simplygon.com/#/downloads

Chapter 8 ■ Awe-Inspiring Experiences

166

Holographic Remoting
Holographic remoting allows experiences to be streamed from a PC to your HoloLens.
By now, you should be familiar with using holographic remoting when testing your apps
using Unity’s holographic emulation. In the same way, you can develop applications that
run on your PC and stream to the HoloLens. In essence, this allows you to overcome the
hardware and processing power limitations of the HoloLens and leverage the powerful
graphics and processing capabilities of a good PC. Doing so lets you render in much
greater detail, use beautiful shaders, and render many more objects than you would be
able to with the HoloLens.

If you want to deliver a powerful desktop PC-level experience to the HoloLens,
I recommend looking into adding holographic remoting capabilities to your application.
For additional details on getting started, see https://developer.microsoft.com/en-us/
windows/mixed-reality/add_holographic_remoting.

Stabilization Plane
The HoloLens performs special hardware-assisted stabilization to keep Holograms
appearing stable in your environment. Because the HoloLens can’t stabilize all
holograms in your scene, an invisible plane in your scene called the stabilization
plane is used to select objects that receive the maximum amount of stabilization.
Figure 8-10 shows the stabilization plane with a white outline and also shows the script
(stabilizationplanemodifier.cs) that manages this plane in the Inspector panel. By default,
the stabilization plane will attempt to find appropriate holograms without requiring
additional setup. But for best results, you can help the plane find appropriate objects to
stabilize within your script and also within the stabilizationplanemodifier.cs script.

Figure 8-9.  Simplygon allows you to convert large, complex 3D models into beautiful,
low-poly models that performs well in the HoloLens

https://developer.microsoft.com/en-us/windows/mixed-reality/add_holographic_remoting
https://developer.microsoft.com/en-us/windows/mixed-reality/add_holographic_remoting

Chapter 8 ■ Awe-Inspiring Experiences

167

The stabilization plane settings are included in the InputManager prefab of the
HoloToolkit, as shown in Figure 8-10. The stabilizationplanemodifier.cs script is useful for
adjusting the behavior of the stabilization plane. Here is a brief description of each setting
in the script:

•	 Set Stabilization Plane: Allows the stabilization plane to be
created and placed automatically, based on your gaze, a fixed
distance, or a target that you provide.

•	 Use Unscaled Time: Modifies the way the plane moves by
making it independent of frame rate, pausing, or other time
manipulations.

•	 Lerp Stabilization Plane Power Closer: The speed at which the
plane moves towards the camera.

•	 Lerp Stabilization Plane Power Farther: The speed at which the
plane moves away from the camera.

•	 Target Override: Allows you to override the location of the
stabilization plane. Use this when you want to stabilize specific
holograms in your scene.

•	 Track Velocity: Keeps track of the velocity of your target object
so that the plane can accurately follow and anticipate the target
object’s movement rather than react to it.

•	 Use Gaze Manager: Allows your plane to be set based on objects
you gaze at. If this option isn’t enabled, the plane will float at a
fixed distance in front of the camera.

Figure 8-10.  The stabilization plane helps the HoloLens prioritize which objects receive the
greatest amount of stabilization for a better experience

Chapter 8 ■ Awe-Inspiring Experiences

168

•	 Default Plane Distance: The distance from the camera that the
plan will float if no target object is specified or identified.

•	 Draw Gizmos: Allows you to visualize the stabilization plane when
testing or running your application.

To manually set the stabilization plane on a target object via scripting, you can use
the SetFocusPointForFrame() function. Here’s an example:

public GameObject objectToFocusOn;
void Update()
{
 var normal = -Camera.main.transform.forward;
 var position = focusedObject.transform.position;

UnityEngine.VR.WSA.HolographicSettings.SetFocusPointForFrame(position, normal);
}

In the preceding code, you provide a normal and a point to define the plane. The normal
is the direction in which your plane faces. The point (position) is the position of your
target object (objectToFocusOn). Feeding these variables into the SetFocusPointForFrame()
function allows the stabilization plane to be placed at your desired location.

Here are some general tips to get the most out of your stabilization plane:

•	 Try to use the plane to cover as much of your content as possible.
For example, if your content is a plane (2D image, text, UI plane,
or other flat surface), align the stabilization plane to your 2D
surface.

•	 Do your best to have your plane cut through all relevant
holograms in your scene, to stabilize as many objects as possible.

•	 Place the stabilization plane on objects that are further away from
the camera, as those tend to be more unstable.

•	 Never place the plane outside your camera’s view. There’s no
point wasting precious stabilization resources on objects that you
can’t see. Stabilize objects that the user will be looking at.

•	 Don’t let the stabilization plane touch or cut through the user.

For more information and best practices for the stabilization plane, feel free to
review the following resources:

•	 https://developer.microsoft.com/en-us/windows/mixed-
reality/Hologram_stability.html

•	 https://developer.microsoft.com/en-us/windows/mixed-
reality/focus_point_in_unity

•	 https://developer.microsoft.com/en-us/windows/mixed-
reality/case_study_-_using_the_stabilization_plane_to_
reduce_holographic_turbulence

https://developer.microsoft.com/en-us/windows/mixed-reality/Hologram_stability.html
https://developer.microsoft.com/en-us/windows/mixed-reality/Hologram_stability.html
https://developer.microsoft.com/en-us/windows/mixed-reality/focus_point_in_unity
https://developer.microsoft.com/en-us/windows/mixed-reality/focus_point_in_unity
https://developer.microsoft.com/en-us/windows/mixed-reality/case_study_-_using_the_stabilization_plane_to_reduce_holographic_turbulenceAwe-inspiring experiencestabilization plane
https://developer.microsoft.com/en-us/windows/mixed-reality/case_study_-_using_the_stabilization_plane_to_reduce_holographic_turbulenceAwe-inspiring experiencestabilization plane
https://developer.microsoft.com/en-us/windows/mixed-reality/case_study_-_using_the_stabilization_plane_to_reduce_holographic_turbulenceAwe-inspiring experiencestabilization plane

Chapter 8 ■ Awe-Inspiring Experiences

169

Design and Magic
In this section, I focus on design elements, tools, and best practices that will help your
application stand out visually and provide a good user experience. There are many
ways in which developers can add 3D objects and holograms to a scene. However, when
visuals feel dull or cheesy, it’s a lost opportunity for a truly awe-inspiring experience.
Incorporating good design and magical experiences into your application takes more
thought and effort. In the long run, though, you’ll have a Mixed Reality experience that
you can be proud of and perhaps provide users with an excuse to keep coming back to
your app.

To get started, I provide you with some best practices for Mixed Reality design, followed
by some design-related tools and resources you can use. I also provide a brief tutorial on
using Vuforia and talk about ways to incorporate some magic into your experiences.

Best Practices for Design
In the short period of time that the HoloLens and other Mixed Reality devices have been
around, a few key best practices for design have emerged. Although there’s still so much
more to be learned by developers (that’s you!), these best practices will help your design
process in the short term.

Spatial Mapping
As much as possible, consider the use of spatial mapping in your application. It’s easy
to forego spatial mapping. You may think it’s not worth the effort or adds little value to
your project. I am also guilty of wondering why I should add spatial mapping when it
would only limit where my holograms can go. However, a big benefit of devices like the
HoloLens is its powerful ability to interact with the physical world. Take advantage of that
by allowing your objects to be able to rest on floors and surfaces, be pinned to walls and
ceilings, and be occluded by real objects in your scene. It’s an easy way to add magic to
your experience without trying to invent something new.

The HoloToolkit provides a very simple shader for visualizing your spatial mapping
mesh. As shown in Figure 8-11, the default spatial mapping shader allow meshes to have
white edges with transparent surfaces. It’s functional but doesn’t look very appealing.
The HoloToolkit shader used with the spatial understanding mesh is slightly better, with a
green tint, as shown in Figure 8-12.

Chapter 8 ■ Awe-Inspiring Experiences

170

Figure 8-12.  Smoothing out the mesh and tinting the lines green, as is done with the
spatial understanding mesh, improves the experience

Figure 8-11.  The default shader for visualizing the spatial mapping mesh is functional but
not very pretty

Scanning your environment using spatial mapping is a technologically magical feat.
As such, visualization of the mesh should be equally impressive. Microsoft-published
applications like Fragments or Young Conker use vibrant colors and lighting effects to
really breathe life into the spatial mapping mesh. Figure 8-13 shows how the mapping
mesh builds out during the scanning phase of the Fragments app, using beautiful
animated, sparkling, and dynamic squares. The specific shader used in Fragments and
Young Conker are not available to developers as of this writing, but you can download
similar shaders for use in your application. One of my favorite examples can be found at
http://smeenk.com/hololens-scanning-effect-in-unity/, complete with a working
sample you can download at GitHub.

http://smeenk.com/hololens-scanning-effect-in-unity/

Chapter 8 ■ Awe-Inspiring Experiences

171

Distance from User
Microsoft recommends that optimal placement of holograms is between 1.25 m and
5 m, with 2 m being the best place. Holograms placed too close to users may result
in discomfort or a jarring experience. By default, the HoloLens camera prefab in the
HoloToolkit culls any holograms that are closer than 0.85 m (using frustum culling.)
This is why you often can’t view details when you approach a hologram too closely.

In my experience, reducing frustum culling from 0.85 m to 0.20 m is acceptable,
depending on the use case of your application. This setting allows users to view intricate
details close up without the model frustratingly disappearing. This value can be set by
adjusting the Near Clipping plane in the Camera game object.

Shadows
Our brains heavily rely on shadows as a cue for where objects are in the world around us.
Shadows are also an important part of 3D design. As such, the use of shadows can help
increase realism and provide a greater sense that digital holograms are anchored in the
real world.

Though Unity can easily create shadows in your scene, devices like the HoloLens
are unable to display shadows because they can only add light to the display and cannot
darken an area (displays that work in this manner are referred to as additive displays).
The trick to overcoming this limitation is to use a technique called negative shadowing.
Negative shadowing adds a small amount of light or glow around your object and then
removes the light where the shadow would normally appear. The user won’t perceive the
light glow, but will perceive the shadow.

Figure 8-13.  Adding regularity, color, texture, and animations to the spatial mapping
mesh significantly boosts design

Chapter 8 ■ Awe-Inspiring Experiences

172

Voice
Whenever possible, add voice commands to your application. This is especially true
for UI elements. If your application has a button that says Start, be sure to add a voice
command for “start.” A best practice is to add a small microphone icon on or near your
button to cue users that the button is voice-enabled. For bonus design points, you can
have the icon of the microphone appear after the user has gazed on the object for a
certain period of time (0.5–1 second should be sufficient).

Sharp Text
As of this writing, it’s very common to see blurry text in many HoloLens applications,
especially those in the Windows Store. Using Unity’s default fonts causes letters to appear
blurry in the HoloLens due to scaling. Figure 8-14 illustrates Unity’s default text (the upper
Testing) and text written using the HoloToolkit’s UITextPrefab prefab (the lower Testing).

Figure 8-14.  Use typography resources included with the HoloToolkit such as the
UITextPrefab to achieve sharp-looking text in the HoloLens. Default Unity text resources
appear blurry and unappealing.

As a rule of thumb, text also looks best in the HoloLens when the font is white against
a colored or darker (but not black) backdrop. Avoid outlining your text.

Chapter 8 ■ Awe-Inspiring Experiences

173

Bounding Box
When users have the option of manipulating (moving, rotating, or scaling) a hologram,
be sure to add a bounding box with “handles” that users can use for manipulation. The
bounding box should appear invisible when the hologram isn’t selected, but appear when
the hologram is selected.

