
317© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_10

CHAPTER 10

Introduction to
Behavior-Driven Development

Behavior-Driven Development (BDD) is an approach to software development that was
built with the aim of formalizing the best practices followed by Test-Driven Development
practitioners. BDD as we know it today is the result of the efforts of Dan North and
numerous others over the years. To read a detailed introduction to BDD, visit Dan North’s
website at https://dannorth.net/introducing-bdd/. This chapter will introduce you to
BDD concepts and techniques.

What Is Behavior Driven Development
One of the key issues faced by people who are new to TDD is deciding what to test.
Unfortunately TDD leaves this aspect open to the practitioner to decide. While
experienced TDD practitioners know from experience what to test (and what not to),
newcomers to TDD often do not know and, in some cases, give up on TDD altogether.

Behavior-driven development is about testing the behavior of a system, and not the
implementation details. A system could be either an individual class or a group of classes
that make up an aggregate unit of functionality.

As an example, consider the bank account project discussed in Chapter 4 with three
key classes – BankAccount, AccountOwner, and Transaction. In terms of relationships, a
BankAccount can have up to two AccountOwners and a variable number of Transactions
(Figure 10-1).

Figure 10-1. Relationship Between Model Layer Objects

https://dannorth.net/introducing-bdd/
http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

318

These model objects in isolation are not very useful from a business perspective.
We have followed a rigid test-driven approach to developing these components in
Chapter 4. The tests that we wrote verified that a number of validator objects worked as
expected, and that creating a Model layer object makes calls to a number of validator
objects. These tests, however, are of little value to a product owner as they don’t directly
tell him whether a business requirement is met.

The business requirement could, for instance, be something like this: As a joint
account customer, I want to be able to withdraw money from my account if there is
money in the account, so that I can use the cash to make a purchase.

To put it another way, the tests that we have written while following a test-driven
approach are too detailed to be useful for a product owner to be able to verify that the
developers have built the system that was asked of them.

The Difference between BDD and TDD
The key difference between behavior-driven development and test-driven development is
that BDD tests are written at a different level of detail than TDD tests.

BDD-style tests system behavior is where the acceptable behavior of the system is
defined by a set of scenarios, which are, in turn, derived from business requirements.

BDD-style tests are generally more descriptive and meaningful to the business. They
are described in a language called Domain Specific Language (DSL) that contains terms
and concepts encountered in the business domain.

BDD-style tests could, in theory, be written using the existing XCTest framework with
cleverly thought of method names, and a fair bit of mocking and stubbing. In practice,
BDD-style tests are written using a special framework. One such framework for iOS
developers using Swift is called Quick.

Business Requirements and User Scenarios
The best way to understand how BDD works is to examine a concrete example. Let us
assume that your company has been contracted to build a new banking system for retail
operations, and after a few weeks of analysis, the business analyst has documented the
following two requirements:

As a [customer]

I want to [deposit money in my savings bank account]

So that [I can reach my savings goals]

As a [customer].

I want to [withdraw money from my savings bank account].

So that [I can meet a financial obligation].

This is obviously an oversimplification of a real-world scenario where the business
analyst has probably documented a few hundred requirements, but it serves to illustrate
how a team practicing BDD would approach this problem.

http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

319

A developer would then sit with the business analyst and a member of the QA team
to agree on a set of user scenarios. Let us assume the team has been able to come up with
the following two scenarios (again an oversimplification; in real life each requirement
would expand into multiple scenarios):

Given [A joint savings account has a credit balance of $100]

When [An account holder withdraws $50 from the account]

Then [The account should have a credit balance of $50]

Given [A joint savings account has a credit balance of $100]

When [An account holder deposits $50 into the account]

Then [The account should have a credit balance of $150]

Once a set of user scenarios has been mutually agreed upon, the QA team will
proceed to write QA scripts to test the scenarios when the system is testable using either
automated testing techniques or manual testing techniques.

From User Scenarios to BDD Tests
The developer will then create a Swift class in the test target and write BDD-style tests
using Quick. The name of the class will have the word “Specification” (or Spec) in it, as
BDD tests are written to a specification provided by the business. Listing 10-1 presents a
BDD-style test class called BankAccountSpecification.swift.

Listing 10-1. BankAccountSpecification.swift

import Foundation
import Quick
import Nimble

class BankAccountSpecification : QuickSpec {

 override func spec() {
 var mary:AccountOwner?
 var phil:AccountOwner?
 var maryAndPhil:[AccountOwner] = [AccountOwner]()
 var jointSavingsAccount:BankAccount?

 beforeEach {

 mary = AccountOwner(firstName: "Mary",
 lastName: "Daniels",
 emailAddress: "mdaniels@domain.com")

 phil = AccountOwner(firstName: "Phil",
 lastName: "Burlington",
 emailAddress: "p.burlington@domain.com")

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

320

 maryAndPhil.removeAll()
 maryAndPhil.append(mary!)
 maryAndPhil.append(phil!)

