
iOS Code
Testing

Test-Driven Development and
Behavior-Driven Development
with Swi�
—
Abhishek Mishra

iOS Code Testing
Test-Driven Development and
Behavior-Driven Development

with Swift

Abhishek Mishra

iOS Code Testing: Test-Driven Development and Behavior-Driven Development with Swift

Abhishek Mishra				
Milton Keynes, United Kingdom			

ISBN-13 (pbk): 978-1-4842-2688-9		 ISBN-13 (electronic): 978-1-4842-2689-6
DOI 10.1007/978-1-4842-2689-6

Library of Congress Control Number: 2017945747

Copyright © 2017 by Abhishek Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Chaim Krause
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-2688-9. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2688-9
http://www.apress.com/source-code/

To my wife Sonam, for her love and support through
all the years we’ve been together.

To my daughter Elana, for bringing joy and happiness into our lives.

v

Contents at a Glance

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

■■Chapter 1: Introduction to Test-Driven Development���������������������� 1

■■Chapter 2: Writing Your First Set of Unit Tests with Xcode������������ 13

■■Chapter 3: The MVVM Architectural Pattern���������������������������������� 43

■■Chapter 4: Applying TDD to the Model��� 61

■■Chapter 5: Applying TDD to View Controllers������������������������������ 101

■■Chapter 6: Applying TDD to Collection View Controllers������������� 161

■■Chapter 7: Testing URLSession�� 211

■■Chapter 8: Working with Legacy Code��� 257

■■Chapter 9: Continuous Integration��� 283

■■Chapter 10: Introduction to Behavior-Driven Development��������������317

■■Chapter 11: Installing Quick�� 329

■■Chapter 12: Applying TDD and BDD Techniques�������������������������� 351

■■Chapter 13: Testing the User Interface�� 407

Index��� 433

vii

Contents

About the Author�� xv

About the Technical Reviewer�� xvii

Acknowledgments��� xix

■■Chapter 1: Introduction to Test-Driven Development���������������������� 1

What Is Test-Driven Development?�� 1

TDD Terminology�� 2

Subject under Test��� 2

Unit Test��� 2

State Verification Test�� 3

Interaction Test�� 3

Negative Test��� 4

Test Suite��� 6

Assertions�� 7

Instantiating Classes for Testing�� 9

Principles of Test-Driven Development�� 10

Test First�� 10

Red – Green – Refactor��� 10

Write the Minimum Amount of Code�� 11

Remove Duplication��� 11

Summary�� 11

Notes�� 11

■ Contents

viii

■■Chapter 2: Writing Your First Set of Unit Tests with Xcode������������ 13

Downloading and Installing Xcode��� 14

Creating a New Project with Unit Test Support�������������������������������������� 15

Adding Support for Unit Tests to an Existing Project��������������������������������� 16

A Tour of Xcode�� 18

The Project Navigator�� 18

Test Case Classes�� 20

The Test Navigator��� 23

Viewing Test Reports��� 25

Code Coverage Reports��� 25

Building the Cookie Factory App�� 26

Building the Cookie Class�� 28

Building the CookieController Class�� 32

Updating the View Controller Class��� 39

Viewing Code Coverage Data��� 40

Summary�� 41

■■Chapter 3: The MVVM Architectural Pattern���������������������������������� 43

The MVC Architectural Pattern��� 43

The Model-ViewController Architectural Pattern������������������������������������ 44

Model-ViewController Testability Issues�� 45

The Model-View-ViewModel Architectural Pattern�������������������������������� 46

Advantages of MVVM��� 47

ViewModel Instantiation�� 48

Isolated View Controller��� 48

Table View Controllers��� 49

Navigation Controller-Based Apps��� 50

Summary�� 60

■ Contents

ix

■■Chapter 4: Applying TDD to the Model��� 61

Creating the Xcode Project��� 62

Building the Model Layer�� 64

The AccountOwner Class��� 64

Creating the First Name Validator Class�� 70

Creating the Last Name Validator Class��� 76

Creating the Email Address Validator Class��� 82

Integrating the Validator Classes into the AccountOwner Class������������� 85

The Transaction Class��� 94

The BankAccount Class�� 95

Testing Core Data��� 98

Summary�� 99

■■Chapter 5: Applying TDD to View Controllers������������������������������ 101

Application Architecture��� 102

Creating the Xcode Project��� 103

Building the User Interface Layer��� 104

Building the Login View Controller Scene�� 106

Building the Signup View Controller Scene��� 110

Creating a Segue Between the Login Scene and the Signup Scene��������������������� 113

Building the Model Layer�� 115

The LoginModel Class�� 115

The SignupModel Class��� 116

Building the ViewModel Layer�� 118

The LoginViewModel Class�� 118

View Model – View Controller Binding��� 123

The SignupViewModel Class��� 143

■ Contents

x

Connecting the View Controller to the View Model������������������������������ 147

Binding the Login View Controller Class to the View Model���������������������������������� 147

Binding the Signup View Controller Class to the View Model�������������������������������� 157

Transitioning from the Login View Controller to the Signup View Controller��������� 160

Summary�� 160

■■Chapter 6: Applying TDD to Collection View Controllers������������� 161

Application Architecture��� 162

Creating the Xcode Project��� 162

Adding Resources to the Project�� 164

Building the User Interface Layer��� 165

Creating New Classes�� 166

Building the Collection View Controller Scene��� 167

Adding a Section Header Accessory View��� 169

Building the Collection View Cell��� 172

Building the Model Layer�� 177

The Photo Class��� 178

The City Class�� 180

The Album Class�� 181

Building the ViewModel Layer�� 182

The CollectionViewModel Class��� 183

The CollectionViewCellViewModel Class��� 200

The CollectionViewSectionHeaderViewModel Class�� 202

Binding the View Layer to the View Model��� 203

Binding the Collection View Controller Class to the View Model��������������������������� 204

Binding the CollectionViewCell Class to the View Model��������������������������������������� 207

Binding the CollectionViewSectionHeader Class to the View Model��������������������� 208

Summary�� 209

■ Contents

xi

■■Chapter 7: Testing URLSession�� 211

Strategies for Testing the Networking Layer�� 213

Preparing the PhotoBook Project��� 214

Remote Content Specification�� 216

Configuring Application Transport Security�� 216

Building the Networking Layer��� 217

Creating the ServiceController Class��� 222

Creating the MockURLSession Class��� 224

Creating the MockURLSessionDataTask Class�� 226

Updating the Model Layer�� 227

Updating the Album Class�� 228

Updating the Photo Class�� 239

Updating the View Model Layer�� 249

Updates to the Collection View Model��� 249

Updates to the Collection View Cell View Model�� 251

Updating the View Layer��� 252

Updates to the Collection View Controller��� 252

Updates to the Collection View Cell��� 253

Summary�� 256

■■Chapter 8: Working with Legacy Code��� 257

Splitting a Large Class��� 257

Adding Functionality to an Existing Class�� 265

Encapsulate Using Classes and Methods�� 265

Rename and Replace��� 270

Decorators��� 271

Decoupling Classes Using Protocols�� 277

■ Contents

xii

Using Dependency Injection to Create More Testable Code����������������� 279

Summary�� 282

Notes�� 282

■■Chapter 9: Continuous Integration��� 283

Installing macOS Server��� 284

Launching macOS Server�� 285

Setting Up Access for Team Members��� 289

Starting Xcode Server�� 290

Configuring Xcode Server�� 293

Xcode Version�� 294

Apple Developer Teams��� 294

Development Devices�� 295

Repositories��� 295

Creating a New Git Repository on Xcode Server��� 296

Configuring Xcode�� 298

Adding Xcode Server Credentials to Xcode��� 298

Create a New Xcode Project and Host Its Repository on Xcode Server����������������� 301

Clone an Existing Local Repository to Xcode Server��� 302

Clone a Git Repository from Xcode Server�� 304

Cloning a Git Repository from GitHub�� 305

Creating and Integrating Bots�� 306

Create a Bot��� 306

Integrate a Bot��� 315

Summary�� 316

■■Chapter 10: Introduction to Behavior-Driven Development��������������317

What Is Behavior Driven Development��� 317

The Difference between BDD and TDD��� 318

Business Requirements and User Scenarios��� 318

■ Contents

xiii

From User Scenarios to BDD Tests�� 319

Anatomy of a Quick Test Case��� 321

Advantages and Disadvantages of BDD��� 326

Summary�� 327

■■Chapter 11: Installing Quick�� 329

Adding Quick to an Xcode Project�� 329

Adding Quick to an Xcode Project Using CocoaPods��� 329

Adding Quick to an Xcode Project Using Carthage�� 335

Adding Quick to an Xcode Project Using Git Submodules������������������������������������� 342

Summary�� 349

■■Chapter 12: Applying TDD and BDD Techniques�������������������������� 351

Reviewing the Business Requirements�� 351

High-Level Application Architecture��� 355

Creating the Xcode Project��� 357

Adding Resources to the Project�� 359

Building the User Interface Layer��� 360

Writing BDD Tests with Quick��� 368

Examining the BDD Test for Scenario Number 3��� 374

Examining the BDD Test for Scenario Number 4��� 375

Examining the BDD Test for Scenario Number 5��� 376

Examining the BDD Test for Scenario Number 6��� 377

Examining the BDD Test for Scenario Number 7��� 377

Examining the BDD Test for Scenario Number 8��� 378

Examining the BDD Test for Scenario Number 9��� 379

Creating Stub Objects�� 380

Adding The Restaurant Data File to the Project��� 382

Examining the Remaining Compilation Errors��� 383

■ Contents

xiv

Building the Model Layer�� 384

Building the ViewModel Layer�� 387

The SearchViewModel Class��� 387

The RestaurantTableViewModel Class��� 393

The RestaurantTableViewCellViewModel Class��� 395

View Controller to View Model Bindings��� 400

Summary�� 405

■■Chapter 13: Testing the User Interface�� 407

Adding Support for UI Testing to Your Project��������������������������������������� 408

New Projects�� 408

Existing Projects��� 410

UI Test Classes��� 411

Creating New Test Classes��� 415

Changes to XCTest to Support UI Testing��� 416

XCUIApplication�� 416

XCUIDevice��� 418

XCUIElement, XCUIElementAttributes�� 418

XCUIElementAttributes��� 420

XCUIElementQuery and XCUIElementTypeQueryProvider��������������������� 421

Assertions�� 424

UI Recording��� 426

Waiting Before Asserting�� 426

Putting It All Together��� 427

Summary�� 432

Index��� 433

xv

About the Author

Abhishek Mishra has been active in the IT industry for over 19 years and has extensive
experience with a wide range of programming languages and platforms.

He is the author of iPhone and iPad App – 24 Hour Trainer, Swift iOS – 24 Hour
Trainer, and the technical reviewer of Professional iOS Programming.

He holds a Masters degree in Computer Science from the University of London and
currently provides consultancy services to Barclays Bank PLC in London as a Solutions
Architect.

His previous clients have included British Sky Broadcasting, Centrica, Expedia.,
Kantar Media, and Havas Media. He lives with his wife and daughter in London.

xvii

About the Technical
Reviewer

Chaim Krause is first, and foremost, a #Geek. Other hashtags used to define him are
(in no particular order) #autodidact, #maker, #gamer, #raver, #teacher, #adhd, #edm,
#wargamer, #privacy, #liberty, #civilrights, #computers, #developer, #software, #dogs,
#cats, #opensource, #techicaleditor, #author, #polymath, #polyglot, #american, #unity3d,
#javascript, #smartwatch, #linux, #energydrinks, #midwesterner, #webmaster, #robots,
#sciencefiction, #sciencefact, #universityofchicago, #politicalscience, and #bipolar. He
can always be contacted at chaim@chaim.com and goes by the Nom de Net of Tinjaw.

chaim@chaim.com

xix

Acknowledgments

This book would not have been possible without the support of the team at Apress
including Aaron Black and Jessica Vakili. I would also like to thank Chaim Krause for
taking the time to read the entire manuscript and his keen eye for detail. It has been my
privilege to work with you. Thank you.

1© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_1

CHAPTER 1

Introduction to Test-Driven
Development

Well over a billion apps have been developed for the iOS platform since its inception.
Most of the early apps were rather simple and often developed by a single developer.
Over the years, iOS apps have become increasingly complex pieces of software that
often involve large, distributed teams of developers working in Agile environments with
complex build and release pipelines.

Modern apps often perform several complex operations including (but not limited to)
presenting a complex user interface, multithreading, storing data in local databases,
interfacing with multiple sensors, media recording and playback, and consuming
RESTful web API’s.

With such a complex interplay between components of an app and several thousand
lines of source code spread across several hundred classes, how do we know for certain
that the code we have written does what we think it does? How do we know that our
code can handle edge scenarios? And finally, how do we know that we have built the
right software that meets business requirements? The answer to the first two questions
is addressed by the practice of unit testing, and Behavior-Driven Development (BDD)
addresses the answer to the question of building the right software in the first place. BDD
is covered in Chapter 10. In this chapter and the next one you will learn about unit testing,
and the related discipline of Test-Driven Development (TDD).

What Is Test-Driven Development?
Test Driven Development (TDD) has its roots in a programming paradigm called Extreme
Programming1 (XP), created by Kent Beck in 1996. The use of the word “extreme” signifies
a radical departure from standard programming practices of that time.

TDD is designed to provide developers with a tangible way to prove that the code
they have written does what they think it does, and to provide some confidence that the
new code that has been written does not cause any potential side effects with existing
code.

http://dx.doi.org/10.1007/978-1-4842-2689-6_10

Chapter 1 ■ Introduction to Test-Driven Development

2

Central to the TDD approach is the concept that a developer not only writes actual
code to carry out the app’s functionality but also tests code that ensures his application’s
code does what it is supposed to do. The test code is not shipped with the product.

While writing test code in addition to code that carries out the app’s intended
functionality is indeed extra work, it should be seen as an up-front investment toward
improving the quality of the product that ships to customers. A team that practices TDD
techniques will, over time, observe a reduction in the number of regression defects.

■■ Note  TDD is often used interchangeably with the term Unit Test; however, these two
terms are not the same thing. TDD is an approach to software development where the test
code is written first: in essence, the tests drive development.

A unit test is just a piece of test code viewed in isolation. A unit test is one of the by-
products of adopting a TDD approach.

However, the mere existence of one or more unit tests does not necessarily imply
that the developer followed a TDD approach. The unit tests could, for instance, have been
fitted retrospectively to existing code.

If you find working on large problems overwhelming, you may find TDD to be a
useful technique to break down a problem into smaller ones, use tests to solve the smaller
problems, and in the process end up solving the larger problem. You will soon realize that
large problems are not as overwhelming once you approach them with a TDD mindset.

TDD Terminology
This section examines some of the common terminology associated with Test-Driven
Development.

Subject under Test
This is usually a piece of code, or unit of functionality you wish to test. In most situations
the subject under test is usually a single method of a Swift class. However, you may
encounter scenarios where a small group of methods or classes are being tested together.
In such cases, the subject under test usually represents a complete functionality or user
journey. The subject under test is sometimes also known as the system under test.

Unit Test
This is the piece of code that tests the subject under test. A unit test is also known as a
“test case.” Unit tests work by calling the subject under test under controlled conditions,
and verifying some kind of expected behavior. It is common for an application to have
hundreds of unit tests with each test testing a very small piece of the functionality.

Individual unit tests are implemented as independent methods of a Swift class that
derives from an XCTestCase. This Swift class is also commonly referred to as a test class.

Chapter 1 ■ Introduction to Test-Driven Development

3

In most cases you will create one test class for each class you wish to test. The XCTestCase
class is part of the XCTest framework, and the framework must be imported with an import
statement. The following code listing contains a simple test class with one unit test:

import XCTest
@testable import LoginService

class LoginServiceTests: XCTestCase {

 func testExample() {

 // insert test code here.
 }

}

■■ Note T he code that forms these unit tests is not part of the code base that will ship
to the clients. Unit tests are typically executed every time a developer attempts to create a
build, with the build being created only if all tests pass.

The method signature of a unit test is similar to that of a method that takes no
arguments and does not return a value. However, the name of a unit test method always
begins with the keyword “test.” There are usually strict naming conventions followed for
unit test methods; these will be discussed in the next lesson.

State Verification Test
A state verification test is a type of unit test that calls methods on an object (subject under
test) and verifies the state of the object after calling the method. Such tests do not care
about implementation detail and will continue to pass even if the internal workings of
the methods being tested are changed in the future. State verification tests usually rely on
assertions to carry out the actual verification. Assertions are covered later in this lesson.

Interaction Test
An interaction test is a type of unit test that attempts to verify a specific sequence of
interactions between objects when a method is called. Such tests are also known as
behavior verification tests. Interaction tests do not necessarily have to involve multiple
objects. You could also use an interaction test to verify the sequence of calls to methods of
the same object.

In a complex object-oriented system, a single object may need to interact with several
other objects when a method is called. When it comes to interaction tests, the subject under

Chapter 1 ■ Introduction to Test-Driven Development

4

test is still a single class, and not the entire group of classes. One typically instantiates the
subject under test and uses special mock or stub versions of all the other objects involved in
the scope of the interaction test. Mock and stub objects are covered later in this lesson.

■■ Note  Since interaction tests verify the behavior of a group of classes, they are inherently
more fragile than state verification tests. For instance, a change in the order in which
methods are called could easily break an interaction test. One way to make interaction tests
less brittle is by reducing the number of classes covered by the scope of the test.

Negative Test
A negative unit test is one that verifies something did not happen. This can be useful in
some cases. However, one must never solely rely on negative tests. This is because while
a negative test can verify that something did not happen, it is immune to any number of
things that did happen. The code base could change considerably without have a single
negative test fail. If all your unit tests were negative tests, then your tests collectively are
providing limited value.

Negative unit tests in Swift are almost always state verification tests. Although it is
possible to create negative unit tests that are interaction tests, the relevant setup required
is quite complicated and often outweighs the value of writing the negative test.

As an example of a negative unit test in action, consider the following Swift class that
could be used to represent a bank account:

enum AccountType {
 case currentAccount
 case savingsAccount
}

class BankAccount {

 var accountName:String
 var accountNumber:String
 var accountType:AccountType
 private var transactions:[Transaction]

 init(accountName:String,
 accountNumber:String,
 accountType:AccountType) {

 self.accountName = accountName
 self.accountNumber = accountNumber
 self.accountType = accountType
 self.transactions = [Transaction]()
 }

Chapter 1 ■ Introduction to Test-Driven Development

5

 func addTransaction(_ transaction:Transaction) {
 transactions.append(transaction)
 }

 func accountBalance() -> Float {
 var balance:Float = 0
 for transaction in self.transactions {
 if transaction.isCredit {
 balance = balance + transaction.amount
 } else {
 balance = balance + transaction.amount
 }
 }

 return balance
 }
}

Individual transactions within a BankAccount object are represented using
Transaction objects. The definition of a simple Transaction class is presented next:

class Transaction {

 var description:String
 var amount:Float
 var isCredit:Bool

 init(description:String,
 amount:Float,
 isCredit:Bool) {

 self.description = description
 self.amount = amount
 self.isCredit = isCredit
 }

}

With these two classes in mind, a negative unit test could be used to verify that a call
to the addTransaction() method of the BankAccount class does not change the account
name. This test could be written as follows:

func testAddTransaction_DoesNotChangeAccountName() {

 let bankAccount = BankAccount(accountName: "John Smith",
 accountNumber: "14918",
 accountType: .savingsAccount)

Chapter 1 ■ Introduction to Test-Driven Development

6

 let transaction = Transaction(description: "Salary",
 amount: 100.0,
 isCredit: true)

 bankAccount.addTransaction(transaction)

 �XCTAssertTrue(bankAccount.accountName.compare("John Smith") ==
.orderedSame,

 �"Call to addTransaction should have no effect on
account name.")

}

Assertions haven’t been covered yet, but they will be shortly. This test ensures that
the value of the accountName variable of the BankAccount instance does not change
when addTransaction is called.

Test Suite
A test suite is simply a collection of test case files. Test suites usually have their own group
in the Xcode project explorer and are included in a separate build target from the rest of
the application’s code (Figure 1-1).

A single Xcode project can have multiple test suites, for example, one test suite may
contain unit tests, and another may contain interaction tests. In the next lesson, you will learn
to configure Xcode build schemes to include specific test suites as part of the build process.

Figure 1-1.  Separate Folder Groups for Test Suites in Xcode

Chapter 1 ■ Introduction to Test-Driven Development

7

Assertions
Assertions are the bread and butter of both state verification and interaction tests. An
assertion represents a failure of a unit test. Typically, your unit test will call a method on
an object, and this method may perform a number of activities such as returning a value,
changing some values in the object, or calling out to other methods.

If you know the expected result of the method you are calling, you can build a unit
test that calls the method with known inputs and expects a specific result. If the result
of calling the method does not match the expected value, the test will indicate failure by
firing an assertion.

The standard unit-testing framework that ships with Xcode is called XCTest and
contains several macros to help create assertions within a unit test. Table 1-1 lists some of
these macros.

Table 1-1.  XCTest Assertion Macros

Macro Description

XCTAssert(expression, message) Generates a failure if the expression evaluates
to false. An optional string message may be
provided to indicate the reason for failure.

XCTAssertEqualObjects(expression1,
expression2, message)

Generates a failure when expression1 is not
equal to expression 2, where both expression 1
and expression 2 are objects. Both objects
involved must implement Equatable. An
optional string message may be provided to
indicate the reason for failure.

XCTAssertNotEqualObjects(expressi
on1, expression2, message)

Generates a failure when expression1 is equal
to expression 2, where both expression 1 and
expression 2 are objects. Both objects involved
must implement Equatable. An optional string
message may be provided to indicate the reason
for failure.

XCTAssertEqual(expression1,
expression2, message)

Generates a failure when expression1 is not
equal to expression 2. This test is for primitive
data types. An optional string message may be
provided to indicate the reason for failure.

XCTAssertNotEqual(expression1,
expression2, message)

Generates a failure when expression1 is equal to
expression 2. Both expression1 and expression 2
are primitive data types. An optional string
message may be provided to indicate the reason
for failure.

XCTAssertNil (expression, message) Generates a failure when the expression is not
nil. An optional string message may be provided
to indicate the reason for failure.

(continued)

Chapter 1 ■ Introduction to Test-Driven Development

8

The following code snippet lists a unit test that will fail using the XCTAssertTrue
macro. Figure 1-2 is a snapshot of the Xcode test navigator showing a failed test.

func testNumber1IsGreaterThanNumber2() {
 let number1 = 9218
 let number2 = 673666
 XCTAssertTrue(number1 > number2,
 "number1 should be greater than number2")
}

Figure 1-2.  Failed Unit Test

Macro Description

XCTAssertNotNil(expression,
message)

Generates a failure when the expression is nil.
An optional string message may be provided to
indicate the reason for failure.

XCTAssertTrue (expression, message) Generates a failure when the expression
evaluates to false. Identical to XCTAssert(),
provided to create more readable tests. An
optional string message may be provided to
indicate the reason for failure.

XCTAssertFalse (expression, message) Generates a failure when the expression
evaluates to true. An optional string message
may be provided to indicate the reason for
failure.

Table 1-1.  (continued)

Chapter 1 ■ Introduction to Test-Driven Development

9

This test fails because the test expects number1 to be greater than number2. Fixing it
is a simple matter of editing the value of number1 to be greater than number2:

func testNumber1IsGreaterThanNumber2() {
 let number1 = 921800
 let number2 = 673666
 XCTAssertTrue(number1 > number2,
 "number1 should be greater than number2")
}

This particular test obviously does not have much utility; it does not call any
methods on other objects, or change the state of an object. It is only presented to serve as
an example of how assertions work.

Instantiating Classes for Testing
Instantiating classes in isolation can sometimes get very tricky. A class’s initializer may
require several parameters, each of which may be objects themselves. The problem is
compounded if one of the dependent classes you are instantiating requires access to a
system resource such as a network connection, file, or database.

To be able to write meaningful and succinct unit tests, you need to be able to
instantiate your subject under test without having to worry too much about building its
dependencies.

The most common solution to the problem of instantiating an object’s dependencies
is to create fake “stunt double” versions of the dependencies. For this approach
to work, these fake objects should look like the real object, and be much easier to
instantiate. These fake objects could, for instance, implement the same protocols as the
objects they are trying to emulate and perform harmless functionality within method
implementations.

Such objects could easily be used as dependencies for the class under test, and allow
you to create meaningful tests. Two types of fake objects are commonly found with unit
tests:

•	 Stub object. A stub object (also known as a stub), is a fake
object that can be used in place of a real dependency, is
significantly easier to instantiate, and provides harmless method
implementations of the object it is trying to emulate.

•	 Mock object. A mock object (also known as a mock), is similar to
a stub. However, the key difference is that a mock is used in a test
assertion, or asserted against.

For example, if you were writing a test that calls a method on object A and expects
a different method on object B to be called by object A, then object B is a mock object
because your test method expects a method to be called on object B. Any other objects
C, D, E that may have been instantiated to assist writing the test, but are not the target of
your test’s expectations will be called stubs.

Chapter 1 ■ Introduction to Test-Driven Development

10

Principles of Test-Driven Development
In this section you will learn about some of the key principles of TDD. These principles
are applicable regardless of the programming language, target platform, or IDE choice.

Test First
For unit tests to truly drive development, they need to be written before the code that they
will test. In fact, one of the key principles of TDD is that the tests are written first, and the
developer then focuses on writing the minimum amount of code needed to make all tests
pass. When tests are written first, the resulting software tends to be more modularized
because developers are forced to think of the software in terms of small components that
are built independently and interact with each other.

The tests collectively define the acceptance criteria of the project. If you have a
comprehensive suite of tests, the code is considered ready as soon as all tests pass and no
further changes to the code base are required. In practice, a developer writes a single test,
and then runs it to check if it fails. The developer then proceeds to write the code to make
this one test pass. This is an iterative process, and over time a comprehensive set of tests
is created by the developer, which serves as both the acceptance criteria as well as living
documentation for the code base.

Once all tests pass, the feature in question is deemed to be complete. This process is
iterative, with each iteration creating new tests and code to make these tests pass.

It is not necessary for the same developer to write both the subject under test as
well as the unit tests. In fact, it is quite common for a senior developer to use unit tests
to specify the behavior of a class for a junior developer. Given these tests, the junior
developer can implement the class and knows his work is done when all the unit tests
pass.

Red – Green – Refactor
The test first principle requires you to write tests up front. If you were to follow this
principle and write a test for code that does not yet exist, chances are that the test will not
compile, or it will compile and it will fail.

This stage of development that involves creating a failing test that encapsulates the
expected outcome of the system under test is called the Red stage. The color red has to
do with the use of the red color by popular IDE’s like Xcode and Visual Studio to indicate
failed tests in a summary view.

No one likes a failing test. Once you have created a failing test, then the next step is
to fix the failing test by writing the minimum amount of code to make the test pass. This
second stage is called the Green stage. The color green has to do with its use by popular
IDE’s to indicate passing tests in a summary view.

Reaching the green stage may involve both creating new code as well as modifying
existing code. The coding effort focuses on making the bare minimum change to fix the
test. To put it another way, something that is “good enough” will be fine.

Chapter 1 ■ Introduction to Test-Driven Development

11

It is quite common to find that in order to fix one failing test, you need to create a
new class, or method, and begin a test first approach to this sub problem, thus creating a
series of failing tests. This is perfectly normal and will all be resolved once you have fixed
the innermost layer of tests.

After having successfully fixed a set of failing tests, you may look at the code you
have written and decide that it needs refactoring. The final stage of the red-green-refactor
approach is about optionally refactoring the code that was written in the second stage
while ensuring that you do not break any existing tests.

Write the Minimum Amount of Code
This practice requires that you do not write any code that is not needed. When you are
in the process of building a method to satisfy a failing test, it is tempting to add extra
parameters to the method, or create an additional method anticipating future needs.
This practice must be avoided, and you really must then always make sure you have tests
covering the momentarily superfluous functionality that you have built.

Remove Duplication
This is an activity that you will find yourself undertaking as part of a refactoring exercise.
The idea is to remove duplicate functionality from your classes. Always remember to have
a set of unit tests in place before you begin refactoring so that you can be sure that you are
not changing the behavior of the class.

It is also common to apply this principle to the tests themselves. Over time as the
number of unit tests in your project increases, you will find yourself refactoring the tests
themselves, removing common functionality between tests into its own independent test.

Summary
In this chapter you have been introduced to the idea of Test-Driven Development, the
difference between TDD and Unit Tests, different types of unit tests, assertions, and
general principles of TDD. In the next chapter you will explore some of these topics in
more detail.

Note
	 1.	 Extreme Programming Explained, Kent Beck, 1999. Addison Wesley.

ISBN: 0201616416.

13© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_2

CHAPTER 2

Writing Your First Set of Unit
Tests with Xcode

In this chapter you will download Xcode and learn to use it to create a simple app using
test-driven development techniques. The app you will build will use the Single View
Application template and allow the user to create different types of cookies by tapping
on buttons in the user interface. The app will present a running total of each type of
cookie created as well as the total number of cookies created. Figure 2-1 depicts the user
interface of the finished application.

Figure 2-1.  The CookieFactory App in the iOS Simulator

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

14

The aim of this chapter is to get you familiar with the process of creating unit tests,
running them, and viewing results. Therefore, the tests that you create in this chapter
will not be exhaustive, and some portions of code will be left untested at the end of
the chapter. Chapters 3, 4, and 5 of this book discuss specific topics such as the MVVM
application architecture, testing model objects, and testing view controllers.

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson02.iOSTesting.2017.Apress.git

If you are an experienced developer you may wish to skip reading the contents of this
chapter and examine the final project directly.

Downloading and Installing Xcode
If you have not done so already, use the Mac App Store to download and install the latest
version of Xcode for your Mac (see Figure 2-2).

As of writing this chapter, Xcode 8 is the latest version of Mac OS X Sierra. The Xcode
app is over 10Gb in size and the download process can take anywhere from 15 – 45 minutes
depending on your Internet connection speed.

Figure 2-2.  Xcode page in the Mac App Store Application

http://dx.doi.org/10.1007/978-1-4842-2689-6_3
http://dx.doi.org/10.1007/978-1-4842-2689-6_4
http://dx.doi.org/10.1007/978-1-4842-2689-6_5
https://github.com/asmtechnology/Lesson02.iOSTesting.2017.Apress.git

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

15

Creating a New Project with Unit Test Support
When creating new iOS application projects, you have the option to create projects with
builit-in support for unit testing. Start the process of creating a new Xcode project by
launching Xcode and selecting the File ➤ New ➤ Project menu item.

You will be asked to choose a template for your new project. Xcode 8 allows you to
build projects for the iOS, macOS, tvOS, and watchOS platforms and provides a selection
of templates for each platform (see Figure 2-3).

Figure 2-3.  iOS Project Template Dialog Box

Select a suitable iOS template and click on Next. In this section, I am going to use
the iOS Single View Application Template, which is one of the most commonly used iOS
application templates.