Figure 8-16.  Use clean, modern-looing toolbars for your menu items

Figure 8-15.  Bounding box around a selected hologram to assist with manipulation

Toolbars
I recommend using toolbars and app bars in Mixed Reality applications. Toolbars with
minimalistic buttons evoke a feeling of cleanliness and make your experience feel
modern. Figure 8-16 illustrates what a well-designed toolbar looks like. Each button
should respond to being gazed at, such as the highlighted button shown in Figure 8-16.

Chapter 8 ■ Awe-Inspiring Experiences

174

Colors
You may be tempted to make your application or experience shine vividly with all the colors
that the HoloLens can render, but a great design strategy is to use only one color on any
object that you want to appear as a traditional hologram. From sci-fi movies, we’ve come to
expect holograms to have a certain monochromatic glow. Rendering an object with a single
blue or green color evokes a special feeling and makes the hologram appear real.

Use only one or two colors as a theme for your application. You can see by the menu
item in Figure 8-16 that the simple color choices result in a UI that appears modern.

Design Experiences to Avoid
Never head-lock content. Though heads-up display (HUD) UI may sound fun, it doesn’t
feel good in devices like the HoloLens. If an information panel or object needs to follow
the user’s gaze, be sure to give it a slight delay, so it appears to chase and catch up to your
gaze. The tagalong.cs script included with the HoloLens already provides the delayed
follow functionality.

Avoid using loud sound effects, especially when they’re triggered by gaze. This may
result in an annoying experience for users. And avoid making the user type information
unless absolutely necessary. Text input on devices like the HoloLens is difficult and
cumbersome.

Additional Resources
The HoloLens design team has provided a valuable resource for implementing many
design best practices into your project. Separate from the HoloToolkit, you’ll find another
repository on GitHub called the Mixed Reality Design Labs. This is an excellent resource
for finding prefabs and scripts for bounding boxes, app bars, progress bars, and more:
https://github.com/Microsoft/MRDesignLabs_Unity.

Adding Magic: Vuforia
Devices like the HoloLens are already feats of modern engineering and magical in and
of themselves. But there are many ways that developers can add more magic to their
applications. It’s difficult to define magic in this context, but I tend to define it as any
experience that amazes the user due to being pleasantly unexpected or seemingly
impossible.

The most powerful way to invoke the feeling of magic is to couple your Mixed Reality
application with artificial intelligence or cognitive services. Services like IMB Watson,
Microsoft Azure, and more allow applications to perform amazing tasks such as image
recognition, custom speech/chat capabilities, real-time translation, and more.

Review Azure’s list of cognitive services to get a feel for the type of resources
available: https://azure.microsoft.com/en-us/services/cognitive-services/.

https://github.com/Microsoft/MRDesignLabs_Unity
https://azure.microsoft.com/en-us/services/cognitive-services/

Chapter 8 ■ Awe-Inspiring Experiences

175

One of my favorite ways of adding magic to an application is to use a powerful tool
called Vuforia. Vuforia allows your headset to recognize 2D images and 3D objects in your
real world and place a hologram at or near the recognized image/object in real-time. This
section gives a brief tutorial on how to download and set up an experience that’s powered
by Vuforia.

Step 1: Install the Vuforia sample
Download the Digital Eyewear sample for Unity from Vuforia’s website, as shown in
Figure 8-17, from https://developer.vuforia.com/downloads/samples.

Figure 8-17.  Download Vuforia’s Unity package for the Digital Eyewear sample

After downloading and unzipping the Unity package, open up a new Unity project
and import the HoloLens unity package by going to Assets ➤ Import Package ➤ Custom
Package. Be sure to select the HoloLens package that you downloaded and not the ARVR
or StereoRendering packages that are also included in the file you downloaded from
Vuforia’s website.

Step 2: Try It Out
To experience the application in action, you’ll need to print out Vuforia’s target image.
You can download it from https://i.imgsafe.org/ef26047.jpg.

No additional settings are required with the app package you imported into Unity.
You may test out the application using holographic remoting or by deploying to your
device. I recommend deploying the application to your HoloLens for the smoothest
experience.

When you launch the Vuforia application, you’ll notice a 3D teapot appearing above
the image of the rocks that you printed out. Figure 8-18 shows what this looks like. Try to
move the paper around on your desk, hold it up, and rotate it. You’ll see that the teapot is
perfectly attached to the image of the rocks. A truly magical experience!

https://developer.vuforia.com/downloads/samples
https://i.imgsafe.org/ef26047.jpg

Chapter 8 ■ Awe-Inspiring Experiences

176

Be sure to sign up for a Vuforia account to gain access to the ability to add your own
custom image targets and to learn more about the platform. For more information, visit
https://developer.vuforia.com.

Capstone Project
In this section, we’ll build a new project together that implements the best of what
we’ve learned so far in this book. Over the last several chapters, you’ve learned a lot
about HoloLens development. From creating your first app in Unity (Chapter 2) to
understanding the best practices of Mixed Reality design (this chapter), you’ve equipped
yourself with some handy tools for diving in as a developer. Let’s put all this knowledge to
work by building a new awe-inspiring app from scratch.

For our capstone project, we’ll build an experience that requires you to control a ball
to cross a river of Lava.

Step 1: Import HoloToolkit to a New Unity Project
Before proceeding, be sure you’ve already downloaded and saved the HoloToolkit Unity
package per the instructions in Chapter 1.

•	 Create a new Unity project (see Chapter 2 if you need a reminder
on how to do this) and name it Lava App.

•	 Important: Save your scene and give it a name. If you don’t save
your scene, you won’t be able to apply HoloLens settings in Step 2.

Figure 8-18.  Like magic, a holographic teapot appears on the image of rocks with
Vuforia’s HoloLens sample

https://developer.vuforia.com/
http://dx.doi.org/10.1007/978-1-4842-2769-5_2
http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 8 ■ Awe-Inspiring Experiences

177

•	 From the menu bar, go to Assets ➤ Import Package ➤ Custom
Package. In the pop-up window that appears, browse to the
HoloToolkit that you downloaded in Chapter 1. See Chapter 3 if
you need a reminder on how to import the HoloToolkit.

•	 Unity will take a minute to prepare the package you selected and
then show you another pop-up window where you can select or
deselect package items. Go ahead and leave everything checked
(everything should be checked by default) and click the Import
button.

Step 2: Apply HoloLens Settings
After completing Step 1, you should now see a HoloToolkit menu item in your menu bar,
as shown in Figure 8-19.

•	 From the menu bar, select HoloToolkit ➤ Configure ➤ Apply
HoloLens Scene Settings. This will make the scene background
black (when in the Game tab) and modify camera settings. Click
the Apply button in the pop-up window that appears. Important:
Save your scene.

•	 From the menu bar, select HoloToolkit ➤ Configure ➤ Apply
HoloLens Project Settings. This will convert the Unity project to a
Windows Direct 3D (D3D) project, optimize quality, and enable
virtual reality support. Click the Apply button in the pop-up
window that appears. Unity will require you to reload your project.
If you didn’t save your scene from the previous step, you will lose all
changes to the scene and need to apply scene settings again.

■■ Tip A fter choosing to apply settings from the HoloToolkit menu, a pop-up window
appears showing settings to apply. Click each item to learn more about each item.

•	 Remove the Main Camera game object from the Hierarchy by
right-clicking each item and choosing Delete from the context
menu.

•	 To insert our new camera, go to the Project panel and browse to
HoloToolkit ➤ Input ➤ Prefabs. Drag and drop HoloLensCamera.
prefab into the Hierarchy, as shown in Figure 8-20.

•	 Save your scene.

http://dx.doi.org/10.1007/978-1-4842-2769-5_1
http://dx.doi.org/10.1007/978-1-4842-2769-5_3

Chapter 8 ■ Awe-Inspiring Experiences

178

Figure 8-19.  You now have a shiny new HoloToolkit menu item. Be sure to Apply HoloLens
Scene Settings and Project Settings.

Figure 8-20.  After deleting the Main Camera and Directional Light objects, insert the
HoloLensCamera prefab into the Hierarchy

Chapter 8 ■ Awe-Inspiring Experiences

179

Step 4: Insert and Configure InputManager
Next, we want to insert the InputManager prefab into our Hierarchy. This will allow us to
use gaze and gestures in our application.

To keep things organized, I like to create an empty game object in my Hierarchy to
contain all my manager prefabs and scripts. To do this, right-click in an empty part of
your Hierarchy and select Create Empty from the context menu. Right-click the newly
created game object and select rename from the context menu. Rename it to Managers.

Next, search for InputManager in your Project panel and drag the InputManager
prefab from your search results to your Managers game object in your Hierarchy, as
shown in Figure 8-21.

Figure 8-21.  Drag the HoloToolkit’s InputManager into your Hierarchy

Step 5: Add a Cursor
We’ll need a cursor for our application so users can keep track of where they’re gazing.
Search your project folder for cursor and drag the Cursor prefab into your Hierarchy.
There are several items named “cursor” with similar icons, so you may need to highlight
each one to ensure you select the prefab. See Figure 8-22 for the proper prefab icon. Feel
free to click the play button to test your app after each step to ensure you’re not seeing
any errors.

Chapter 8 ■ Awe-Inspiring Experiences

180

Step 6: Create Responsive Ball
Next, we’ll create a small ball that responds to our gaze by following it. To achieve this,
we’ll need to create a ball, a surface (plane) from the ball to roll on, and a script that tells
the ball to roll towards the gaze cursor. I’ll assume that you’re fairly comfortable with
creating a plane and sphere by now. If you need a refresher, feel free to review the
Roll-a-Ball tutorial in Chapter 2.

First, let’s create our surface plane by right-clicking the Hierarchy and selecting
3D Object ➤ Plane from the context menu. Make sure the plane was not created as a child
of any other game object. Reset the plane’s position to 0,0,0.

Next, create the ball by right-clicking the Hierarchy and selecting 3D Object ➤
Sphere from the context menu. Again, make sure it wasn’t created as a child of another
game object. Position the sphere so that it’s resting on the surface of the plane, or slightly
above it. Resize the ball to 0.1,0.1,0.1.

Let’s keep things organized as we proceed. Go ahead and rename the plane to floor
and rename the sphere to ball. Create an empty game object and name it Holograms. Put
both game objects into Holograms, as shown in Figure 8-23.

Figure 8-22.  Drag the Cursor prefab into your Hierarchy to enable a cursor in your app

http://dx.doi.org/10.1007/978-1-4842-2769-5_2

Chapter 8 ■ Awe-Inspiring Experiences

181

Figure 8-23.  Insert a plane and a sphere as the first holograms of your app. Rename them
floor and ball and make them children of a new empty game object called Holograms.

Figure 8-24.  Create the ballmanager.cs script

Now that we have a floor and a ball, let’s add some physics to the ball by clicking the
ball and adding the Rigidbody component from the Inspector panel. This allows the ball
to respond to gravity and forces.

The force of gravity will keep the ball on the floor plane. Next, we want to add a force
on the ball that always tries to pull the ball toward the cursor. Create a new script called
ballmanager.cs by selecting the ball and then selecting Add Component in the ball’s
Inspector panel. Type ballmanager in the search bar and then click New Script, as shown
in Figure 8-24. In the next screen, ensure that the script is a C# script and click Create and
Add to create and add the script.

Chapter 8 ■ Awe-Inspiring Experiences

182

Double-click the script to open the ballmanager.cs script in Visual Studio for editing.
I’ll walk through code additions in the text, explaining each addition of code we’ll add to
our new script. I include the full code at the end of this segment so you can ensure your
ballmanager.cs script is properly set up.