 jointSavingsAccount =
 BankAccount(accountName: "Savings Account",
 accountNumber: "87548390",
 sortingCode: "498711",
 accountType: .savingsAccount,
 owners: maryAndPhil)
 }

 describe("A joint savings account has a credit balance of $100") {
 context("An account holder withdraws $50 from the account") {
 it("The account should have a credit balance of $50") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.withdraw(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(50))
 }
 }
 }

 describe("A joint savings account has a credit balance of $100") {
 context("An account holder deposits $50 into the account") {
 it("The account should have a credit balance of $150") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.deposit(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(150))
 }
 }
 }

 }
}

The test case file starts out by importing the Quick and Nimble frameworks:

import Foundation
import Quick
import Nimble

Quick is a framework that allows you to write BDD-style tests in Swift. Nimble is
a framework that lets you create assertions that are more verbose than the standard
XCTAssert macros provide by Xcode.

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

321

Anatomy of a Quick Test Case
A Quick test case class is always a subclass of QuickSpec, and must have a method called
spec in it. Tests for all user scenarios that define the specification are placed within the
body of the spec() method:

class BankAccountSpecification : QuickSpec {

 override func spec() {

 // All test code goes here.

 }
}

Inside the spec() method, you will find call to a function called beforeEach with a
single closure as the function argument:

class BankAccountSpecification : QuickSpec {

 override func spec() {

 beforeEach {

 // Setup code goes here

 }
 }
}

The beforeEach method of a Quick test case is equivalent to the setUp() method of
an XCTestCase. Quick test cases can also have an afterEach method that would be the
equivalent of the teardown() method of a unit test.

After the call to the beforeEach method (and before the call to the afterEach method
if the test class has one), a number of BDD-style tests are written using nested calls to
three functions: describe(), context(), it():

override func spec() {

 beforeEach {
 }

 describe(/* the "Given" part of a scenario statement*/) {
 context(/* the "When" part of a scenario statement*/){
 it(/* the "Then" part of a scenario statement */) {
 // test logic goes here
 }
 }
 }
}

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

322

The describe() function takes a string argument that corresponds to the “Given” part
of the scenario that you are testing and a trailing closure that contains statements to be
executed by Quick when testing the scenario.

The context() function takes a string argument that corresponds to the “When”
part of the scenario you are testing and a trailing closure that contains statements to be
executed by Quick when testing the scenario.

The it() function also takes a string argument that corresponds to the “Then” part of
the scenario you are testing and a trailing closure that contains the actual statements that
will test your production code.

There is a one-to-one correspondence between a user scenario and a Quick BDD
test. To make things easier to understand, Listing 10-2 presents a user scenario and its
corresponding BDD test, written using Quick.

Given [A joint savings account has a credit balance of $100]

When [An account holder withdraws $50 from the account]

Then [The account should have a credit balance of $50]

Listing 10-2. User Scenario and Corresponding Quick BDD Test

describe("A joint savings account has a credit balance of $100") {
 context("An account holder withdraws $50 from the account") {
 it("The account should have a credit balance of $50") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.withdraw(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(50))
 }
 }
}

From a business perspective, if this test passes it means that some tangible unit of
functionality has been built – something that a customer can relate to.

Your test statements go in the it() block of a Quick BDD test. In the case of
Listing 10-1, the test statements are the following:

jointSavingsAccount?.setOpeningBalance(100)
jointSavingsAccount?.withdraw(50, mary)
expect(jointSavingsAccount!.accountBalance).to(equal(50))

These tests are built assuming that a BankAccount object has methods called
setOpeningBalance, withdraw(), and a computed property called accountBalance, which
will behave in a manner consistent with the scenario being described.

To ensure that the BankAccount class behaves as expected, a test expectation
statement is used:

expect(jointSavingsAccount!.accountBalance).to(equal(50))

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

323

The expectation statement is expressed using constructs available in the Nimble
framework. Nimble is included with Quick and provides a more verbose method of
creating an expectation.

However, there is nothing stopping you from using XCTest assert macros to make these
expectations; the equivalent statement using the XCTAssertEqual macro would be this:

XCTAssertEqual(jointSavingsAccount!.accountBalance, 50)

Whether you choose to use Nimble over XCTest assert macros is a matter of personal
preference. If you would like more information on Nimble assertions, visit the following URL:

https://github.com/Quick/Nimble

If you compare the BDD-style test with TDD-style tests, you should see that BDD
style tests are more verbose, and focus on the what and not the how. There is nothing
in these BDD tests that focuses on the details of the underlying implementation of the
BankAccount class, just how it should behave in different scenarios.

The BankAccount class as developed in chapter 4 does not contain methods
called setOpeningBalance(), withdraw(), deposit() or a computed property called
accountBalance. Therefore, as with any test code, these tests will not compile just yet.

To get these tests to compile, the BankAccount class will have to be modified to
resemble Listing 10-3.