After selecting the project template, you will be presented with an options dialog
where you can select some options to customize certain aspects of the template (Figure 2-4).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

16

Some fields are mandatory, so the Next button will not be enabled until you fill them.
The projects in this book are built using Swift and will target iPhones. This is the default
setup for new iOS projects in Xcode.

In the “Choose options for your new project:” screen, ensure the Include Unit Tests
option is selected if you want to create a project that has support for unit testing. A related
option called Include UI Tests will add support for user interface testing.

Click the Next button and save the project in a suitable folder on your Mac’s
hard disk. The project that you have created will have an additional build target setup
specifically for unit testing as well as a sample unit test file with boilerplate code.

After creating a new project Xcode by default, Xcode opens the project for you. Close
the Xcode project for now. The next section discusses the process involved in adding
support for unit testing to an existing project.

Adding Support for Unit Tests to an Existing Project
To add support for unit tests to an existing iOS application project, open the project in
Xcode and select the File ➤ New ➤ Target menu item. Select the iOS Unit Testing Bundle
option in the target template dialog box (Figure 2-5).

Figure 2-4.  Project Options Dialog Box

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

17

After selecting the target template, you will be presented with an options dialog where
you can select some options to customize certain aspects of the template (see Figure 2-6).

Figure 2-5.  Target Template Dialog Box

Figure 2-6.  Target Options Dialog Box

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

18

In most cases you can simply accept the default values for the options and
click Finish. A special build target (called a test target) will be added to your project
preconfigured to support unit tests. In addition to the test target, a sample unit test file
with boilerplate code will be added to your project.

A Tour of Xcode
Before you can begin to write unit tests in Xcode, you need to become familiar with some
of the areas of the Xcode user interface that deal with unit tests. As you write more tests,
you are likely to use one or more sections of the user interface discussed here. To start
with, open the CookieFactory project in Xcode.

The Project Navigator
The project navigator is located on the left-hand side of the Xcode user interface
(see Figure 2-7). If the project navigator is not visible, use the View ➤ Navigators ➤ Show
Project Navigator menu item.

Figure 2-7.  The Xcode Application with the Project Navigator Open

The project navigator lists the files that make up your project. The files in the
project navigator are organized hierarchically in a tree-like structure with the root node
representing the project itself. Beneath the project node sits a number of folders called
groups. Figure 2-8 shows the contents of the project navigator for the CookieFactory
project. You can see three folder groups in the project navigator:

•	 CookieFactory: This group contains the files that make up the
app that will ship to customers.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

19

•	 CookieFactoryTests: This group contains the files that contain the
test code, and any resources needed by the test code. The files in
this group are not included in the app that will ship to customers.

•	 Products: This group contains the final build products.

Figure 2-8.  The CookieFactory Project in the Project Navigator

Files can be moved around in the project navigator using drag-and-drop operations.
You my be tempted to think that the act of creating/moving a file under the test group
will automatically imply that the file will not be part of the product that is shipped to the
customer.

This is not the case; groups just serve as an aid to unclutter and organize a list of
files in the project. Whether or not the file will be included with the app that is shipped
to customers depends on the build target(s) that the file is included in. A new iOS project
with unit test support will have two build targets; a file can be a member of either, neither,
or both targets.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

20

You can select a file in the project navigator and use the file inspector to view/change
the build targets to which the file belongs (see Figure 2-9). To show the file inspector, use
the View ➤ Utilities ➤ Show File Inspector menu item.

Figure 2-9.  Using the File Inspector to Set Up File Targets

Test Case Classes
Under the test folder group of the project navigator, you will create your unit test case
classes. A unit test case class is a Swift class that derives from XCTestCase and has a
number of methods. When you create a new project with support for unit testing, a
default test case class is created for you with boilerplate code (see Figure 2-10).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

21

Test case classes contain test code, that is, code that will test your main application’s
code. Test case classes may contain five types of methods:

•	 Setup method: This method is called setUp() and is called
once before each test method is executed in the test class. It is
commonly used to put any common setup code used across
multiple unit tests.

•	 Teardown method: This method is called tearDown() and is
called after each test method is executed in the test class.

•	 Test methods: These methods encapsulate individual unit tests
and their names all begin with the word “test.”

•	 Performance testing methods: These methods encapsulate
individual performance tests and their names all begin with
“testPerformance.”

•	 Swift methods: A test case class, like any other Swift class, can
have its own methods. In a test case class, methods that do not
encapsulate unit tests are usually written to contain support logic
and will be called from a unit test.

Besides the default test case file that was created with the project, you can create
additional test case files using the File ➤ New ➤ File menu item and choosing the iOS
Unit Test Case File template (see Figure 2-11).

Figure 2-10.  Default Test Case File and Target Membership

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

22

When a new test case file is created, Xcode provides a boilerplate setup and
teardown methods and a couple of empty unit test methods to help you get started.
Listing 2-1 lists a new unit test case class created by Xcode.

Listing 2-1.  CookieFactoryTests.swift

import XCTest

class CookieFactoryTests: XCTestCase {

 override func setUp() {
 super.setUp()
 �// Put setup code here. This method is called before the invocation

of each test method in the class.
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }

 func testExample() {
 // This is an example of a functional test case.
 �// Use XCTAssert and related functions to verify your tests produce

the correct results.
 }

Figure 2-11.  File Template Dialog Box

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

23

 func testPerformanceExample() {
 // This is an example of a performance test case.
 self.measure {
 // Put the code you want to measure the time of here.
 }
 }

}

The Test Navigator
The test navigator is an area of the Xcode user interface that displays a hierarchical view
of all the test case files in the test target and all the unit tests within these test case files
(see Figure 2-12).

Figure 2-12.  Xcode Test Navigator

To show the test navigator, use the View ➤ Navigators ➤ Show Test Navigator menu
item. If you hover your mouse pointer over a unit test you will see a button appear toward
the right of the test name; clicking on that button will run the selected test (see Figure 2-13).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

24

You will also see the same button appear when you hover your mouse pointer over
the name of a test case file and the test target. In the former situation, clicking on the
button will run all unit tests in the test case file sequentially, and in the latter situation, it
will run all unit tests in the target.

Another way to run all tests in the project is to use the Product ➤ Test menu item.
Once you have run a test, the test navigator will display a green tick or red cross beside the
test name to indicate success or failure (see Figure 2-14).

Figure 2-14.  Passed and Failed Unit Tests

Figure 2-13.  Unit Tests within the Xcode Test Navigator

Clicking on the name of the test in the test navigator will open up the code for the
test in the source editor. It is important to note that the test code is also code and must
be able to compile before the tests can be executed. If your project has compilation
errors in either the test code or the code being tested, you will need to fix these before
the tests can run.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

25

Viewing Test Reports
You can use the report navigator to access a report of all tests in the project (see Figure 2-15).
To show the report navigator use the View ➤ Navigators ➤ Show Report Navigator.

Figure 2-15.  Xcode Test Report Navigator

The report navigator can be used to access project logs and build reports as well as test
reports. Click on the latest test activity node in the list of reports to view the test report.

Code Coverage Reports
A code coverage report can be used to get a measure of the number of lines of source code
that are executed after a group of tests have run. Code coverage reports are not enabled
by default in Xcode 8. To enable code coverage reports, access the scheme settings dialog
box by using the Product ➤ Scheme ➤ Edit Scheme menu item (see Figure 2-16).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

26

Figure 2-16.  Xcode Scheme Settings

Click on the Test action, enable the Gather Coverage Data option, and click on Close.
Code coverage reports can also be accessed via the report navigator. To generate code
coverage reports, Xcode will have to collect data as your tests are being executed. Each
subsequent run of your test code will update the coverage report although you may need
to run your tests a couple of times before initial coverage reports are available.

Building the Cookie Factory App
In the previous section you were introduced to the different aspects of the Xcode user
interface that pertain to unit testing. In this section you add features to the CookieFactory
project that you have created earlier. The user interface for the finished app has been
presented in Figure 2-1.

Each time the user taps on one of the buttons, a cookie of a specific type is created
and appropriate labels are updated on the user interface.

To get started, ensure the CookieFactory project is opened in Xcode and the
application’s main storyboard file is open for editing. Add four buttons and four labels
to the default scene of the application’s storyboard and position them to resemble
Figure 2-17.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

27

Figure 2-17.  View Controller Scene from the Main Storyboard File

Create outlets and actions in the ViewController.swift file and connect them to their
respective user interface elements as described in Table 2-1.

Table 2-1.  View Controller Outlets and Actions

Name Type User Interface Element

@IBOutlet weak var
shortbreadCookies: UILabel!

IBOutlet Shortbread cookie label.

@IBOutlet weak var
chocolateChipCookies: UILabel!

IBOutlet Chocolate chip cookie label.

@IBOutlet weak var
gingerbreadCookies: UILabel!

IBOutlet Gingerbread cookie label.

@IBOutlet weak var totalCookies:
UILabel!

IBOutlet Total cookie label.

@IBAction func onGenerate
ShortbreadCookies(_ sender: Any)

IBAction Touch Up Inside event of the
Generate Shortbread Cookie button.

@IBAction func onGenerate
ChocolateChipCookies(_ sender: Any)

IBAction Touch Up Inside event of the Generate
Chocolate chip Cookie button.

@IBAction func onGenerate
GingerbreadCookies(_ sender: Any)

IBAction Touch Up Inside event of the Generate
Gingerbread Cookie button.

@IBAction func onClearAllCookies
(_ sender: Any)

IBAction Touch Up Inside event of the Clear
All Cookies button.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

28

The model layer for this project will contain a single class called Cookie, which will
have a member variable type that can be used to differentiate between different types of
cookies (see Figure 2-18). A dedicated controller class called CookieController will be
used to manage the creation and storage of cookies.

Figure 2-18.  Model Layer

In a more complex application, you may want to move the responsibility of creating
cookies out of the CookieController class and into its own factory class.

The view controller will make calls to relevant methods of CookieController class
and update the text in the labels.

Building the Cookie Class
Delete the CookieFactoryTests.swift file under the CookieFactoryTests group that was
created by Xcode when you created the project.

Create a new Unit Test Case file called CookieTests.swift under the
CookieFactoryTestsGroup, and ensure that the file is a member of the CookieFactory test
target (see Figure 2-19).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

29

Replace the contents of the CookieTests.swift file with the code in Listing 2-2.

Listing 2-2.  CookieTests.swift

import XCTest

class CookieTests: XCTestCase {

 override func setUp() {
 super.setUp()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testInit_GingerbreadCookieType_DoesNotReturnNil() {
 let cookie = Cookie(.gingerbread)
 XCTAssertNotNil(cookie)
 }

 func testInit_ShortbreadCookieType_DoesNotReturnNil() {
 let cookie = Cookie(.shortbread)
 XCTAssertNotNil(cookie)
 }

Figure 2-19.  The default CookieTests.Swift File

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

30

 func testInit_ChocolateChipCookieType_DoesNotReturnNil() {
 let cookie = Cookie(.chocolateChip)
 XCTAssertNotNil(cookie)
 }

 func testInit_GingerbreadCookieType_SetsCookieTypeIvarCorrectly() {
 let cookie = Cookie(.gingerbread)
 XCTAssertEqual(cookie.type, .gingerbread)
 }

 func testInit_ShortbreadCookieType_SetsCookieTypeIvarCorrectly() {
 let cookie = Cookie(.shortbread)
 XCTAssertEqual(cookie.type, .shortbread)
 }

 func testInit_ChocolateChipCookieType_SetsCookieTypeIvarCorrectly() {
 let cookie = Cookie(.chocolateChip)
 XCTAssertEqual(cookie.type, .chocolateChip)
 }

}

You will receive several compiler errors at this point because the Cookie class does
not exist yet. Observe how the tests have defined the desired interface of the Cookie class.
In this particular case, the tests mandate the following:

•	 The Cookie class must have an initializer that accepts a type
identifier.

•	 The Cookie class must have an instance variable called type.

•	 The Type identifier can have one of three possible values:
.chocolateChip, .gingerbread, and .shortbread.

Create a new Swift class called Cookie under the CookieFactory group and update its
contents to match Listing 2-3.

Listing 2-3.  Cookie.swift

import Foundation

enum cookieType {
 case shortbread
 case gingerbread
 case chocolateChip
}

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

31

class Cookie : NSObject {
 var type:cookieType

 init(_ type:cookieType) {
 self.type = type
 super.init()
 }
}

Ensure that Cookie.swift is a member of both the main and test targets. This is
because you intend to use CookieClass.swift in both the app that you are building as well
as the unit tests (see Figure 2-20).

Figure 2-20.  Inspecting the Target Membership of the Cookie.swift file

Save the file and use the Product ➤ Test menu item to run all tests. You should see all
tests pass (see Figure 2-21).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

32

Building the CookieController Class
Create a new Unit Test Case file called CookieControllerTests.swift under the
CookieFactoryTests group, and ensure that the file is a member of the test target. Replace
the contents of the CookieControllerTests.swift file with the code in Listing 2-4.

Listing 2-4.  CookieControllerTests.swift

import XCTest

class CookieControllerTests: XCTestCase {

 override func setUp() {
 super.setUp()
 }

 override func tearDown() {
 super.tearDown()
 }

}

Figure 2-21.  Test Inspector Showing All Tests Passing

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

33

// MARK: Initializer tests
extension CookieControllerTests {

 func testInit_GingerbreadCookieArray_IsNotNil() {
 let cookieJar = CookieController()
 XCTAssertNotNil(cookieJar.gingerbreadCookies)
 }

 func testInit_ShortbreadCookieArray_IsNotNil() {
 let cookieJar = CookieController()
 XCTAssertNotNil(cookieJar.shortbreadCookies)
 }

 func testInit_ChocolateChipCookieArray_IsNotNil() {
 let cookieJar = CookieController()
 XCTAssertNotNil(cookieJar.shortbreadCookies)
 }

 func testInit_GingerbreadCookieCount_IsZero() {
 let cookieJar = CookieController()
 XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)
 }

 func testInit_ShortbreadCookieCount_IsZero() {
 let cookieJar = CookieController()
 XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)
 }

 func testInit_ChocolateChipCookieCount_IsZero() {
 let cookieJar = CookieController()
 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)
 }
}

// MARK: addGingerbreadCookie tests
extension CookieControllerTests {

 func testAddGingerbreadCookie_Increments_NumberOfGingerbreadCookies_ByOne() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.gingerbreadCookies!.count
 cookieJar.addGingerbreadCookie()

 let expectedNumberOfCookies = numberOfCookies + 1
 �XCTAssertEqual(cookieJar.gingerbreadCookies!.count,

expectedNumberOfCookies)
 }

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

34

 func testAddGingerbreadCookie_DoesNotIncrement_NumberOfShortbreadCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.shortbreadCookies!.count
 cookieJar.addGingerbreadCookie()

 XCTAssertEqual(cookieJar.shortbreadCookies!.count, numberOfCookies)
 }

 func testAddGingerbreadCookie_DoesNotIncrement_NumberOfChocolateChipCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.chocolateChipCookies!.count
 cookieJar.addGingerbreadCookie()

 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, numberOfCookies)
 }

}

// MARK: addShortbreadCookie tests
extension CookieControllerTests {

 func testAddShortbreadCookie_Increments_NumberOfShortbreadCookies_ByOne() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.shortbreadCookies!.count
 cookieJar.addShortbreadCookie()

 let expectedNumberOfCookies = numberOfCookies + 1
 XCTAssertEqual(cookieJar.shortbreadCookies!.count, expectedNumberOfCookies)
 }

 func testAddShortbreadCookie_DoesNotIncrement_NumberOfGingerbreadCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.gingerbreadCookies!.count
 cookieJar.addShortbreadCookie()

 XCTAssertEqual(cookieJar.gingerbreadCookies!.count, numberOfCookies)
 }

 func testAddShortbreadCookie_DoesNotIncrement_NumberOfChocolateChipCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.chocolateChipCookies!.count
 cookieJar.addShortbreadCookie()

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

35

 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, numberOfCookies)
 }

}

// MARK: addChocolateChipCookie tests
extension CookieControllerTests {

 func testAddChocolateChipCookie_Increments_NumberOfChocolateChipCookies_ByOne() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.chocolateChipCookies!.count
 cookieJar.addChocolateChipCookie()

 let expectedNumberOfCookies = numberOfCookies + 1
 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, expectedNumberOfCookies)
 }

 func testAddChocolateChipCookie_DoesNotIncrement_NumberOfShortbreadCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.shortbreadCookies!.count
 cookieJar.addChocolateChipCookie()

 XCTAssertEqual(cookieJar.shortbreadCookies!.count, numberOfCookies)
 }

 func testAddChocolateChipCookie_DoesNotIncrement_NumberOfGingerbreadCookies() {
 let cookieJar = CookieController()

 let numberOfCookies = cookieJar.gingerbreadCookies!.count
 cookieJar.addChocolateChipCookie()

 XCTAssertEqual(cookieJar.gingerbreadCookies!.count, numberOfCookies)
 }

}

// MARK: Reset tests
extension CookieControllerTests {

 func testReset_GingerbreadCookieArray_WithZeroElements_RemainsEmpty() {
 let cookieJar = CookieController()
 cookieJar.reset()
 XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)
 }

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

36

 func testReset_ShortbreadCookieArray_WithZeroElements_RemainsEmpty() {
 let cookieJar = CookieController()
 cookieJar.reset()
 XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)
 }

 func testReset_ChocolateChipCookieArray_WithZeroElements_RemainsEmpty() {
 let cookieJar = CookieController()
 cookieJar.reset()
 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)
 }

 func testReset_GingerbreadCookieArray_WithElements_BecomesEmpty() {
 let cookieJar = CookieController()

 cookieJar.addGingerbreadCookie()
 cookieJar.reset()

 XCTAssertEqual(cookieJar.gingerbreadCookies!.count, 0)
 }

 func testReset_ShortbreadCookieArray_WithElements_BecomesEmpty() {
 let cookieJar = CookieController()

 cookieJar.addShortbreadCookie()
 cookieJar.reset()

 XCTAssertEqual(cookieJar.shortbreadCookies!.count, 0)
 }

 func testReset_ChocolateChipCookieArray_WithElements_BecomesEmpty() {
 let cookieJar = CookieController()

 cookieJar.addChocolateChipCookie()
 cookieJar.reset()

 XCTAssertEqual(cookieJar.chocolateChipCookies!.count, 0)
 }
}

You will receive several compiler errors at this point because the CookieController
class does not exist yet. These tests define the following desired characteristics for the
CookieController class:

•	 The CookieController class must have an initializer that does not
accept any parameters.

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

37

•	 The CookieController class must have three arrays, one for each
type of cookie.

•	 The CookieController class must have a method called
addGingerbreadCookie(), which when called will add one
gingerbread cookie to the relevant array.

•	 The CookieController class must have a method called
addShortbreadCookie(), which when called will add one
shortbread cookie to the relevant array.

•	 The CookieController class must have a method called
addChocolateChipCookie(), which when called will add one
chocolate chip cookie to the relevant array.

•	 The CookieController class must have a method called reset(),
which when called will clear all the arrays.

I have used class extensions to group tests for each method. The only advantage
this provides is readability; feel free to move all the tests from extensions to the main
class if you prefer. You may also have noticed that I have used long descriptive names for
test methods. You should try to create descriptive names that describe the name of the
method being tested, the initial conditions, and expected output.

Create a new Swift class called CookieController under the CookieFactory group and
update its contents to match Listing 2-5.

Listing 2-5.  CookieController.swift

import Foundation

class CookieController : NSObject {

 var shortbreadCookies:[Cookie]?
 var gingerbreadCookies:[Cookie]?
 var chocolateChipCookies:[Cookie]?

 override init() {
 self.shortbreadCookies = [Cookie]()
 self.gingerbreadCookies = [Cookie]()
 self.chocolateChipCookies = [Cookie]()
 super.init()
 }

 func reset() {
 self.shortbreadCookies?.removeAll()
 self.gingerbreadCookies?.removeAll()
 self.chocolateChipCookies?.removeAll()
 }

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

38

 func addShortbreadCookie() -> Void {
 let cookie = Cookie(.shortbread)
 shortbreadCookies?.append(cookie)
 }

 func addGingerbreadCookie() -> Void {
 let cookie = Cookie(.gingerbread)
 gingerbreadCookies?.append(cookie)
 }

 func addChocolateChipCookie() -> Void {
 let cookie = Cookie(.chocolateChip)
 chocolateChipCookies?.append(cookie)
 }
}

Save the file and use the Product ➤ Test menu item to run all tests. You should see all
tests pass (see Figure 2-22).

Figure 2-22.  Test Inspector Showing All Tests Passing

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

39

Updating the View Controller Class
You have now built both the Cookie and the CookieFactory classes using test-driven
development techniques. It is now time to integrate the CookieFactory class into the
view controller.

While you can use test-driven techniques to perform the integration, to keep things
simple in this lesson, I have opted to not use TDD techniques on the view controller class.
Applying TDD techniques to view controllers is described at length in Chapter 5.

Update the contents of the ViewController.swift file to match Listing 2-6.

Listing 2-6.  ViewController.swift

import UIKit

class ViewController: UIViewController {

 var cookiejar:CookieController?

 @IBOutlet weak var totalCookies: UILabel!
 @IBOutlet weak var gingerbreadCookies: UILabel!
 @IBOutlet weak var shortbreadCookies: UILabel!
 @IBOutlet weak var chocolateChipCookies: UILabel!

 override func viewDidLoad() {
 super.viewDidLoad()
 cookiejar = CookieController()
 refreshUI()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func onGenerateGingerbreadCookies(_ sender: Any) {
 cookiejar?.addGingerbreadCookie()
 refreshUI()
 }

 @IBAction func onGenerateChocolateChipCookies(_ sender: Any) {
 cookiejar?.addChocolateChipCookie()
 refreshUI()
 }

 @IBAction func onGenerateShortbreadCookies(_ sender: Any) {
 cookiejar?.addShortbreadCookie()
 refreshUI()
 }

http://dx.doi.org/10.1007/978-1-4842-2689-6_5

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

40

 @IBAction func onClearAllCookies(_ sender: Any) {
 cookiejar?.reset()
 refreshUI()
 }

 private func refreshUI() -> Void {
 let totalGinger = cookiejar!.gingerbreadCookies!.count
 let totalShort = cookiejar!.shortbreadCookies!.count
 let totalChocolate = cookiejar!.chocolateChipCookies!.count
 let total = totalGinger + totalShort + totalChocolate

 gingerbreadCookies.text = "Gingerbread cookies: \(totalGinger)"
 shortbreadCookies.text = "Shortbread cookies: \(totalShort)"
 chocolateChipCookies.text = "Chocolate chip cookies: \(totalChocolate)"
 totalCookies.text = "Total cookies: \(total)"
 }

}

Save the project and run it on the simulator using the Product ➤ Run menu item.
After you have had a chance to try out the application and verify that it is working, you
may want to dig a little deeper to find out how effective the unit tests have been.

One way to gauge the effectiveness of unit tests is to use a code coverage report. This
report will give you information on the number of lines of application code that were
executed by test code.

The next section looks at Xcode’s code coverage reporting tools. Before you can view
code coverage reports, you must ensure that you have executed your unit tests at least once.

Code coverage data is deleted when you close Xcode. If you reopen a project in
Xcode, you will need to run all unit tests using the Prodct ➤ Test menu item so that Xcode
can generate code coverage data.

Viewing Code Coverage Data
If you have enabled code coverage reports in the scheme settings dialog box, you will see
the code coverage ribbon appear to the right side of the source code editor. Click on the
CookieFactory.swift file in the project navigator and observe the numbers in the code
coverage ribbon (see Figure 2-23).

Chapter 2 ■ Writing Your First Set of Unit Tests with Xcode

41

You will notice that the code coverage ribbon lists a number beside each of the
methods of the CookieFactory class. The number indicates the number of times the
method was called when you ran your test suite.

Hovering your mouse pointer over a number in the code coverage ribbon will
highlight the associated method in red or green. A green highlight means that the method
has been called at least once by your tests, and a red highlight means that the method is
not currently being covered by your test suite.

Code coverage is a useful tool to get an idea of the parts of your production code
that are covered by your tests, but must be used with caution. Many development teams
try to achieve high code coverage by writing meaningless tests, or tests that cover iOS
framework code. It is better to have fewer and more meaningful tests than a large number
of tests that are difficult to maintain or understand by new members of the team.

Summary
This chapter has introduced you to sections of the Xcode user interface that deal with unit
testing. You have also built a simple single view application using basic TDD techniques
and have learned to examine code coverage reports.

The next chapter will discuss the MVVM architectural pattern and how applications
that are built using this pattern are easier to test.

Figure 2-23.  Xcode Code Coverage Information

43© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_3

CHAPTER 3

The MVVM Architectural
Pattern

This chapter will examine a commonly used architectural pattern called Model-
View-Controller (MVC), its iOS equivalent Model–ViewController (M-VC), and
the testability issues that arise when using this common pattern. You will then be
introduced to a new architectural pattern called Model, View, ViewModel (MVVM)
and the advantages of this pattern from a code reusability and testability perspective.

To avoid confusion in the chapter, I spell out “Model-ViewController” when discussing the
iOS version and the abbreviation “MVC” when referring to a common pattern.

The MVC Architectural Pattern
The Model-View-Controller is one of the most common application architectural patterns
in use today, across a variety of programming languages (Java, .NET, Objective-C, Swift).
It was designed to help developers implement user interfaces on computers and aims to
separate the representation of data from the manner in which it is presented to the user.
Figure 3-1 depicts the standard MVC pattern.

Figure 3-1.  Standard Model-View-Controller Pattern

Chapter 3 ■ The MVVM Architectural Pattern

44

This pattern has three key components (sometimes called layers):

•	 Model: The model component handles the storage of data used
by the application and accepts commands to read or update the
data from the controller. It could be a single class or a group of
related classes.

•	 View: The view component reads data from the model and
handles the rendering/presentation of the model. The view can
be thought to be the visual representation of the model, and it can
selectively present certain parts of the model.

•	 Controller: The controller component sits in between the model
and the view, handles user input, updates the model, and updates
the view as necessary. Business logic and networking code resides
in one or more controllers, and controllers can communicate with
other controllers. In other words, controllers make the brain of
the application.

The Model-ViewController Architectural Pattern
Cocoa Touch, UIKit, and other Apple frameworks provide all the necessary infrastructure
to implement the Model-ViewController architecture in iOS Apps:

•	 Model: Can be any NSObject subclass, or even an
NSManagedObjectModel subclass.

•	 View: Can be any UIView subclass, for example, UILabel,
UIButton, and UIScrollView.

•	 Controller: Can be any NSObject subclass.

However, Apple has also created the concept of a “View Controller” that combines
both the view and controller into a single class. In fact, view controllers are so common
that many developers new to iOS development don’t realize that it is possible to create
controllers independently.

Figure 3-2 shows what the Model-ViewController architectural pattern looks like in a
typical iOS application, with the view controller owning both the model and the view. The
roles of the three components are summarized below:

•	 View: Responsible for rendering the model, requests data from
the view controller, passes user interaction events to the view
controller.

•	 Model: Responsible for storing data.

•	 View controller: Reads from the model and provides data to the
view, updates the model, handles user interaction events.

Chapter 3 ■ The MVVM Architectural Pattern

45

However, since the view and the view controller are tightly coupled, with the view
controller owning the view, the architectural pattern begins to resemble Figure 3-3. In
fact, it is extremely rare for a view to be paired with different view controllers.

If you have been developing iOS applications for a few months, you will soon realize
that in terms of lines of code, view controllers are often the largest files in the project.
This is due to the fact that view controllers commonly act as delegates, data sources,
contain networking code, contain view management logic, and make network calls,
etc. View controllers also commonly implement multiple protocols, which results in
controller logic being mixed up with the code that supports protocols. These bloated view
controllers are often called “Massive View Controllers.”

Some of the logic in massive view controllers belongs in the view controller, but a lot
of it is presentation, model transformation, and networking logic, which should ideally go
in a separate helper objects/controllers.

Model-ViewController Testability Issues
While testing the model layer of the model-view controller, pattern does not present any
significant challenge; testing the view controller, on the other hand, presents a few issues:

•	 Difficult to instantiate: Instantiating a view controller under
a test may not be trivial; all IBOutlets will need to be stubbed
using appropriate subclasses. You will need to include the XIB or
storyboard in the test target, and potentially end up instantiating
a complex stack of UI layer objects like navigation controllers, and
table views. Adding storyboards to the test target, just to be able to
instantiate a view controller, will make your tests very fragile and
you may end up questioning the value of the tests themselves.

Figure 3-2.  The Model-View-Controller Pattern

Figure 3-3.  Interaction between View, View Controller, and Model objects

Chapter 3 ■ The MVVM Architectural Pattern

46

•	 Difficult to mock: Due to the tightly coupled nature of the code
in a view controller, it is often difficult to test a single method in
isolation.

•	 Testing the UI layer in a unit test: Unit tests should not test
the UI layer; a view controller blurs the lines between code that
performs UI logic and code that performs business logic.

The Model-View-ViewModel Architectural Pattern
The Model-View-ViewModel (MVVM) architectural pattern was developed by Microsoft
to help developers build XAML-based WPF applications, but as you will soon learn,
MVVM can be easily adapted to be used within iOS/Swift applications. MVVM is an
expansion of MVC where we formally couple the view and the controller, but move all the
presentation logic out of the controller into a new object called the view model.

Within an iOS/Swift context, the role of the view is fulfilled by the view+view
controller combination (see Figure 3-4).

The roles of the three components are summarized below:

•	 Model: Responsible for storing data, maintains two-way
communication with the view model.

•	 View/View controller: Represents the view part of the pattern,
and handles user interaction events. Maintains two-way
communication with the view model.

•	 View model: Handles presentation logic, maintains two-
communication with both the model and the view/view
controller. Handles communication with other controllers that
may provide specific functionality like complex business logic,
and network requests.

Figure 3-4.  Model-View View-Model pattern on iOS

Chapter 3 ■ The MVVM Architectural Pattern

47

Microsoft’s original MVVM pattern makes extensive use of XAML bindings to link
the three principle components of this pattern. On iOS/Swift applications, there are two
options available to link the principal components of this pattern:

•	 Using Swift protocols: The principal components of the pattern
interact with each other through a well-defined set of protocols.
Each component implements the relevant set of protocols.

•	 Using ReactiveCocoa/RxSwift: Third-party libraries have
now emerged that allow Swift developers to apply reactive-
programming principles to create bindings between the principal
components of the pattern.

■■ Note  Reactive programming is outside the scope of this book. All examples in this book
use the protocol-based approach.

Advantages of MVVM
This section lists some of the key advantages of the MVVM pattern over the M-VC pattern:

•	 The MVVM pattern moves code out of a single view controller
class and distributes this code over a more granular set of
classes; this reduces the size of any individual class and therefore
addresses the massive view controller problem.

•	 The view/view controller component is loosely coupled with the
model; and with the view model, developers in a team can build
these components independently and concurrently. It is also
significantly easier to accommodate UI changes without having
any significant impact on either the model, or the view model
layers.

•	 When implemented properly, there should be no direct reference
to UIKit in the view model. The view and the view model are
loosely coupled. This makes it easy to instantiate view models in
test cases. A suitable mock or stub view needs only to implement
the relevant protocols required by the view.