We need to let our script know about our cursor object, because that’s the object
that will be pulling our ball towards itself. To do this, let’s add this line of code before our
Start() section:

public GameObject cursorObject;

This line is saying there’s a public GameObject that we’re calling cursorObject
(our own made-up name). By making this GameObject public, it allows an empty field to
appear in the Inspector panel, where we can drag and drop (or search for) a game object
to include. In Figure 8-25, you can see that I included our cursor object in that field. I did
this by dragging and dropping the CursorOnHolograms game object from the Hierarchy.

Figure 8-25.  Drag and drop the CursorOnHolograms game object to your newly created
cursor object field

The drag-and-drop method is not necessarily a best practice for development. You
may also use the ability to find objects by name within the script using the GameObject.
Find and Transform.Find methods. In general, I like to write code with simplicity and
clarity in mind so that you may easily follow along. I highly recommend reading up on
advanced C# programming in Unity as you continue developing your skills.

Chapter 8 ■ Awe-Inspiring Experiences

183

Next, we’ll add these two lines of code into the Update() section:

Vector3 forceDirection = cursorObject.transform.position - transform.position;

gameObject.GetComponent<Rigidbody>().AddForce(forceDirection * 1);

The first line of code creates a new vector called forceDirection. That vector
is created by subtracting the 3D position of the ball (transform.position) from the
cursorObject. If you could visualize this vector, it would look like an arrow pointing from
the ball directly to the cursor.

The second line of code adds a force to the ball in the direction of the vector we just
created (forceDirection). We can multiply the force direction by a number (in this case 1)
to adjust the strength of the applied force. Feel free to adjust this number during your tests.
Other ways to enhance this code (which I won’t show here to keep things simple) could be
to add some friction or dampening, changing the force based on distance, and eliminating
the force when the cursor is far enough away from the ball.

The complete code of ballmanager.cs should now look like Listing 8-1.

Listing 8-1.  Ballmanager.cs Complete Code

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ballmanager : MonoBehaviour {

 public GameObject cursorObject;

 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {

 �Vector3 forceDirection = cursorObject.transform.position -
transform.position;

 gameObject.GetComponent<Rigidbody>().AddForce(forceDirection * 1);

 }
}

Feel free to test your application. You’ll be pleasantly surprised to see that you can
now control the ball with your gaze.

Chapter 8 ■ Awe-Inspiring Experiences

184

Step 7: Download Assets
Our ball and floor look somewhat dull. Let’s add some design and magic to our scene.
When developing applications, the Unity Asset Store is your friend becaue it offers plenty
of free and low-cost assets you can download for your project. Beware that some assets
might not be optimized for the HoloLens (too many polygons, computationally expensive
shaders, and so forth). Look for assets that say low-poly or that are built for VR or AR for
best results.

To open the Asset Store, go to Window ➤ Asset Store in your menu bar, as shown in
Figure 8-26.

Figure 8-26.  Open the Unity Asset Store

There are a few assets to download for our application. First, let’s download a flowing
lava shader, which will be our river of lava that the ball needs to cross. Search the Asset
Store for Lava Flowing Shader. See Figure 8-27 for an illustration of this free asset’s page.
Click the Import button to import this asset into your project.

Chapter 8 ■ Awe-Inspiring Experiences

185

Figure 8-27.  Download and import the Lava Flowing Shader

When you import an asset, the files will appear in your Assets folder. From there, you
can typically drag assets into your scene. We’ll apply the lava asset in the next step. For
now, we’ll continue with installing assets.

The next asset we’ll install is the bridge for our ball. Search the asset store for Simple
Wooden Bridge, another free asset. Download and import this asset into your project.
Figure 8-28 shows this asset’s store page.

Figure 8-28.  Download and import the Simple Wooden Bridge asset

Chapter 8 ■ Awe-Inspiring Experiences

186

Finally, let’s make our ball look a little more like a rock. Find, download, and import
the “Cracked stone filled with lava” asset from the Unity Asset Store. Figure 8-29 shows
this asset’s store page.

Figure 8-29.  Download and import the “Cracked stone filled with lava” asset

Step 8: Create Your Lava Scene
Let’s make our lava scene look beautiful. First, let’s apply the lava shader to our floor. In
your Project panel, navigate to Lava_Flowing_Shader ➤ Materials ➤ mtl_lava_simple
and drag that material to your floor. You should see the lava material applied, as shown
in Figure 8-30. Feel free to explore how the other material options differ. Each will have a
slightly different visual appearance.

Chapter 8 ■ Awe-Inspiring Experiences

187

Figure 8-30.  Apply the lava texture to your floor object

Figure 8-31.  Add the ScrollingUVsLayers.cs script for the flowing lava effect

If you play your scene, you’ll notice that the shader is static and not flowing. We need
to apply a script to the floor. Navigate to Lava_flowing_shader ➤ scripts and drag the
ScrollingUVsLayers.cs script to the floor’s Inspector panel. Change the following values in
the script’s Inspector panel fields:

•	 X: 0.06

•	 Y: 0

•	 Texture Name: _LavaTex

See Figure 8-31 for what this script should look like. Now when you play the scene
you should see a nice flowing river of lava and a white ball that follows your gaze cursor.

Chapter 8 ■ Awe-Inspiring Experiences

188

Next, let’s add the rock texture to our ball. In your Project panel, navigate to the
Lavabrick folder and drag the Lavabrick material to your ball, as shown in Figure 8-32.
When you play the scene, you’ll notice that the rolling ball with the rocky texture has a
very nice appearance. The scene is really starting to come together.

Figure 8-32.  Drag the Lavabrick material to the ball to give it a rocky texture

The final addition to our scene will be the bridge that we’ll use to cross the lava. In
your Project panel, navigate to Simple Wooden Bridge ➤ Meshes and drag the Brudge.
fbx model into your scene. You will likely need to resize and reposition your bridge so that
it spans either size of the lava river, as shown in Figure 8-33. Important: Ensure that the
bridge is a child of the Holograms game object.

Chapter 8 ■ Awe-Inspiring Experiences

189

Congratulations! We now have all the physical components we need in our scene.
As you can see, without too much effort we’ve already created a stunning scene consisting
of a gaze-responsive rolling lava rock, a flowing river of lava, and a rustic wooden
bridge. From here, we’ll apply additional code logic, sound, and effects for a complete
experience.

Step 9: Add the Ability to Move Lava Scene
Let’s add the ability for us to move the entire lava scene by dragging it with our hands.
To do this, select the Holograms game object. In the Inspector panel of the Holograms
object, click Add component, search for Hand Draggable, and click the result to
add handdraggable.cs to this object, as shown in Figure 8-34. Feel free to adjust the
parameters for various ways to grab and orient your scene. I prefer locking rotation when
grabbing, and keeping the scene upright. Go ahead and test this addition in the Unity
Editor or using holographic remoting to ensure the entire model moves as expected when
you grab and move it.

Figure 8-33.  Add the bridge to your scene. Be sure to resize and position it appropriately.

Chapter 8 ■ Awe-Inspiring Experiences

190

Step 10: Add and Configure Spatial Mapping
For realism, let’s enable spatial mapping in our application. This will allow physical objects
in the room to occlude our lava scene so that it doesn’t appear to penetrate walls and
objects. To enable spatial mapping, search for the SpatialMapping prefab included with
the HoloToolkit and drag it into your Managers game object, as shown in Figure 8-35.
You must also enable Spatial Perception to your Unity application by going to Edit ➤ Project
Settings ➤ Player ➤ Settings for Windows Store ➤ Publishing Settings ➤ Capabilities.

Figure 8-34.  Add the handdraggable.cs script to the Holograms game object to enable
gesture-based grabbing and moving of the lava scene.

Figure 8-35.  Enable spatial mapping by dragging the SpatialMapping prefab into your
Hierarchy. Don’t forget to also turn on spatial perception in your player settings.

Chapter 8 ■ Awe-Inspiring Experiences

191

Depending on the size of your area, you may need to adjust the size of your lava
scene to fit within your area. Use holographic remoting to quickly test how your lava
scene interacts with the spatial mapping mesh of your environment. I reduced the size
of my scene to be roughly 1 meter on each side and increased the size of the ball to be
roughly the size of a tennis ball. Note that if your lava scene starts below the surface
of your floor, you won’t be able to see it due to the occlusion of the spatial mapping
mesh. After resizing and adjusting the position of your scene, I recommend unchecking
Draw Visual Meshes in the SpatialMappingManager.cs script. Doing this will disable
visualization of the mesh’s white outlines but still maintain occlusion.

Step 11: Add Spatial Sound Effects
Let’s breathe some life into our lava scene by enabling spatial sound. First, you need to
enable spatial sound in Unity’s settings. Go to Edit ➤ Audio ➤ Spatializer and select the
Microsoft HRTF extension in the Spatializer Plugin drop-down, as shown in Figure 8-36.
Set the System Sample Rate to 48000.

Figure 8-36.  Enable spatial audio in Unity’s Audio settings. Be sure to select the MS HRTF
Spatializer and set the System Sample Rate to 48000.

Second, you need to attach an audio source to the Holograms game object
(your lava scene). You can do this by selecting the Holograms game object in your
Hierarchy, clicking the Add Component button at the bottom of your game object’s
Inspector panel, and searching for and attaching the Audio Source component, as
shown in Figure 8-37.

Chapter 8 ■ Awe-Inspiring Experiences

192

Third, you need to configure the audio source for spatial sound. There are three
parameters in the Audio Source component that you need to set, as shown in Figure 8-38.
These are the changes you need to make:

•	 Enable the Spatialize checkbox.

•	 Set the Spatial Blend to a value of 1.

•	 Set Volume Rolloff to Custom Rolloff. You may need to expand
the 3D Sound Settings item to see this parameter.

Figure 8-37.  Attach an Audio Source component to the game object you want to behave
as an audio source

Chapter 8 ■ Awe-Inspiring Experiences

193

Finally, you’ll need to drop an audio file from your assets into the AudioClip area and
try it out with your headset. For my project, I chose a looping audio file of what sounded
like a burning river of lava. Try searching the asset store or looking online for free or paid
sound effects to download for your application.

Step 12: Next Steps and Beyond
Congratulations! Together, we’ve quickly put together a prototype application using just a
few of the skills we’ve learned so far. Let’s review what we’ve learned and developed with
our lava application so far:

•	 How to set up a Mixed Reality project from an empty project

•	 Download assets from the Unity Asset Store

•	 Work with advanced shaders

•	 Apply physics to game objects

•	 Enable gaze, gestures, spatial mapping, and spatial sound

We’ve developed a movable lava scene, complete with flowing lava, a red-hot rocky
ball that follows your gaze, spatial sound, and occlusion from real-world objects.

Figure 8-38.  Modify the three parameters shown in the Audio Source component to
spatialize your sound

Chapter 8 ■ Awe-Inspiring Experiences

194

There are many ways that you can proceed with this application. Here are a few ideas:

•	 Put a collider across the lava river. Use OnCollisionEnter to detect
if the ball collides with the lava colliders so that you can destroy
the ball if the ball “falls into the lava.” Find an explosion asset
from the Unity Asset Store and trigger an explosion upon the ball’s
demise for extra effect.

•	 Add the ability to tap on the bridge to lower or raise it. Add a mesh
collider to the bridge so that the ball can roll across the bridge to
the other side of the lava river. Play celebratory music once the
ball makes it to the other side.

•	 Add additional levels and complexity with various arrangements
of lava rivers and bridges. Turn the game into an interesting
puzzle.

As you can see, there are many ways to improve upon what we’ve built. There’s no
limit to what we can imagine and implement in Mixed Reality.

Summary
Creating awe-inspiring applications for Mixed Reality is ultimately about providing a
great experience for users. In this chapter, I gave you a few guidelines and resources that
will help you on your journey toward creating your own awe-inspiring experiences. I
talked about the importance of optimizing the performance of your application, provided
you with some insights to speed up your application, walked you through several best
practices for good design, and showed you an example of how to add a little magic to your
application.