Listing 10-3. Modified BankAccount.swift

import Foundation

enum AccountType {
 case currentAccount
 case savingsAccount
}

class BankAccount: NSObject {

 var accountName:String
 var accountNumber:String
 var sortingCode:String
 var accountType:AccountType
 var transactions:[Transaction]
 var owners:[AccountOwner]

 var accountBalance:Float {
 get {
 var balance:Float = 0.0
 for transaction in self.transactions {
 if let amount = Float(transaction.amount) {

https://github.com/Quick/Nimble
http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

324

 if transaction.isIncoming {
 balance += amount
 } else {
 balance -= amount
 }
 }
 }
 return balance
 }
 }

 init?(accountName:String,
 accountNumber:String,
 sortingCode:String,
 accountType:AccountType,
 owners:[AccountOwner],
 accountNameValidator:AccountNameValidator? = nil,
 accountNumberValidator:AccountNumberValidator? = nil,
 sortingCodeValidator:SortingCodeValidator? = nil) {

 let validator1 = accountNameValidator ?? AccountNameValidator()
 if validator1.validate(accountName) == false {
 return nil
 }

 let validator2 = accountNumberValidator ?? AccountNumberValidator()
 if validator2.validate(accountNumber) == false {
 return nil
 }

 let validator3 = sortingCodeValidator ?? SortingCodeValidator()
 if validator3.validate(sortingCode) == false {
 return nil
 }

 if (owners.count == 0 || owners.count > 2) {
 return nil
 }

 self.accountName = accountName
 self.accountNumber = accountNumber
 self.sortingCode = sortingCode
 self.accountType = accountType
 self.owners = owners
 self.transactions = [Transaction]()
 }

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

325

 func setOpeningBalance(_ amount:Float) -> Void {
 if let openingBalanceTransaction =
 Transaction(txDescription: "Opening Balance",
 date: NSDate(),
 isIncoming: true,
 amount: "100.0") {
 self.transactions.removeAll()
 self.transactions.append(openingBalanceTransaction)
 }
 }

 func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 if let newTransaction =
 Transaction(txDescription: "ATM Withdrawal",
 date: NSDate(),
 isIncoming: false,
 amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 if let newTransaction =
 Transaction(txDescription: "Cash Deposit",
 date: NSDate(),
 isIncoming: true,
 amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

}

You can execute Quick BDD-style tests just as you do any other test, using the
Product ➤ Test menu item. After executing the tests, if you were to look at the test
navigator for a test report, you would see that BDD style tests appear alongside regular
unit tests, but are more human readable (Figure 10-2).

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

326

In the next two chapters, you will learn to integrate Quick and Nimble into a Swift
project and try out a few Quick tests.

Advantages and Disadvantages of BDD
After having being introduced to behavior-driven development, you might be wondering
whether BDD is a replacement for TDD. Both TDD and BDD have their own uses: test-
driven development focuses on how your code is structured and operates at a lower level
than BDD. Behavior-driven development helps ensure that the code you are writing
fulfills business objectives.

As with any technique, behavior-driven development has its own advantages and
disadvantages. Some of the advantages of BDD over TDD are the following:

•	 Tests are more verbose.

•	 Each passing test proves that the product is closer to what the
customer wants.

•	 BDD tests are useful to business analysts and product owners as
well as developers.

•	 BDD tests are not as fragile as TDD tests. If you change the
manner in which a scenario is implemented, BDD tests are less
likely to break.

Figure 10-2. BDD Tests Have More Verbose Names Than TDD Tests

Chapter 10 ■ IntroduCtIon to BehavIor-drIven development

327

Some of the disadvantages of BDD are the following:

•	 BDD requires product owners, testers, and business analysts
to buy into the process. All too often teams start out with good
intentions, but after a few weeks the business loses interest in
writing specifications, and it becomes the responsibility to the
developer to write the scenarios as well as the code to make those
scenarios pass.

•	 User requirements change as the project evolves, and BDD
requires that user requirements are documented in a usable
format before the developers start developing. For this to work,
the project has a well-defined road map of upcoming features.
Having up-front, well-defined requirements before development
does not necessarily mean that the project has to follow the
waterfall model. BDD can be used in Agile Scrum projects, but the
business will need to commit to making sure those requirements
for all the stories that are picked up in a sprint are well defined
before the sprint begins.

•	 BDD works best in a team where iterative development is
practiced.

•	 BDD requires collaboration between the business and the
development team. The business has to factor the technical
constraints of the current system before creating new user stories.
All too often the business analysts and product owners work
in their own camps and hand over their requirements to the
developers in a sprint planning session.

Summary
In this chapter you have learned about the core concepts involved in Behavior-Driven
Development. Using a hypothetical example of a development team that has been
contracted to build a simple banking solution, you have examined the process of business
requirement analysis and user story creation.

You have also been introduced to two popular open source frameworks called
Quick and Nimble. These frameworks are commonly used to develop BDD-style tests for
iOS projects.

	Chapter 10: Introduction to Behavior-Driven Development
	What Is Behavior Driven Development
	The Difference between BDD and TDD
	Business Requirements and User Scenarios
	From User Scenarios to BDD Tests
	Anatomy of a Quick Test Case

	Advantages and Disadvantages of BDD
	Summary