•	 Decoupling the view layer from the view-model layer gives the
advantage that the view layer can be implemented using different
UI technologies. The view model and model code can, for
instance, be reused in a MacOS application by simply substituting
the view layer.

Chapter 3 ■ The MVVM Architectural Pattern

48

•	 MVVM being based on loosely coupled classes increases
testability. A class in one layer can be instantiated independently
of the other layers. Using protocols to define the contracts
between participating classes makes the task of stubbing/
mocking dependences significantly easier.

•	 MVVM promotes separation of concerns between objects. When
objects are not tightly coupled, the resulting code is more change
resistant and easier to maintain over the long term.

ViewModel Instantiation
There are various strategies that you can use to instantiate view models. This section
examines a few common scenarios that you will encounter while creating iOS apps with
the MVVM pattern.

Isolated View Controller
In case you are dealing with an isolated view controller, a common strategy is to
instantiate the view model inside the viewDidLoad() method of the view controller class.
The following code snippet demonstrates this strategy:

class CountriesViewController: UIViewController {

 private var viewModel:CountriesViewModel?

 override func viewDidLoad() {
 super.viewDidLoad()

 self.viewModel = CountriesViewModel(view: self,
 title:"Select a country")
 }
}

A few noteworthy points about this strategy:

•	 The view controller owns the view model via a strong private var.

•	 The view model is injected with a reference to the view/view
controller in the initializer. The view model will hold a weak
reference to the view/view controller.

•	 The view model’s initializer can also be used to inject other
parameters that are required to set it up.

Chapter 5 will examine techniques to create isolated view controller-based
applications using TDD techniques and the MVVM pattern.

http://dx.doi.org/10.1007/978-1-4842-2689-6_5

Chapter 3 ■ The MVVM Architectural Pattern

49

Table View Controllers
When you are dealing with a table view controller, the view model for the table view
controller will provide information on the number of rows and sections. The view model
can also be used to maintain the index of the currently selected cell. But where does the
data within each cell come from?

Each table view cell is also a view in its own right, and the MVVM pattern must be
applied to the individual table view cells as well as the enclosing table view. You could
potentially use the same view model for both the table view as well as individual cells, but
this approach overloads the view model with multiple responsibilities.

A better approach is to use different view models for the table view and the individual
table view cells. This approach keeps the size of each view model small, as each view model
is only going to be response responsible for a single view, and not child views.

Instantiating the view model for the table view controller is a simple matter of
putting a few lines of code in the viewDidLoad() method of the table view controller. How
and when does one instantiate view models for the individual cells?

A good approach is to build a factory method within the view model of the table view
controller, and use this factory method to get view models for the individual cells.

The factory method can encapsulate the nitty gritty of creating a view model for a
cell, and giving the cell view model a relevant model object. The factory method could
also be moved out of the table view controller’s view model into its own class, in which
case you are using a dedicated object for a view model construction.

An ideal place to call the view model factory (either method or object), would
be within the tableView(_ tableView:, cellForRowAt:)method of the table view
controller. This approach is demonstrated in the following snippet:

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 �let cell = tableView.dequeueReusableCell(withIdentifier:

"CountryCell", for: indexPath) as? CountriesTableViewCell

 guard let viewModel = tableViewModel,
 let countriesTableViewCell = cell else {
 return UITableViewCell()
 }

 let cellViewModel =
 viewModel.cellViewModel(forIndexPath: indexPath)
 countriesTableViewCell.viewModel = cellViewModel

 return countriesTableViewCell
}

In this snippet a custom UITableViewCell instance is obtained by using the dequeRe
usableCell(withIdentifier:, for) method of the table view:

let cell = tableView.dequeueReusableCell(withIdentifier: "CountryCell",
for: indexPath) as? CountriesTableViewCell

Chapter 3 ■ The MVVM Architectural Pattern

50

A factory method called cellViewModel(forIndexPath:) is called on the table view
controller’s view model:

let cellViewModel = viewModel.cellViewModel(forIndexPath: indexPath)

This method returns a view model for the table view cell, which is then assigned to a
property of the table view cell, before returning the cell:

countriesTableViewCell.viewModel = cellViewModel
return countriesTableViewCell

This snippet assumes that the table view cell will own the cell view model.

Navigation Controller-Based Apps
Master-detail apps are quite common on iOS. These applications are usually
implemented using a table view controller within a navigation controller. When a user
taps on a cell in the table view, a push segue is triggered to slide the detail view from the
right. The detail view controller that appears usually displays information that is related
to the cell that was tapped in the table view.

When building such an application using the MVVM pattern, it should be quite
obvious by now that the table view controller (master view) will have its own view model,
and the detail view controller that is subsequently pushed onto the navigation stack will
also have its own view model.

The challenge in this case is building the detail view model with the correct model
object so that the detail view will contain the correct information.

As in the previous section, you can use the factory method approach to instantiate
either, or both view models. The factory method will need to be called from the
prepare(for segue: UIStoryboardSegue, sender: Any?) method of the master table view
controller class.

You will also need to ensure that the master view model is capable of tracking the
selected cell index. This is so that the appropriate detail model can be linked to the detail
view model.

This approach can also be applied to collection view controllers as collection view
controllers are similar in many respects to table view controllers. Chapter 6 covers the
topic of building MVVM-based collection view controllers using TDD techniques.

Listings 3-1 – 3-5 demonstrate how the MVVM pattern can be applied to a table view
controller. The listings collectively form parts of an application that displays a list with the
names of a few common colors. When a user selects a color from this list, a detail view,
painted with the selected color is presented (see Figure 3-5).

http://dx.doi.org/10.1007/978-1-4842-2689-6_6

Chapter 3 ■ The MVVM Architectural Pattern

51

The complete source code for the project, along with unit tests, can be downloaded
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson03.iOSTesting.2017.Apress.git

There are five key classes involved in this snippet:

•	 ColorListTableViewController: This is a subclass of
UITableViewController and presents the user with a list of colors.

•	 ColorDetailViewController: This is a subclass of
UIViewController and is displayed when the user selects a color
from the list of colors.

•	 ColorTableViewModel: This is the view model for the color list
table view controller class.

•	 ColorDetailViewModel: This is the view model for the color
detail view controller class.

•	 Color: Represents the model for this project.

For the purpose of brevity, protocols are not listed in this snippet. You can, however,
download the project and examine the protocols in detail.

Figure 3-5.  The ColorList App

https://github.com/asmtechnology/Lesson03.iOSTesting.2017.Apress.git

Chapter 3 ■ The MVVM Architectural Pattern

52

Let us begin by examining the code or the ColorListTableViewController class:

Listing 3-1.  ColorListTableViewController

class ColorListTableViewController: UITableViewController {

 private var viewModel:TableViewModel?

 override func viewDidLoad() {
 super.viewDidLoad()
 self.clearsSelectionOnViewWillAppear = false
 �self.viewModel = ColorTableViewModel(view: self, title:"Select a color")
 }

 // MARK: - Table view data source

 �override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 guard let viewModel = viewModel else {
 return 0
 }

 return viewModel.numberOfRows()
 }

 �override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {

 �let cell = tableView.dequeueReusableCell(withIdentifier:
"ColorListtCell", for: indexPath) as? ColorListTableViewCell

 guard let viewModel = viewModel,
 let colorListTableViewCell = cell else {
 return UITableViewCell()
 }

 �let detailViewModel = viewModel.cellViewModel(forIndexPath:
indexPath)

 colorListTableViewCell.viewModel = detailViewModel
 return colorListTableViewCell
 }

 �override func tableView(_ tableView: UITableView, didSelectRowAt
indexPath: IndexPath) {

 guard let viewModel = viewModel else {
 return
 }

 viewModel.selectRow(atIndexPath:indexPath)
 self.performSegue(withIdentifier: "colorDetailSegue", sender: nil)
 }

Chapter 3 ■ The MVVM Architectural Pattern

53

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 �guard let identifier = segue.identifier, let viewModel = viewModel

else {
 return
 }

 if identifier.compare("colorDetailSegue") != .orderedSame {
 return
 }

 �if let colorDetailViewController = segue.destination as?
ColorDetailViewController,

 let destinationViewModel = viewModel.viewModelForSelectedRow() {

 �destinationViewModel.setView(delegate: colorDetailViewController)
 colorDetailViewController.viewModel = destinationViewModel
 }

 }
}

In Listing 3-1, the table view controller owns the table view model. The view model is
an instance of ColorTableViewModel and is instantiated within the viewDidLoad method
of the table view controller:

override func viewDidLoad() {
 super.viewDidLoad()
 self.clearsSelectionOnViewWillAppear = false
 �self.viewModel = ColorTableViewModel(view: self, title:"Select a color")
}

The tableView(_ tableView:, cellForRowAt:) -> UITableViewCell method
creates table view cells, and passes a view model into each table view cell. The view model
for each cell is created using a factory method called cellViewModel(forIndexPath) ->
CellViewModel? provided by ColorTableViewModel.

override func tableView(_ tableView: UITableView, cellForRowAt indexPath:
IndexPath) -> UITableViewCell {
 �let cell = tableView.dequeueReusableCell(withIdentifier:

"ColorListtCell", for: indexPath) as? ColorListTableViewCell

 guard let viewModel = viewModel,
 let colorListTableViewCell = cell else {
 return UITableViewCell()
 }

Chapter 3 ■ The MVVM Architectural Pattern

54

 let detailViewModel = viewModel.cellViewModel(forIndexPath: indexPath)
 colorListTableViewCell.viewModel = detailViewModel
 return colorListTableViewCell
 }

Tapping on a cell in the table view records the index position of the selected cell in the
view model, and performs a segue to animate the detail view controller onto the screen:

override func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 guard let viewModel = viewModel else {
 return
 }

 viewModel.selectRow(atIndexPath:indexPath)
 self.performSegue(withIdentifier: "colorDetailSegue", sender: nil)
}

■■ Note  You do not need to call performSegue(withIdentifier:, sender:) if you have
created a segue from the table view cell to the detail view controller in the story board. If,
however, the segue has been created from the table view controller to the detail view controller,
then you will need to call performSegue(withIdentifier:, sender:) to trigger the segue.

The code to generate a view model for the detail view controller, as well as assign the
view model to a property of the detail view controller, can be found in the prepare(for,
sender:) method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 �guard let identifier = segue.identifier, let viewModel = viewModel

else {
 return
 }

 if identifier.compare("colorDetailSegue") != .orderedSame {
 return
 }

 �if let colorDetailViewController = segue.destination as?
ColorDetailViewController,

 let destinationViewModel = viewModel.viewModelForSelectedRow() {

 destinationViewModel.setView(delegate: colorDetailViewController)
 colorDetailViewController.viewModel = destinationViewModel
 }

 }
}

Chapter 3 ■ The MVVM Architectural Pattern

55

Let us now examine the ColorDetailViewController class:

Listing 3-2.  ColorDetailViewController

class ColorDetailViewController: UIViewController {

 var viewModel:ColorDetailViewModel?

 override func viewDidAppear(_ animated: Bool) {
 if let viewModel = viewModel {
 viewModel.viewDidAppear(animated)
 }
 }

}

extension ColorDetailViewController : ColorDetailViewControllerDelegate {
 func setNavigationTitle(_ title:String) -> Void {
 self.title = title
 }

 �func setBackgroundColor(red:Float, blue:Float, green:Float, alpha:Float) ->
Void {

 �self.view.backgroundColor = UIColor(red: CGFloat(red), green:
CGFloat(green), blue: CGFloat(blue), alpha: CGFloat(alpha))

 }
}

This is a very small and straightforward class. It holds a strong reference to a
view model, and gives the view model a chance to handle presentation logic in the
viewDidAppear() method:

override func viewDidAppear(_ animated: Bool) {
 if let viewModel = viewModel {
 viewModel.viewDidAppear(animated)
 }
}

In response to this event, the view model will change the background color and title
of the view via a set of delegate methods implemented by the view controller.

Let us now examine the code for the ColorTableViewModel class:

func setNavigationTitle(_ title:String) -> Void {
 self.title = title
}

�func setBackgroundColor(red:Float, blue:Float, green:Float, alpha:Float) -> Void {
 �self.view.backgroundColor = UIColor(red: CGFloat(red), green:

CGFloat(green), blue: CGFloat(blue), alpha: CGFloat(alpha))
}

Chapter 3 ■ The MVVM Architectural Pattern

56

Listing 3-3.  ColorListTableViewModel

class ColorTableViewModel: NSObject {

 var tableTitle:String

 fileprivate var coulorData:[Color]
 fileprivate var selectedIndexPath:IndexPath?
 fileprivate weak var view:ColorListTableViewControllerDelegate?

 init (view:ColorListTableViewControllerDelegate?, title:String) {
 self.view = view
 self.tableTitle = title

 self.coulorData = []

 �if let redModel = Color(name: "Red", red: 1.0, green: 0.0, blue:
0.0, alpha: 1.0),

 �let blueModel = Color(name: "Blue", red: 0.0, green: 0.0, blue:
1.0, alpha: 1.0),

 �let greenModel = Color(name: "Green", red: 0.0, green: 1.0,
blue: 0.0, alpha: 1.0) {

 self.coulorData.append(redModel)
 self.coulorData.append(blueModel)
 self.coulorData.append(greenModel)

 }
 }
}

extension ColorTableViewModel : TableViewModel {

 func setView(delegate:AnyObject?) -> Void {
 self.view = delegate as? ColorListTableViewControllerDelegate
 }

 func numberOfRows() -> Int {
 return coulorData.count
 }

 func cellViewModel(forIndexPath indexPath:IndexPath) -> CellViewModel? {
 let row = indexPath.row
 if row < 0 || row >= self.coulorData.count {
 return nil
 }

 let cellText = coulorData[row].name
 return TableViewCellViewModel(view:nil, cellText: cellText)
 }

Chapter 3 ■ The MVVM Architectural Pattern

57

 func selectRow(atIndexPath indexPath:IndexPath) {
 self.selectedIndexPath = indexPath
 }

 func viewModelForSelectedRow() -> ColorDetailViewModel? {
 guard let selectedIndexPath = selectedIndexPath else {
 return nil
 }

 �if selectedIndexPath.row < 0 || selectedIndexPath.row >= coulorData.
count {

 return nil
 }

 �return ColorDetailViewModel(view:nil, model:coulorData[selectedIndex
Path.row])

 }

 func viewDidAppear(_ animated: Bool) {
 guard let view = view else {
 return
 }
 view.setNavigationTitle(tableTitle)
 }

 func model(forIndexPath indexPath:IndexPath) -> AnyObject? {
 let row = indexPath.row
 if row < 0 || row >= self.coulorData.count {
 return nil
 }

 return coulorData[row] as AnyObject
 }

}

The code in Listing 3-3 handles the presentational aspects of the table
view, as well as building view models for cells and the detail view controller. The
ColorListTableViewModel instance holds a weak reference to the view layer as well as a
strong reference to an array of model objects. This array represents the model layer for
this application:

fileprivate weak var view:ColorListTableViewControllerDelegate?

fileprivate var coulorData:[Color]

Chapter 3 ■ The MVVM Architectural Pattern

58

Let us now examine the code for the ColorDetailViewModel class:

Listing 3-4.  ColorDetailViewMoel

import Foundation

class ColorDetailViewModel : NSObject {
 weak var view:ColorDetailViewControllerDelegate?
 var model:Color?

 init(view:ColorDetailViewControllerDelegate?, model:Color?) {
 self.view = view
 self.model = model
 super.init()
 }
}

extension ColorDetailViewModel : ViewModel {
 func viewDidAppear(_ animated: Bool) {
 if let view = self.view, let model = self.model {
 �view.setBackgroundColor(red: model.red, blue: model.blue, green:

model.green, alpha: model.alpha)

 view.setNavigationTitle(model.name)
 }
 }

 func setView(delegate:AnyObject?) -> Void {
 self.view = delegate as? ColorDetailViewControllerDelegate
 }
}

The code in Listing 3-4 represents the view model for the detail view controller. The
view model holds a weak reference to the view layer, as well as a strong reference to a
model object. The model object is an instance of a Color class.

weak var view:ColorDetailViewControllerDelegate?

var model:Color?

The view model’s viewDidAppear event is wired to be called by the matching event
of the view controller call. The view model uses this event to set the background color and
title of the view:

func viewDidAppear(_ animated: Bool) {
 if let view = self.view, let model = self.model {
 �view.setBackgroundColor(red: model.red, blue: model.blue, green:

model.green, alpha: model.alpha)

 view.setNavigationTitle(model.name)
 }
}

Chapter 3 ■ The MVVM Architectural Pattern

59

Let us examine the code for the Color class next:

Listing 3-5.  Color.swift

import Foundation

class Color {
 private static let zero = Float(floatLiteral: 0.0)
 private static let one = Float(floatLiteral: 1.0)

 var name:String
 var red:Float
 var green:Float
 var blue:Float
 var alpha:Float

 init?(name:String, red:Float, green:Float, blue:Float, alpha:Float) {
 if (red < Color.zero || red > Color.one) {
 return nil
 }

 if (green < Color.zero || green > Color.one) {
 return nil
 }

 if (blue < Color.zero || blue > Color.one) {
 return nil
 }

 if (alpha < Color.zero || alpha > Color.one) {
 return nil
 }

 self.name = name
 self.red = red
 self.green = green
 self.blue = blue
 self.alpha = alpha
 }
}

The code in Listing 3-5 represents a single model object. The model object
contains attributes to describe the name of the color as well as individual R, G, B, and A
component values:

var name:String
var red:Float
var green:Float
var blue:Float
var alpha:Float

Chapter 3 ■ The MVVM Architectural Pattern

60

Summary
In this chapter you have learned about the ubiquitous Model-View-Controller (MVC)
pattern and its iOS equivalent Model-ViewController (M-VC) pattern. Applications built
using the M-VC pattern tend to have massive view controller classes that are very difficult
to test.

You have also been introduced to Microsoft’s alternative to the MVC pattern, known
as the Model-View-ViewModel (MVVM) pattern. This pattern has its roots in WPF/XAML
applications but can be easily adapted and used in iOS applications.

Applications built with the MVVM pattern are significantly easier to test than
applications built using the MVC or M-VC patterns.

61© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_4

CHAPTER 4

Applying TDD to the Model

This chapter will examine the process of building the model layer of an app using TDD
techniques. Since this chapter focuses on the model layer, you will not be building a user
interface or any presentation logic.

Testing the components of the model layer of an application is just as important as
testing other components in the app. In a very simple app, the model layer may consist of
a single class that has a few instance variables. Even in this simplified scenario, unit tests
can be used to establish that the model class has the member variables that other parts of
the application expect it to have.

In more complex apps, the model layer may consist of several classes with complex
relationships and responsibilities. Individual classes within the model layer may perform
data transformation, persistence, and validation. In such scenarios, unit tests help establish
(and maintain) the relationships between the classes, and provide a measure of confidence
that the transformation, persistence, and validation logic are working as expected.

The model layer that is presented in this chapter is designed to represent a bank
account along with a set of transactions in that account. We will create classes to
represent bank accounts, individuals who own the account, and transactions within the
account. Figure 4-1 depicts the class diagram of the model layer.

A brief description of the classes that make up the model layer follows:

•	 BankAccount: Represents a single bank account. A bank account
object can represent either a savings account or a current account.

Figure 4-1.  Model Layer Classes

Chapter 4 ■ Applying TDD to the Model

62

•	 Transaction: Represents a single transaction. A transaction
object can represent either money coming into the account or
money leaving the account.

•	 AccountOwner: Represents an individual (or entity) that owns
the bank account. An account may have up to two owners.

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Creating the Xcode Project
Launch Xcode and create a new iOS project based on the Single View Application template
(see Figure 4-2).

Use the following options while creating the new project (see Figure 4-3):

•	 Product Name: BankAccount

•	 Team: None

•	 Organization Name: Provide a suitable name

Figure 4-2.  Xcode Project Template Dialog Box

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Chapter 4 ■ Applying TDD to the Model

63

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

■■ Note  Even though we have used the Single View Application Template while creating
this project, there will be no user interface/presentation code added into the project. In
Chapter 6, you will build an app to display bank account details, and a list of transactions in
a collection view. The project in Chapter 6 will build on the files created in this chapter.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create a group called Model in the Xcode project navigator. You will create model
layer specific classes within this group.

Figure 4-3.  Xcode Project Options Dialog Box

http://dx.doi.org/10.1007/978-1-4842-2689-6_6
http://dx.doi.org/10.1007/978-1-4842-2689-6_6

Chapter 4 ■ Applying TDD to the Model

64

Building the Model Layer
There are three model classes that we need to build:

•	 AccountOwner

•	 Transaction

•	 BankAccount

Each of these will be built using TDD techniques in subsequent sections of this chapter.

The AccountOwner Class
An instance of the AccountOwner class represents an individual or entity that owns an
account. Table 4-1 lists the desired member variables and methods of the AccountOwner
class.

Create a new iOS Unit Test Case class called AccountOwnerTests under the
BankAccountTests group of the project explorer (see Figure 4-4).

Table 4-1.  AccountOwner variables and methods.

Item Type Description

var firstName:String Variable Should be between 2 and 10 characters in
length, with no numbers or white space.

var lastName:String Variable Should be between 2 and 10 characters
in length, with no numbers or white
space.

var emailAddress:String Variable Must be a valid email address.

init?(firstName:String,
lastName:String,
emailAddress:String)

Method Allows other code to create
AccountOwner instances.

Chapter 4 ■ Applying TDD to the Model

65

Select the AccountOwnerTests.swift file in the project explorer and use the file
inspector to ensure that the file is included in the BankAccountTests target and not the
BankAccount target (see Figure 4-5). If the file inspector is not visible, View ➤ Utilities ➤
Show File Inspector menu item.

Figure 4-4.  Xcode File Template Dialog Box

Chapter 4 ■ Applying TDD to the Model

66

A test case file contains a couple of empty stub methods called testExample and
testPerformanceExample. These methods are there to help you get started writing your
tests. We will not be using these stub methods in this chapter, so feel free to delete them.

Create a new unit test method called testAccountOwner_ValidFirstName_
ValidLastName_ValidEmail_CanBeInstantiated() and add the following code to the
method body:

 �func testAccountOwner_ValidFirstName_ValidLastName_ValidEmail_
CanBeInstantiated() {

 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress)
 XCTAssertNotNil(accountOwner)
 }

Add the following private constant declarations to the top of the
AccountOwnerTests.swift file:

 private let validFirstName = "Andrew"
 private let validLastName = "Hill"
 private let validEmailAddress = "a.hill@abcfinancial.com"

 private let invalidFirstName = "A"
 private let invalidLastName = "h"
 private let invalidEmailAddress = "abcfinancial.com"

 private let emptyString = ""

Figure 4-5.  Target Membership for AccountOwnerTests.swift

Chapter 4 ■ Applying TDD to the Model

67

These constants represent a set of valid and invalid first names, last names, and
email addresses, and will be used within the test cases in this class. It is a good practice to
declare all the constants used in test cases at the top of the file that contains the test cases,
and not create ad hoc constants within test cases.

You will notice that this code fails to compile; that is because the AccountOwner class has
not been created yet. Failure to compile test code is in this case being treated as a test failure.

To fix this failure, create a new class called AccountOwner under the Model group in
the project navigator, and update its implementation to match the following code snippet:

import Foundation

class AccountOwner: NSObject {

 init?(firstName:String, lastName:String, emailAddress:String) {
 super.init()
 }

}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that all unit tests have passed (see Figure 4-6).

We need a few more test cases for the AccountOwner class. You can choose to build
up the features of the AccountOwner class one test at a time, or write a few tests up front
and then write features in the AccountOwner class to make a small group of tests pass,
and repeat as necessary.

Add the code from Listing 4-1 to the AccountOwnerTests class to create a few
additional tests.

Figure 4-6.  Xcode Test Navigator

Chapter 4 ■ Applying TDD to the Model

68

Listing 4-1.  AccountOwnerTests.swift

�func testAccountOwner_InvalidFirstName_ValidLastName_ValidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: invalidFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_InvalidFirstName_InvalidLastName_ValidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: invalidFirstName,
 lastName: invalidLastName,
 emailAddress: validEmailAddress)
 XCTAssertNil(accountOwner)

�func testAccountOwner_InvalidFirstName_InvalidLastName_InvalidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: invalidFirstName,
 lastName: invalidLastName,
 emailAddress: invalidEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_ValidFirstName_InvalidLastName_ValidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: invalidLastName,
 emailAddress: validEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_ValidFirstName_ValidLastName_InvalidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: invalidEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_ValidFirstName_InvalidLastName_InvalidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: invalidLastName,
 emailAddress: invalidEmailAddress)
 XCTAssertNil(accountOwner)
}

Chapter 4 ■ Applying TDD to the Model

69

�func testAccountOwner_EmptyFirstName_ValidLastName_ValidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: emptyString,
 lastName: validLastName,
 emailAddress: validEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_ValidFirstName_EmptyLastName_ValidEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: emptyString,
 emailAddress: validEmailAddress)
 XCTAssertNil(accountOwner)
}

�func testAccountOwner_ValidFirstName_ValidLastName_EmptyEmail_
CanNotBeInstantiated() {
 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: emptyString)
 XCTAssertNil(accountOwner)
}

The code in Listing 4-1 adds nine new test cases, each of which relate to instantiating
AccountOwner objects. These nine test cases collectively ensure that an AccountOwner
object can not be instantiated if the first name, last name, or e-mail address is invalid.

This time you will notice that there are no compiler warnings after you have added
these nine new test cases. However, when you run all tests by using the Product ➤ Test
menu item, you will notice that all these new test cases fail (see Figure 4-7).

Chapter 4 ■ Applying TDD to the Model

70

Fixing these tests require us to define a set of rules that will be used to validate user
names, passwords, and email addresses. We will then create classes that encapsulate
these rules, and integrate calls to instances of these validation classes into an initializer
method in the AccountOwner class.

We’ll create the following validation classes using TDD techniques next:

•	 First name

•	 Last name

•	 Email address

Creating the First Name Validator Class
For the purposes of the project being developed in this chapter, let us assume the
following validation criteria are to be applied to the first name:

•	 Should be between 2 and 10 characters in length.

•	 Should not include numbers.

•	 Should not include white space.

Let us first create a set of tests for a class called FirstNameValidator. The
FirstNameValidator class does not exist yet, hence these tests will not compile. However,
the tests we are about to write ensure that the FirstNameValidator class will encapsulate
all the validation criteria listed above in a method called validate().

Figure 4-7.  Failing Unit Tests

Chapter 4 ■ Applying TDD to the Model

71

Create a new iOS Unit Test Case class called FirstNameValidatorTests under the
BankAccountTests group of the project explorer and ensure the FirstNameValidatorTests.
swift file is included in the BankAccountTests target and not the BankAccount target.

Replace the contents of the FirstNameValidatorTests.swift file with Listing 4-2.

Listing 4-2.  FirstNameValidatorTests.swift

import XCTest

class FirstNameValidatorTests: XCTestCase {

 fileprivate let emptyString = ""

 fileprivate let singleCharachterName = "a"
 fileprivate let twoCharachterName = "ab"
 fileprivate let tenCharachterName = "abcdefghij"
 fileprivate let elevenCharachterName = "abcdefghijk"

 fileprivate let nameWithWhitespace = "abc def"

 fileprivate let nameWithDigit0 = "abc00"
 fileprivate let nameWithDigit1 = "abc11"
 fileprivate let nameWithDigit2 = "abc22"
 fileprivate let nameWithDigit3 = "abc33"
 fileprivate let nameWithDigit4 = "abc44"
 fileprivate let nameWithDigit5 = "abc55"
 fileprivate let nameWithDigit6 = "abc66"
 fileprivate let nameWithDigit7 = "abc77"
 fileprivate let nameWithDigit8 = "abc88"
 fileprivate let nameWithDigit9 = "abc99"

 override func setUp() {
 super.setUp()
 �// Put setup code here. This method is called before the invocation

of each test method in the class.
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }
}

// MARK: Empty string validation
extension FirstNameValidatorTests {

Chapter 4 ■ Applying TDD to the Model

72

 func testValidate_EmptyString_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")
 }

}

// MARK: String length validation
extension FirstNameValidatorTests {

 func testValidate_InputLessThanTwoCharachtersInLength_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(singleCharachterName), "string can

not have less than 2 characters.")
 }

 func testValidate_InputGreaterThanTenCharachtersInLength_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(elevenCharachterName), "string can

not have more than 11 characters.")
 }

 func testValidate_InputTwoCharachtersInLength_ReturnsTrue() {
 let validator = FirstNameValidator()
 �XCTAssertTrue(validator.validate(twoCharachterName), "string with 2

charachters should have been valid.")
 }

 func testValidate_InputTenCharachtersInLength_ReturnsTrue() {
 let validator = FirstNameValidator()
 �XCTAssertTrue(validator.validate(tenCharachterName), "string with 10

charachters should have been valid.")
 }
}

// MARK: white space validation
extension FirstNameValidatorTests {

 func testValidate_InputWithWhitespace_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithWhitespace), "string can

not have white space.")
 }

}

Chapter 4 ■ Applying TDD to the Model

73

// MARK: Numeric digit validation
extension FirstNameValidatorTests {

 func testValidate_InputWithDigit0_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit0), "string can not

have digit 0 in it.")
 }

 func testValidate_InputWithDigit1_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit1), "string can not

have digit 1 in it.")
 }

 func testValidate_InputWithDigit2_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit2), "string can not

have digit 2 in it.")
 }

 func testValidate_InputWithDigit3_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit3), "string can not

have digit 3 in it.")
 }

 func testValidate_InputWithDigit4_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit4), "string can not

have digit 4 in it.")
 }

 func testValidate_InputWithDigit5_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit5), "string can not

have digit 5 in it.")
 }

 func testValidate_InputWithDigit6_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit6), "string can not

have digit 6 in it.")
 }

Chapter 4 ■ Applying TDD to the Model

74

 func testValidate_InputWithDigit7_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit7), "string can not

have digit 7 in it.")
 }

 func testValidate_InputWithDigit8_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit8), "string can not

have digit 8 in it.")
 }

 func testValidate_InputWithDigit9_ReturnsFalse() {
 let validator = FirstNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit9), "string can not

have digit 9 in it.")
 }

}

The tests in Listing 4-2 assume that the validator class will implement a method called
validate() that will return true or false. When you approach a problem with TDD techniques,
your tests will define the interface of the class that will be built to make the tests pass.

You may also have noticed that class extensions have been used to group similar tests.
This is a commonly used approach to segregate a large number of tests in a single class.

You will once again notice that the tests we have just written do not compile. This is
because the FirstNameValidator class has not been created yet.

To make the test code compile, create a new class called FirstNameValidator under the
Model group in the project navigator, and update its implementation to match Listing 4-3.