There’s really no limit to how creative you can get when designing for Mixed Reality.
There’s not much art you can do on a 1-dimentional line, but vast possibilities are
unlocked when painting and developing on a 2D canvas. Bigger yet is the jump to the
3D stage of Mixed Reality, where infinite possibilities are waiting to be discovered and
created.

I encourage you to build upon the best practices and tools provided in this Chapter.
Try new design experiences—test what works and what doesn’t. The best way to gauge
whether or not your application is awe-inspiring is to closely observe the reactions of
others when they try your experience. You will quickly perceive if your app invokes a
sense of wonder and amazement. Finally, don’t forget to share your lessons learned with
the broader Mixed Reality development community (more on this in Chatper 10).

http://dx.doi.org/10.1007/978-1-4842-2769-5_10

195© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_9

CHAPTER 9

Turning Holograms into
Money

In this chapter, I’ll introduce you to several methods by which you can monetize your
Mixed Reality development activities. From the app model to offering your services
as a freelancer, today’s developers can earn money from Mixed Reality in many ways.
Developing for Mixed Reality is fun and rewarding, but plenty of business opportunities
have also arisen from this revolutionary new medium.

When I bought my first HoloLens unit in the spring of 2016, I started developing for
the platform as a hobby and for side projects. I worked on a few applications, both for
myself and also others (at no cost). As the year progressed, I started observing that there
was a fairly active market for HoloLens developers. I responded to several project bids,
and quickly transitioned to becoming a full-time HoloLens developer.

The biggest financial opportunities for Mixed Reality, however, will come from
the sheer fact that these devices will replace the way we do computing today. There’s
an immense amount of financial potential, and we don’t need to wait for a mythical
forthcoming device or form factor to start dipping into that potential. This chapter will
provide you with plenty of resources and discussion for turning holograms into money
today.

Publishing Your App to the Windows Store
This section covers publishing and monetizing your applications through the Windows
Store, Microsoft’s online shop for apps and media, which is perhaps the most direct
way to monetize your Mixed Reality experiences. Figure 9-1 shows just a few of the 232
HoloLens applications on the Windows Store as of this writing.

Chapter 9 ■ Turning Holograms into Money

196

When you publish to the Windows Store, you have several options for monetization:

•	 Free: These are apps that users can download at no cost. You
won’t receive any direct revenue from this approach, but it’s a
fantastic way to build your brand and reputation and may lead
to other financial opportunities. Developers may also have a
portfolio of applications, where free applications may lead users
to downloading other paid applications from the same developer.

•	 Free with Ads: Applications that users can download at no cost but
that include in-app advertising. Revenue comes from ad clicks
and impressions. This is a fairly popular approach among mobile
applications, but it’s still unproven in Mixed Reality as of this
writing.

•	 Freemium: Apps that users can download for free but may opt
to pay a premium for additional features, in-app resources, or to
remove advertising.

•	 Paid: Apps that users pay for before downloading. Developers
have the option of offering a limited trial period before requiring
users to pay. According to Practical Analytics, 14 percent of all
HoloLens apps use the paid app model.

I’ve not found any statistics from Microsoft regarding Mixed Reality app downloads,
user engagement, and revenue. However, the general consensus among developers is that
monetization opportunities on the Windows Store are fairly low. Reports indicate that the
number of HoloLens devices currently active on the market are in the thousands, or at

Figure 9-1.  The Windows Store contains 232 HoloLens apps as of this writing, with more
being added each month

Chapter 9 ■ Turning Holograms into Money

197

most, tens of thousands. My most popular application on the HoloLens only had a total of
1,215 downloads from June 2016 to June 2017. However, activity on the Windows Store is
expected to increase with the introduction of lower-cost headsets to the market.

■■ Note  Several lower-cost Windows Mixed Reality headsets are expected to become
available to consumers starting in late 2017. At the time of this writing, these headsets
have not yet been released for consumers. Many in the Windows Mixed Reality community
anticipate that the lower cost ($299 for the Acer Headset compared to $3,000 for the
HoloLens) will contribute to a significant growth in the user base, resulting in significantly
more download activity in the Windows Store. As such, keep a close eye on Windows Store
statistics for Mixed Reality applications. It’s difficult for anyone to forecast adoption of these
headsets or user engagement in the Windows Store. Because the primary source of Mixed
Reality applications will be through the Windows Store, I anticipate that a large consumer
adoption of Mixed Reality headsets will translate to huge monetization opportunities in the
Windows Store.

Freelancing
This section talks about being an independent Mixed Reality developer and shares best
practices for successfully finding and securing opportunities. I share a little bit of my story
to illustrate how you can be fully supported by Mixed Reality contracts.

A key turning point in my career was in January of 2017, which marked the point at
which I started developing full-time for the HoloLens and was fully supported financially
by Mixed Reality freelancing opportunities. It wasn’t until after this transition that people
around me began to take notice that the HoloLens wasn’t just an expensive toy—it had
real financial opportunities and use cases for businesses today. To date, I’ve completed
projects for clients in Shanghai, Sydney, Dublin, New York, and Dubai. Earning a living
using Mixed Reality is rewarding and exciting and gives you a grounded perspective on
how Mixed Reality applications are used in business.

Finding Mixed Reality Freelance Opportunities
I was first made aware of opportunities by monitoring requests through forums and
online communities (discussed in detail in Chapter 10). I typically see about three to
five freelance and job opportunities per week in the virtual reality and Mixed Reality
communities I follow online.

The benefit of finding opportunities through these online communities is that you
interact directly with individuals who need help, and a hiring decision can be made
swiftly. If you’re active in these communities, frequently help others, showcase your
work, and contribute to the community, you’ll have a good chance of being recognized
and sought out, and you may well land the freelance opportunity. It’s fairly common for
companies to need quick-turnaround help, lasting anywhere from a week to two months.

http://dx.doi.org/10.1007/978-1-4842-2769-5_10

Chapter 9 ■ Turning Holograms into Money

198

In addition to online communities, job boards and freelance websites are also an
excellent source of contracts that you can bid on. It’s harder to stand out on freelance
sites, though, and you often don’t have the opportunity to connect directly with the
manager. However, there is usually a much larger pool of projects to bid to, with new
projects being added daily. One website I monitor closely is VREX.io, which has relatively
few opportunities overall but a big concentration of HoloLens and Mixed Reality
opportunities. Figure 9-2 illustrates what to expect when looking for opportunities on
VREX.io.

Figure 9-2.  Job and freelancer websites like VREX provide many Mixed Reality
opportunities to bid on

Increasing Your Chances of Winning a Contract
In winning and losing many HoloLens opportunities, I’ve observed a few patterns that
can help increase your chances of landing a Mixed Reality job.

•	 Have a portfolio: Managers are interested in seeing your portfolio
of apps. Try to have at least two or three good applications
that you can refer prospective clients to. Have at least one
stunning application that you can point to first. Many software
development firms claim to have Mixed Reality development
capabilities, but lack any real qualifications or prior experience.
Managers have a very difficult time trying to filter out true Mixed
Reality developers from those with no experience. A portfolio of
applications quickly lets managers know that you have hands-on
experience with the technology.

Chapter 9 ■ Turning Holograms into Money

199

•	 Submit a proposal: Sometimes it’s easy to think that a casual
conversation or e-mail bid will suffice. When I take the time to
develop a thought-out proposal, I have a much higher chance
of winning the contract. I recommend developing a proposal
template that you can use to quickly put together for projects you
bid on.

•	 Keep in touch: My most successful projects have come out of lost
bid opportunities. Regardless of whether you lost a bid or weren’t
called back after an initial phone call, keep a record of your
various opportunities and follow up from time to time. It keeps
you fresh on your client’s minds and lets them know you’re a
dedicated Mixed Reality developer.

You’ll always have plenty of competition, regardless of what industry you freelance
or consult in. It’s no different with Mixed Reality. However, because Mixed Reality is an
emerging platform, there are many ways that you can stand out as a developer. Making
unique contributions to the community, creating a great application, and making a splash
on social media with something cool you did are all ways that can make you stand out
and help you start freelancing in Mixed Reality.

Future Opportunities Today
By now, I hope that I’ve instilled in you a sense of where Mixed Reality is headed. A world
in which everyone interacts with holograms instead of 2D screens means that a lot of
industries will be disrupted, many new businesses will be created, and many financial
opportunities will arise.

The truth is that this future is not a far-off science fiction prediction. It is something
already here today. We have the technology and the resources to start building out this
future, and there’s no reason we shouldn’t. Yes, technology will continue to improve
(when does it ever stop?), and yes, devices will get smaller, lighter, and less expensive.
The HoloLens, however, is a revolutionary device that’s fully capable of ushering in our
holographic future.

Imagine taking a PC back in time, to several decades before computers were widely
used in businesses. Do you think you could walk into just about any business and show
them how valuable a computer would be for their company—from document and
spreadsheet editing, digital art, record keeping, audio recording, and much more? I suspect
you’d be able to sell them on buying a computer without much persuasion. In the same
way, Mixed Reality is here to usher in the next computing paradigm and start disrupting
the status quo. Whenever you visit or drive by any office or business, start thinking about
how that business could leverage holographic technology. Start thinking about the types of
applications and experiences you could build that would add value to those companies.

There’s nothing stopping you from scheduling a free demo to several companies
local to you and pitching them on transitioning to the holographic age. If you’re equipped
with a compelling solution that will add value, I doubt many will turn down the offer for
a fun Mixed Reality demo. In this way, you could create new and larger opportunities
for yourself (and the industry) rather than merely respond to freelance and other Mixed
Reality job opportunities.

Chapter 9 ■ Turning Holograms into Money

200

Summary
In this chapter, I provided several insights into ways you can earn money as a Mixed
Reality developer. I discussed various monetization models for the Windows Store,
provided several ideas for successfully securing freelance and contract opportunities, and
offered some inspiration for creating new opportunities all around you.

Ultimately, a technology platform will be widely accepted and embraced if it adds
real value. So far, Mixed Reality is living up to its promise by demonstrating that it does
indeed add value across a wide range of sectors. As you and other developers continue to
build new experiences, discover new ways to interact with holograms, and find new ways
this platform can add value to businesses, the financial opportunities of Mixed Reality
will grow exponentially.

201© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5_10

CHAPTER 10

Community Resources

In this chapter, I introduce you to some valuable online and community resources
that will help you on your journey as a Mixed Reality developer. Examples of these
resources include relevant community forums, online groups, notable events, and other
information that will help during the development process.

I cannot overstate the importance of leveraging community resources during
application development of any kind. This is especially true for Mixed Reality
development, where the platform is still new and developers everywhere are exchanging
valuable lessons learned. As you’ve heard me echo throughout this book, the world has
yet to unlock a good user experience when it comes to immersive computing. I anticipate
dozens of “Eureka!” moments over the next few years as we (Mixed Reality developers)
come to grips with this revolutionary technology. As such, it would be extremely
advantageous to be plugged in to the community to exchange ideas, help one another,
and build upon others’ successes.

Microsoft’s Official Mixed Reality Forum
Microsoft’s Mixed Reality forum is an important community resource. Officially called the
Windows Mixed Reality Developer Forum, you can find it at https://forums.hololens.com.

■■ Note  The Windows Mixed Reality Developer Forum was formerly known as the
Windows Holographic Developer Forum. As of this writing, Microsoft is making a branding
transition from Windows Holographic to Windows Mixed Reality. There is also a transition
focusing less on the HoloLens name and more on the broader Mixed Reality platform, so it’s
possible that the URL https://forums.hololens.com may soon be changed or redirect to
a revised URL, due to the HoloLens name.