Listing 4-3.  FirstNameValidator.swift

import Foundation

class FirstNameValidator: NSObject {

 func validate(_ value:String) -> Bool {
 if ((value.characters.count < 2) || (value.characters.count > 10)) {
 return false
 }

 let whitespace = Set(" ".characters)
 if (value.characters.filter {whitespace.contains($0)}).count > 0 {
 return false
 }

 let numbers = Set("0123456789".characters)
 if (value.characters.filter {numbers.contains($0)}).count > 0 {
 return false
 }

Chapter 4 ■ Applying TDD to the Model

75

 �guard let regexValidator = try? NSRegularExpression(pattern:
"([A-Za-z'])", options: .caseInsensitive) else {

 return false
 }

 if regexValidator.numberOfMatches(in: value,
 �options: NSRegularExpression.

MatchingOptions.reportCompletion,
 �range: NSMakeRange(0, value.

characters.count)) > 0 {
 return true
 }

 return false
 }

}

This code in Listing 4-3 declares the FirstNameValidator class as a subclass
of NSObject, with a single method called validate that returns a Boolean. Save the
file and run all unit tests using the Product ➤ Test menu item. All the tests around
FirstNameValidator should pass; however you should still see test failures around the
AccountOwner class (see Figure 4-8).

Figure 4-8.  Xcode Test Navigator with Passing and Failing Tests

Chapter 4 ■ Applying TDD to the Model

76

These failing tests are fine for now and will be made to pass once we build the other
validator objects and integrate these validator objects with the AccountOwner class.

Creating the Last Name Validator Class
The last name validator class will be very similar to the first name validator class created
in the previous section. For the purposes of the project being developed in this chapter,
let us assume the following validation criteria are to be applied to the last name:

•	 Should be between 2 and 10 characters in length.

•	 Should not include numbers.

•	 Should not include white space.

•	 Should not include any punctuation or special characters except
for the ’ character (as in O’Hara). Special characters in this
context include arithmetic symbols, underscores, logical symbols,
and parentheses.

Create a new iOS Unit Test Case class called LastNameValidatorTests under the
BankAccountTests group of the project explorer and ensure the new file is included in the
test target.

Replace the contents of the LastNameValidatorTests.swift file with Listing 4-4.

Listing 4-4.  LastNameValidatorTests.swift

import XCTest

class LastNameValidatorTests: XCTestCase {

 fileprivate let emptyString = ""

 fileprivate let singleCharachterName = "a"
 fileprivate let twoCharachterName = "ab"
 fileprivate let tenCharachterName = "abcdefghij"
 fileprivate let elevenCharachterName = "abcdefghijk"

 fileprivate let nameWithWhitespace = "abc def"
 fileprivate let nameWithSingleQuote = "abc'def"

 �fileprivate let nameWithUnsupportedSpecialCharacters =
"_+-.,!@#$%^&*();\\/|<>\""

 fileprivate let nameWithDigit0 = "abc00"
 fileprivate let nameWithDigit1 = "abc11"
 fileprivate let nameWithDigit2 = "abc22"
 fileprivate let nameWithDigit3 = "abc33"
 fileprivate let nameWithDigit4 = "abc44"
 fileprivate let nameWithDigit5 = "abc55"

Chapter 4 ■ Applying TDD to the Model

77

 fileprivate let nameWithDigit6 = "abc66"
 fileprivate let nameWithDigit7 = "abc77"
 fileprivate let nameWithDigit8 = "abc88"
 fileprivate let nameWithDigit9 = "abc99"

 override func setUp() {
 super.setUp()
 �// Put setup code here. This method is called before the invocation

of each test method in the class.
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }
}

// MARK: Empty string validation
extension LastNameValidatorTests {

 func testValidate_EmptyString_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")
 }

}

// MARK: String length validation
extension LastNameValidatorTests {

 func testValidate_InputLessThanTwoCharachtersInLength_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(singleCharachterName), "string can

not have less than 2 characters.")
 }

 func testValidate_InputGreaterThanTenCharachtersInLength_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(elevenCharachterName), "string can

not have more than 11 characters.")
 }

 func testValidate_InputTwoCharachtersInLength_ReturnsTrue() {
 let validator = LastNameValidator()

Chapter 4 ■ Applying TDD to the Model

78

 �XCTAssertTrue(validator.validate(twoCharachterName), "string with 2
charachters should have been valid.")

 }

 func testValidate_InputTenCharachtersInLength_ReturnsTrue() {
 let validator = LastNameValidator()
 �XCTAssertTrue(validator.validate(tenCharachterName), "string with 10

charachters should have been valid.")
 }
}

// MARK: white space validation
extension LastNameValidatorTests {

 func testValidate_InputWithWhitespace_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithWhitespace), "string can

not have white space.")
 }

}

// MARK: special charachter validation
extension LastNameValidatorTests {

 func testValidate_InputWithSingleQuote_ReturnsTrue() {
 let validator = LastNameValidator()
 �XCTAssertTrue(validator.validate(nameWithSingleQuote), "string with

single quote should have been valid.")
 }

 func testValidate_InputWithSpecialCharacters_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithUnsupportedSpecialCharacters),

"string can not have special characters.")
 }

}

// MARK: Numeric digit validation
extension LastNameValidatorTests {

 func testValidate_InputWithDigit0_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit0), "string can not

have digit 0 in it.")
 }

Chapter 4 ■ Applying TDD to the Model

79

 func testValidate_InputWithDigit1_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit1), "string can not

have digit 1 in it.")
 }

 func testValidate_InputWithDigit2_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit2), "string can not

have digit 2 in it.")
 }

 func testValidate_InputWithDigit3_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit3), "string can not

have digit 3 in it.")
 }

 func testValidate_InputWithDigit4_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit4), "string can not

have digit 4 in it.")
 }

 func testValidate_InputWithDigit5_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit5), "string can not

have digit 5 in it.")
 }

 func testValidate_InputWithDigit6_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit6), "string can not

have digit 6 in it.")
 }

 func testValidate_InputWithDigit7_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit7), "string can not

have digit 7 in it.")
 }

 func testValidate_InputWithDigit8_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit8), "string can not

have digit 8 in it.")
 }

Chapter 4 ■ Applying TDD to the Model

80

 func testValidate_InputWithDigit9_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithDigit9), "string can not

have digit 9 in it.")
 }

}

It is worth noting that the code in Listing 4-4 uses a single test case to handle all
special characters:

func testValidate_InputWithSpecialCharacters_ReturnsFalse() {
 let validator = LastNameValidator()
 �XCTAssertFalse(validator.validate(nameWithUnsupportedSpecialCharacters),

"string can not have special characters.")
 }

You can, if you wish, create one test case per special character. If you are using your
test cases as documentation for the LastNameValidator class, then having one test case
per special character will create more explicit documentation at the cost of increasing the
number of test cases.

These new test cases will not compile because the LastNameValidator class has not
been created yet. Create a new class called LastNameValidator under the Model group in
the project navigator, and update its implementation to match Listing 4-5.

Listing 4-5.  LastNameValidator.swift

import Foundation

class LastNameValidator: NSObject {

 func validate(_ value:String) -> Bool {
 if ((value.characters.count < 2) || (value.characters.count > 10)) {
 return false
 }

 let whitespace = Set(" ".characters)
 if (value.characters.filter {whitespace.contains($0)}).count > 0 {
 return false
 }

 let numbers = Set("0123456789".characters)
 if (value.characters.filter {numbers.contains($0)}).count > 0 {
 return false
 }

 let specialCharacters = Set("_+-.,!@#$%^&*();\\/|<>\"".characters)
 �if (value.characters.filter {specialCharacters.contains($0)}).count > 0 {
 return false
 }

Chapter 4 ■ Applying TDD to the Model

81

 �guard let regexValidator = try? NSRegularExpression(pattern:
"([A-Za-z'])", options: .caseInsensitive) else {

 return false
 }

 if regexValidator.numberOfMatches(in: value,
 �options: NSRegularExpression.

MatchingOptions.reportCompletion,
 �range: NSMakeRange(0, value.

characters.count)) > 0 {
 return true
 }

 return false
 }

}

The code in Listing 4-5 declares the LastNameValidator class as a subclass of
NSObject, with a single class method called validate that returns a Boolean. Save the
file and run all unit tests using the Product ➤ Test menu item. All the tests around
LastNameValidator should pass (see Figure 4-9).

Figure 4-9.  All Tests in LastNameValidator.swift Pass

Chapter 4 ■ Applying TDD to the Model

82

Creating the Email Address Validator Class
Create a new iOS Unit Test Case class called EmailAddressValidatorTests under the
BankAccountTests group of the project explorer, and ensure the new file is included in the
test target.

Replace the contents of the EmailAddressValidatorTests.swift file with Listing 4-6.

Listing 4-6.  EmailAddressValidatorTests.swift

import XCTest

class EmailAddressValidatorTests: XCTestCase {

 fileprivate let emptyString = ""

 fileprivate let validEmailAddress1 = "a@b.com"
 fileprivate let validEmailAddress2 = "a@b.co.uk"
 fileprivate let validEmailAddress3 = "a@b.io"
 fileprivate let validEmailAddress4 = "andrew.shaw@byteowl.io"

 fileprivate let invalidEmailAddress1 = "ab.com"
 fileprivate let invalidEmailAddress2 = "abcom"
 fileprivate let invalidEmailAddress3 = "a@b@com"

 override func setUp() {
 super.setUp()
 �// Put setup code here. This method is called before the invocation

of each test method in the class.
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }
}

// MARK: Empty string validation
extension EmailAddressValidatorTests {

 func testValidate_EmptyString_ReturnsFalse() {
 let validator = EmailAddressValidator()
 �XCTAssertFalse(validator.validate(emptyString), "string can not be

empty.")
 }

}

Chapter 4 ■ Applying TDD to the Model

83

// MARK: invalid email-addresses
extension EmailAddressValidatorTests {

 func testValidate_InvalidEmailAddress1_ReturnsFalse() {
 let validator = EmailAddressValidator()
 �XCTAssertFalse(validator.validate(invalidEmailAddress1),

"/(invalidEmailAddress1) is not a valid e-mail address.")
 }

 func testValidate_InvalidEmailAddress2_ReturnsFalse() {
 let validator = EmailAddressValidator()
 �XCTAssertFalse(validator.validate(invalidEmailAddress2),

"/(invalidEmailAddress2) is not a valid e-mail address.")
 }

 func testValidate_InvalidEmailAddress3_ReturnsFalse() {
 let validator = EmailAddressValidator()
 �XCTAssertFalse(validator.validate(invalidEmailAddress3),

"/(invalidEmailAddress3) is not a valid e-mail address.")
 }

}

// MARK: valid email-addresses
extension EmailAddressValidatorTests {

 func testValidate_ValidEmailAddress1_ReturnsTrue() {
 let validator = EmailAddressValidator()
 �XCTAssertTrue(validator.validate(validEmailAddress1),

"/(validEmailAddress1) is a valid e-mail address.")
 }

 func testValidate_ValidEmailAddress2_ReturnsTrue() {
 let validator = EmailAddressValidator()
 �XCTAssertTrue(validator.validate(validEmailAddress2),

"/(validEmailAddress2) is a valid e-mail address.")
 }

 func testValidate_ValidEmailAddress3_ReturnsTrue() {
 let validator = EmailAddressValidator()
 �XCTAssertTrue(validator.validate(validEmailAddress3),

"/(validEmailAddress3) is a valid e-mail address.")
 }

 func testValidate_ValidEmailAddress4_ReturnsTrue() {
 let validator = EmailAddressValidator()
 �XCTAssertTrue(validator.validate(validEmailAddress4),

"/(validEmailAddress4) is a valid e-mail address.")
 }

}

Chapter 4 ■ Applying TDD to the Model

84

These new test cases will not compile because the EmailAddressValidator class has
not been created yet. Create a new class called EmailAddressValidator under the Model
group in the project navigator, and update its implementation to match Listing 4-7.

Listing 4-7.  EmailaddressValidator.swift

import Foundation

class EmailAddressValidator: NSObject {

 func validate(_ value:String) -> Bool {
 if (value.characters.count < 6) {
 return false
 }

 let whitespace = Set(" ".characters)
 if (value.characters.filter {whitespace.contains($0)}).count > 0 {
 return false
 }

 let numbers = Set("0123456789".characters)
 if (value.characters.filter {numbers.contains($0)}).count > 0 {
 return false
 }

 let specialCharacters = Set("+,!#$%^&*();\\/|<>\"".characters)
 �if (value.characters.filter {specialCharacters.contains($0)}).count

> 0 {
 return false
 }

 �guard let regexValidator = try? NSRegularExpression(pattern: "([A-Z0-
9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4})", options: .caseInsensitive) else {

 return false
 }

 if regexValidator.numberOfMatches(in: value,
 �options: NSRegularExpression.

MatchingOptions.reportCompletion,
 �range: NSMakeRange(0, value.

characters.count)) > 0 {
 return true
 }

 return false
 }

}

Chapter 4 ■ Applying TDD to the Model

85

This snippet declares the EmailAddressValidator class as a subclass of NSObject,
with a single class method called validate that returns a Boolean. Save the file and run all
unit tests using the Product ➤ Test menu item.

All test cases for the FirstNameValidator, LastNameValidator, and
EmailAddressValidator class should now pass. In the next section, you will integrate these
components into the AccountOwner class.

Integrating the Validator Classes into the
AccountOwner Class
The AccountOwner class has a failable initializer that takes three parameters: a first
name, last name, and email address. This initializer should return nil if any of its three
parameters are invalid.

init?(firstName:String, lastName:String, emailAddress:String) {
 super.init()
}

We have already built classes to validate first names, last names, and email addresses.
We need to now integrate these classes into the initializer of AccountOwner. Integrating
these validator classes into AccountOwner’s init? method implies three things:

	 1.	 Validator objects for the first name, last name, and email
address need to be injected into the AccountOwner class.

	 2.	 The validate method on the individual validator objects will
be called when the AccountOwner’s init? method is called.

	 3.	 The validate method on the validator object will be called with
the correct value that was provided into AccountOwner’s init?
method.

There are various techniques we can use to inject dependencies into a class, and
these techniques have been covered in Chapter 2. In this case, I will inject the validator
classes as parameters into AccountOwner’s initializer.

Modify the init? method in AccountOwner.swift to match the following snippet:

init?(firstName:String, lastName:String, emailAddress:String,
 firstNameValidator:FirstNameValidator?=nil,
 lastNameValidator:LastNameValidator? = nil,
 emailAddressValidator:EmailAddressValidator? = nil) {

 super.init()
}

I have added three optional parameters to the initializer, each with a default value
of nil. The reason I have done this is so that I can inject mock objects into the initializer
when called from a test case, and use real objects when called otherwise.

http://dx.doi.org/10.1007/978-1-4842-2689-6_2

Chapter 4 ■ Applying TDD to the Model

86

You need to make sure this small refactoring effort has not broken any tests that were
previously passing. Save the file and run all unit tests using the Product ➤ Test menu
item. You will observe that no new tests are broken as a result of this refactoring.

Now that we have the means to inject our validators into AccountOwner, let us inject
a mock first name validator object and write a test that ensures that the validate method
on the mock object is called when an AccountOwner object is instantiated.

Add the following test case to the AccountOwnerTest.swift file:

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
ValidFirstNameValidator_CallsValidateOnValidator() {

 �let expectation = self.expectation(description: "Expected validate to be
called on validator.")

 �let mockFirstNameValidator = MockFirstNameValidator(expectation,
expectedValue:validFirstName)

 let _ = AccountOwner(firstName: validFirstName,

 lastName: validLastName,
 emailAddress: validEmailAddress,
 firstNameValidator:mockFirstNameValidator)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

This test case first creates an XCTestExpectation instance

let expectation = self.expectation(description: "Expected validate to be
called on validator.")

The test case then instantiates a mock first name validator object. This mock validator
is an instance of a class called MockFirstNameValidator (which will be built shortly).

let mockFirstNameValidator = MockFirstNameValidator(expectation,
expectedValue:validFirstName)

Recall that the validator objects that have been created previously all have a single
validate method:

class func validate(_ value:String) -> Bool

The mock validator is given a reference to the expectation object as well as the string
we expect will be injected into the validate method by AccountOwner’s init? method. The
mock validator object will fulfill the expectation when its validate method is called with
the expected value.

The test case then instantiates an AccountOwner with a valid first name, last name,
email address, and first name validator.

Chapter 4 ■ Applying TDD to the Model

87

let _ = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress,
 firstNameValidator:mockFirstNameValidator)

Finally, the test case waits for up to one second for the test expectation to be fulfilled.

self.waitForExpectations(timeout: 1.0, handler: nil)

Create a new group in the project explorer under the BankAccountTests group, called
Mocks. Create a new class called MockFirstNameValidator under the Mocks group in the
project navigator (see Figure 4-10). This new class does not need to be a member of the
BankAccount target, as it is only used in the unit test target.

Update the implementation of the MockFirstNameValidator class to match Listing 4-8.

Listing 4-8.  MockFirstNameValidator.swift

import Foundation
import XCTest

class MockFirstNameValidator: FirstNameValidator {

 private var expectation:XCTestExpectation?
 private var expectedValue:String?

Figure 4-10.  MockFirstNameValidator.swift Target Membership

Chapter 4 ■ Applying TDD to the Model

88

 init(_ expectation:XCTestExpectation, expectedValue:String) {
 self.expectation = expectation
 self.expectedValue = expectedValue
 super.init()
 }

 override func validate(_ value:String) -> Bool {

 if let expectation = self.expectation,
 let expectedValue = self.expectedValue {
 if value.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }
 }

 return super.validate(value)
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. Your new
test case should compile, but will not pass. This is because the validator has not been
integrated into the init? method of the AccountOwner object.

Modify the implementation of the init? method of the AccountOwner class to match:

init?(firstName:String, lastName:String, emailAddress:String,
 firstNameValidator:FirstNameValidator? = nil,
 lastNameValidator:LastNameValidator? = nil,
 emailAddressValidator:EmailAddressValidator? = nil) {

 let validator1 = firstNameValidator ?? FirstNameValidator()
 if validator1.validate(firstName) == false {
 return nil
 }

 super.init()
}

Save the file and run all unit tests using the Product ➤ Test menu item. Your new test
case will now pass (see Figure 4-11).

Chapter 4 ■ Applying TDD to the Model

89

This new test case that you have just completed verifies that the first name validator
object integrates correctly with the AccountOwner object.

Now, let us create a couple of additional test cases to verify the integration of the
last name and email address validator objects with the AccountOwner object. Add the
following two additional test cases to the AccountOwnerTests.swift file:

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
ValidLastNameValidator_CallsValidateOnValidator() {

 �let expectation = self.expectation(description: "Expected validate to be
called on validator.")

 �let mockLastNameValidator = MockLastNameValidator(expectation,
expectedValue:validLastName)

 let _ = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress,
 firstNameValidator:nil,
 lastNameValidator:mockLastNameValidator)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
ValidEmailAddressValidator_CallsValidateOnValidator() {

Figure 4-11.  Xcode Test Navigator with Passing and Failing Tests

Chapter 4 ■ Applying TDD to the Model

90

 �let expectation = self.expectation(description: "Expected validate to be
called on validator.")

 �let mockEmailAddressValidator = MockEmailAddressValidator(expectation,
expectedValue:validEmailAddress)

 let _ = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress,
 firstNameValidator:nil,
 lastNameValidator:nil,
 emailAddressValidator:mockEmailAddressValidator)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

Create a new class called MockLastNameValidator under the Mocks group in the
project navigator and update its implementation to match Listing 4-9.

Listing 4-9.  MockLastNameValidator.swift

import Foundation
import XCTest

class MockLastNameValidator: LastNameValidator {

 private var expectation:XCTestExpectation?
 private var expectedValue:String?

 init(_ expectation:XCTestExpectation, expectedValue:String) {
 self.expectation = expectation
 self.expectedValue = expectedValue
 super.init()
 }

 override func validate(_ value:String) -> Bool {

 if let expectation = self.expectation,
 let expectedValue = self.expectedValue {
 if value.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }
 }

 return super.validate(value)
 }
}

Chapter 4 ■ Applying TDD to the Model

91

Create a new class called MockEmailAddressValidator under the Mocks group in the
project navigator and update its implementation to match Listing 4-10.

Listing 4-10.  MockEmailAddressValidator.swift

import Foundation
import XCTest

class MockEmailAddressValidator: EmailAddressValidator {

 private var expectation:XCTestExpectation?
 private var expectedValue:String?

 init(_ expectation:XCTestExpectation, expectedValue:String) {
 self.expectation = expectation
 self.expectedValue = expectedValue
 super.init()
 }

 override func validate(_ value:String) -> Bool {

 if let expectation = self.expectation,
 let expectedValue = self.expectedValue {
 if value.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }
 }

 return super.validate(value)
 }

}

Modify the implementation of the init? method of the AccountOwner class to match:

import Foundation

class AccountOwner: NSObject {

 var firstName:String?
 var lastName:String?
 var emailAddress:String?

 init?(firstName:String, lastName:String, emailAddress:String,
 firstNameValidator:FirstNameValidator? = nil,
 lastNameValidator:LastNameValidator? = nil,
 emailAddressValidator:EmailAddressValidator? = nil) {

Chapter 4 ■ Applying TDD to the Model

92

 let validator1 = firstNameValidator ?? FirstNameValidator()
 if validator1.validate(firstName) == false {
 return nil
 }

 let validator2 = lastNameValidator ?? LastNameValidator()
 if validator2.validate(lastName) == false {
 return nil
 }

 let validator3 = emailAddressValidator ?? EmailAddressValidator()
 if validator3.validate(emailAddress) == false {
 return nil
 }

 super.init()
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will
notice that all tests written so far now pass, including the test in AccountOwner tests that
have been failing up until this point (see Figure 4-12).

Figure 4-12.  Xcode Test Navigator with Passing Tests

Chapter 4 ■ Applying TDD to the Model

93

The AccountOwner class is almost ready, but for one small missing feature: the
values of first name, last name, and email address that are provided in the initializer, if ,
should be copied over to instance variables.

Add the following three additional test cases to the AccountOwnerTests.swift file:

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
CopiesFirstNameToIVAR() {

 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress)

 �let isEqual = accountOwner!.firstName.compare(validFirstName) ==
.orderedSame

 XCTAssertTrue(isEqual)
}

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
CopiesLastNameToIVAR() {

 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress)

 �let isEqual = accountOwner!.lastName.compare(validLastName) ==
.orderedSame

 XCTAssertTrue(isEqual)
}

�func testAccountOwner_ValidFirstName_ValidLastName_ValidEmailAddress_
CopiesEmailAddressToIVAR() {

 let accountOwner = AccountOwner(firstName: validFirstName,
 lastName: validLastName,
 emailAddress: validEmailAddress)

 �let isEqual = accountOwner!.emailAddress.compare(validEmailAddress) ==
.orderedSame

 XCTAssertTrue(isEqual)
}

Declare the following variables in the AccountOwner class:

var firstName:String
var lastName:String
var emailAddress:String

Chapter 4 ■ Applying TDD to the Model

94

Add the following lines of code to the implementation of the init? method of the
AccountOwner class:

self.firstName = firstName
self.lastName = lastName
self.emailAddress = emailAddress

Save the file and run all unit tests using the Product ➤ Test menu item. You will
notice that all tests pass. This concludes the development of the AccountOwner class. In
the next section we will develop the Transaction class using TDD techniques.

The Transaction Class
A Transaction object represents a sum of money either entering or leaving the bank
account. Table 4-2 lists the desired member variables and methods of the Transaction class:

The approach to developing the Transaction class will be very similar to the
AccountOwner class. You will need to create tests that test verify the behavior of the
initializer and any validator objects. In this particular case, validator objects will be needed
for the description and the amount. There is no need to validate the isIncoming property.
You may wish to add some validation around the range of dates that may be allowed.

The complete Transaction class is provided in Listing 4-11. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Table 4-2.  Transaction variables and methods

Item Type Description

var txDescription:String Variable Contains a textual description of
the transaction. Should be up to 20
characters in length, cannot be empty.

var date:NSDate Variable Represents a valid date.

var isIncoming:Bool Variable True if the transaction represents a sum
of money being credited into the account.

var amount:String Variable Represents the transaction amount. Can
only include numbers and the period (.)
character.

init?(description:String,
date:NSDate,
isIncoming:Bool,
amount:String)

Method Allows other code to create Transaction
instances.

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Chapter 4 ■ Applying TDD to the Model

95

Listing 4-11.  Transaction.swift

import Foundation

class Transaction: NSObject {

 var txDescription:String
 var date:NSDate
 var isIncoming:Bool
 var amount:String

 init?(txDescription:String, date:NSDate, isIncoming:Bool, amount:String,
 descriptionValidator:TransactionDescriptionValidator? = nil,
 amountValidator:AmountValidator? = nil) {

 let validator1 = descriptionValidator ?? TransactionDescriptionValidator()
 if validator1.validate(txDescription) == false {
 return nil
 }

 let validator2 = amountValidator ?? AmountValidator()
 if validator2.validate(amount) == false {
 return nil
 }

 self.txDescription = txDescription
 self.date = date
 self.isIncoming = isIncoming
 self.amount = amount
 }

}

The BankAccount Class
A BankAccount object represents a current or savings bank account in the context of our
app. Table 4-3 lists the desired member variables and methods of the BankAccount class.

Chapter 4 ■ Applying TDD to the Model

96

The approach to developing the BankAccount class will be very similar to the
AccountOwner class. You will need to create tests that test verify the behavior of the
initializer and any validator objects. In this particular case, validator objects will be
needed for the accountName, accountNumber, and sortingCode properties.

The complete BankAccount class is provided in Listing 4-12. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Listing 4-12.  BankAccount.swift

import Foundation

enum AccountType {
 case currentAccount

Table 4-3.  Transaction variables and methods

Item Type Description

var accountName:String Variable Contains a textual description of
the account. Should be up to 20
characters in length, cannot be empty.
Special characters are allowed.

var accountNumber:String Variable Contains a numeric account
number, must be a 9-digit
number, no white space or special
characters are permitted.

var sortingCode:String Variable Contains a six digit number that
identifies a branch. No white space
or special characters are permitted.
Must begin with either 40 or 49.

var accountType:AccountType Variable An enumerated value that
represents the account type.
Can be either currentAccount or
savingsAccount.

var transactions:[Transaction] Variable An array of transactions.

var owners:[AccountOwner] Variable An array of account owners. A
bank account must have at least
one owner, and can have up to 2
account owners.

init?(accountName:String,
accountNumber:String,
sortingCode:String,
accountType:AccountType,
owners:[AccountOwner])

Method Allows other code to create
BankAccount instances.

https://github.com/asmtechnology/Lesson04.iOSTesting.2017.Apress.git

Chapter 4 ■ Applying TDD to the Model

97

 case savingsAccount
}

class BankAccount: NSObject {

 var accountName:String
 var accountNumber:String
 var sortingCode:String
 var accountType:AccountType
 var transactions:[Transaction]
 var owners:[AccountOwner]

 init?(accountName:String,
 accountNumber:String,
 sortingCode:String,
 accountType:AccountType,
 owners:[AccountOwner],
 accountNameValidator:AccountNameValidator? = nil,
 accountNumberValidator:AccountNumberValidator? = nil,
 sortingCodeValidator:SortingCodeValidator? = nil) {

 let validator1 = accountNameValidator ?? AccountNameValidator()
 if validator1.validate(accountName) == false {
 return nil
 }

 let validator2 = accountNumberValidator ?? AccountNumberValidator()
 if validator2.validate(accountNumber) == false {
 return nil
 }

 let validator3 = sortingCodeValidator ?? SortingCodeValidator()
 if validator3.validate(sortingCode) == false {
 return nil
 }

 if owners.count == 0 {
 return nil
 }

 self.accountName = accountName
 self.accountNumber = accountNumber
 self.sortingCode = sortingCode
 self.accountType = accountType
 self.owners = owners
 self.transactions = [Transaction]()
 }

}

Chapter 4 ■ Applying TDD to the Model

98

Testing Core Data
The model objects built so far in this chapter all have one thing in common – they are all
NSObject subclasses. This is quite common in many iOS Apps; however, an increasing
number of apps are using object persistence frameworks like Core Data to both represent
and persist the model data.

A detailed discussion of Core Data is outside the scope of this book. Testing the
model layer is perhaps one of the biggest hurdles faced by developers who have used
Core Data in the model layer.

Core Data is designed to persist your model objects along with their relationships
into a database. For Core Data to be able to achieve its objectives, it introduces
a plethora of classes such as NSManagedObject, NSManagedObjectContext,
NSManagedObjectModel, NSPersistentStoreCoordintor, and also requires that you let
Core Data manage the life cycle of your model objects.

With Core Data managing the life cycle of your model objects, you can not simply
instantiate your model objects using a designated or convenience initializers; instead you
need to request a managed object context to instantiate the object.

While the managed object context itself can be conveniently instantiated with
a designated initializer, one of the parameters to this initializer is a persistent store
coordinator that requires you to provide the path to a SQLite database file.

Instantiating persistent store coordinators in your applications code is a very
common thing to do; however to instantiate one of these in a unit test case, you will
need to include a database in the test target. Including a database in a test target is
strictly frowned upon because tests that read and write from a database can easily create
dependencies between test cases.

It is easy to imagine a test case writing some data into a database, and another
reading some of the data. This type of behavior creates tight coupling between tests, the
precise execution order of the tests become important, and the tests are not independent
anymore. It is far worse when this type of behavior occurs inadvertently.

Fortunately Core Data has an often overlooked feature called in-memory stores that
can be used within tests without including an SQLlite file in the test target. An in-memory
store is a RAM-based database, and is commonly used to implement caching strategies.
One of the key properties of an in-memory store is that they can be destroyed and re-
created to an initial state with little performance overhead.

The following code snippet shows how you can create managed object context that
uses an in-memory persistent store coordinator:

func inMemoryManagedObjectContext() -> NSManagedObjectContext? {

 �guard let managedObjectModel = NSManagedObjectModel.
mergedModel(from:[Bundle.main]) else {

 return nil
 }

 �let persistentStoreCoordinator = NSPersistentStoreCoordinator(managedObj
ectModel: managedObjectModel)

 do {

Chapter 4 ■ Applying TDD to the Model

99

 �try persistentStoreCoordinator.addPersistentStore(ofType:
NSInMemoryStoreType,

 configurationName: nil,
 at: nil,
 options: nil)
 } catch {
 print("Failed to create in-memory persistent store.")
 return nil
 }

 �let managedObjectContext = NSManagedObjectContext(concurrencyType:
.mainQueueConcurrencyType)

 �managedObjectContext.persistentStoreCoordinator =
persistentStoreCoordinator

 return managedObjectContext
}

You can make use of this method in your test case’s setup method to create managed
object context backed by an in-memory store. You can then use this managed object
context to instantiate Core Data objects within your tests.

Summary
In this chapter you have created the model layer of an application using Test-Driven
techniques. For each component of the model layer, you first created a set of test cases,
and then built the corresponding model layer class to ensure the test cases pass.

You have also learned to create validator objects that validate the content of the
model layer objects, and how to inject these validator objects as dependencies into model
layer objects.

Finally, you learned to create mock objects in Swift and use the mock objects to
verify the integration between model layer objects and injected validator objects.

101© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_5

CHAPTER 5

Applying TDD to View
Controllers

This chapter will examine the process of building an iOS app based on the Single View
Controller project template using TDD techniques. The app will have two view controllers
that provide sign up and login screen functionality. This app will be built using the MVVM
application architecture.

Figure 5-1 depicts the user interface of the finished application.

Figure 5-1.  User Interface of Finished application

Chapter 5 ■ Applying TDD to View Controllers

102

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Application Architecture
The application architecture consists of four distinct layers (see Figure 5-2).

Figure 5-2.  LoginForm Application Architecture

Following is a brief description of the layers and the component classes:

•	 Model Layer: Consists of the LoginModel and SignupModel
classes, instances of which are used to store the data entered
by the user on the Login and Signup screens respectively.
This layer also contains three classes to handle field
validation – UserNameValidator, PasswordValidator, and
EmailAddressValidator.

•	 View Model Layer: Consists of the LoginViewModel and
SignupViewModel classes.

•	 View/View Controller Layer: Consists of the
LoginViewController and SignupViewController classes. These
classes provide the user interface for the app.

•	 Other Controllers Layer: Consists of the LoginController
and SignupController classes that carry out the actual process
of login and signup. In this project, these classes are stub
implementations. In a real-world scenario, you will write code
in these classes to connect to your back-end web services and
perform the necessary steps required to log in/sign up.

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 5 ■ Applying TDD to View Controllers

103

Creating the Xcode Project
Let us start by creating a new Xcode project. Launch Xcode and create a new iOS project
based on the Single View Application template (see Figure 5-3).

Figure 5-3.  Xcode Project Template Dialog Box

Use the following options while creating the new project (see Figure 5-4):

•	 Product Name: LoginForm

•	 Team: None

•	 Organization Name: Provide a suitable name

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

Chapter 5 ■ Applying TDD to View Controllers

104

■■ Note T he project being created in this chapter does not include user interface (UI) tests.
If you wish, you can add UI tests to a project retrospectively. Chapter 13 covers the topic of
user interface testing.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create the following groups in the Xcode project navigator, under the LoginForm
folder:

•	 View

•	 Model

•	 ViewModel

•	 Protocols

Building the User Interface Layer
The user interface for this application consists of two storyboard scenes and a segue
between the scenes (see Figure 5-5).

Figure 5-4.  Xcode Project Options Dialog Box

http://dx.doi.org/10.1007/978-1-4842-2689-6_13

Chapter 5 ■ Applying TDD to View Controllers

105

The new project that you have created has a default view controller that we will not
use. Delete the ViewController.swift file from the project navigator, and create two new
UIViewController subclasses under the View group called:

•	 LoginViewController, and

•	 SignupViewController.

The project navigator should resemble Figure 5-6.

Figure 5-5.  Application Storyboard

Chapter 5 ■ Applying TDD to View Controllers

106

Building the Login View Controller Scene
Open the Main.storyboard file and click on the default scene in the storyboard.
Use the Identity Inspector to change the class associated with the default scene to
LoginViewController (see Figure 5-7).

Figure 5-6.  LoginForm Project Navigator

Chapter 5 ■ Applying TDD to View Controllers

107

Add two text fields, two buttons, and four labels to the default storyboard scene and
arrange them to resemble Figure 5-8. Create appropriate constraints for the elements to
maintain this arrangement on different screen sizes.

Figure 5-7.  Custom View Controller class setup in the Identity Inspector

Figure 5-8.  UI Components on the Login View Controller Scene

Chapter 5 ■ Applying TDD to View Controllers

108

Using the storyboard, set up the LoginViewController class to act as the delegate for
the two text fields. Table 5-1 lists the outlets and action methods that you need to create in
the LoginViewController class along with their associated user interface elements.

Table 5-1.  Login view controller outlets and actions

Name Type Description

@IBOutlet weak var
userNameTextField:
UITextField!

IB Outlet Connect this outlet to the User name
text field of the storyboard scene.

@IBOutlet weak var
passwordTextField:
UITextField!

IB Outlet Connect this outlet to the Password
text field of the storyboard scene.

@IBOutlet weak var
loginButton: UIButton!

IB Outlet Connect this outlet to the Login button
of the storyboard scene.

@IBOutlet weak var
createAccountButton:
UIButton!

IB Outlet Connect this outlet to the Create
Account button of the storyboard
scene.

@IBAction func login
(_ sender: Any)

IB Action Connect this method to the Touch Up
Inside event of the Login button.

@IBAction func
createAccount
(_ sender: Any)

IB Action Connect this method to the Touch Up
Inside event of the Create Account
button.

@IBAction func
userNameDidEndOnExit
(_ sender: Any)

IB Action Connect this method to the Did End
On Exit event of the User name text
field.

@IBAction func
passwordDidEndOnExit
(_ sender: Any)

IB Action Connect this method to the Did End
On Exit event of the Password text field.

Implement the UITextFieldDelegate protocol in a separate class extension on
LoginViewController by adding the following code to the end of the LoginViewController.
swift file:

extension LoginViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 return true
 }

}

Chapter 5 ■ Applying TDD to View Controllers

109

The above snippet contains a bare-bones implementation of the textField(_,
shouldChangeCharactersIn, replacementString) delegate method from UITextFieldDelegate.
The code in LoginViewController.swift should now resemble Listing 5-1.

Listing 5-1.  LoginViewController.swift

import UIKit

class LoginViewController: UIViewController {

 @IBOutlet weak var userNameTextField: UITextField!
 @IBOutlet weak var passwordTextField: UITextField!
 @IBOutlet weak var loginButton: UIButton!
 @IBOutlet weak var createAccountButton: UIButton!

 override func viewDidLoad() {
 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func login(_ sender: Any) {

 }

 @IBAction func createAccount(_ sender: Any) {

 }

 @IBAction func userNameDidEndOnExit(_ sender: Any) {

 }

 @IBAction func passwordDidEndOnExit(_ sender: Any) {

 }

}

extension LoginViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 return true
 }

}

Chapter 5 ■ Applying TDD to View Controllers

110

Building the Signup View Controller Scene
Drag and drop a new view controller from the Object Library onto the storyboard, and
place the new view controller scene beside the default storyboard scene.

Use the Identity Inspector to change the class associated with the new view
controller scene to SignupViewController.

Add four text fields, four labels, and two buttons to the new storyboard scene and
arrange them to resemble Figure 5-9. Create appropriate constraints for the elements to
maintain this arrangement on different screen sizes.

Figure 5-9.  UI Components on the Signup View Controller Scene

Using the storyboard, set up the SignupViewController class to act as the delegate for
the four text fields. Table 5-2 lists the outlets and action methods that must be created in
the SignupViewController class along with their associated user interface elements.

Chapter 5 ■ Applying TDD to View Controllers

111

Table 5-2.  Signup view controller outlets and actions

Name Type Description

@IBOutlet weak var
userNameTextField:
UITextField!

IB Outlet Connect this outlet to the
User name text field of the
storyboard scene.

@IBOutlet weak var
passwordTextField:
UITextField!

IB Outlet Connect this outlet to the
Password text field of the
storyboard scene.

@IBOutlet weak var
confirmPasswordTextField:
UITextField!

IB Outlet Connect this outlet to the
Re-enter password text field
of the storyboard scene.

@IBOutlet weak var
emailAddressTextField:
UITextField!

IB Outlet Connect this outlet to the
email address text field of the
storyboard scene.

@IBOutlet weak var
createButton: UIButton!

IB Outlet Connect this outlet to
the Create button of the
storyboard scene.

@IBOutlet weak var
cancelButton: UIButton!

IB Outlet Connect this outlet to
the Cancel button of the
storyboard scene.

@IBAction func create
(_ sender: Any)

IB Action Connect this method to the
Touch Up Inside event of the
Create button.

@IBAction func cancel(_ sender:
Any)

IB Action Connect this method to the
Touch Up Inside event of the
Cancel button.

@IBAction func
userNameDidEndOnExit(_ sender:
Any)

IB Action Connect this method to the
Did End On Exit event of the
User name text field.

@IBAction func
passwordDidEndOnExit(_ sender:
Any)

IB Action Connect this method to the
Did End On Exit event of the
Password text field.

@IBAction func
confirmPasswordDidEndOnExit(_
sender: Any)

IB Action Connect this method to the
Did End On Exit event of the
Re-enter password text field.

@IBAction func
emailAddressDidEndOnExit(_
sender: Any)

IB Action Connect this method to the
Did End On Exit event of the
email address text field.

Chapter 5 ■ Applying TDD to View Controllers

112

Implement the UITextFieldDelegate protocol in a separate class extension
on SignupViewController by adding the following code to the end of the
SignupViewController.swift file:

extension SignupViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 return true
 }

}

The above snippet contains a bare-bones implementation of the textField(_,
shouldChangeCharactersIn, replacementString) delegate method from
UITextFieldDelegate. The code in SignupViewController.swift should now resemble
Listing 5-2.

Listing 5-2.  SignupViewController.swift

import UIKit

class SignupViewController: UIViewController {

 @IBOutlet weak var userNameTextField: UITextField!
 @IBOutlet weak var passwordTextField: UITextField!
 @IBOutlet weak var confirmPasswordTextField: UITextField!
 @IBOutlet weak var emailAddressTextField: UITextField!
 @IBOutlet weak var createButton: UIButton!
 @IBOutlet weak var cancelButton: UIButton!

 override func viewDidLoad() {
 super.viewDidLoad()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 }

 @IBAction func create(_ sender: Any) {

 }

 @IBAction func cancel(_ sender: Any) {

 }

Chapter 5 ■ Applying TDD to View Controllers

113

 @IBAction func userNameDidEndOnExit(_ sender: Any) {

 }

 @IBAction func passwordDidEndOnExit(_ sender: Any) {

 }

 @IBAction func confirmPasswordDidEndOnExit(_ sender: Any) {

 }

 @IBAction func emailAddressDidEndOnExit(_ sender: Any) {

 }

}

extension SignupViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 return true
 }

}

Creating a Segue Between the Login Scene and the
Signup Scene
Create a Present Modally segue from the login view controller scene to the create
account view controller scene of the storyboard. With the segue selected, switch to
the Attributes Inspector and set the value of the Identifier attribute to presentCreate
Account (see Figure 5-10).

Chapter 5 ■ Applying TDD to View Controllers

114

This concludes the topic of building the user interface for the app. You may be
wondering why TDD techniques have not been applied until this point in this project.
There are a couple of reasons for this:

	 1.	 We are building the user interface of the app using
storyboards, and wiring up outlets and actions through
interface builder. Xcode does not provide any convenient
method to build this part of the application using a test-first
approach.

	 2.	 You could opt to build the user interface programmatically
instead of using storyboards. However, there is very little
benefit to be gained from building the user interface with
TDD techniques.

	 3.	 The UI of an app can change frequently and can easily be
tested using specialized UI test techniques or manual testing.
Using a TDD-based approach to building the UI is wasted
effort as you will need to modify your tests with every small UI
change made to the app.

	 4.	 If you come from a “tests create living documentation for a
project” mindset, then you will find it hard to justify how unit
tests can create better documentation for the user interface of
the app over a simple screen shot.

Figure 5-10.  Setting up the Identifier Attribute of a Segue

Chapter 5 ■ Applying TDD to View Controllers

115

Building the Model Layer
There are two model classes that we need to build - LoginModel and SignupModel. In
an app as simple as the one we are building you may be tempted to ask why do we need
separate model classes at all? We could simply choose to use a simple dictionary of
strings to represent the model.

The reason to have separate model classes is to accommodate a certain minimal
level of data validation into the model. While the validation logic itself may be moved to
a separate specialized validator object, such validator objects will conceptually reside in
the model layer alongside the model objects.

The LoginModel Class
The LoginModel class contains properties that store the information the user has
entered into the fields of the login screen of the app. When a user taps the login button
on the user interface, the view model will build a LoginModel instance and pass this
instance to a specialized controller class that handles login-specific logic. The specialized
login controller class may perhaps connect to back-end services and log in using the
credentials provided.

Using a dedicated model object to store the values entered by the user in the fields
of the login screen decouples the logic in the login controller from the user interface.
Table 5-3 lists the desired properties and methods of the LoginModel class.

Table 5-3.  LoginModel Properties and Methods

Item Type Description

var userName:String Variable Should be between 2 and 10 characters in
length, with no white space. Underscores are
allowed. Special characters are not permitted.

var password:String Variable Should be between 6 and 10 characters in
length, with no white space. Must have at
least one uppercase letter, one lowercase
letter, and one number.

init?(userName:String,
password:String)

Method Allows other code to create LoginModel
instances.

The approach to developing the LoginModel class will be very similar to the model
layer classes that were developed in Chapter 4. You will need to create tests that test verify
the behavior of the initializer and any validator objects.

The complete LoginModel class is shown in Listing 5-3. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

http://dx.doi.org/10.1007/978-1-4842-2689-6_4
https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 5 ■ Applying TDD to View Controllers

116

Listing 5-3.  LoginModel.swift

import Foundation

class LoginModel: NSObject {

 var userName:String
 var password:String

 init?(userName:String, password:String,
 userNameValidator:UserNameValidator? = nil,
 passwordValidator:PasswordValidator? = nil) {

 let validator1 = userNameValidator ?? UserNameValidator()
 if validator1.validate(userName) == false {
 return nil
 }

 let validator2 = passwordValidator ?? PasswordValidator()
 if validator2.validate(password) == false {
 return nil
 }

 self.userName = userName
 self.password = password

 super.init()
 }
}

The SignupModel Class
The SignupModel class contains properties that store the information that the user has
entered into the fields of the create account screen. When the user taps the create button
on the user interface, the view model will build a SignupModel instance and pass this
instance to a specialized controller class that contains signup logic. The specialized
signup controller class may perhaps connect to back-end services and create a new
account on a server-side database using the credentials provided. Table 5-4 lists the
desired properties and methods of the SignupModel class.

Chapter 5 ■ Applying TDD to View Controllers

117

The approach to developing the SignupModel class will be very similar to the model
layer classes that were developed in Chapter 4. You will need to create tests that test verify
the behavior of the initializer and any validator objects.

The complete SignupModel class is provided in Listing 5-4. If you would like to
examine the code for the tests and the validator objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Listing 5-4.  SignupModel.swift

import Foundation

class SignupModel: NSObject {

 var userName:String
 var password:String
 var emailAddress:String

 init?(userName:String, password:String, emailAddress:String,
 userNameValidator:UserNameValidator? = nil,
 passwordValidator:PasswordValidator? = nil,
 emailAddressValidator:EmailAddressValidator? = nil) {

 let validator1 = userNameValidator ?? UserNameValidator()
 if validator1.validate(userName) == false {
 return nil
 }

 let validator2 = passwordValidator ?? PasswordValidator()
 if validator2.validate(password) == false {
 return nil
 }

Table 5-4.  SignupModel Properties and Methods

Item Type Description

var userName:String Variable Should be between 2 and 10 characters
in length, with no numbers or white
space. Underscores are allowed. Special
characters are not permitted.

var password:String Variable Should be between 2 and 10 characters in
length, with no white space.

var emailAddress:String Variable Must be a valid email address.

init?(userName:String,
password:String,
emailAddress:String)

Method Allows other code to create SignupModel
instances.

http://dx.doi.org/10.1007/978-1-4842-2689-6_4
https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 5 ■ Applying TDD to View Controllers

118

 let validator3 = emailAddressValidator ?? EmailAddressValidator()
 if validator3.validate(emailAddress) == false {
 return nil
 }

 self.userName = userName
 self.password = password
 self.emailAddress = emailAddress

 super.init()
 }

}

Building the ViewModel Layer
There are two view model classes that we need to build - LoginViewModel
and SignupViewModel. These correspond to the LoginViewController and
SignupViewController classes respectively. The view model will hold a strong reference
to model layer objects and use protocols to establish an interface through which it can
communicate with the view controller.

The LoginViewModel Class
The LoginViewModel class represents the view model between the LoginViewController
class and the LoginModel class.

We will adopt a TDD approach to developing the login view model class. Create a
new iOS Unit Test Case class called LoginViewModelTests under the LoginFormTests
group of the project explorer (see Figure 5-11).

Chapter 5 ■ Applying TDD to View Controllers

119

Figure 5-11.  Xcode Project Template Dialog Box

Select the LoginViewModelTests.swift file in the project explorer and use the file
inspector to ensure that the file is included in the LoginFormTests target and not the
LoginForm target (see Figure 5-12). If the file inspector is not visible, View ➤ Utilities
➤ Show File Inspector menu item.

Figure 5-12.  LoginViewModelTests Target Membership

Chapter 5 ■ Applying TDD to View Controllers

120

Delete the testExample and testPerformanceExample methods from
LoginViewModelTests.swift. Create a new unit test method called testInit_ValidView_
InstantiatesObject()in a separate extension and add the following code to the method
body:

func testInit_ValidView_InstantiatesObject() {
 let viewModel = LoginViewModel(view:mockLoginViewController!)
 XCTAssertNotNil(viewModel)
}

Add the following variable declaration to the top of the LoginViewModelTests class:

fileprivate var mockLoginViewController:MockLoginViewController?

You will notice that this code fails to compile; that is because the LoginViewModel
class has not been created yet. To fix this failure, create a new class called
LoginViewModel under the ViewModel group in the project navigator. Ensure the
LoginViewModel class is a member of both the LoginForm and LoginFormTests target.
Update the contents of the LoginViewModel.swift file to match Listing 5-5.

Listing 5-5.  LoginViewModel.swift

import Foundation

class LoginViewModel: NSObject {

 weak var view:LoginViewControllerProtocol?

 init(view:LoginViewControllerProtocol) {
 super.init()
 self.view = view
 }

}

The initializer for the LoginViewModel class takes a reference to the view.
Note that the type of the view parameter is LoginViewControllerProtocol and not
LoginViewController.

The view model makes use of a protocol to create a loosely coupled relationship
with the view. As far as the view model is concerned, any class that implements the
LoginViewControllerProtocol protocol can be used as the view. This loose coupling with
the view makes the view model easy to instantiate in a unit test, independent of a view
controller.

Create a new Swift file called LoginViewControllerProtocol (see Figure 5-13) under
the Protocols group of the project explorer, and ensure the new file is a member of both
the LoginFormTests and LoginForm targets.

Chapter 5 ■ Applying TDD to View Controllers

121

Update the code in LoginViewControllerProtocol to resemble the following:

import Foundation

protocol LoginViewControllerProtocol : class {

}

Create a new group called Mocks under the LoginFormTests group, and create a
new Swift class called MockLoginViewController under the Mocks group. Ensure the
MockLoginViewController.swift file is only a member of the LoginFormTests target.

Update the code in MockLoginViewController.swift to resemble the following:

import UIKit
import XCTest

class MockLoginViewController : LoginViewControllerProtocol {

}

Figure 5-13.  Xcode File Template Dialog Box

Chapter 5 ■ Applying TDD to View Controllers

122

Open the LoginViewModelTests.swift file and update the setUp() method to
resemble the following:

override func setUp() {
 super.setUp()
 mockLoginViewController = MockLoginViewController()
}

The updated setup() method instantiates a MockLoginViewController and saves a
reference to this new instance in the mockLoginViewController private variable. The code
in LoginViewModelTests.swift should now resemble Listing 5-6.

Listing 5-6.  LoginViewModelTests.swift

import XCTest

class LoginViewModelTests: XCTestCase {

 fileprivate var mockLoginViewController:MockLoginViewController?

 override func setUp() {
 super.setUp()
 mockLoginViewController = MockLoginViewController()
 }

 override func tearDown() {
 super.tearDown()
 }

}

// MARK: initialization tests
extension LoginViewModelTests {

 func testInit_ValidView_InstantiatesObject() {
 let viewModel = LoginViewModel(view:mockLoginViewController!)
 XCTAssertNotNil(viewModel)
 }

}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see that
the unit test you have added in LoginViewModelTests.swift has passed (see Figure 5-14).

Chapter 5 ■ Applying TDD to View Controllers

123

The view model test created so far verifies that a view model can be instantiated;
and in order to make this test pass you created a view model class, a protocol, and a
mock class.

The next test you will write will verify that the view model saves a reference to the
view that was injected into the initializer, in an instance variable. Create a new unit
test method called testInit_ValidView_CopiesViewToIvar() under the previous test
method and add the following code to the method body:

func testInit_ValidView_CopiesViewToIvar() {
 let viewModel = LoginViewModel(view:mockLoginViewController!)

 �if let lhs = mockLoginViewController, let rhs = viewModel.view as?
MockLoginViewController {

 XCTAssertTrue(lhs === rhs)
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will
notice that all tests written so far continue to pass.

View Model – View Controller Binding
The login view model we have built so far does not do anything useful. You can instantiate
it, but it has no methods that can be called. To work out what methods should be added
to the view model, let us take a look at the user interface of the login view controller
(see Figure 5-15).

Figure 5-14.  Basic tests for the Login View Model

Chapter 5 ■ Applying TDD to View Controllers

124

You can see that the user interface of the login view controller consists of a couple
of text fields and buttons. A user can use the text fields to specify his credentials and tap
on the Login button, or the user can tap on the Create account button to go to a different
screen of the app.

In order to make the view model useful for the view controller, you need to add
methods to the view model that can be called from various life-cycle methods and
event handlers in the view controller. Table 5-5 lists the methods we will add to the
LoginViewModel class.

Figure 5-15.  User Interface of the Login View Controller

Chapter 5 ■ Applying TDD to View Controllers

125

The view model will also need to be able to update UI elements on the view
controller to reflect changes in the application state or model data. Since the view
model uses a protocol to bind with the view controller, you will need to add methods
to the protocol that will allow the view model to request the view controller to
update user interface elements. Table 5-6 lists the methods that will be added to
LoginViewControllerProtocol.

Table 5-5.  LoginViewModel Methods

Item Description

func performInitialViewSetup() Should be called from the viewDidLoad()
method of the view controller class. Resets
user interface elements to their initial states.

func login(userName:String?,
password:String?)

Called by the login view controller when
the user taps on the Login button. Creates a
LoginModel instance and displays an alert to
the user.

func userNameDidEndOnExit() Called by the login view controller when the
didEndOnExit event is received by the user
name text field. Dismisses the keyboard if it
was visible.

func passwordDidEndOnExit() Called by the login view controller when
the didEndOnExit event is received by the
password text field. Dismisses the keyboard if
it was visible.

func userNameUpdated
(_ value:String?)

Called by the login view controller as the user
updates the text in the user name field. Calls
a validator object to check if the text in the
user name field is valid. If both the user name
and password fields are valid, then the Login
button will be enabled.

func passwordUpdated
(_ value:String?)

Called by the login view controller as the user
updates the text in the user name field. Calls
a validator object to check if the text in the
password field is valid. If both the user name
and password fields are valid, then the Login
button will be enabled.

Chapter 5 ■ Applying TDD to View Controllers

126

You will now add the desired methods to the LoginViewModel class using TDD
techniques.

Building the performInitialViewSetup Method
The performInitialViewSetupMethod method should perform the following tasks:

•	 Clear the contents of the username field.

•	 Clear the contents of the password field.

•	 Disable the Login button.

•	 Enable the Create Account button.

Add the tests in Listing 5-7 to the bottom of the LoginViewModelTests.swift file:

Listing 5-7.  Tests for the performInitialViewSetup method

// MARK: performInitialViewSetup tests
extension LoginViewModelTests {

 func testPerformInitialViewSetup_Calls_ClearUserNameField_OnViewController() {
 �let expectation = self.expectation(description: "expected

clearUserNameField() to be called")
 mockLoginViewController!.expectationForClearUserNameField = expectation

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

Table 5-6.  LoginViewControllerProtocol Methods

Item Description

func clearUserNameField() Called by the view model. The view controller
should clear the contents of the user name field.

func clearPasswordField() Called by the view model. The view controller
should clear the contents of the password field.

func enableLoginButton
(_ status:Bool)

Called by the view model. The view controller
should enable or disable the Login button
depending on the value of status.

func enableCreateAccountButton
(_ status:Bool)

Called by the view model. The view controller
should enable or disable the Create Account
button depending on the value of status.

func hideKeyboard() Called by the view model. The view controller
should hide the keyboard if it is visible.

Chapter 5 ■ Applying TDD to View Controllers

127

 func testPerformInitialViewSetup_Calls_ClearPasswordField_OnViewController() {
 �let expectation = self.expectation(description: "expected

clearPasswordField() to be called")
 mockLoginViewController!.expectationForClearPasswordField = expectation

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 func testPerformInitialViewSetup_DisablesLoginButton_OnViewController() {
 �let expectation = self.expectation(description: "expected

enableLoginButton(false) to be called")
 �mockLoginViewController!.expectationForEnableLoginButton =

(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 func testPerformInitialViewSetup_EnablesCreateAccountButton_OnViewController() {
 �let expectation = self.expectation(description: "expected

enableCreateAccountButton(true) to be called")
 �mockLoginViewController!.expectationForCreateAccountButton =

(expectation, true)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }
}

Listing 5-7 adds four new test cases, one for each task that must be performed by
performInitialViewSetup(). Since all four cases test parts of the same method, I have
grouped them into in a class extension; however you can add all four test methods to the
main test class definition instead of a separate extension.

To get this code to compile, you will need to make a few code changes to the project.
Add a few variable declarations and method implementations to the

MockLoginViewController.swift file:

var expectationForClearUserNameField:XCTestExpectation?
var expectationForClearPasswordField:XCTestExpectation?
var expectationForEnableLoginButton:(XCTestExpectation, Bool)?
var expectationForCreateAccountButton:(XCTestExpectation, Bool)?
var expectationForHideKeyboard:XCTestExpectation?

Chapter 5 ■ Applying TDD to View Controllers

128

func clearUserNameField() {
 self.expectationForClearUserNameField?.fulfill()
}

func clearPasswordField() {
 self.expectationForClearPasswordField?.fulfill()
}

func enableLoginButton(_ status:Bool) {
 if let (expectation, expectedValue) = self.expectationForEnableLoginButton {
 if status == expectedValue {
 expectation.fulfill()
 }
 }
}

func enableCreateAccountButton(_ status:Bool) {
 if let (expectation, expectedValue) = self.expectationForCreateAccountButton {
 if status == expectedValue {
 expectation.fulfill()
 }
 }
}

Add the following method implementation to the LoginViewModel.swift file:

func performInitialViewSetup() {
 view?.clearUserNameField()
 view?.clearPasswordField()
 view?.enableLoginButton(false)
 view?.enableCreateAccountButton(true)
}

Add the following method definitions to the LoginViewControllerProtocol.swift file:

func clearUserNameField()
func clearPasswordField()
func enableLoginButton(_ status:Bool)
func enableCreateAccountButton(_ status:Bool)

Add the following method implementations to the LoginViewController.swift file in a
class extension:

extension LoginViewController : LoginViewControllerProtocol {

 func clearUserNameField() {
 self.userNameTextField.text = ""
 }

Chapter 5 ■ Applying TDD to View Controllers

129

 func clearPasswordField() {
 self.passwordTextField.text = ""
 }

 func enableLoginButton(_ status:Bool) {
 self.loginButton.isEnabled = status
 }

 func enableCreateAccountButton(_ status:Bool) {
 self.loginButton.isEnabled = status
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in LoginViewModelTests.swift have passed
(see Figure 5-16).

Figure 5-16.  All Tests for the performInitialViewSetup Method are Passing.

Building the userNameDidEndOnExit Method
The userNameDidEndOnExit() method of the view model is called by the login view
controller when the didEndOnExit event is received from the username text field. When
this method is called, the view model asks the view controller to dismiss the keyboard if it
was visible.

Chapter 5 ■ Applying TDD to View Controllers

130

You may be tempted to skip the view model entirely in this scenario and simply place
the code to dismiss the keyboard in the func userNameDidEndOnExit(_ sender: Any)
action method of the view controller class. The proper use of the MVVM pattern requires
you to remove presentation logic from the view controller and put it in the view model.
Hiding the keyboard is presentation logic, and the view model dictates when the
keyboard should be hidden.

Add the following code snippet to the bottom of the LoginViewModelTests.swift file:

// MARK: userNameDidEndOnExit tests
extension LoginViewModelTests {

 func testUserNameDidEndOnExit_Calls_HideKeyboard_OnViewController() {
 �let expectation = self.expectation(description: "expected

hideKeyboard() to be called")
 mockLoginViewController!.expectationForHideKeyboard = expectation

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.userNameDidEndOnExit()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }
}

Add the following method implementation to the LoginViewModel.swift file:

func userNameDidEndOnExit() {
 view?.hideKeyboard()
}

Add the following method definition to the LoginViewControllerProtocol.swift file:

func hideKeyboard()

Add the following method implementation to the LoginViewController.swift file in
the LoginViewControllerProtocol extension:

func hideKeyboard() {
 self.userNameTextField.resignFirstResponder()
 self.passwordTextField.resignFirstResponder()
}

Add the following method implementation to the MockLoginViewController.swift file:

func hideKeyboard() {
 self.expectationForHideKeyboard?.fulfill()
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in LoginViewModelTests.swift have passed.

Chapter 5 ■ Applying TDD to View Controllers

131

Building the passwordDidEndOnExit Method
The passwordDidEndOnExit() method of the view model is called by the login view
controller when the didEndOnExit event is received from the password text field. When
this method is called, the view model asks the view controller to dismiss the keyboard if it
was visible.

Add the following code snippet to the bottom of the LoginViewModelTests.swift file:

// MARK: passwordDidEndOnExit tests
extension LoginViewModelTests {

 func testPasswordDidEndOnExit_Calls_HideKeyboard_OnViewController() {
 �let expectation = self.expectation(description: "expected

hideKeyboard() to be called")
 mockLoginViewController!.expectationForHideKeyboard = expectation

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.passwordDidEndOnExit()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }
}

Add the following method implementation to the LoginViewModel.swift file:

func passwordDidEndOnExit() {
 view?.hideKeyboard()
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in LoginViewModelTests.swift have passed.

Building the userNameUpdated Method
The userNameUpdated(_ value:String?) method of the view model is called by the login
view controller when the user updates the contents of the username field.

When this method is called, the view model checks to see if the text entered by the
user represents a valid username. If it does, and the content of the password text field is
also valid, then the view model asks the view controller to enable the “Login” button.