Upon first visiting the forum website, you will be greeted with a page similar to
Figure 10-1. The format of this forum has already changed several times, so don’t be
alarmed if the website you see looks somewhat different from what is shown.

https://forums.hololens.com/
https://forums.hololens.com/

Chapter 10 ■ Community Resources

202

As of this writing, the forums are organized into “Building holographic apps” and
“Building immersive apps.” There are also additional sections for projects and Microsoft
published experiences:

•	 Building holographic apps is a section dedicated to Q&A and
discussions surrounding the development of applications for
Mixed Reality headsets with transparent displays, such as the
HoloLens.

•	 Building immersive apps is a section dedicated to Q&A and
discussions surrounding the development of applications for
Mixed Reality headsets with opaque or immersive displays, such
as the Acer, HP, and Lenovo Mixed Reality headsets.

•	 Projects is a section where developers can showcase and share
information about projects they are working on.

•	 Microsoft published experiences is a section pertaining to Mixed
Reality applications published by Microsoft, such as Galaxy
Explorer, RoboRaid, HoloStudio, Actiongram, and more.

The official forum is very useful for a few reasons:

•	 It’s closely monitored by members of the Microsoft HoloLens
and Mixed Reality teams. Team members regularly respond to
questions. It’s a great place to receive expert advice from the
creators of HoloLens themselves.

Figure 10-1.  The main page of the Windows Mixed Reality Developer Forum, as it
appeared in May 2017

Chapter 10 ■ Community Resources

203

•	 Major HoloLens and Mixed Reality announcements are posted here.

•	 Updates to Microsoft’s published Mixed Reality experiences and
applications (such as Actiongram, RoboRaid, and others) are
posted here.

The forum also has some shortcomings, which has contributed to the rise of many
other Windows Mixed Reality community resources online. Common shortcomings that
developers experience include the following:

•	 Lack of responses: Although many questions receive answers,
many go unanswered.

•	 Delayed interaction: The forum structure doesn’t promote real-time
communication between developers. The lack of instant notifications,
live chat, and other similar messaging features make this forum less
desirable for developers needing urgent answers to questions.

•	 Lack of community: Similar to the preceding bullet point, the
forum’s lack of instant messaging features make it somewhat
cumbersome for Mixed Reality developers to carry out casual
group conversations that promote a sense of community and
friendship.

It’s possible that some or all of these issues may be addressed in the future
(or perhaps by the time you are reading this). I highly encourage you to sign up for an
account on this forum and actively participate in discussions when appropriate.

Overall, Microsoft’s official Windows Mixed Reality Developer Forum is a fantastic
community resource that all Mixed Reality developers should be part of. Access to
the teams at Microsoft also makes this forum a key resource for developers. The
shortcomings are filled in by other online community resources that I cover in this
chapter, such as the HoloDevelopers Slack Team.

HoloDevelopers Slack Team
The HoloDevelopers Slack Team is my personal favorite HoloLens and Mixed Reality
online community and by far what I consider the most helpful for new developers. In this
section, I introduce the HoloDevelopers Slack Team, including information on how to
join the group and the best way to participate in this community.

What Is Slack?
For those not familiar with Slack (https://slack.com), it is a fantastic collaboration and
communication tool for groups. It can be thought of has a big chat room platform, where
a community can discuss ideas and share content across multiple chatrooms. The power
of Slack is its cross-platform compatibility (web, iOS, Android, Mac, Windows, Windows
Phone, HoloLens, and more) as well as the ability to chat with and interact with large
groups of people across multiple chat rooms (called channels), where each channel is

https://slack.com/

Chapter 10 ■ Community Resources

204

dedicated to specific topics of discussion. Anyone can create a Slack team, and thousands
of Slack teams exists for a wide range of topics. Slack is also popular among businesses,
which use it as an employee communications tool.

What Is the HoloDevelopers Slack Team?
The HoloDevelpers Slack team is the “semi-official” developer Slack team for all
things HoloLens and Windows Mixed Reality. It’s a place where developers can share
experiences, ask questions, and talk about Windows Mixed Reality. I say semi-official
because this Slack team was not founded by Microsoft, yet it has become so foundational
that Microsoft now recognizes it on its website (https://developer.microsoft.com/
en-us/windows/mixed-reality/community). Dozens of Microsoft employees from the
HoloLens team regularly contribute and participate in the HoloDevelopers Slack team.

The HoloDevelopers Slack team was founded by Jesse McCulloch of Roarke Software
(http://roarkesoftware.com) after being frustrated by some of the shortcoming of
Microsoft’s official Windows Mixed Reality developer forums. The Slack team was
intended to provide Mixed Reality developers with a greater sense of community and
quicker, more interactive feedback when asking questions.

The HoloDevelopers Slack team contains an evolving list of many relevant
discussion channels, each active with lively conversations. Figure 10-2 shows one
conversation on this Slack team. As of this writing, the HoloDevelopers Slack contains
900 users and is growing at a rate of about 25 to 30 new users per week. You can find the
Slack team at https://holodevelopers.slack.com.

Figure 10-2.  The HoloDevelopers Slack team is a lively group of HoloLens and Windows
Mixed Reality developers

https://developer.microsoft.com/en-us/windows/mixed-reality/community
https://developer.microsoft.com/en-us/windows/mixed-reality/community
http://roarkesoftware.com/
https://holodevelopers.slack.com/

Chapter 10 ■ Community Resources

205

How to Join the HoloDevelopers Slack Team
Joining the HoloDevelopers Slack team is easy. Enter your e-mail address at
https://holodevelopersslack.azurewebsites.net, as shown in Figure 10-3. You’ll
instantly receive an invitation to join the Slack team, at which point you can sign up for
your account.

Figure 10-3.  Use the signup link to get an instant invite to join the HoloDevelopers Slack Team

Participating in the HoloDevelopers Slack Team
Once you’re a member of the HoloDevelopers Slack team, introducing yourself to the
community is a great way to kick off a conversation.

I recommend using the #help channel for any project-related questions you may
have. Use the #general channel for general Windows Mixed Reality discussions, and use
the #random channel for anything unrelated to Mixed Reality or whenever you’re unsure
if your content fits within the #general discussion.

Here are some general tips to make the most of being part of this Slack community:

•	 Microsoft has HoloLens employees actively participating in this
community. Be sure to reach out to them whenever appropriate.

•	 Don’t be afraid to ask tough questions. This Slack team boasts
some amazing talent, and there’s always someone happy to help.
If your question goes unanswered, be persistent in asking the
community.

•	 Make some money. Check the #job-opportunities channel
regularly for fun employment and contract opportunities.

https://holodevelopersslack.azurewebsites.net/

Chapter 10 ■ Community Resources

206

•	 Be sure to install the Slack app on your phone and PC to get
notifications and easily follow discussions you’re interested in.

•	 Use the direct messaging feature to have one-on-one
conversations with individuals.

•	 Share your work. Everyone in the Mixed Reality community loves
to see each other’s progress and accomplishments. Share your
work and share lessons learned.

■■ Note  As of this writing, the HoloDevelopers Slack Team is operating on a free
Slack plan. As such, Slack limits searching of messaging to the last 10,000 messages.
Though this may seem like a lot, it only takes a few weeks to cycle through 10,000
messages due to the activity of this Slack team. To view and search for the vast history
of Mixed Reality posts shared on Slack, be sure to check out the Slack team’s archive
at https://holodevelopers.slackarchive.io.

Overall, if there’s only one Windows Mixed Reality community to be part of, I would
definitely choose the HoloDevelopers Slack team—even above Microsoft’s official forum.
The community, level of engagement, and quality of developers in this group make it
second to none. I highly recommend joining and checking in regularly on this community.

Other Online Communities and Resources
In this section, I introduce other online HoloLens and Windows Mixed Reality
communities and groups that you can participate in.

HoloLens Developers Facebook Group
As expected with the Internet, there are hundreds (and possibly thousands) of online
groups, forums, and communities that you can join and participate in as a Mixed Reality
developer. That said, I consider there to be three primary online communities. We’ve
already talked about the first two: Microsoft’s official Windows Mixed Reality Developer
Forum and the HoloDevelopers Slack Team. The third is the HoloLens Developers
Facebook group, located at www.facebook.com/groups/winholographicdevs/.

From the description on this Facebook group, the HoloLens Developers group is an
“open group to share thoughts, information, everything you want about the Microsoft
HoloLens, Mixed Reality, and how to develop with these technologies.”

As of this writing, it boasts over 4,500 members and is the largest Windows Mixed
Reality developer group on Facebook. Figure 10-4 shows an example of what you’ll see
when visiting this group. Facebook will prompt you to become a member of this group
before you’re allowed to post or comment in this group. One of seven administrators will
grant you access, typically within a few hours of requesting to join this group.

https://holodevelopers.slackarchive.io/
http://www.facebook.com/groups/winholographicdevs/

Chapter 10 ■ Community Resources

207

There’s a certain degree of user overlap between this group and the other popular
online communities we’ve covered so far. Most days, each group has different sets of
active contributors and different content is shared and covered across each of these
groups. For this reason, I typically monitor these (and other) communities on a weekly
basis.

The Facebook group is generally more useful for the sharing and consumption of
Mixed Reality news and experiences. New users can see the group’s photos, links, and
history easier than on Slack or the Forums. It’s also convenient for developers who
are comfortable on Facebook and frequently use the platform. This group is not ideal,
however, for real-time chat and discussion. Extended developer discussions may also be
difficult to follow on Facebook.

There are dozens (if not hundreds) of HoloLens and Mixed Reality related groups on
Facebook. Figure 10-5 shows a small sampling of groups that appear when I searched for
Windows Mixed Reality Facebook groups. Some of these groups have several thousand
members. I’ve not had the opportunity to explore each of them, but if you’re looking for
a certain niche Windows Mixed Reality community, you’re bound to find something
relevant on Facebook.

Figure 10-4.  The HoloLens Developers group is the largest Windows Mixed Reality
Developer group on Facebook

Chapter 10 ■ Community Resources

208

Unity and Unity HoloLens Forum
Some of the most powerful development resources for any Unity-based application
(including Windows Mixed Reality applications) are the Unity Forums. You can find the
Unity Forums at https://forum.unity3d.com.

When asking your favorite search engine any Unity-related question, you’ll most
likely be taken to the Unity Forums for your answer. Outside of the Mixed Reality world,
Unity is widely used for game development. This is excellent news, because it means that
there are years of tutorials, resources, and forum discussions to help answer almost any
question you may have as you’re developing your Mixed Reality applications.

In addition to the broader Unity Forums community, there is also a HoloLens-
specific Unity Forum at https://forum.unity3d.com/forums/hololens.102. In the
HoloLens-specific forum, you’ll find a great community of people helping each other and
discussing HoloLens and Windows Mixed Reality development in Unity.

HoloLens Subreddit
If you’re not familiar with Reddit (www.reddit.com), it is the seventh most popular
website in the world (at the time of this writing). Reddit is popular because users “vote”
relevant news and content to the top of users’ feeds, instead of being presented curated
content by unknown search engine algorithms or hand-picked by media agencies.

Figure 10-5.  There are many HoloLens and Windows Mixed Reality groups on Facebook
to choose from

https://forum.unity3d.com/
https://forum.unity3d.com/forums/hololens.102
http://www.reddit.com/

Chapter 10 ■ Community Resources

209

There are countless topic groups on Reddit, called subreddits. The HoloLens
subreddit (www.reddit.com/r/HoloLens/) is the most popular subreddit for HoloLens
and Windows Mixed Reality, boasting roughly 6,000 subscribers as of this writing.
Figure 10-6 shows what you can expect to see when visiting the HoloLens subreddit.