Building this logic will require you to first write a series of tests. Add the tests in
Listing 5-8 to the bottom of the LoginViewModelTests.swift file:

Listing 5-8.  Tests for the userNameUpdated method

// MARK: userNameUpdated tests
extension LoginViewModelTests {

 func testUserNameUpdated_Calls_Validate_OnUserNameValidator() {
 �let expectation = self.expectation(description: "expected validate()

to be called")

Chapter 5 ■ Applying TDD to View Controllers

132

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 �viewModel.userNameValidator = MockUserNameValidator(expectation,

expectedValue: validUserName)

 viewModel.userNameUpdated(validUserName)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testUserNameUpdated_ValidUserName_PasswordValidated_
EnablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(true) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, true)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.passwordValidated = true
 viewModel.userNameUpdated(validUserName)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testUserNameUpdated_ValidUserName_PasswordNotValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.passwordValidated = false

 viewModel.userNameUpdated(validUserName)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testUserNameUpdated_InvalidUserName_PasswordValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.passwordValidated = true

Chapter 5 ■ Applying TDD to View Controllers

133

 viewModel.userNameUpdated(invalidUserName)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testUserNameUpdated_InvalidUserName_PasswordNotValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.passwordValidated = false

 viewModel.userNameUpdated(invalidUserName)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }
}

Add the following variable declarations to the LoginViewModelTests file:

fileprivate var validUserName = "abcdefghij"
fileprivate var invalidUserName = "a"

Add the following variable declarations to the LoginViewModel.swift file:

var userNameValidator:UserNameValidator?
var userNameValidated:Bool
var passwordValidated:Bool

Modify the implementation of the init(view:) method of the LoginViewModel.swift
file to match:

init(view:LoginViewControllerProtocol) {
 self.userNameValidated = false
 self.passwordValidated = false

 super.init()

 self.view = view
}

Chapter 5 ■ Applying TDD to View Controllers

134

Add the following method implementation to the LoginViewModel.swift file:

func userNameUpdated(_ value:String?) {

 guard let value = value else {
 view?.enableLoginButton(false)
 return
 }

 let validator = self.userNameValidator ?? UserNameValidator()
 userNameValidated = validator.validate(value)

 if userNameValidated == false {
 view?.enableLoginButton(false)
 return
 }

 if passwordValidated == false {
 view?.enableLoginButton(false)
 return
 }

 view?.enableLoginButton(true)
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in LoginViewModelTests.swift have passed.

Building the passwordUpdated Method
The passwordUpdated(_ value:String?) method of the view model is called by the login
view controller when the user updates the contents of the password field.

When this method is called, the view model checks to see if the text entered by the
user represents a valid password. If it does, and the content of the user name text field is
also valid, then the view model asks the view controller to enable the “Login” button.

Add the tests in Listing 5-9 to the bottom of the LoginViewModelTests.swift file:

Listing 5-9.  Tests for the passwordUpdated method

// MARK: passwordUpdated tests
extension LoginViewModelTests {

 func testPasswordUpdated_Calls_Validate_OnPasswordValidator() {
 �let expectation = self.expectation(description: "expected validate()

to be called")

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 �viewModel.passwordValidator = MockPasswordValidator(expectation,

expectedValue: validPassword)

Chapter 5 ■ Applying TDD to View Controllers

135

 viewModel.passwordUpdated(validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testPasswordUpdated_ValidPassword_UserNameValidated_
EnablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(true) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, true)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.userNameValidated = true
 viewModel.passwordUpdated(validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testPasswordUpdated_ValidPassword_UserNameNotValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.userNameValidated = false

 viewModel.passwordUpdated(validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testPasswordUpdated_InvalidPassword_UserNameValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.userNameValidated = true

 viewModel.passwordUpdated(invalidPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

Chapter 5 ■ Applying TDD to View Controllers

136

 �func testPasswordUpdated_InvalidPassword_UserNameNotValidated_
DisablesLoginButton_OnViewController() {

 �let expectation = self.expectation(description: "expected
enableLogin(false) to be called")

 �mockLoginViewController!.expectationForEnableLoginButton =
(expectation, false)

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.userNameValidated = false

 viewModel.passwordUpdated(invalidPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }
}

Add the following variable declarations to the LoginViewModelTests file:

fileprivate let validPassword = "D%io7AFn9Y"
fileprivate let invalidPassword = "a3$Am"

Add the following variable declaration to the LoginViewModel.swift file:

var passwordValidator:PasswordValidator?

Add the following method implementation to the LoginViewModel.swift file:

func passwordUpdated(_ value:String?) {

 guard let value = value else {
 view?.enableLoginButton(false)
 return
 }

 let validator = self.passwordValidator ?? PasswordValidator()
 passwordValidated = validator.validate(value)

 if passwordValidated == false {
 view?.enableLoginButton(false)
 return
 }

 if userNameValidated == false {
 view?.enableLoginButton(false)
 return
 }

 view?.enableLoginButton(true)
}

Chapter 5 ■ Applying TDD to View Controllers

137

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in LoginViewModelTests.swift have passed.

Building the Login Method
The login(userName, password) method of the view model is called when the user taps
on the Login button. The contents of the username and password text fields are passed
into the login method. The login method will create a LoginModel object and call the
doLogin method on an instance of a controller class that will encapsulate the logic
needed to authenticate the user.

In a real-world application, this login controller class would contain logic to send
a request to a back-end server. For the purposes of this chapter, however, we will build
a bare-bones login controller class that uses hard-coded credentials to authenticate users.

Add the tests in Listing 5-10 to the bottom of the LoginViewModelTests.swift file:

Listing 5-10.  Tests for the login method

// MARK: login tests
extension LoginViewModelTests {

 func testLogin_ValidParameters_Calls_doLogin_OnLoginController() {
 �let expectation = self.expectation(description: "expected doLogin()

to be called")

 �let mockLoginController = MockLoginController(expectation,
expectedUserName:validUserName, expectedPassword:validPassword)

 mockLoginController.shouldReturnTrueOnLogin = true

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.loginController = mockLoginController
 mockLoginController.loginControllerDelegate = viewModel

 viewModel.login(userName: validUserName, password: validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testLogin_ValidParameters_Calls_doLoginWithExpectedUserName_
OnLoginController() {

 �let expectation = self.expectation(description: "expected doLogin()
to be called")

 �let mockLoginController = MockLoginController(expectation,
expectedUserName:validUserName, expectedPassword:validPassword)

 mockLoginController.shouldReturnTrueOnLogin = true

Chapter 5 ■ Applying TDD to View Controllers

138

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.loginController = mockLoginController
 mockLoginController.loginControllerDelegate = viewModel

 viewModel.login(userName: validUserName, password: validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

 �func testLogin_ValidParameters_Calls_doLoginWithExpectedPassword_
OnLoginController() {

 �let expectation = self.expectation(description: "expected doLogin()
to be called")

 �let mockLoginController = MockLoginController(expectation,
expectedUserName:validUserName, expectedPassword:validPassword)

 mockLoginController.shouldReturnTrueOnLogin = true

 let viewModel = LoginViewModel(view:mockLoginViewController!)
 viewModel.loginController = mockLoginController
 mockLoginController.loginControllerDelegate = viewModel

 viewModel.login(userName: validUserName, password: validPassword)

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

}

Note that these tests make use of a mock class called MockLoginController to stand
in for the login controller and fulfill a test expectation when the doLogin() method is
called on the mock class. Let us create the login controller and its mock class next.

Creating the Login Controller Class

We will create a bare-bones class to represent the login controller – a class that in a real-
world example would encapsulate logic to authenticate the user with a back-end server.

We will not use TDD techniques while creating the login controller class. Create
a new group in the Xcode project navigator called “Controllers,” and under that group
create a new Swift file called LoginController.swift. Ensure that the new file is a member
of both the LoginForm and LoginFormTests targets (see Figure 5-17).

Chapter 5 ■ Applying TDD to View Controllers

139

Figure 5-17.  LoginController.swift Target Membership

Update the contents of LoginController.swift to match the contents of Listing 5-11.

Listing 5-11.  LoginController.swift

import Foundation

protocol LoginControllerDelegate : class {
 func loginResult(result:Bool)
}

class LoginController : NSObject {

 let dummyUsername = "Alibaba"
 let dummyPassword = "Abracadabra"

 weak var loginControllerDelegate : LoginControllerDelegate?

 init(delegate:LoginControllerDelegate?) {
 self.loginControllerDelegate = delegate
 super.init()
 }

 func doLogin(model:LoginModel) {

 let userName = model.userName
 let password = model.password

Chapter 5 ■ Applying TDD to View Controllers

140

 if ((userName.compare(dummyUsername) == .orderedSame) &&
 (password.compare(dummyPassword) == .orderedSame)) {
 loginControllerDelegate?.loginResult(result: true)
 return
 }

 loginControllerDelegate?.loginResult(result: false)
 }

}

The login controller class that is presented in Listing 5-11 requires a delegate
object that will be informed of the results of the login attempt. The delegate object must
conform to the LoginControllerDelegate protocol. The protocol defines a single method:

func loginResult(result:Bool)

Thee view model will act as the delegate object for the login controller. We will
update the LoginViewModel class to implement this protocol in a later section of this
chapter.

Creating the Mock Login Controller Class

Create a new Swift file called MockLoginController.swift under the Mocks groups of the
Xcode project navigator.Ensure that the new file is a member of the LoginFormTests
target only (see Figure 5-18).

Figure 5-18.  MockLoginController Target Membership

Chapter 5 ■ Applying TDD to View Controllers

141

Update the contents of MockLoginController.swift to match the contents of Listing 5-12.

Listing 5-12.  MockLoginController.swift

import Foundation
import XCTest

class MockLoginController : LoginController {

 private var expectation:XCTestExpectation?
 private var expectedUserName:String?
 private var expectedPassword:String?

 var shouldReturnTrueOnLogin:Bool

 �init(_ expectation:XCTestExpectation, expectedUserName:String,
expectedPassword:String) {

 self.expectation = expectation
 self.expectedUserName = expectedUserName
 self.expectedPassword = expectedPassword
 self.shouldReturnTrueOnLogin = false

 super.init(delegate:nil)
 }

 override func doLogin(model:LoginModel) {
 if let expectation = self.expectation,
 let expectedUserName = self.expectedUserName,
 let expectedPassword = expectedPassword {

 if ((model.userName.compare(expectedUserName) == .orderedSame) &&
 (model.password.compare(expectedPassword) == .orderedSame)){
 expectation.fulfill()
 }
 }

 loginControllerDelegate?.loginResult(result:shouldReturnTrueOnLogin)
 }

}

Chapter 5 ■ Applying TDD to View Controllers

142

Updating the LoginViewModel Class

Add the following class extension to the LoginViewModel class:

extension LoginViewModel : LoginControllerDelegate {

 func loginResult(result: Bool) {
 // do someting with the result,
 // perhaps segue to a different screen of the app.
 }

}

This class extension ensures that the LoginViewModel class conforms to the
LoginControllerDelegate protocol. Conformance requires that the login view model
implements the loginResult(result:) method.

The body of the loginResult(result:) method is empty in this implementation. In
a production application you may call a method on the view controller to segue to a
different screen of the app.

Add the following variable declaration to the LoginViewModel class:

var loginController:LoginController?

Add the following method implementation to the LoginViewModel class:

func login(userName:String?, password:String?) {

 let controller = self.loginController ?? LoginController(delegate:self)

 if let userName = userName,
 let password = password,
 let model = LoginModel(userName: userName, password: password) {
 controller.doLogin(model: model)
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that all the unit tests you have added so far to this project have passed (see Figure 5-19).

Chapter 5 ■ Applying TDD to View Controllers

143

Figure 5-19.  All Login View Model Tests are Passing

The SignupViewModel Class
The SignupViewModel class represents the view model between the
SignupViewController class and the SignupModel class. The process of building the
SignupViewModel class is identical to that of the LoginViewModel class.

The complete SignupViewModel class is presented in Listing 5-13. If you would like
to examine the code for the tests and related mock objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Listing 5-13.  SignupViewModel.swift

import Foundation

class SignupViewModel: NSObject {

 weak var view:SignupViewControllerProtocol?

 var userNameValidator:UserNameValidator?
 var passwordValidator:PasswordValidator?
 var emailAddressValidator:EmailAddressValidator?

 var userNameValidated:Bool
 var password1Validated:Bool
 var password2Validated:Bool

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 5 ■ Applying TDD to View Controllers

144

 var password1:String?
 var password2:String?
 var passwordsAreIdentical:Bool

 var signupController:SignupController?

 init(view:SignupViewControllerProtocol) {
 self.userNameValidated = false
 self.password1Validated = false
 self.password2Validated = false
 self.passwordsAreIdentical = false

 super.init()

 self.view = view
 }

 func performInitialViewSetup() {
 view?.clearUserNameField()
 view?.clearPasswordField()
 view?.clearConfirmPasswordField()
 view?.enableCreateButton(false)
 view?.enableCancelButton(true)
 }

 func userNameDidEndOnExit() {
 view?.hideKeyboard()
 }

 func passwordDidEndOnExit() {
 view?.hideKeyboard()
 }

 func confirmPasswordDidEndOnExit() {
 view?.hideKeyboard()
 }

 func userNameUpdated(_ value:String?) {

 guard let value = value else {
 view?.enableCreateButton(false)
 return
 }

 let validator = self.userNameValidator ?? UserNameValidator()
 userNameValidated = validator.validate(value)

Chapter 5 ■ Applying TDD to View Controllers

145

 if userNameValidated == false {
 view?.enableCreateButton(false)
 return
 }

 if password1Validated == true &&
 password2Validated == true &&
 passwordsAreIdentical == true {

 view?.enableCreateButton(true)
 return
 }

 view?.enableCreateButton(false)
 }

 func passwordUpdated(_ value:String?) {

 self.password1 = value

 guard let password1 = self.password1 else {
 view?.enableCreateButton(false)
 return
 }

 if let password2 = password2 {
 passwordsAreIdentical = password1.compare(password2) == .orderedSame
 } else {
 passwordsAreIdentical = false
 }

 let validator = self.passwordValidator ?? PasswordValidator()
 password1Validated = validator.validate(password1)

 if userNameValidated == false {
 view?.enableCreateButton(false)
 return
 }

 if password1Validated == true &&
 password2Validated == true &&
 passwordsAreIdentical == true {

 view?.enableCreateButton(true)
 return
 }

 view?.enableCreateButton(false)
 }

Chapter 5 ■ Applying TDD to View Controllers

146

 func confirmPasswordUpdated(_ value:String?) {

 self.password2 = value

 guard let password2 = self.password2 else {
 view?.enableCreateButton(false)
 return
 }

 if let password1 = password1 {
 passwordsAreIdentical = password1.compare(password2) == .orderedSame
 } else {
 passwordsAreIdentical = false
 }

 let validator = self.passwordValidator ?? PasswordValidator()
 password2Validated = validator.validate(password2)

 if userNameValidated == false {
 view?.enableCreateButton(false)
 return
 }

 if password1Validated == true &&
 password2Validated == true &&
 passwordsAreIdentical == true {

 view?.enableCreateButton(true)
 return
 }

 view?.enableCreateButton(false)
 }

 func signup(userName:String?, password:String?, emailAddress:String?) {

 let controller = self.signupController ?? SignupController(delegate:self)

 if let userName = userName,
 let password = password,
 let emailAddress = emailAddress,
 �let model = SignupModel(userName: userName, password: password,

emailAddress:emailAddress) {
 controller.doSignup(model: model)
 }
 }

}

Chapter 5 ■ Applying TDD to View Controllers

147

extension LoginViewModel : SignupControllerDelegate {

 func signupResult(result: Bool) {
 // do someting with the result,
 // perhaps segue to a different screen of the app.
 }

}

Connecting the View Controller to the View Model
So far in this chapter, we have used a test-driven approach to build the model and view
model layers for two view controllers. It is now time to make calls to the view models from
the view controllers.

Should you adopt a test-driven approach to creating these bindings between the
view controller and the view model? The answer is, “It depends on how valuable you feel
these tests will be in the long run.”

The whole point of the MVVM architectural pattern is to make the view controllers
lightweight and easier to test. The view controller, however, is still tightly coupled with the
view that is presented to the user, and can be difficult to instantiate in a test target.

In order to instantiate the view controller in a unit test you will need to stub the
outlets in the view controller that will be involved in the test. The LoginForm project
consists of two view controllers, each with their own view models. The view models have
been built with the intention that the view controller will make calls to the view model
at certain strategic points. The next sections of this chapter will examine the process
of creating bindings between the view controller and the view model using test-driven
techniques.

Binding the Login View Controller Class to the View Model
Table 5-7 lists the methods in the LoginViewController class along with their associated
view model bindings.

Chapter 5 ■ Applying TDD to View Controllers

148

Create a new iOS Unit Test Case class called LoginViewControllerTests under the
LoginFormTests group of the project explorer.

Delete the testExample and testPerformanceExample methods from
LoginViewControllerTests.swift.

Calling the performInitialSetup Method of the View Model from
the View Controller
Add the following test case to the LoginViewControllerTests.swift file:

func testViewDidLoad_Calls_PerformInitialSetup_OnViewModel() {

 �let expectation = self.expectation(description: "expected
performInitialViewSetup() to be called")

 let loginViewController = LoginViewController()

 let viewModel = MockLoginViewModel(view:loginViewController)
 viewModel.performInitialViewSetupExpectation = expectation

 loginViewController.viewModel = viewModel

 loginViewController.viewDidLoad()

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

Table 5-7.  Login view controller and view model bindings

Login View Controller Method Login View Model Method

func viewDidLoad() func performInitialViewSetup()

@IBAction func login(_ sender: Any) func login(userName:String?,
password:String?)

@IBAction func userNameDidEndOnExit
(_ sender: Any)

func userNameDidEndOnExit()

@IBAction func passwordDidEndOnExit
(_ sender: Any)

func passwordDidEndOnExit()

func textField(_ textField:
UITextField, shouldChangeCharactersIn
range: NSRange, replacementString
string: String) -> Bool

func userNameUpdated(_ value:String?)

And

func passwordUpdated (_ value:String?)

Chapter 5 ■ Applying TDD to View Controllers

149

The aim of this test case is to ensure that the view model’s performInitialViewSetup()
method is called by the viewDidLoad method of the view controller. The test has be built
around injecting a mock view model object into the view controller and fulfilling a test
expectation when the performInitalViewSetup() method on the mock object is called.

Create a new class called MockLoginViewModel under the Mocks group in the
project navigator. Ensure this new class is only included in the test target and update its
implementation to match the contents of Listing 5-14.

Listing 5-14.  MockLoginViewModel.swift

import Foundation
import XCTest

class MockLoginViewModel : LoginViewModel {

 var performInitialViewSetupExpectation:XCTestExpectation?
 var userNameDidEndOnExitExpectation:XCTestExpectation?
 var passwordDidEndOnExitExpectation:XCTestExpectation?
 var userNameUpdatedExpectation:(XCTestExpectation, expectedValue:String)?
 var passwordUpdatedExpectation:(XCTestExpectation, expectedValue:String)?
 �var loginExpectation:(XCTestExpectation, expectedUserName:String,

expectedPassword:String)?

 override func performInitialViewSetup() {
 performInitialViewSetupExpectation?.fulfill()
 }

 override func userNameDidEndOnExit() {
 userNameDidEndOnExitExpectation?.fulfill()
 }

 override func passwordDidEndOnExit() {
 passwordDidEndOnExitExpectation?.fulfill()
 }

 override func userNameUpdated(_ value:String?) {
 if let (expectation, expectedValue) = self.userNameUpdatedExpectation,
 let value = value {
 if value.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }
 }
 }

Chapter 5 ■ Applying TDD to View Controllers

150

 override func passwordUpdated(_ value:String?) {
 if let (expectation, expectedValue) = self.passwordUpdatedExpectation,
 let value = value {
 if value.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }
 }
 }

 override func login(userName:String?, password:String?) {

 �if let (expectation, expectedUserName, expectedPassword) = self.
loginExpectation,

 let userName = userName,
 let password = password {
 if ((userName.compare(expectedUserName) == .orderedSame) &&
 (password.compare(expectedPassword) == .orderedSame)) {

 expectation.fulfill()
 }
 }
 }

}

You need to modify the LoginViewController class to allow you to inject the view
model as a dependency. While testing, you will want to inject a mock or stub view model.
In the release version of your app, you will want to create an instance of a real view model.
Add the following variable declaration to the LoginViewController class:

var viewModel:LoginViewModel?

Update the implementation of the viewDidLoad() method of the
LoginViewController class to match the following snippet:

override func viewDidLoad() {
 super.viewDidLoad()

 if self.viewModel == nil {
 self.viewModel = LoginViewModel(view: self)
 }

 self.viewModel?.performInitialViewSetup()
}

In this modified viewDidLoad implementation, you instantiate a view model if one
hasn’t been instantiated already and then call the performInitialViewSetup() method on
the view model instance.

Chapter 5 ■ Applying TDD to View Controllers

151

It is important to note that the view model instance is public, and we can therefore
provide a mock view model instance from our tests.

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit test you have just created has passed (see Figure 5-20).

Figure 5-20.  All LoginViewControllerTests are Passing.

Calling the userNameDidEndOnExit Method of the View Model
from the View Controller
Add the following test case to the LoginViewControllerTests.swift file:

func testUserNameDidEndOnExit_Calls_UserNameDidEndOnExit_OnViewModel() {

 �let expectation = self.expectation(description: "expected
userNameDidEndOnExit() to be called")

 let loginViewController = LoginViewController()

 let viewModel = MockLoginViewModel(view:loginViewController)
 viewModel.userNameDidEndOnExitExpectation = expectation

 loginViewController.viewModel = viewModel

 loginViewController.userNameDidEndOnExit(self)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

Chapter 5 ■ Applying TDD to View Controllers

152

The aim of this test case is to ensure that the view model’s userNameDidEndOnExit()
method is called by the userNameDidEndOnExit method of the view controller.

Update the implementation of the userNameDidEndOnExit method of the
LoginViewController class to match:

@IBAction func userNameDidEndOnExit(_ sender: Any) {
 viewModel?.userNameDidEndOnExit()
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit test you have just created has passed.

Calling the passwordDidEndOnExit Method of the View Model
from the View Controller
Add the following test case to the LoginViewControllerTests.swift file:

func testPasswordDidEndOnExit_Calls_PasswordDidEndOnExit_OnViewModel() {

 �let expectation = self.expectation(description: "expected
passwordDidEndOnExit() to be called")

 let loginViewController = LoginViewController()

 let viewModel = MockLoginViewModel(view:loginViewController)
 viewModel.passwordDidEndOnExitExpectation = expectation

 loginViewController.viewModel = viewModel

 loginViewController.passwordDidEndOnExit(self)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

The aim of this test case is to ensure that the view model’s passwordDidEndOnExit()
method is called by the passwordDidEndOnExit method of the view controller.

Update the implementation of the passwordDidEndOnExit method of the
LoginViewController class to match:

@IBAction func passwordDidEndOnExit(_ sender: Any) {
 viewModel?.passwordDidEndOnExit()
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit test you have just created has passed.

Chapter 5 ■ Applying TDD to View Controllers

153

Calling the Login Method of the View Model from the View
Controller
Add the following test cases to the LoginViewControllerTests.swift file:

�func testLogin_ValidUserNameAndPassword_Calls_Login_OnViewModel_
WithExpectedUserName() {

 let expectation = self.expectation(description: "expected login() to be called")

 let userNameTextFieldStub = UITextFieldStub(text:validUserName)
 let passwordTextFieldStub = UITextFieldStub(text:"")

 let loginViewController = LoginViewController()
 loginViewController.userNameTextField = userNameTextFieldStub
 loginViewController.passwordTextField = passwordTextFieldStub

 let viewModel = MockLoginViewModel(view:loginViewController)
 �viewModel.loginExpectation = (expectation,

expectedUserName:validUserName, expectedPassword:"")

 loginViewController.viewModel = viewModel

 loginViewController.login(self)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

�func testLogin_ValidUserNameAndPassword_Calls_Login_OnViewModel_
WithExpectedPassword() {

 let expectation = self.expectation(description: "expected login() to be called")

 let userNameTextFieldStub = UITextFieldStub(text:"")
 let passwordTextFieldStub = UITextFieldStub(text:validPassword)

 let loginViewController = LoginViewController()
 loginViewController.userNameTextField = userNameTextFieldStub
 loginViewController.passwordTextField = passwordTextFieldStub

 let viewModel = MockLoginViewModel(view:loginViewController)
 �viewModel.loginExpectation = (expectation, expectedUserName:"",

expectedPassword:validPassword)

 loginViewController.viewModel = viewModel

 loginViewController.login(self)

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

Chapter 5 ■ Applying TDD to View Controllers

154

The aim of these test cases is to ensure that the view model’s login() method is called
by the login action method of the view controller. The view model’s login method requires
the username and password, both of which are read from UITextField instances in the view.

Since these values are read from text fields that are created using a storyboard,
you will need to create stub text fields and set the values of the corresponding outlets
manually.

In each of the above test cases, stub objects are created for the text fields and applied
to the view controller’s outlets, using code similar to the following snippet:

let userNameTextFieldStub = UITextFieldStub(text:"")
let passwordTextFieldStub = UITextFieldStub(text:validPassword)

let loginViewController = LoginViewController()
loginViewController.userNameTextField = userNameTextFieldStub
loginViewController.passwordTextField = passwordTextFieldStub

Create a new group called Stubs under the LoginFormTests group, and create a new
Swift class called UITextFieldStub under the Stubs group. Ensure the UITextFieldStub.
swift file is only a member of the LoginFormTests target.

Update the code in UITextFieldStub.swift to resemble the following:

import UIKit

class UITextFieldStub : UITextField {

 init(text:String) {
 super.init(frame: CGRect.zero)
 super.text = text
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
}

Add the following variable declaration to the LoginViewControllerTests class:

fileprivate var validUserName = "abcdefghij"
fileprivate let validPassword = "D%io7AFn9Y"

Update the implementation of the login action method of the LoginViewController
class to match:

@IBAction func login(_ sender: Any) {
 viewModel?.login(userName: userNameTextField.text, password:
passwordTextField.text)
}

Chapter 5 ■ Applying TDD to View Controllers

155

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit test you have just created has passed.

Calling the userNameUpdated and passwordUpdated Methods
of the View Model from the View Controller
Add the following test cases to the LoginViewControllerTests.swift file:

�func testTextFieldShouldChangeCharacters_userNameTextField_Calls_
UserNameUpdated_OnViewModel_WithExpectedUsername() {

 �let expectation = self.expectation(description: "expected
userNameUpdated() to be called")

 let userNameTextFieldStub = UITextFieldStub(text:validUserName)
 let passwordTextFieldStub = UITextFieldStub(text:validPassword)

 let loginViewController = LoginViewController()
 loginViewController.userNameTextField = userNameTextFieldStub
 loginViewController.passwordTextField = passwordTextFieldStub

 let viewModel = MockLoginViewModel(view:loginViewController)
 �viewModel.userNameUpdatedExpectation = (expectation,

expectedValue:validUserName)

 loginViewController.viewModel = viewModel

 let _ = loginViewController.textField(userNameTextFieldStub,
 �shouldChangeCharactersIn:

NSMakeRange(0, 1),
 replacementString: "A")

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

�func testTextFieldShouldChangeCharacters_passwordTextField_Calls_
PasswordUpdated_OnViewModel_WithExpectedUsername() {

 �let expectation = self.expectation(description: "expected
passwordUpdated() to be called")

 let userNameTextFieldStub = UITextFieldStub(text:validUserName)
 let passwordTextFieldStub = UITextFieldStub(text:validPassword)

 let loginViewController = LoginViewController()
 loginViewController.userNameTextField = userNameTextFieldStub
 loginViewController.passwordTextField = passwordTextFieldStub

Chapter 5 ■ Applying TDD to View Controllers

156

 let viewModel = MockLoginViewModel(view:loginViewController)
 �viewModel.passwordUpdatedExpectation = (expectation,

expectedValue:validPassword)

 loginViewController.viewModel = viewModel

 let _ = loginViewController.textField(passwordTextFieldStub,
 �shouldChangeCharactersIn:

NSMakeRange(0, 1),
 replacementString: "A")

 self.waitForExpectations(timeout: 1.0, handler: nil)
}

The aim of these test cases is to ensure that either the view model’s userNameUpdated()
method or the passwordUpdated() method is called by the textField(shouldChange
CharactersIn, replacementString) method of the view controller.

Update the implementation of the textField(shouldChangeCharactersIn,
replacementString) method of the LoginViewController class to match:

extension LoginViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

 if textField == self.userNameTextField {
 self.viewModel?.userNameUpdated(textField.text)
 }

 if textField == self.passwordTextField {
 self.viewModel?.passwordUpdated(textField.text)
 }

 return true
 }

}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have just created have passed.

Chapter 5 ■ Applying TDD to View Controllers

157

Binding the Signup View Controller Class to the View
Model
Table 5-8 lists the methods in the SignupViewController class along with their associated
view model bindings.

Table 5-8.  Signup view controller and view model bindings

Signup View Controller Method Signup View Model Method

func viewDidLoad() func performInitialViewSetup()

@IBAction func login(_ sender: Any) func login(userName:String?,
password:String?)

@IBAction func userNameDidEndOnExit
(_ sender: Any)

func userNameDidEndOnExit()

@IBAction func passwordDidEndOnExit
(_ sender: Any)

func passwordDidEndOnExit()

func textField(_ textField:
UITextField, shouldChangeCharactersIn
range: NSRange, replacementString
string: String) -> Bool

func userNameUpdated(_ value:String?)

And

func passwordUpdated(_ value:String?)

The complete SignupViewController class is presented in Listing 5-15. If you would
like to examine the code for the tests, download the finished project anonymously from
github using the following URL:

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Listing 5-15.  SignupViewController.swift

import UIKit

class SignupViewController: UIViewController {

 @IBOutlet weak var userNameTextField: UITextField!
 @IBOutlet weak var passwordTextField: UITextField!
 @IBOutlet weak var confirmPasswordTextField: UITextField!
 @IBOutlet weak var emailAddressTextField: UITextField!
 @IBOutlet weak var createButton: UIButton!
 @IBOutlet weak var cancelButton: UIButton!

 var viewModel:SignupViewModel?

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 5 ■ Applying TDD to View Controllers

158

 override func viewDidLoad() {
 super.viewDidLoad()

 if self.viewModel == nil {
 self.viewModel = SignupViewModel(view: self)
 }

 self.viewModel?.performInitialViewSetup()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func create(_ sender: Any) {
 �viewModel?.signup(userName: userNameTextField.text, password:

passwordTextField.text, emailAddress: emailAddressTextField.text)
 }

 @IBAction func cancel(_ sender: Any) {
 self.dismiss(animated: true, completion: nil)
 }

 @IBAction func userNameDidEndOnExit(_ sender: Any) {
 viewModel?.userNameDidEndOnExit()
 }

 @IBAction func passwordDidEndOnExit(_ sender: Any) {
 viewModel?.passwordDidEndOnExit()
 }

 @IBAction func confirmPasswordDidEndOnExit(_ sender: Any) {
 viewModel?.confirmPasswordDidEndOnExit()
 }

 @IBAction func emailAddressDidEndOnExit(_ sender: Any) {
 viewModel?.emailAddressDidEndOnExit()
 }

}

extension SignupViewController: UITextFieldDelegate {

 func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {

Chapter 5 ■ Applying TDD to View Controllers

159

 if textField == self.userNameTextField {
 self.viewModel?.userNameUpdated(textField.text)
 }

 if textField == self.passwordTextField {
 self.viewModel?.passwordUpdated(textField.text)
 }

 if textField == self.confirmPasswordTextField {
 self.viewModel?.confirmPasswordUpdated(textField.text)
 }

 if textField == self.emailAddressTextField {
 self.viewModel?.emailAddressUpdated(textField.text)
 }

 return true
 }

}

extension SignupViewController : SignupViewControllerProtocol {

 func clearUserNameField() {
 self.userNameTextField.text = ""
 }

 func clearPasswordField() {
 self.passwordTextField.text = ""
 }

 func clearConfirmPasswordField() {
 self.confirmPasswordTextField.text = ""
 }

 func enableCancelButton(_ status:Bool) {
 self.cancelButton.isEnabled = status
 }

 func enableCreateButton(_ status:Bool) {
 self.createButton.isEnabled = status
 }

 func hideKeyboard() {
 self.userNameTextField.resignFirstResponder()
 self.passwordTextField.resignFirstResponder()
 self.confirmPasswordTextField.resignFirstResponder()
 }
}

Chapter 5 ■ Applying TDD to View Controllers

160

Transitioning from the Login View Controller to the
Signup View Controller
The final task remaining in this project is to transition from the login view controller to
the signup view controller when the Create Account button is tapped on the login screen.