The HoloLens subreddit is an excellent resource for filtering out relevant Windows
Mixed Reality news from irrelevant or unimportant content. Naturally, any important or
relevant posts will receive a higher number of upvotes and rise to the top of your feed.

Reddit also has a useful feature to sort by most upvoted posts for various time
periods. As you can see in Figure 10-6, I’ve listed the top posts during the past month by
clicking Top in the upper menu and then Past Month in the lower menu bar. This allows
infrequent visitors to check in every few days/weeks/months and make sure that they
didn’t miss any big Windows Mixed Reality news or content.

Figure 10-6.  Subscribe to the HoloLens subreddit to stay up to date on the most relevant
and exciting HoloLens and Windows Mixed Reality news

Don’t forget to read the comments section of important posts. Reddit boasts an
active community of commenters who share opinions and valuable insights, adding rich
context and humor to most submitted posts.

Next Reality News
Of the vast number of technology-related news websites available, I’ve found that Next
Reality News (https://next.reality.news) consistently provides the best coverage of
Windows Mixed Reality headsets and software. It also regularly publishes tutorials that
are helpful for HoloLens and Mixed Reality developers.

The special focus given to Windows Mixed Reality can be partially attributed to Jason
Odom, a well-known Windows Mixed Reality developer and author. He is on the Next
Reality News team and frequently publishes in-depth HoloLens articles. You’ll also see
Jason Odom actively participating in community groups such as the HoloDevelopers
Slack team and the HoloLens Developers Facebook group.

http://www.reddit.com/r/HoloLens/
https://next.reality.news/

Chapter 10 ■ Community Resources

210

Next Reality News is a great place to read in-depth coverage and hear opinions
on Windows Mixed Reality (and other augmented/virtual reality) news with a special
developer perspective that you’ll be hard pressed to find at any other news source.
The authors are also very accessible and always happy to interact with readers via the
comments section or social media. Figure 10-7 shows what you can expect to see when
you visit Next Reality News.

Figure 10-7.  Next Reality News is an excellent community and source for Windows Mixed
Reality and other VR/AR news written by HoloLens developers

YouTube
The best way to quickly visualize and learn about another Mixed Reality experience is to
watch a video. This is why YouTube has been a valuable platform for developers to share
their Windows Mixed Reality apps to the world. Here are a few YouTube channels worth
subscribing to in the HoloLens and Windows Mixed Reality space:

•	 Sean Ong’s YouTube Channel: A shameless plug for my YouTube
channel, where you can find relevant content on my latest
Windows Mixed Reality projects. With over 36,000 subscribers as
of this writing, my channel is best known for technology-related
tutorials, tips, tricks, and news with a special focus on Windows
Mixed Reality and Microsoft products. Find me at www.youtube.
com/c/seanong.

http://www.youtube.com/c/seanong
http://www.youtube.com/c/seanong

Chapter 10 ■ Community Resources

211

•	 Official HoloLens YouTube Channel: Follow Microsoft’s official
HoloLens YouTube channel for tutorials, app features, and
inspiring examples for your next project at www.youtube.com/
channel/UCT2rZIAL-zNqeK1OmLLUa6g.

•	 Matrix Inception’s YouTube Channel: With 540 subscribers as of
this writing, Matrix Inception’s rising YouTube channel features
some of the most innovative concepts in Windows Mixed Reality,
including beaming lasers through portals, a keyboard you can
use in your own application, room scanning tricks, reviews,
and more. See this channel at www.youtube.com/channel/
UC5WLFKmv6BPFTBzOcZQzVag.

•	 The Holo Herald: Another up and coming YouTube channel
dedicated to covering HoloLens and Mixed Reality content. The
Holo Herald is best known for thorough coverage of reviewing
Windows Mixed Reality applications in the Windows Store. Follow
The Holo Herald at www.youtube.com/channel/UCTC0kLfWnQN-
zvbKFE96LjA>

Local Events and Meetups
This section introduces some ways you can get involved with local Mixed Reality events
near you. Although online communities and groups provide a quick and easy way to
communicate with a large number of developers across the world, there’s still immense
value in meeting fellow Windows Mixed Reality enthusiasts and developers face-to-face
at a venue.

One popular resource for finding local meetups is the Meetup website, found at
www.meetup.com. For example, I attend my local HoloLens/Windows Mixed Reality meetup
group for the Seattle area, called the Windows Holographic User Group Redmond
(WinHUGR). Figure 10-8 shows this group’s page on Meetup.com. This particular meetup
group boasts about 900 members, with an average attendance of about 60–80 people for
the monthly meetings. Some meetup groups, such as the Austin HoloLens meetup may
only have 5–10 attending on a weekly basis. Be sure to search Meetup.com to see if there
are any Windows Mixed Reality groups near you. If not, use some of the other online
communities mentioned earlier in this chapter to find and gather a few individuals near
you and form a Meetup group.

http://www.youtube.com/channel/UCT2rZIAL-zNqeK1OmLLUa6g
http://www.youtube.com/channel/UCT2rZIAL-zNqeK1OmLLUa6g
http://www.youtube.com/channel/UC5WLFKmv6BPFTBzOcZQzVag
http://www.youtube.com/channel/UC5WLFKmv6BPFTBzOcZQzVag
http://www.youtube.com/channel/UCTC0kLfWnQN-zvbKFE96LjA
http://www.youtube.com/channel/UCTC0kLfWnQN-zvbKFE96LjA
http://www.meetup.com/

Chapter 10 ■ Community Resources

212

In the next section you’ll find non-comprehensive lists of HoloLens and Windows
Mixed Reality meetups for cities around the world. Some of these may be broader
developer or VR/AR groups, but are known to have a one or more Windows Mixed Reality
developers in the community.

Europe Meetups
•	 Finland, Espoo HoloLens Meetup

•	 France, Paris NUI Day

•	 France, Paris Mixed Reality Paris

•	 Germany, Berlin AR-VR Tools & Tech

•	 Germany, München HoloLens Meetup Germany

•	 Ireland, Dublin 3DCamp Dublin

•	 Ireland, Galway 3DCamp Galway

•	 Netherlands, Amsterdam Virtual Reality Amsterdam Meetup

•	 Russia, Moscow Moscow HoloLens Meetup

•	 Sweden, Stockholm Coding After Work

Figure 10-8.  Meetup.com web page for a local HoloLens/Windows Mixed Reality meetup
group in the Seattle area

https://www.meetup.com/Finland-HoloLens-Meetup/
https://www.meetup.com/NUIDay/
https://www.meetup.com/Mixed-Reality-In-Paris/
https://www.meetup.com/AR-VR-Tools-Tech/
https://www.meetup.com/HoloLens-Meetup-Germany/
https://www.meetup.com/3DcampDublin/
https://www.meetup.com/3DCamp-Galway/
https://www.meetup.com/VR-020-Meetup/
https://www.meetup.com/Moscow-HoloLens-Meetup/
https://www.meetup.com/CodingAfterWork/

Chapter 10 ■ Community Resources

213

•	 Switzerland, Zürich NUI World

•	 Turkey, Istanbul HoloLens Development Meetup

•	 UK, Belfast Immersive Tech NI

•	 UK, Brighton VR Brighton – Digital Catapult Brighton

•	 UK, London Mixed Reality London

•	 UK, London Augmenting Reality

•	 UK, London VR London

•	 UK, London London HoloLens User Group

•	 UK, London London Virtual Reality Developer Meetup

•	 UK, London Let’s Get Real! The Future of Augmented &
Virtual Reality

•	 UK, London Unfold UK (Women/Diversity in VR)

North America Meetups
•	 Canada, Toronto HoloLens Meetup

•	 USA, Austin Austin Microsoft Developers

•	 USA, Austin Austin HoloLens meetup

•	 USA, Boston VRARA Boston

•	 USA, Boston Boston Unity Group

•	 USA, Boston Boston VR

•	 USA, Boston Boston AR/VR

•	 USA, Dallas Dallas AR/VR/MR UX & Development

•	 USA, Knoxville The Virtual/Augmented Reality Developers
Network (VARDNet)

•	 USA, Los Angeles Los Angeles HoloLens Meetup

•	 USA, Iselin Microsoft Makers & App Devs of New Jersey

•	 USA, New York NYVR

•	 USA, New York NYC HoloLens Developers Meetup

•	 USA, New York Microsoft Makers & App Devs of New York City
(#MMADNYC)

•	 USA, Palo Alto HoloLens Developer Meetup

•	 USA, Philadelphia VR Philly

https://www.meetup.com/NUI-World/
https://www.meetup.com/Istanbul-HoloLens-Development-Meetup/
https://www.meetup.com/Immersive-Tech-NI/
https://www.eventbrite.co.uk/e/vr-brighton-meetup-4-tickets-31025089879
https://www.meetup.com/Mixed-Reality-London/
https://www.meetup.com/Augmenting-Reality/
https://www.meetup.com/vrlondon/
https://www.meetup.com/london-hololens/
https://www.meetup.com/London-Virtual-Reality-Developer-Meetup/
https://www.meetup.com/Happy-Finish-Virtual-Augmented-Reality-Keeping-It-Real/
https://www.meetup.com/Happy-Finish-Virtual-Augmented-Reality-Keeping-It-Real/
https://www.meetup.com/unfolduk/
https://www.meetup.com/Toronto-HoloLens/
https://www.meetup.com/ATX-MSFT-Devs/Austin
https://www.meetup.com/Austin-HoloLens/
https://www.meetup.com/VRARA-Boston/
https://www.meetup.com/B-U-G-Boston-Unity-Group/
https://www.meetup.com/Boston-Virtual-Reality/
https://www.meetup.com/BostonAR/
https://www.meetup.com/Dallas-Virtual-Reality/
https://www.meetup.com/VARDNet-The-Virtual-Augmented-Reality-Developers-Network/
https://www.meetup.com/VARDNet-The-Virtual-Augmented-Reality-Developers-Network/
https://www.meetup.com/Los-Angeles-HoloLens-Meetup/
https://www.meetup.com/MMADNJ/
https://www.meetup.com/NYVR-Virtual-Reality-NYC/
https://www.meetup.com/NYC-HoloLens-Developers-Meetup/
https://www.meetup.com/MMADNYC/
https://www.meetup.com/MMADNYC/
https://www.meetup.com/HoloLens-Developer-Meetup/
https://www.meetup.com/vrphilly/

Chapter 10 ■ Community Resources

214

•	 USA, Philadelphia Mid-Atlantic Mixed Reality User Group

•	 USA, Portland Portland HoloLens Meetup

•	 USA, Reston DC Holographic

•	 USA, San Francisco SFVR

•	 USA, Seattle Seattle VR Meetup

•	 USA, Seattle Windows Holographic User Group Redmond
(WinHUGR)

•	 USA, Silicon Valley SVVR

•	 USA, Washington DC DC Metro Devs

Asia Pacific Meetups
•	 Australia, Adelaide Adelaide HoloLens Meetup

•	 Australia, Sydney Microsoft Events in Australia

•	 Australia, Sydney Women in Augmented Reality and
Virtual Reality

•	 China, Beijing HoloLens User Group China

•	 Japan, Tokyo HoloMagicians

•	 Malaysia, Kuala Lumpur Microsoft Developer Malaysia

Again, if you don’t see your city or region represented in the preceding lists, be sure
to check Meetup.com or perform a search on your favorite search engine to find meetups
near you. Microsoft also maintains an updated list of community resources and meetups
at https://developer.microsoft.com/en-us/windows/mixed-reality/community.

You may also consider joining or following the local chapter of the VR/AR
Association. You may see a list of local chapters and chapter leaders at www.thevrara.
com/team/.

Hackathons
A hackathon is an event where people come together for one or more days to quickly
develop an application. A hackathon forces you to solve problems, leverage team
members’ expertise, and ask for help from experts. Hackathons are dear to my heart
because a HoloLens hackathon I attended in the spring of 2016 was the catalyst that really
propelled me forward as a HoloLens developer. Figure 10-9 shows a picture I took of the
Seattle HoloHacks HoloLens hackathon I attended in 2016.

https://www.meetup.com/mixedrealityMA/
https://www.meetup.com/hololenspdx/Portland
https://www.meetup.com/DC-Holographic/
http://www.sfvr.net/
https://www.meetup.com/Seattle-Virtual-Reality-Meetup-Group/
https://www.meetup.com/WinHUGR/
https://www.meetup.com/WinHUGR/
http://svvr.com/
https://www.meetup.com/DC-MS-Devs/
https://www.meetup.com/Adelaide-HoloLens-Meetup/
https://www.meetup.com/Microsoft-events-in-Australia/
https://www.meetup.com/Women-in-AR-VR/
https://www.meetup.com/Women-in-AR-VR/
https://www.meetup.com/HoloLensChina/
https://hololens.connpass.com/
https://www.meetup.com/Microsoft-Developer-Malaysia/
https://developer.microsoft.com/en-us/windows/mixed-reality/community
http://www.thevrara.com/team/
http://www.thevrara.com/team/

Chapter 10 ■ Community Resources

215

A hackathon will typically give you access to volunteers and experts who can help
you out of tricky situations and show you optimal solutions to challenging development
problems. Getting out of a coding problem that might take you a few hours of searching
and reading online typically only takes a few minutes when you’re able to have an expert
show you what to do in person.

Attending a hackathon requires some commitment (typically a weekend) and
stamina, but it’s an extremely valuable experience that you won’t get anywhere else.
I highly recommend that you find a relevant hackathon, even if you must travel to attend
it. Relevant hackathons include HoloLens, Mixed Reality, Virtual Reality, and Augmented
Reality hackathons. VR and AR hackathons will typically include a healthy number of
HoloLens and Windows Mixed Reality devices and developers.

Hackathons are often planned a few months in advance. The best place to find a
hackathon is on a community calendar of your local Meetup group. You may also find
them occasionally advertised on any of the online community groups I mention in this
chapter. You can always ask members of your local or online community groups if they
are aware of any upcoming hackthons, and you’ll be sure to get several responses for a
range of hackathons.

If you’d like to read more about my Seattle HoloLens hackathon experience to get a
feel for what to expect, feel free to look at my blog post on the event at www.mrseanong.
com/video-blog/my-experience-at-the-holohacks-seattle-hololens-hackathon.

Notable Industry Events
Industry events and conferences are an excellent way to keep a pulse on the Mixed
Reality industry. Conventions and expos give you a chance to educate yourself during
informative sessions, experience countless demos in person, build your network, and
have a chance to meet up with people you’d typically communicate with online in your
community groups.

There’s no shortage of conferences, conventions, expos, and other events locally,
nationally, and globally. As I mentioned with hackathons in the previous section, you can
find out about upcoming events through community calendars and through your local or
online-based groups.

Figure 10-9.  The Seattle HoloLens hackathon was the event that propelled my career as a
Windows Mixed Reality developer

http://www.mrseanong.com/video-blog/my-experience-at-the-holohacks-seattle-hololens-hackathon
http://www.mrseanong.com/video-blog/my-experience-at-the-holohacks-seattle-hololens-hackathon

Chapter 10 ■ Community Resources

216

I’ve also compiled a list of notable industry events, recognized for being especially
important for HoloLens and Windows Mixed Reality developers:

•	 Unity Vision Summit: The annual Unity Vision Summit is a
popular event focusing on VR/AR content creation in Unity.
Because Unity is the preferred platform for Windows Mixed
Reality development, this conference is highly relevant to
developers. Microsoft and Unity have worked together to
ensure that Windows Mixed Reality is a big area of focus at this
conference. A link to the 2017 Unity Vision Summit can be found
at https://visionsummit2017.com.

•	 Augmented World Expo: The Augmented World Expo (AWE)
is the largest AR and VR event in the world. AWE includes a
range of Mixed Reality technologies, with a focus on augmented
reality. I attended the 2017 AWE and was surprised to see
that a vast majority of booths in the expo featured HoloLens
experiences. AWE is also known for being more enterprise- and
commercial-focused. Many other VR/AR conferences tend to be
social- and gaming-focused. Learn more about AWE at
www.augmentedworldexpo.com.

•	 Microsoft Build: Microsoft Build is Microsoft’s premier event
for developers of Microsoft’s various software and hardware
products. Microsoft typically includes academy sessions
on Windows Mixed Reality, makes major Mixed Reality
announcements, and provides in-depth sessions on a wide range
of topics. Microsoft Build tickets typically sell out within minutes,
but keynote sessions are streamed online, and all sessions are
made available on demand for free after the event. Find out more
about Build at http://build.microsoft.com.

Summary
Congratulations! Not only have you made it to the end of this chapter, you’ve also
completed the book. In this chapter, I walked you through ways you can keep informed
and stay connected as a developer. I introduced the best online communities to
participate in, the most informative sources of Windows Mixed Reality news, ways to get
involved in person with local groups, and notable events and hackathons that you can
attend. As mentioned at the beginning of this chapter, being plugged into a community of
developers is imperative, especially because Mixed Reality is still an emerging field with a
lot of best practices still being learned by development community.

Our journey with this book may have come to an end, but your journey as a developer
is just beginning. There are countless ways to sharpen your skills as a developer, from
mastering Physics in Unity to being a shader optimization pro. There’s still so much to
learn and so much that’s yet to be discovered in the world of Mixed Reality.

I wish you the best on your new adventure and cannot wait to see all that you will
create. Now, let’s start building our holographic future together!

https://visionsummit2017.com/
http://www.augmentedworldexpo.com/
http://build.microsoft.com/

217© Sean Ong 2017
S. Ong, Beginning Windows Mixed Reality Programming, DOI 10.1007/978-1-4842-2769-5

�       � A
Air-tap gesture, 102–104
Albedo setting, 42
Asia Pacific meetups, 214
Audio occlusion, 90
Augmented World Expo (AWE), 216
Awe-inspiring experience

capstone project, 176–177, 179–194
culling, 162–163
design

additional resources, 174
avoid, 174
bounding box, 173
colors, 174
distance from user, 171
shadows, 171
sharp text, 172
spatial mapping, 169–171
toolbars, 173
voice, 172
Vuforia, 174–176

Device Portal settings
CPU, 158
frame rate, 158
GPU, 158
I/O, 158
memory, 159
network, 159
SoC power, 158
system power, 158

features, 155
holographic remoting, 166
HoloLens’s Settings app, 157
LOD, 162
monitoring and optimizing, 159

polygons and textures, 159–161
shaders, 165
Simplygon, 165
single-pass instanced, 164
stabilization plane, 166–168

�       � B
Billboard script, 91
Bounding box, 173

�       � C, D
Capstone project

add cursor, 179–180
add spatial sound

effects, 191–193
ballmanager.cs, 181–183
configure InputManager, 179
create responsive ball, 180–183
download assets, 184–186
HoloToolkit

settings, 177–178
Unity package, 176

ideas, 194
lava scene

add ability to move, 189–190
create, 186–189

spatial mapping
add and configure, 190–191

Channels, 203
CPU, 4
Culling

frustum, 162
occlusion, 163

Cursor test scene, 100

Index

■ INDEX

218

�       � E
Emitter game object, 146–147
Europe meetups, 212–213

�       � F
Facebook group, 206–207
Field-of-view (FOV)

limitation, 12
Fragments applications, 170
Frame rate, 156, 158
Frames per second (FPS), 90, 156, 159
Freelancing

finding opportunities, 197–198
winning contract

keep in touch, 199
portfolio, 198
submit proposal, 199

Freemium, 196
Frustum culling, 162

�       � G
Game objects, 35
Gamepads, 113
Gaze

code elements, 107
input method, 95
tutorial

try scene, 97
understand scene, 98–99
use, 100

Unity scene, 96
Gestures

input method, 95–96
tutorial

cursor prefab, 107
distance scale, 106
enter and exit, 104–105
gaze code elements, 107
HandDraggable.cs, 107
host transform, 106
implement, 107
InputManager.cs, 107
load test scene, 101
move objects, 105–106
OnFocusExit(), 104
select gesture, 102–104
try test scene, 101–102
use air-tap, 102–104

GitHub, 92
Graphics card, 5
Graphics processing unit (GPU), 5
Guide users, 151

�       � H
Hackathons, 214–215
HandDraggable.cs, 105
Headsets

transparent vs. immersive, 11, 12
Heads-up display (HUD), 174
High-poly models, 160
HoloDevelopers slack team

contains, 204
founder, 204
general tips, 205–206
HoloLens and Windows

Mixed Reality, 204
joining, 205
participating, 205–206
semi-official, 204

Hologram
cube

create, 60
move from camera, 61–62
resize, 62
zoom, 60–61

HoloLens, 64–68, 70–72
persistence, 10, 137–138
test, 63

Holographic
building apps, 202
computer, 157
emulation, 5, 7
remoting, 6, 166

connect to HoloLens, 74–76
install on HoloLens, 73–74
test, 76

simulation, 7
advantages of, 77
connect controller, 77
enable, 77
test, 78

Holo Herald channel, 211
HoloLens

cameras, 9
connect with holographic

remoting, 74–76
emulator, 8

system requirements, 5

■ INDEX

219

hologram, 64–72
install holographic

remoting, 73–74
Seattle hackathon, 214
subreddit, 208–209
testing with, 6
Unity Forums, 208
YouTube channel, 211

HoloLens Developers Facebook
Group, 206–207

HoloToolkit, 13
build, 91
defined, 55
downloading, 25–26
features and descriptions, 84
input, 85
Mixed Reality development, 57–59
new Unity project, 56
online

help and documentation, 92
repositories, 92

overview, 81
setup, 81, 83–84
sharing, 88–89
spatial mapping, 89
spatial sound, 90
spatial understanding, 89–90
test scene, 85–88
utilities, 90–91
version, 26, 82

HoloToolkit-Unity, 25
Host Transform, 106

�       � I, J, K
Immersive apps, 202
Immersive headsets, 11
InputManagerTest scene, 107
Input methods, 95

gaze, 95
gestures, 95–96
hardware, 96
motion controllers, 96
voice, 96

Inside-out tracking, 9
Integrated graphics, 5

�       � L
Level of detail (LOD) rendering, 162
Low-poly model, 160–161

�       � M
Matrix Inception’s channel, 211
Meetup.com

Asia Pacific, 214
Europe, 212–213
group’s page, 212
North America, 213–214

Microphone, 108
Microsoft Build, 216
Microsoft’s Mixed Reality forum. See

Windows Mixed Reality
Developer Forum

Mixed Reality
freelancing, 197–199
opportunities, 199
Windows Store, 195–196

Motion controllers, 113
input method, 96

Multiple voice commands, 111

�       � N
Negative shadowing, 171
Next Reality News, 209–210
North America meetups, 213–214

�       � O
Occluder, 142–143, 145–146
Occlusion

apply, 127–128
culling, 163
load TapToPlace scene, 127
try it out, 128–130
use in application, 130–131