Earlier in this chapter, you created a segue called “presentCreateAccount” between
the corresponding storyboard scenes.

Update the implementation of the createAccount() action method of
LoginViewController to match the following snippet.

@IBAction func createAccount(_ sender: Any) {
 self.performSegue(withIdentifier: "presentCreateAccount", sender: self)
}

You may have noticed that I have not created any unit tests to test this transition. UI
transitions are better tested using UI tests. UI Testing is covered in Chapter 13.

Summary
In this chapter you have learned to create view controllers using TDD techniques and the
MVVM pattern. You started by creating the user interface and model layer objects. You
then built the view models for the login and signup screens. Finally, you connected the
view controller to the view model.

http://dx.doi.org/10.1007/978-1-4842-2689-6_13

161© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_6

CHAPTER 6

Applying TDD to Collection
View Controllers

This chapter will examine the process of building a collection view controller-based iOS
app using TDD techniques. The app will have a single view controller that presents a list
of pictures and will be built using the MVVM application architecture. Figure 6-1 depicts
the user interface of the finished application.

Figure 6-1.  The PhotoBook Application

Chapter 6 ■ Applying TDD to Collection View Controllers

162

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Application Architecture
The application architecture consists of three distinct layers (see Figure 6-2).

Figure 6-2.  PhotoBook Application Architecture

A brief description of the layers and the component classes follows:

•	 Model Layer: Consists of the Photo, City, and Album classes that
are used to hold the data that will be displayed to the user. Album
is the top-level object and consist of multiple cities, with each city
containing one or more photos that were taken in that city.

•	 View Model Layer: Consists of the CollectionViewModel,
CollectionViewCellViewModel, and
CollectionViewSectionHeaderViewModel classes.

•	 View/View Controller Layer: This layer contains
the user interface of the project and consists of the
CollectionViewController, CollectionViewCell, and
CollectionViewSectionHeader classes.

Creating the Xcode Project
Launch Xcode and create a new iOS project based on the Single View Application
template. Use the following options while creating the new project (see Figure 6-3):

•	 Product Name: PhotoBook

•	 Team: None

•	 Organization Name: Provide a suitable name

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

163

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

Figure 6-3.  Xcode Project Options Dialog

■■ Note T he project being created in this chapter does not include user interface (UI) tests.
If you wish, you can add UI tests to a project retrospectively. Chapter 13 covers the topic of
user interface testing.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create the following groups in the Xcode project navigator:

•	 View

•	 Model

•	 ViewModel

•	 Protocols

http://dx.doi.org/10.1007/978-1-4842-2689-6_13

Chapter 6 ■ Applying TDD to Collection View Controllers

164

Adding Resources to the Project
Delete the Assets.xcassets folder from the project navigator. Ensure that you select the
Move to Trash option when prompted by Xcode.

Add the Albums.plist and the Assets.xcassets folder provided with this lesson’s
downloads into the project. While adding these new items, ensure the Copy Items if
Needed option is checked in the import dialog box (see Figure 6-4).

The asset bundle you have imported contains photos categorized under six cities,
and each city is represented by a subfolder within the asset bundle (see Figure 6-5).

Figure 6-4.  Xcode File Import Dialog

Chapter 6 ■ Applying TDD to Collection View Controllers

165

You may also have noticed that no 1X images have been provided for the assets. This
is because this app is built for iPhone’s only and the latest iOS version is not supported on
non-retina iPhones.

Building the User Interface Layer
The user interface for this application consists of a single storyboard scene embedded
within a navigation controller (see Figure 6-6).

Figure 6-5.  PhotoBook Asset Bundle

Chapter 6 ■ Applying TDD to Collection View Controllers

166

Creating New Classes
Delete the ViewController.swift file from the project navigator, and create the following
Swift classes under the View group:

•	 A UICollectionViewController subclass called
CollectionViewController.

•	 A UICollectionViewCell subclass called CollectionViewCell.

•	 A UICollectionReusableView subclass called
CollectionViewSectionHeader.

Ensure these classes are included in both the PhotoBook and PhotoBookTests
targets. The project navigator should resemble Figure 6-7.

Figure 6-6.  Application Storyboard

Chapter 6 ■ Applying TDD to Collection View Controllers

167

Building the Collection View Controller Scene
Open the Main.storyboard file and delete the default scene in the storyboard. Drag and
drop a Collection View Controller from the Object Library onto the storyboard scene
(see Figure 6-8).

Figure 6-7.  Xcode Project Navigator for the PhotoBook Project

Chapter 6 ■ Applying TDD to Collection View Controllers

168

With the collection view controller scene selected, use the Identity Inspector
to change the class associated with the collection view controller scene to
CollectionViewController (see Figure 6-9).

Figure 6-9.  Custom Class Applied to Storyboard Scene

Figure 6-8.  Storyboard Scene with a Collection View Controller

Chapter 6 ■ Applying TDD to Collection View Controllers

169

With the collection view controller scene selected, switch to the Attributes Inspector
and check the Is Initial View Controller option (see Figure 6-10).

Adding a Section Header Accessory View
Select the collection view within the collection view controller scene, and use the
Attributes Inspector to enable the Section Header accessory view (see Figure 6-11).

Figure 6-10.  Xcode Attributes Inspector

Chapter 6 ■ Applying TDD to Collection View Controllers

170

With the collection view selected, switch to the Size Inspector and change the cell
size to width = 250, height = 200. Change the height of the header to 25 (see Figure 6-12).

Figure 6-11.  Section Header Accessory View Enabled using the Attributes Inspector

Figure 6-12.  Xcode Size Inspector

Chapter 6 ■ Applying TDD to Collection View Controllers

171

Select the collection view header accessory view (this will be identified as
the Collection Reusable View in the document outline), and use the Identity
Inspector to change the class associated with the header accessory view to
CollectionViewSectionHeader (see Figure 6-13).

Use the Attributes Inspector to change the background color of the header
accessory view to a shade of gray, and the value of the Identifier attribute to
CollectionViewSectionHeader.

Drag and drop a label from the Object Library onto the header accessory view and
position it to resemble Figure 6-14. Use appropriate constraints for the label to maintain
this position on different screen sizes. Set the font size of the text in the label to 14 points.
See Figure 6-14.

Figure 6-13.  Custom Class Setup for the Header Accessory View

Figure 6-14.  Constraints on the Header Accessory View

Chapter 6 ■ Applying TDD to Collection View Controllers

172

Using the Assistant Editor, create an outlet for the label in the
CollectionViewSectionHeader.swift file. Name this outlet title. The code in
CollectionViewSectionHeader.swift should resemble Listing 6-1.

Listing 6-1.  CollectionViewSectionHeader.swift

import UIKit

class CollectionViewSectionHeader: UICollectionReusableView {

 @IBOutlet weak var title: UILabel!
}

Building the Collection View Cell
Go back to the storyboard, select the collection view cell, and use the Identity Inspector
to change the class associated with the collection view cell to CollectionViewCell.
Switch to the Attributes Inspector and change the value of the Identity attribute to
CollectionViewCell.

Using the Object Library, drag and drop an image view onto the empty collection
view cell. Use the Attributes Inspector to set the content mode of the image view
to Aspect Fill. Position the image view and set up appropriate layout constraints to
resemble Figure 6-15.

Chapter 6 ■ Applying TDD to Collection View Controllers

173

Using the Object Library, drag and drop an empty view onto the collection view cell,
on top of the image view. Use the Attributes Inspector to set the background color of the
view to black with an opacity of 40%. Position the new view and set up appropriate layout
constraints to resemble Figure 6-16.

Figure 6-15.  Adding an Image View to the Collection View Cell

Chapter 6 ■ Applying TDD to Collection View Controllers

174

Drag and drop two labels from the Object Library onto the new view you have just
created. Make sure these two labels are encompassed by the view and place the labels
one below the other (see Figure 6-17).

Figure 6-16.  Adding a Translucent View to the Collection View Cell

Figure 6-17.  Adding Labels to the Collection View Cell

Chapter 6 ■ Applying TDD to Collection View Controllers

175

Using the Attributes Inspector, apply the following properties to the upper label:

•	 Foreground Color: White

•	 Font Size: 14 point

•	 Number of Lines: 2

Using the Pin constraints button, apply the following constraints to the upper label:

•	 Left: 2

•	 Top: 2

•	 Bottom: 2

•	 Right: 2

•	 Constrain to Margins: Unchecked

•	 Update Frames: None

Using the Attributes Inspector, apply the following properties to the lower label:

•	 Foreground Color: Blue

•	 Font Size: 17 point

•	 Number of Lines: 1

•	 Text Alignment: Right

Using the Pin constraints button, apply the following constraints to the lower label:

•	 Left: 2

•	 Bottom: 2

•	 Right: 2

•	 Height:15

•	 Constrain to Margins: Unchecked

•	 Update Frames: All Frames In Container

The storyboard should now resemble Figure 6-18.

Chapter 6 ■ Applying TDD to Collection View Controllers

176

Using the Assistant Editor, create outlets for the image view and the labels in the
CollectionViewCell.swift file, as per Table 6-1.

The code in CollectionViewCell.swift should resemble Listing 6-2.

Listing 6-2.  CollectionViewCell.swift

import UIKit

class CollectionViewCell: UICollectionViewCell {

Table 6-1.  Collection View Cell Outlets

User Interface Object Outlet Name

Image View imageView

Upper Label captionLabel

Lower Label shotDetailsLabel

Figure 6-18.  Updated Storyboard Scene With Contstraints

Chapter 6 ■ Applying TDD to Collection View Controllers

177

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var captionLabel: UILabel!
 @IBOutlet weak var shotDetailsLabel: UILabel!

}

Select the collection view controller scene of the story board and embed it within a
navigation controller using the Editor ➤ Embed In ➤ Navigation Controller menu item.
The final storyboard should resemble Figure 6-19.

Building the Model Layer
There are three model classes that we need to build – Photo, City, and Album. The
relationship between these classes is depicted in Figure 6-20. The Album object is the
top-level model object. An Album object contains an array of City objects, and each City
object contains an array of Photo objects. Photo objects store metadata for individual
photos along with the name of a resource in the project’s asset catalog from where the
actual image can be loaded.

Figure 6-19.  Collection View Controller Scene Embeddded Within a Navigation Controller

Chapter 6 ■ Applying TDD to Collection View Controllers

178

The Photo Class
The Photo class contains properties that store the information for a single photo. Table 6-2
lists the desired properties and methods of the Photo class.

The init method will require a dictionary with all of the following mandatory keys to
be present:

•	 imageName

•	 aperture

•	 shutterSpeed

•	 iso

•	 comment

Table 6-2.  Photo Properties and Methods

Item Type Description

var imageName:String? Variable The name of the resource in the project’s
asset catalog that contains the image.

var aperture:String? Variable Aperture setting used by the photographer.

var shutterSpeed:String? Variable Shutter speed setting used by the
photographer.

var iso:String? Variable ISO setting used by the photographer.

var comments:String? Variable Photographer’s comments.

init?(_ dictionary:
[String : AnyObject]?)

Method Allows other code to create Photo
instances. Requires a dictionary with
certain mandatory keys as input.

Figure 6-20.  Model Layer Classes

Chapter 6 ■ Applying TDD to Collection View Controllers

179

The approach to developing the Photo class will be very similar to the model layer
classes that were developed in Chapter 4. The tests will be around the behavior of the init
method and how it handles missing keys in the dictionary.

The complete Photo class is shown in Listing 6-3. If you would like to examine the
code for the tests, download the finished project anonymously from github using the
following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-3.  Photo.swift

import Foundation

class Photo: NSObject {

 var imageName:String?
 var aperture:String?
 var shutterSpeed:String?
 var iso:String?
 var comments:String?

 let imageNameKey = "imageName"
 let apertureKey = "aperture"
 let shutterSpeedKey = "shutterSpeed"
 let isoKey = "iso"
 let commentKey = "comment"

 init?(_ dictionary:[String : AnyObject]?) {

 guard let dictionary = dictionary,
 let imageName = dictionary[imageNameKey] as? String,
 let aperture = dictionary[apertureKey] as? String,
 let shutterSpeed = dictionary[shutterSpeedKey] as? String,
 let iso = dictionary[isoKey] as? String,
 let comments = dictionary[commentKey] as? String else {
 return nil
 }

 super.init()

 self.imageName = imageName
 self.aperture = aperture
 self.shutterSpeed = shutterSpeed
 self.iso = iso
 self.comments = comments
 }

}

http://dx.doi.org/10.1007/978-1-4842-2689-6_4
https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

180

The City Class
The City class contains properties that store the information on a city and the photos that
were taken in that city. Table 6-3 lists the desired properties and methods of the City class.

The init method will require a dictionary with all of the following mandatory keys to
be present:

•	 city

•	 photos

The complete City class is presented in Listing 6-4. If you would like to examine the
code for the tests, download the finished project anonymously from github using the
following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-4.  City.swift

import Foundation

class City: NSObject {

 var cityName:String?
 var photos:[Photo]?

 let cityKey = "city"
 let photosKey = "photos"

 init?(_ dictionary:[String:AnyObject]?) {
 guard let dictionary = dictionary,
 let cityName = dictionary[cityKey] as? String,
 let array = dictionary[photosKey] as? [AnyObject] else {
 return nil
 }

Table 6-3.  City Properties and Methods

Item Type Description

var cityName:String? Variable The name of a city. No validation is applied
to this field.

var photos:[Photo]? Variable Array of Photo objects. Each of these photos
was taken in the same city.

init?(_ dictionary:
[String : AnyObject]?)

Method Allows other code to create City instances.
Requires a dictionary with certain
mandatory keys as input.

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

181

 super.init()

 self.cityName = cityName
 self.photos = [Photo]()

 for item in array {
 guard let dictionary = item as? [String : AnyObject] else {
 continue
 }

 if let photo = Photo(dictionary) {
 photos?.append(photo)
 }
 }
 }

}

The Album Class
The Album class contains properties that store the information on a collection of city
instances. The album is the top-level model object for this project. Table 6-4 lists the
desired properties and methods of the Album class.

The load method is provided to allow your app to load the Albums.plist file and
create City objects from the contents of the plist file.

The complete Album class is presented in Listing 6-5. If you would like to examine
the code for the tests, download the finished project anonymously from github using the
following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Table 6-4.  City Properties and Methods

Item Type Description

var cities:[City]? Variable Array of City objects.

init() Method Allows other code to create
Album instances.

func load(filePath:String?) -> Void Method Used to load a plist file and
recursively create model layer
objects.

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

182

Listing 6-5.  Album.swift

import Foundation

class Album: NSObject {

 var cities:[City]?

 override init() {
 super.init()

 if cities == nil {
 cities = [City]()
 }
 }

 func load(filePath:String?) -> Void {

 guard let filePath = filePath,
 �let array = NSArray(contentsOfFile: filePath) as? [AnyObject]

else {
 return
 }

 for item in array {
 guard let dictionary = item as? [String : AnyObject] else {
 continue
 }

 if let city = City(dictionary) {
 cities?.append(city)
 }
 }

 }
}

Building the ViewModel Layer
There are three view model classes that we need to build:

•	 CollectionViewModel,

•	 CollectionViewCellViewModel, and

•	 CollectionViewSectionHeaderViewModel.

These correspond to the CollectionViewController, CollectionViewCell, and
CollectionViewSectionHeader classes respectively.

Chapter 6 ■ Applying TDD to Collection View Controllers

183

The view models will use protocols to establish an interface through which they can
communicate with their respective view controllers.

The CollectionViewModel Class
The CollectionViewModel class represents the view model between the
CollectionViewController class and the Album model object.

Create a new iOS Unit Test Case class called CollectionViewModelTests under
the PhotoBookTests group of the project explorer. Ensure this new file is part of the
PhotoBookTests target only.

Delete the testExample and testPerformanceExample methods from
CollectionViewModelTests.swift. Create a new unit test method called the following:

testInit_ValidView_InstantiatesObject()in a separate extension and add
following code to the method body:

func testInit_ValidView_InstantiatesObject() {
 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 XCTAssertNotNil(viewModel)
}

Add the following variable declaration to the top of the CollectionViewModelTests class:

fileprivate var mockCollectionViewController:MockCollectionViewController?

You will notice that this code fails to compile; this is because the
CollectionViewModel class has not been created yet. To fix this failure, create a new class
called CollectionViewModel under the ViewModel group in the project navigator. In
the file location dialog box, ensure both the PhotoBook and PhotoBookTests targets are
checked (see Figure 6-21).

Chapter 6 ■ Applying TDD to Collection View Controllers

184

Update the contents of the CollectionViewModel.swift file to match the following
code snippet:

import Foundation

class CollectionViewModel : NSObject {

 init(view:CollectionViewControllerProtocol) {
 super.init()
 }
}

The initializer for the CollectionViewModel class takes a reference to the view.
Note that the type of the view parameter is CollectionViewControllerProtocol and not
CollectionViewController.

The view model makes use of a protocol to create a loosely coupled relationship
with the view. As far as the view model is concerned, any class that implements the
CollectionViewControllerProtocol protocol can be used as the view. This loose coupling
with the view makes the view model easy to instantiate in a unit test, independent of a
view controller.

Figure 6-21.  CollectionViewModel.swift Target Membership

Chapter 6 ■ Applying TDD to Collection View Controllers

185

Create a new Swift file called CollectionViewControllerProtocol under the Protocols
group of the project explorer, and ensure the new file is a member of both the PhotoBook
and PhotoBookTests targets. Update the code in CollectionViewControllerProtocol .swift
to resemble the following:

import Foundation

protocol CollectionViewControllerProtocol : class {

}

Create a new group called Mocks under the PhotoBookTests group, and create a
new Swift class called MockCollectionViewController under the Mocks group. Ensure the
MockCollectionViewController.swift file is only a member of the PhotoBookTests target.

Update the code in MockCollectionViewController.swift to resemble the following:

import UIKit
import XCTest

class MockCollectionViewController : CollectionViewControllerProtocol {

}

Open the CollectionViewModelTests.swift file and update the setUp() method to
resemble the following:

override func setUp() {
 super.setUp()
 mockCollectionViewController = MockCollectionViewController()
}

The updated setup() method instantiates a MockCollectionViewController object
and saves a reference to this new instance in the mockCollectionViewController private
variable. The code in CollectionViewModelTests.swift should now resemble Listing 6-6.

Listing 6-6.  CollectionViewModelTests.swift

import XCTest

class CollectionViewModelTests: XCTestCase {

 fileprivate var mockCollectionViewController:MockCollectionViewController?

 override func setUp() {
 super.setUp()
 mockCollectionViewController = MockCollectionViewController()
 }

Chapter 6 ■ Applying TDD to Collection View Controllers

186

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }

}

// MARK: initialization tests
extension CollectionViewModelTests {

 func testInit_ValidView_InstantiatesObject() {
 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 XCTAssertNotNil(viewModel)
 }

}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit test you have added in CollectionViewModelTests.swift has passed
(see Figure 6-22).

Figure 6-22.  CollectionViewModel Tests are Passing

Chapter 6 ■ Applying TDD to Collection View Controllers

187

The view model test created so far verifies that a view model can be instantiated, and
in order to make this test pass you created a view model class, a protocol, and a mock class.

The next test you will write will verify that the view model saves a reference to the
view that was injected into the initializer, in an instance variable. Create a new unit test
method called the following:

testInit_ValidView_CopiesViewToIvar() under the previous test method and add
following code to the method body:

func testInit_ValidView_CopiesViewToIvar() {

 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �if let lhs = mockCollectionViewController, let rhs = viewModel.view
as? MockCollectionViewController {

 XCTAssertTrue(lhs === rhs)
 }
}

Add the following variable declaration to the CollectionViewModel class:

weak var view:CollectionViewControllerProtocol?

Add the following line to the end of the init() method of the CollectionViewModel class:

self.view = view

Save the file and run all unit tests using the Product ➤ Test menu item. You will
notice that all tests written so far continue to pass.

The next test you will write will verify that the view model de-serializes the Albums.
plist file into an Album object and stores a reference to this Album object in an instance
variable. Create a new unit test method called the following:

testInit_ValidView_AlbumIVarIsNotNil() under the previous test method and
add following code to the method body:

func testInit_ValidView_AlbumIVarIsNotNil() {
 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 XCTAssertNotNil(viewModel.photoAlbum)
}

Add the following variable declaration to the CollectionViewModel class:

var photoAlbum:Album?

Add the following code to the end of the init() method of the CollectionViewModel class:

if photoAlbum == nil {
 photoAlbum = Album()
}

let path = Bundle.main.path(forResource: "Albums", ofType: "plist")
photoAlbum?.load(filePath:path)

Chapter 6 ■ Applying TDD to Collection View Controllers

188

The above snippet creates an Album object and calls the load() method on the
Album object with the path to the Albums.plist file.

Save the file and run all unit tests using the Product ➤ Test menu item. You will
notice that all tests written so far continue to pass.

View Model – View Controller Binding
Table 6-5 lists the methods we will add to the CollectionViewModel class. Most of these
methods will be called from the collection view delegate and data source methods of the
view controller.

It is worth noting that both the collection view cell and collection view section
header use their own view models. Both these view models can be instantiated by calling
the appropriate method on a CollectionViewModel object.

Table 6-5.  CollectionViewModel Methods

Item Description

func performInitialViewSetup() Should be called from the viewDidLoad() method
of the collection view controller class. Resets user
interface elements to their initial states.

func numberOfSections() -> Int Called from the numberOfSections(in
collectionView: UICollectionView) -> Int
collection view data source method. Returns the
number of City object in the Album.

func numberOfItemsInSection
(_ section: Int) -> Int

Called from the collectionView
(_ collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int
collection view data source method. Returns the
number of Photo objects in a given City object.

func cellViewModel(in
dexPath:IndexPath) ->
CellViewModelProtocol?

Called from the collectionView
(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) ->
UICollectionViewCell collection view data
source method. Returns a view model that can be
used by a collection view cell.

func headerViewModel
(indexPath:IndexPath) ->
HeaderViewModelProtocol?

Called from the collectionView
(_ collectionView: UICollectionView,
viewForSupplementaryElementOfKind kind:
String, at indexPath: IndexPath) ->
UICollectionReusableView collection view data
source method. Returns a view model that can be
used by a collection view cell.

Chapter 6 ■ Applying TDD to Collection View Controllers

189

We haven’t discussed the view models for the collection view cell and section header
yet. For the purposes of building the CollectionViewModel object first, you will create a bare-
bones version of the other view model objects. Once the CollectionViewModel class has
been built, you will build other view model objects in subsequent sections of this chapter.

Since the collection view model uses a protocol to bind with the collection view
controller, you will need to add methods to the protocol that will allow the view model to
request the view controller to update user interface elements. Table 6-6 lists the methods
that will be added to CollectionViewControllerProtocol.

You will now develop the methods of the CollectionViewModel class using TDD
techniques.

Testing the performInitialViewSetup Method
The performInitialViewSetupMethod method should perform the following tasks:

•	 Set the text displayed in the navigation bar.

•	 Set up the UICollectionView object’s section insets.

•	 Setup the cell size of the UICollectionView object to ensure it is as
wide as possible.

Add the following code snippet to the bottom of the CollectionViewModelTests.swift file:

// MARK: performInitialViewSetup tests
extension CollectionViewModelTests {

Table 6-6.  CollectionViewControllerProtocol Methods

Item Description

func setNavigationTitle
(_ title:String) -> Void

Called by the view model. The collection
view controller should set up for the
appropriate title for the navigation
controller.

func setSectionInset(top:Float,
left:Float, bottom:Float, right:Float)
-> Void

Called by the view model. The collection
view controller should set up the section
insets for the collection view.

func
setupCollectionViewCellToUseMaxWidth()
-> Void

Called by the view model. The collection
view controller should ensure that each
cell occupies all of the available screen
width.

Chapter 6 ■ Applying TDD to Collection View Controllers

190

 �func testPerformInitialViewSetup_Calls_SetNavigationTitle_
OnCollectionViewController() {

 �let expectation = self.expectation(description: "expected
setNavigationTitle() to be called")

 �mockCollectionViewController!.expectationForSetNavigationTitle =
expectation

 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)

 }

 �func testPerformInitialViewSetup_Calls_SetSectionInset_
OnCollectionViewController() {

 �let expectation = self.expectation(description: "expected
setSectionInset() to be called")

 �mockCollectionViewController!.expectationForSetSectionInset =
expectation

 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)

 }

 �func testPerformInitialViewSetup_Calls_
SetupCollectionViewCellToUseMaxWidth_OnCollectionViewController() {

 �let expectation = self.expectation(description: "expected
setupCollectionViewCellToUseMaxWidth() to be called")

 �mockCollectionViewController!.
expectationForSetupCollectionViewCellToUseMaxWidth = expectation

 let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.performInitialViewSetup()

 self.waitForExpectations(timeout: 1.0, handler: nil)
 }

}

This code snippet adds three new test cases, one for each task that must be
performed by performInitialViewSetup(). Since all three test cases test parts of a single
method, I have grouped them into in a class extension; however you can add all four test
methods to the class definition instead of a separate extension.

Chapter 6 ■ Applying TDD to Collection View Controllers

191

To get this code to compile, you will need to make a few code changes to the project:
Add a few variable declarations and method implementations to the

MockCollectionViewController.swift file:

var expectationForSetNavigationTitle:XCTestExpectation?
var expectationForSetSectionInset:XCTestExpectation?
var expectationForSetupCollectionViewCellToUseMaxWidth:XCTestExpectation?

func setNavigationTitle(_ title:String) -> Void {
 expectationForSetNavigationTitle?.fulfill()
}

func setSectionInset(top:Float, left:Float, bottom:Float, right:Float) ->
Void {
 expectationForSetSectionInset?.fulfill()
}

func setupCollectionViewCellToUseMaxWidth() -> Void {
 expectationForSetupCollectionViewCellToUseMaxWidth?.fulfill()
}

Add the following method implementation to the CollectionViewModel.swift file:

func performInitialViewSetup() {
 view?.setNavigationTitle("Photo Album")
 view?.setSectionInset(top: 20, left: 0, bottom: 0, right: 0)
 view?.setupCollectionViewCellToUseMaxWidth()
}

Add the following method definitions to the CollectionViewControllerProtocol.swift
file:

func setNavigationTitle(_ title:String) -> Void
func setSectionInset(top:Float, left:Float, bottom:Float, right:Float) -> Void
func setupCollectionViewCellToUseMaxWidth() -> Void

Add the following method implementations to the CollectionViewController.swift
file in a class extension:

extension CollectionViewController : CollectionViewControllerProtocol {

 func setNavigationTitle(_ title:String) -> Void {
 self.title = title
 }

 �func setSectionInset(top:Float, left:Float, bottom:Float, right:Float)
-> Void {

Chapter 6 ■ Applying TDD to Collection View Controllers

192

 if let collectionView = self.collectionView,
 �let collectionViewLayout = collectionView.collectionViewLayout

as? UICollectionViewFlowLayout {
 collectionViewLayout.sectionInset = UIEdgeInsetsMake(20, 0, 20, 0)
 }
 }

 func setupCollectionViewCellToUseMaxWidth() -> Void {

 if let collectionView = self.collectionView,
 �let collectionViewLayout = collectionView.collectionViewLayout

as? UICollectionViewFlowLayout {
 �collectionViewLayout.itemSize = CGSize(width: collectionView.

bounds.width, height: collectionView.bounds.width * 0.6)
 }
 }
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see that
the unit tests you have added in LoginViewModelTests.swift have passed (see Figure 6-23).

Figure 6-23.  LoginViewModel Tests are all Passing

Chapter 6 ■ Applying TDD to Collection View Controllers

193

Testing the numberOfSections Method
The numberOfSections() method of the view model is called by the collection view
controller’s numberOfSections(in collectionView: UICollectionView) -> Int method.
When this method is called, the view model returns the number of City objects in the Album.

Add the following code snippet to the bottom of the CollectionViewModelTests.swift
file:

// MARK: numberOfSections tests
extension CollectionViewModelTests {

 �func testNumberOfSections_ValidViewModelWithAlbum_
ReturnsNumberOfCitiesInAlbum() {

 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 �XCTAssertEqual(viewModel.numberOfSections(), viewModel.photoAlbum!.

cities!.count)
 }

 func testNumberOfSections_ValidViewModelNilAlbum_ReturnsZero() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum = nil

 XCTAssertEqual(viewModel.numberOfSections(), 0)
 }
}

Add the following method implementation to the CollectionViewModel.swift file:

func numberOfSections() -> Int {
 guard let photoAlbum = photoAlbum,
 let cities = photoAlbum.cities else {
 return 0
 }

 return cities.count
}

Save the file and run all unit tests using the Product > Test menu item. You will see
that the unit tests you have added in CollectionViewModelTests.swift have passed.

Testing the numberOfItemsInSection Method
The numberOfItemsInSection(_ section: Int) method of the view model is called by
the collection view controller’s collectionView(_ collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int method. When this method is called,
the view model returns the number of Photo objects in the City object identified by the
section parameter. If the section parameter is invalid the method returns 0.

Chapter 6 ■ Applying TDD to Collection View Controllers

194

Add the following code snippet to the bottom of the CollectionViewModelTests.swift
file:

// MARK: numberOfItemsInSection tests
extension CollectionViewModelTests {

 func testNumberOfItemsInSection_ValidViewModelNilAlbum_ReturnsZero() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum = nil

 XCTAssertEqual(viewModel.numberOfItemsInSection(0), 0)
 }

 func testNumberOfItemsInSection_ValidViewModelNilCities_ReturnsZero() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum!.cities = nil

 XCTAssertEqual(viewModel.numberOfItemsInSection(0), 0)
 }

 func testNumberOfItemsInSection_NegtiveSectionIndex_ReturnsZero() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 XCTAssertEqual(viewModel.numberOfItemsInSection(-1), 0)
 }

 func testNumberOfItemsInSection_OutOfBoundsSectionIndex_ReturnsZero() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 XCTAssertEqual(viewModel.numberOfItemsInSection(1000), 0)
 }

 func testNumberOfItemsInSection_ValidSectionIndex_ReturnsExpectedValue() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertEqual(viewModel.numberOfItemsInSection(0), viewModel.
photoAlbum!.cities![0].photos!.count)

 }

}

Add the following method implementation to the CollectionViewModel.swift file:

func numberOfItemsInSection(_ section: Int) -> Int {
 guard let photoAlbum = photoAlbum,
 let cities = photoAlbum.cities else {
 return 0
 }

Chapter 6 ■ Applying TDD to Collection View Controllers

195

 if ((section < 0) || (section >= cities.count)) {
 return 0
 }

 guard let photos = cities[section].photos else {
 return 0
 }

 return photos.count
}

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in CollectionViewModelTests.swift have passed.