Operating system (OS), 4
Outside-in tracking, 9

�       � P, Q
Persistence, 137–138
Polygons

high-poly models, 160
low-poly models, 160–161

Processor, 4

�       � R
Random Access Memory (RAM), 4
Readme section, 92

■ INDEX

220

Reddit, 208–209
RemoveSurfaceVertices script, 126
Roll-A-Ball tutorial, 30, 38

�       � S
Scenes, 85–88
Scripts, 45–46
Semi-official, 204
Shaders, 165
Shadows, 171
Sharing anchors, 138
Simplygon, 165
Single-pass instanced, 164
Slack, 203, 206
Spatial anchors, 136
Spatial mapping, 89

awe-inspiring
experience, 169–171

hologram persistence, 10
HoloLens, 10
mesh, 118
navigation, 116
occlusion, 115
persistence, 115
physics, 116
placement, 115
spatial map, 10
tutorial

set up Unity scene, 116
try it out, 117

understand scene, 118, 120
use in application, 120

Spatial plane
set up Unity scene, 121
try it out, 122–123

Spatial processing scene
load, 123–124
removing vertices, 126
SurfaceMeshesToPlanes.cs, 126
try it out, 124
understand, 125–126
use in application, 126

Spatial sound, 11, 90
avoid 2D sounds, 151
design considerations, 150
guiding users, 151
holograms, 141
increase immersion, 141
interactive experience, 141

minimize artificial sounds, 152
tutorial

audio file, 146
enable, 148–150
loop, 146
max distance, 148
max object, 148
mute, 146
pitch, 147
play on awake, 146
priority, 146
set up Unity scene, 142
spatial blend, 147
spatialize, 146
test scene, 142–144
understand scene,

144, 146–148
update interval, 148
volume, 147

Windows 10, 141
Spatial understanding

set up Unity scene, 131–132
SpaceVisualizer.cs, 135
SpatialUnderstandingCustomMesh.cs,

134
SpatialUnderstandingSourceMesh.cs,

134
try it out, 132–133
use in application, 134–136

Stabilization plane
default plane distance, 168
defined, 166
draw gizmos, 168
general tips, 168
lerp power

closer, 167
farther, 167

resources, 168
set, 167
SetFocusPointForFrame(), 168
target override, 167
track velocity, 167
use gaze manager, 167
use unscaled time, 167

Stabilization scripts, 99
Stereo rendering method

multi pass, 164
single pass instanced, 164

Subreddit, 208–209
SurfaceMeshesToPlanes script, 126

■ INDEX

221

�       � T
Tagalong script, 91
Test scene, 85–88, 98

gestures, 101–102
voice, 108

�       � U
Unity, 5

ball
add physics, 44–45
create, 38–39
raise position, 40
rename, 39
reset position, 39
zoom, 39

create new project, 30, 32–33
defined, 29
enable keyboard

control, 45–49
free vs. paid tiers, 29
ground plane

color ground blue, 40–44
create, 34, 36
rename, 36
reset position, 36
scale, 37
zoom, 37

holographic remoting, 6
holographic simulation, 7
HoloLens emulator, 8
HoloLens Forum, 208
installation, 18–25
save scenes, 33
testing, 50
Vision Summit, 216
Windows Mixed

Reality, 12, 29
Unity Editor, 32
Unity scene

spatial mapping, 116
Unity Vision Summit, 216

�       � V
Visual Studio

defined, 13
installation, 13–18

Visual Studio 2015, 16–17

Visual Studio 2017
Game development with

Unity, 16
Universal Windows Platform

development, 16
Visual Studio Community, 14
Voice

command tutorial
add, 111
best practices, 113
load test scene, 108
OnMakeSmaller(), 112
OnMoveUp(), 112
own project, 112
try test scene, 108
understand scene, 109–110

input method, 96
VREX.io, 198
Vuforia

defined, 175
install, 175
try it out, 175

�       � W, X
Wiki, 93
Windows 10, 4
Windows Holographic Developer Forum.

See Windows Mixed Reality
Developer Forum

Windows Holographic User Group
Redmond (WinHUGR),
211–212

Windows Mixed Reality
hardware, 9–12
hardware options, 113
Unity, 12, 29
Visual Studio, 13

Windows Mixed Reality
Developer Forum

advantages, 202
disadvantages, 203
Facebook groups, 207
holographic apps, 202
immersive apps, 202
main page, 202
Microsoft published

experiences, 202
projects, 202

Windows Mixed Reality development, 4

■ INDEX

222

Windows Store
free apps, 196
freemium apps, 196
free with ads apps, 196
HoloLens apps, 196
Mixed Reality applications, 197
paid apps, 196

World anchor. See Spatial anchor

�       � Y, Z
Young Conker applications, 170
YouTube

Holo Herald, 211
Matrix Inception’s channel, 211
official HoloLens channel, 211
Sean Ong’s channel, 210

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction: The Holographic Future
	Part I: Getting Started
	Chapter 1: Gear Up: The Necessary Hardware and Software Tools
	Making Sure Your PC Is Ready
	Using a HoloLens, Emulator, or Other Mixed Reality Hardware
	Testing with the HoloLens
	Testing with Emulation

	Understanding the HoloLens and Other Windows Mixed Reality Hardware
	Inside-Out Tracking and Spatial Mapping
	Spatial Sound
	Transparent vs. Immersive Headsets

	Downloading and Installing the Required and Optional Software Tools
	Installing Visual Studio
	Installing Unity
	Downloading the HoloToolkit

	Summary

	Chapter 2: Unity Crash Course
	What Is Unity?
	Free vs. Paid Tiers of Unity

	Your First Unity App
	Step 1: Create a New Unity Project
	Step 2: Save Your Scene
	Step 3: Create a Ground Plane
	Step 4: Rename Your Plane
	Step 5: Reset Ground Plane Position
	Step 6: Zoom to Your Ground Plane
	Step 7: Scale Your Ground Plane
	Step 8: Create the Ball
	Step 9: Rename Your Ball
	Step 10: Reset the Ball’s Position
	Step 11: Zoom to Your Ball
	Step 12: Raise the Ball’s Position
	Step 13: Color the Ground Blue
	Step 14: Add Physics to the Ball
	Step 15: Enable Keyboard Control
	Step 16: Testing Your App

	Summary

	Part II: Building Holographic Experiences
	Chapter 3: Creating Your First Hologram
	Getting Unity Ready for Mixed Reality Development
	Step 1: Import HoloToolkit to a New Unity Project
	Step 2: Use HoloToolkit to Prepare Your Scene for Mixed Reality Development

	Your First Hologram
	Step 1: Create a Cube
	Step 2: Zoom to Your Cube
	Step 3: Move the Cube Away from the Camera
	Step 4: Resize the Cube
	Step 5: Test Your App
	Step 6: Install Your App on the HoloLens

	Test Your App Using Holographic Remoting
	Step 1: Install and Run the Holographic Remoting Player to Your HoloLens
	Step 2: Connect to Your HoloLens with Unity’s Holographic Remoting
	Step 3: Test Your App Using Holographic Remoting

	Test Your App Using Holographic Simulation
	Step 1: Enable Holographic Simulation
	Step 2: Connect Your Controller
	Step 3: Test Your App Using Holographic Simulation

	Summary

	Chapter 4: Introduction to the HoloToolkit
	What Is the HoloToolkit?
	HoloToolkit Setup
	HoloToolkit Components
	HoloToolkit: Input
	Running a Test Scene

	HoloToolkit: Sharing
	HoloToolkit: Spatial Mapping
	HoloToolkit: Spatial Understanding
	HoloToolkit: Spatial Sound
	HoloToolkit: Utilities
	HoloToolkit: Build

	HoloToolkit Online
	The Two HoloToolkit Repositories
	What Is GitHub?
	HoloToolkit Help and Documentation

	Summary

	Chapter 5: Interacting with Holograms
	Input Methods
	Gaze Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try the Scene
	Step 3: Understand the Scene
	Step 4: Use Gaze in Your Project

	Gestures Tutorial
	Step 1: Load the Test Scene
	Step 2: Try It Out
	Step 3: Use Air-Tap or Select Gesture
	Step 4: Enter and Exit Focus
	Step 5: Move Objects
	Step 6: Implementing Gestures in Your Application

	Voice Command Tutorial
	Step 1: Load the Test Scene
	Step 2: Try It Out
	Step 3: Understand the Scene
	Step 4: Add Your Own Voice Command
	Step 5: Use Voice Commands in Your Own Project
	Best Practices for Voice Commands

	Other Hardware Input
	Summary

	Chapter 6: Using Spatial Mapping
	What Is Spatial Mapping?
	Spatial Mapping Tutorial
	Step 1: Set Up Unity Scene
	Step 2: Try It Out
	Step 3: Understand the Scene
	Step 4: Use Spatial Mapping in Your Application

	Spatial Plane Finding Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try It Out
	Step 3: Load the Spatial Processing Scene
	Step 5: Try Out the SpatialProcessing Scene
	Step 6: Understand the SpatialProcessing Scene
	Step 7: Use Spatial Processing in Your Application

	Occlusion Tutorial
	Step 1: Load the TapToPlace Scene
	Step 2: Apply Occlusion
	Step 3: Try It Out
	Step 4: Use Occlusion in Your Application

	Spatial Understanding Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try It Out
	Step 3: Use Spatial Understanding in Your Application

	Spatial Anchors and Persistence
	How to Use Spatial Anchors
	Hologram Persistence
	A Note on Sharing Anchors

	Summary

	Chapter 7: Spatial Sound
	Spatial Sound Tutorial
	Step 1: Set Up the Unity Scene
	Step 2: Try It Out
	Step 3: Understand the Scene
	Step 4: Enable Spatial Sound in Your Application

	Spatial Sound Design Considerations
	When to Use Spatial Sound
	What to Avoid When Using Spatial Sound

	Summary

	Part III: Growing as a Holographic Developer
	Chapter 8: Awe-Inspiring Experiences
	What Makes an App Awe-Inspiring?
	Optimization and Performance
	How to Monitor for Performance
	Best Practices for Performance
	Start Monitoring and Optimizing Early
	Optimize Polygons and Textures
	Use Level of Detail Rendering
	Use Culling
	Enable Single-Pass Instanced Rendering
	Optimize Shaders

	Simplygon
	Holographic Remoting
	Stabilization Plane

	Design and Magic
	Best Practices for Design
	Spatial Mapping
	Distance from User
	Shadows
	Voice
	Sharp Text
	Bounding Box
	Toolbars
	Colors
	Design Experiences to Avoid
	Additional Resources

	Adding Magic: Vuforia
	Step 1: Install the Vuforia sample
	Step 2: Try It Out

	Capstone Project
	Step 1: Import HoloToolkit to a New Unity Project
	Step 2: Apply HoloLens Settings
	Step 4: Insert and Configure InputManager
	Step 5: Add a Cursor
	Step 6: Create Responsive Ball
	Step 7: Download Assets
	Step 8: Create Your Lava Scene
	Step 9: Add the Ability to Move Lava Scene
	Step 10: Add and Configure Spatial Mapping
	Step 11: Add Spatial Sound Effects
	Step 12: Next Steps and Beyond

	Summary

	Chapter 9: Turning Holograms into Money
	Publishing Your App to the Windows Store
	Freelancing
	Finding Mixed Reality Freelance Opportunities
	Increasing Your Chances of Winning a Contract

	Future Opportunities Today
	Summary

	Chapter 10: Community Resources
	Microsoft’s Official Mixed Reality Forum
	HoloDevelopers Slack Team
	What Is Slack?
	What Is the HoloDevelopers Slack Team?
	How to Join the HoloDevelopers Slack Team
	Participating in the HoloDevelopers Slack Team

	Other Online Communities and Resources
	HoloLens Developers Facebook Group
	Unity and Unity HoloLens Forum
	HoloLens Subreddit
	Next Reality News
	YouTube

	Local Events and Meetups
	Europe Meetups
	North America Meetups
	Asia Pacific Meetups

	Hackathons
	Notable Industry Events
	Summary

	Index