Testing the cellViewModel Method
The cellViewModel(indexPath:IndexPath) method of the view model is called by the
collection view controller’s collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell method. When this
method is called, the view model returns a view model for the collection view cell at the
specified index path. If the indexPath parameter is invalid the method returns nil.

Add the following code snippet to the bottom of the CollectionViewModelTests.swift
file:

// MARK: cellViewModel tests
extension CollectionViewModelTests {

 func testCellViewModel_ValidViewModelNilAlbum_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum = nil

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 func testCellViewModel_ValidViewModelNilCities_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum!.cities = nil

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 func testCellViewModel_ValidViewModelNilPhotos_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum!.cities![0].photos = nil

Chapter 6 ■ Applying TDD to Collection View Controllers

196

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 func testCellViewModel_NegtiveRowIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: -1,
section: 0)))

 }

 func testCellViewModel_NegtiveSectionIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: -1)))

 }

 func testCellViewModel_OutOfBoundsRowIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 1000,
section: 0)))

 }

 func testCellViewModel_OutOfBoundsSectionIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: 1000)))

 }

 func testCellViewModel_ValidSectionIndex_DoesNotReturnNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNotNil(viewModel.cellViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 �func testCellViewModel_ValidSectionIndex_
ReturnsViewModelWithExpectedModelObject() {

 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 let rowIndex = 0
 let sectionIndex = 0

 �let cellViewModel = viewModel.cellViewModel(indexPath:IndexPath(row:
rowIndex, section: sectionIndex))

Chapter 6 ■ Applying TDD to Collection View Controllers

197

 �let expectedModelObject = viewModel.photoAlbum!.
cities![sectionIndex].photos![rowIndex]

 XCTAssertEqual(cellViewModel!.photo, expectedModelObject)

 }

}

Add the following method implementation to the CollectionViewModel.swift file:

func cellViewModel(indexPath:IndexPath) -> CellViewModelProtocol? {

 guard let photoAlbum = photoAlbum,
 let cities = photoAlbum.cities else {
 return nil
 }

 if ((indexPath.section < 0) || (indexPath.section >= cities.count)) {
 return nil
 }

 guard let photos = cities[indexPath.section].photos else {
 return nil
 }

 if ((indexPath.row < 0) || (indexPath.row >= photos.count)) {
 return nil
 }

 return CollectionViewCellViewModel(model:photos[indexPath.row])
}

Create a new Swift file called CollectionViewCellViewModel.swift
under the ViewModel group of the project explorer, and ensure the new file is a
member of both the PhotoBook and PhotoBookTests targets. Update the code in
CollectionViewCellViewModel.swift to resemble the following:

import Foundation

class CollectionViewCellViewModel : NSObject {

 weak var photo:Photo?

 init?(model:Photo?) {

 guard let model = model else {
 return nil
 }

Chapter 6 ■ Applying TDD to Collection View Controllers

198

 super.init()
 self.photo = model
 }
}

The CollectionViewCellViewModel class will act as the view model for the collection
view cell. Although this class has not been discussed in detail just yet, you will need a
bare-bones implementation in order to get the tests to compile.

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in CollectionViewModelTests.swift have passed.

Testing the headerViewModel Method
The headerViewModel(indexPath:IndexPath) method of the view model is called by the
collection view controller’s collectionView(_ collectionView: UICollectionView,
viewForSupplementaryElementOfKind kind: String, at indexPath: IndexPath) ->
UICollectionReusableView method. When this method is called, the view model returns
a view model for the collection view section header at the specified index path. If the
indexPath parameter is invalid the method returns nil.

Add the following code snippet to the bottom of the CollectionViewModelTests.swift
file:

// MARK: headerViewModel tests
extension CollectionViewModelTests {

 func testHeaderViewModel_ValidViewModelNilAlbum_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum = nil

 �XCTAssertNil(viewModel.headerViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 func testHeaderViewModel_ValidViewModelNilCities_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)
 viewModel.photoAlbum!.cities = nil

 �XCTAssertNil(viewModel.headerViewModel(indexPath:IndexPath(row: 0,
section: 0)))

 }

 func testHeaderViewModel_NegtiveSectionIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.headerViewModel(indexPath:IndexPath(row: 0,
section: -1)))

 }

Chapter 6 ■ Applying TDD to Collection View Controllers

199

 func testHeaderViewModel_OutOfBoundsSectionIndex_ReturnsNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNil(viewModel.headerViewModel(indexPath:IndexPath(row: 0,
section: 1000)))

 }

 func testHeaderViewModel_ValidSectionIndex_DoesNotReturnNil() {
 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 �XCTAssertNotNil(viewModel.headerViewModel(indexPath:IndexPath(row:
0, section: 0)))

 }

 �func testHeaderViewModel_ValidSectionIndex_
ReturnsViewModelWithExpectedSectionTitle() {

 �let viewModel = CollectionViewModel(view:mockCollectionViewController!)

 let rowIndex = 0
 let sectionIndex = 0

 �let headerViewModel = viewModel.headerViewModel(indexPath:IndexPath
(row: rowIndex, section: sectionIndex))

 �let expectedSectionTitle = viewModel.photoAlbum!.
cities![sectionIndex].cityName!

 XCTAssertEqual(headerViewModel!.sectionTitle, expectedSectionTitle)

 }

}

Add the following method implementation to the CollectionViewModel.swift file:

func headerViewModel(indexPath:IndexPath) ->
CollectionViewSectionHeaderViewModel? {
 guard let photoAlbum = photoAlbum,
 let cities = photoAlbum.cities else {
 return nil
 }

 if ((indexPath.section < 0) || (indexPath.section >= cities.count)) {
 return nil
 }

 �return CollectionViewSectionHeaderViewModel(model:cities[indexPath.
section].cityName)

}

Chapter 6 ■ Applying TDD to Collection View Controllers

200

Create a new Swift file called CollectionViewSectionHeaderViewModel.swift
under the ViewModel group of the project explorer, and ensure the new file is a
member of both the PhotoBook and PhotoBookTests targets. Update the code in
CollectionViewSectionHeaderViewModel.swift to resemble the following:

import Foundation

class CollectionViewSectionHeaderViewModel : NSObject {

 var sectionTitle:String?

 init?(model:String?) {

 guard let model = model else {
 return nil
 }

 super.init()
 self.sectionTitle = model
 }

}

The CollectionViewSectionHeaderViewModel class will act as the view model for the
collection view section header. Although this class has not been discussed in detail just
yet, you will need a bare-bones implementation in order to get the tests to compile.

Save the file and run all unit tests using the Product ➤ Test menu item. You will see
that the unit tests you have added in CollectionViewModelTests.swift have passed.

The CollectionViewCellViewModel Class
The CollectionViewCellViewModel class represents the view model for the collection
view cell. The process of building the CollectionViewCellViewModel class is similar to
that of the CollectionViewModel class.

The complete CollectionViewCellViewModel class is shown in Listing 6-7. If you
would like to examine the code for the tests and related mock objects, download the
finished project anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-7.  CollectionViewCellViewModel.swift

import Foundation

class CollectionViewCellViewModel : NSObject {

 weak var photo:Photo?
 var collectionViewCell:CollectionViewCellProtocol?

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

201

 init?(model:Photo?) {

 guard let model = model else {
 return nil
 }

 super.init()
 self.photo = model
 }

 func setView(_ view:CollectionViewCellProtocol) {
 self.collectionViewCell = view
 }

 func setup() {

 guard let collectionViewCell = collectionViewCell ,
 let photo = photo,
 let imageName = photo.imageName,
 let aperture = photo.aperture,
 let shutterSpeed = photo.shutterSpeed,
 let iso = photo.iso,
 let comments = photo.comments else {
 return
 }

 collectionViewCell.loadImage(resourceName: imageName)
 collectionViewCell.setCaption(captionText: comments)
 �collectionViewCell.setShotDetails(shotDetailsText: "\(aperture), \

(shutterSpeed), ISO \(iso)")
 }
}

It is worth noting that the view model has a reference to the collection view cell and
the type of this reference is CollectionViewCellProtocol. The CollectionViewCell protocol
contains a small number of methods that allow the view model to update the contents of
the collection view cell. The complete definition for this protocol is shown in Listing 6-8.

Listing 6-8.  CollectionViewCellProtocol.swift

import Foundation

protocol CollectionViewCellProtocol : class {
 func loadImage(resourceName:String)
 func setCaption(captionText:String)
 func setShotDetails(shotDetailsText:String)
}

Chapter 6 ■ Applying TDD to Collection View Controllers

202

The CollectionViewSectionHeaderViewModel Class
The CollectionViewSectionHeaderViewModel class represents the view model for the
collection view section header. The complete class is shown in Listing 6-9. If you would
like to examine the code for the tests and related mock objects, download the finished
project anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-9.  CollectionViewSectionHeaderViewModel.swift

import Foundation

class CollectionViewSectionHeaderViewModel : NSObject {

 var sectionTitle:String?
 var collectionViewSectionHeader:CollectionViewSectionHeaderProtocol?

 init?(model:String?) {

 guard let model = model else {
 return nil
 }

 super.init()
 self.sectionTitle = model
 }

 func setView(_ view:CollectionViewSectionHeaderProtocol) {
 self.collectionViewSectionHeader = view
 }

 func setup() {

 guard let collectionViewSectionHeader = collectionViewSectionHeader,
 let sectionTitle = sectionTitle else {
 return
 }

 collectionViewSectionHeader.setHeaderText(text: sectionTitle)
 }

}

It is worth noting that the view model has a reference to the collection view section
header, and the type of this reference is CollectionViewSectionHeaderProtocol. The
CollectionView CollectionViewSectionHeaderProtocol protocol contains a single method
to allow the view model to update the text displayed in the section header. The complete
definition for this protocol is shown in Listing 6-10.

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

203

Listing 6-10.  CollectionViewSectionHeaderProtocol.swift

import Foundation

protocol CollectionViewSectionHeaderProtocol : class {
 func setHeaderText(text:String)
}

Binding the View Layer to the View Model
So far in this chapter, we have used a test-driven approach to build the model and view
model layers. The view model objects have made use of protocols to describe an interface
to the view layer, and for the purposes of testing the view model objects, you have used
mock objects for the view layer.

The tests have all passed, which indicates the view model and model layers are
working as expected, using mock view layer objects. It is now time to implement the view
layer protocols on the actual view layer classes. Table 6-7 lists the view layer classes and
the corresponding protocols that we need to implement.

While implementing these protocols in the view layer, we are not going to use a test-
driven approach as UI tests will be better suited to testing visual changes on the view layer.

Previously in this chapter, you have implemented the methods defined in
CollectionViewControllerProtocol in the CollectionViewController class; therefore there
is no need to make any changes to the CollectionViewController class in this section.

Add the following code to the end of the CollectionViewCell class to implement the
methods of the CollectionViewCellProtocol protocol.

extension CollectionViewCell : CollectionViewCellProtocol {

 func loadImage(resourceName:String) {
 imageView.image = UIImage(named: resourceName)
 }

 func setCaption(captionText:String) {
 captionLabel.text = captionText
 }

 func setShotDetails(shotDetailsText:String) {
 shotDetailsLabel.text = shotDetailsText
 }

}

Table 6-7.  View Layer Protocols

View Layer Class Protocol

CollectionViewController CollectionViewControllerProtocol

CollectionViewCell CollectionViewCellProtocol

CollectionViewSectionHeader CollectionViewSectionHeaderProtocol

Chapter 6 ■ Applying TDD to Collection View Controllers

204

Add the following code to the end of the CollectionViewSectionHeader class to
implement the methods of the CollectionViewSectionHeaderProtocol protocol.

extension CollectionViewSectionHeader : CollectionViewSectionHeaderProtocol {

 func setHeaderText(text:String) {
 title?.text = text
 }

}

Now all that is remaining is to bind the view controller classes to their respective
view models; this will involve instantiating a view model (if one is not being passed in the
initializer) and calling out to methods on the view model.

The process of using a test-driven approach to binding a view controller class to a
view model has been covered in Chapter 5. The rest of the sections in this chapter will list
the bindings and present the final code for the view controller class.

Binding the Collection View Controller Class to the
View Model
Table 6-8 lists the methods in the CollectionViewController class along with their
associated view model bindings.

Table 6-8.  Collection view controller and view model bindings

Collection View Controller Method Collection View Model Method

func viewDidLoad() func performInitialViewSetup()

func numberOfSections(in collectionView:
UICollectionView) -> Int

func numberOfSections() -> Int

func collectionView(_ collectionView:
UICollectionView, numberOfItemsInSection
section: Int) -> Int

func numberOfItemsInSection
(_ section: Int) -> Int

func collectionView(_ collectionView:
UICollectionView, cellForItemAt
indexPath: IndexPath) ->
UICollectionViewCell

func cellViewModel(indexPath:Index
Path) -> CellViewModelProtocol?

func collectionView(_
collectionView: UICollectionView,
viewForSupplementaryElementOfKind kind:
String, at indexPath: IndexPath) ->
UICollectionReusableView

func headerViewModel(indexPath:Index
Path) -> HeaderViewModelProtocol?

http://dx.doi.org/10.1007/978-1-4842-2689-6_5

Chapter 6 ■ Applying TDD to Collection View Controllers

205

The finished CollectionViewController class is provided in Listing 6-11. If you would
like to examine the code for the tests and related mock objects, download the finished
project anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-11.  CollectionViewController.swift

import UIKit

private let cellReuseIdentifier = "CollectionViewCell"
private let headerReuseIdentifier = "CollectionViewSectionHeader"

class CollectionViewController: UICollectionViewController {

 var viewModel:CollectionViewModel?

 override func viewDidLoad() {
 super.viewDidLoad()

 if self.viewModel == nil {
 self.viewModel = CollectionViewModel(view: self)
 }

 self.viewModel?.performInitialViewSetup()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 // MARK: UICollectionViewDataSource
 override func numberOfSections(in collectionView: UICollectionView) -> Int {
 guard let viewModel = viewModel else {
 return 0
 }

 return viewModel.numberOfSections()
 }

 �override func collectionView(_ collectionView: UICollectionView,
numberOfItemsInSection section: Int) -> Int {

 guard let viewModel = viewModel else {
 return 0
 }

 return viewModel.numberOfItemsInSection(section)
 }

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

206

 �override func collectionView(_ collectionView: UICollectionView,
cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {

 �let cell = collectionView.dequeueReusableCell(withReuseIdentifier:
cellReuseIdentifier, for: indexPath)

 guard let viewModel = viewModel,
 let collectionViewCell = cell as? CollectionViewCell,
 �let cellViewModel = viewModel.cellViewModel(indexPath:indexPath)

else {
 return cell
 }

 collectionViewCell.viewModel = cellViewModel
 cellViewModel.setView(collectionViewCell)

 collectionViewCell.setup()
 return collectionViewCell
 }

 �override func collectionView(_ collectionView: UICollectionView,
viewForSupplementaryElementOfKind kind: String, at indexPath: IndexPath)
-> UICollectionReusableView {

 �let header = collectionView.dequeueReusableSupplementaryView(ofKind:
kind, withReuseIdentifier: headerReuseIdentifier, for: indexPath)

 guard let viewModel = viewModel,
 let sectionHeader = header as? CollectionViewSectionHeader,
 �let sectionHeaderViewModel = viewModel.headerViewModel(indexPath

:indexPath) else {
 return header
 }

 sectionHeader.viewModel = sectionHeaderViewModel
 sectionHeaderViewModel.setView(sectionHeader)

 sectionHeader.setup()
 return sectionHeader
 }
}

extension CollectionViewController : CollectionViewControllerProtocol {

 func setNavigationTitle(_ title:String) -> Void {
 self.title = title
 }

Chapter 6 ■ Applying TDD to Collection View Controllers

207

 �func setSectionInset(top:Float, left:Float, bottom:Float, right:Float)
-> Void {

 if let collectionView = self.collectionView,
 �let collectionViewLayout = collectionView.collectionViewLayout

as? UICollectionViewFlowLayout {
 collectionViewLayout.sectionInset = UIEdgeInsetsMake(20, 0, 20, 0)
 }
 }

 func setupCollectionViewCellToUseMaxWidth() -> Void {

 if let collectionView = self.collectionView,
 �let collectionViewLayout = collectionView.collectionViewLayout

as? UICollectionViewFlowLayout {
 �collectionViewLayout.itemSize = CGSize(width: collectionView.

bounds.width, height: collectionView.bounds.width * 0.6)
 }
 }
}

Binding the CollectionViewCell Class to the View Model
Table 6-9 lists the methods in the CollectionViewCell class along with their associated
view model bindings.

The finished CollectionViewCell class is provided in Listing 6-12. If you would like to
examine the code for the tests and related mock objects, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-12.  CollectionViewCell.swift

import UIKit

class CollectionViewCell: UICollectionViewCell {

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var captionLabel: UILabel!
 @IBOutlet weak var shotDetailsLabel: UILabel!

Table 6-9.  Collection view cell and view model bindings

Collection View Cell Method Cell View Model Method

func setup() func setup()

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

208

 var viewModel:CollectionViewCellViewModel?

 func setup() {
 viewModel?.setup()
 }
}

extension CollectionViewCell : CollectionViewCellProtocol {

 func loadImage(resourceName:String) {
 imageView.image = UIImage(named: resourceName)
 }

 func setCaption(captionText:String) {
 captionLabel.text = captionText
 }

 func setShotDetails(shotDetailsText:String) {
 shotDetailsLabel.text = shotDetailsText
 }

}

Binding the CollectionViewSectionHeader Class to the
View Model
Table 6-10 lists the methods in the CollectionViewSectionHeader class along with their
associated view model bindings.

The finished CollectionViewSectionHeader class is provided in Listing 6-13. If you
would like to examine the code for the tests and related mock objects, download the
finished project anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Listing 6-13.  CollectionViewSectionHeader.swift

import UIKit

class CollectionViewSectionHeader: UICollectionReusableView {

 @IBOutlet weak var title: UILabel!

Table 6-10.  Collection view section header and view model bindings

Collection View Section Header Method Section Header View Model Method

func setup() func setup()

https://github.com/asmtechnology/Lesson06.iOSTesting.2017.Apress.git

Chapter 6 ■ Applying TDD to Collection View Controllers

209

 var viewModel:CollectionViewSectionHeaderViewModel?

 func setup() {
 viewModel?.setup()
 }
}

extension CollectionViewSectionHeader : CollectionViewSectionHeaderProtocol {

 func setHeaderText(text:String) {
 title?.text = text
 }

}

This concludes the development of this collection view controller-based photo
browser app.

Summary
In this chapter you have created a collection view controller-based application using TDD
techniques and the MVVM application architecture. The app that you have built loads
photos from the application bundle and displays the photos in collection view cells.

In the next chapter you will modify this example to download images over a network
connection, instead of reading them from a property list file.

211© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_7

CHAPTER 7

Testing URLSession

This chapter will examine the process of applying TDD techniques to the networking
layer of your application. There are various types of networking technologies available
to iOS developers. This chapter will only cover networking with the URLSession class.
The URLSession connection allows you to conveniently download resources over HTTP
connections.

This chapter will modify the PhotoBook app that was built in Chapter 6. The
modified version of the app will download images and metadata from a server on the
Internet, as opposed to using bundled assets and .plist files.

There are no changes to the user interface of the application. Figure 7-1 depicts the
user interface of the finished application (which is the same as the PhotoBook app at the
end of Chapter 6).

http://dx.doi.org/10.1007/978-1-4842-2689-6_6
http://dx.doi.org/10.1007/978-1-4842-2689-6_6

Chapter 7 ■ Testing URLSession

212

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson07.iOSTesting.2017.Apress.git

The modified application architecture consists of an additional networking layer
(see Figure 7-2).

Figure 7-1.  User Interface of the PhotoBook Application

https://github.com/asmtechnology/Lesson07.iOSTesting.2017.Apress.git

Chapter 7 ■ Testing URLSession

213

A brief description of the layers and the component classes follows:

•	 Model Layer: Consists of the Photo, City, and Album classes.

•	 View Model Layer: Consists of the CollectionViewModel,
CollectionViewCellViewModel, and
CollectionViewSectionHeaderViewModel classes.

•	 View/View Controller Layer: Consists of the
CollectionViewController, CollectionViewCell, and
CollectionViewSectionHeader classes.

•	 Networking Layer: Consists of the ServiceController class, which
provides convenient methods that can be used to download
images and metadata asynchronously from back-end RESTful
JSON web services.

Strategies for Testing the Networking Layer
There are two common approaches to testing networking code:

•	 Asynchronous testing techniques: These rely on
making actual network calls to a server and using the
waitForExpectations(timeout) method of XCTest to wait a few
seconds for the network service to respond.

•	 Mock/Stub based testing techniques: These rely on creating
mock or stub objects that replace HTTP calls altogether.

Figure 7-2.  Modified Application Architecture with Networking Layer

Chapter 7 ■ Testing URLSession

214

The primary drawback of asynchronous testing techniques is the inherent
dependency on an external component (the web resource). A web-based resource that
is temporarily unreachable, or a poorer-than-usual connection speed may be all it takes
for the test to fail. Tests that test networking code and rely on asynchronous testing
techniques are extremely brittle, take longer to execute, and more often than not fail due
to a problem with the web service being temporarily unreachable.

Mock/Stub based techniques do not suffer the drawbacks of asynchronous
testing techniques, and allow you to create client-side code in parallel with server-side
development so long as a common web service specification is agreed upon in advance.
The main drawback with mock/stub based techniques is that they are inherently
disconnected from the actual web service, the web service could potentially completely
change, and the tests would still continue to pass because the stubs were not updated.

Testing the network layer is about ensuring that the app calls the correct API
endpoints with the right parameters, and ensuring that the app can deal with the
response. This is something that can be easily achieved using mocks/stubs and will be the
approach taken in this chapter.

Preparing the PhotoBook Project
Duplicate the PhotoBook Xcode project created in Chapter 6 and open the duplicate
project in Xcode.

Locate the following files in the project navigator and delete them (see Figure 7-3).

•	 Albums.plist

•	 ValidAlbum.plist

•	 InvalidAlbum.plist

•	 InvalidAlbum2.plist

•	 EmptyAlbum.plist

http://dx.doi.org/10.1007/978-1-4842-2689-6_6

Chapter 7 ■ Testing URLSession

215

Delete all the assets from the project’s asset bundle, but do not delete the asset bundle
itself. The asset bundle is called Assets.xcassets in the project navigator (see Figure 7-4).

Figure 7-3.  Files to be Deleted from the Project

Figure 7-4.  Assets to be Deleted from the Project

Chapter 7 ■ Testing URLSession

216

Remote Content Specification
In order to update the PhotoBook app to download content from the Internet, you need
to know what form this content takes, and where it resides.

Let us assume that your server-side team has told you that they will host a single
JSON file with metadata for cities and photos as well as JPEG files for each photo.

The JSON file will be called albumlist.json, and it, along with the relevant JPEG
images, will be stored in the same directory on the remote server. The server does not
support SSL and the URL to this directory on the server is the following:

http://www.asmtechnology.com/apress2017/

A sample JSON file with valid data has been included in the Resources directory that
accompany this chapter’s code downloads, a portion of which is reproduced below:

[
 {
 "city": "Vienna (Austria)",
 "photos": [
 {
 "imageName": "v1.jpg",
 "aperture": "f2.8",
 "shutterSpeed": "400",
 "iso": "100",
 "comment": "HDR image of a weekend market in Vienna."
 }
]
 }
]

Configuring Application Transport Security
The server that is used to host the images and metadata for this project does not support
HTTPS connections. To allow plain vanilla HTTP connections, you will need to configure
the project’s Application Transport Security (ATS) settings. In a real-world scenario you
should always use HTTPS connections.

Locate the Info.plist file under the PhotoBook group in the project navigator and
click on it. Add a new dictionary key to this plist called App Transport Security Settings
(see Figure 7-5). In this new dictionary, add a new Boolean key called Allow Arbitrary
Loads with the value of Yes.

http://www.asmtechnology.com/apress2017/

Chapter 7 ■ Testing URLSession

217

Building the Networking Layer
The networking layer of this app consists of a single class called ServiceController that
implements the following method:

func fetchFromURL(urlString:String?,
 success:@escaping (Data) -> Void,
 failure:@escaping (NSError) -> Void)
 -> Void

The fetchFromURL method requires three parameters:

•	 urlString: A string that contains the URL to download.

•	 success: A closure that will be called if the download succeeded.

•	 failure: A closure that will be called if the download did not
succeed.

Create a new unit test case class called ServiceControllerTests and update its
contents to match Listing 7-1.

Listing 7-1.  ServiceControllerTests.swift

import XCTest

class ServiceControllerTests: XCTestCase {

 let invalidURL:String = ""
 �let validAlbumListURL:String = "http://www.asmtechnology.com/apress2017/

albumlist.json"

Figure 7-5.  Application Transport Settings

Chapter 7 ■ Testing URLSession

218

 override func setUp() {
 super.setUp()
 �// Put setup code here. This method is called before the invocation

of each test method in the class.
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }

 func testfetchFromURL_invalidSession_fails_WithErrorCode100() {
 �let expectation = self.expectation(description: "Expected failure

block to be called with error code = 100")

 let serviceController =
 ServiceController()
 serviceController.session = nil

 serviceController.fetchFromURL(
 urlString: validAlbumListURL,
 success: { (data) in
 // do nothing
 },
 failure:{ (error) in
 if error.code == 100 {
 expectation.fulfill()
 }
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 func testfetchFromURL_nilURL_fails_WithErrorCode101() {
 �let expectation = self.expectation(description: "Expected failure

block to be called with error code = 101")

 let serviceController =
 ServiceController()

 serviceController.fetchFromURL(
 urlString: nil,
 success: { (data) in
 // do nothing
 },

Chapter 7 ■ Testing URLSession

219

 failure:{ (error) in
 if error.code == 101 {
 expectation.fulfill()
 }
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 func testfetchFromURL_invalidURL_fails_WithErrorCode101() {
 �let expectation = self.expectation(description: "Expected failure

block to be called with error code = 101")

 let serviceController =
 ServiceController()

 serviceController.fetchFromURL(
 urlString: invalidURL,
 success: { (data) in
 // do nothing
 },
 failure:{ (error) in
 if error.code == 101 {
 expectation.fulfill()
 }
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 �func testfetchFromURL_validURL_callsDataTask_onURLSession_
withTheSameURL() {

 guard let expectedURL = URL(string: validAlbumListURL) else {
 return
 }

 �let expectation = self.expectation(description: "Expected dataTask
to be called on URLSession")

 let mockURLSession = MockURLSession()
 mockURLSession.dataTaskExpectation =
 (expectation, expectedURL)

 let serviceController =
 ServiceController()

Chapter 7 ■ Testing URLSession

220

 serviceController.session =
 mockURLSession

 serviceController.fetchFromURL(

urlString: validAlbumListURL,
 success: { (data) in
 // do nothing
 },
 failure:{ (error) in
 // do nothing
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 func testfetchFromURL_validURL_validDataTask_callsResume_onDataTask() {

 �let expectation = self.expectation(description: "Expected dataTask
block to be called on URLSession")

 let mockURLSession = MockURLSession()
 mockURLSession.dataTaskToReturn?.resumeExpectation = expectation

 let serviceController =
 ServiceController()
 serviceController.session =
 mockURLSession

 serviceController.fetchFromURL(
 urlString: validAlbumListURL,
 success: { (data) in
 // do nothing
 },

 failure:{(error) in
 // do nothing
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

}

Chapter 7 ■ Testing URLSession

221

There are five unit tests in this class; each of these is briefly described below:

testfetchFromURL_invalidSession_fails_WithErrorCode100()

This test calls the fetchFromURL(urlString, success, failure) method of the
ServiceController class. The ServiceController class is set up to have a nil URLSession,
and the test expects the failure closure will be called with a specific error code.

testfetchFromURL_nilURL_fails_WithErrorCode101()

This test calls the fetchFromURL(urlString, success, failure) method of the
ServiceController class with a nil value for the urlString parameter. The test expects the
failure closure will be called with a specific error code.

testfetchFromURL_invalidURL_fails_WithErrorCode101()

This test calls the fetchFromURL(urlString, success, failure) method of the
ServiceController class with an invalid value for the urlString parameter. The test expects
the failure closure will be called with a specific error code.

This project does not have a dedicated URL validator object, and instead relies on
the Swift URL class’s failable initializer to fail if the string supplied cannot be converted
into a valid URL.

testfetchFromURL_validURL_callsDataTask_onURLSession_withTheSameURL()

This test calls the fetchFromURL(urlString, success, failure) method of the
ServiceController class with a valid URL. The test expects that the fetchFromURL method
will call the dataTask(with, completionHandler) method on the URLSession object within
the ServiceController class to retrieve a URLSessionDataTask instance.

testfetchFromURL_validURL_validDataTask_callsResume_onDataTask()

This test calls the fetchFromURL(urlString, success, failure) method of the
ServiceController class with a valid URL. The test expects that the fetchFromURL method
will call the resume method on the URLSessionDataTask instance that it has retrieved
from the URL session.

These tests will not compile as they require the following classes to be defined:

•	 ServiceController

•	 MockURLSession

•	 MockURLSessionDataTask

Chapter 7 ■ Testing URLSession

222

Creating the ServiceController Class
Create a new group in the project navigator called Controllers, and ensure this group is
under the PhotoBook group. Create a new Swift class called ServiceController under the
Controllers group. Ensure that the new class is included in both the build as well as the
test target. (See Figure 7-6.)

Update the contents of ServiceController.swift to resemble Listing 7-2.

Listing 7-2.  ServiceController.swift

import Foundation

class ServiceController : NSObject {

 var session:URLSessionProtocol?
 private var dataTask:URLSessionDataTask?

 override init() {
 super.init()
 self.session =

 URLSession(configuration:
 URLSessionConfiguration.default)
 }

 func fetchFromURL(urlString:String?,
 success:@escaping (Data) -> Void,

Figure 7-6.  Target Membership for the ServiceController.swift File

Chapter 7 ■ Testing URLSession

223

 failure:@escaping (NSError) -> Void)
 -> Void {

 guard let session = session else {
 failure(NSError(
 domain: "ServiceController",
 code:100,
 userInfo: nil))
 return
 }

 guard let urlString = urlString,
 let url = URL(string: urlString)
 else {
 failure(NSError(
domain: "ServiceController",
 code:101,
 userInfo: nil))
 return
 }

 dataTask = session.dataTask(
 with: url,
 completionHandler: {
 (data, response, error) in

 if let error = error {
 failure(error as NSError)
 return
 }

 if let response = response as?
 HTTPURLResponse,
 let data = data {
 if response.statusCode == 200 {
 success(data)
 return
 }
 }

 failure(NSError(
 domain: "ServiceController", code:102,
 userInfo: nil))
 return
 })

 dataTask?.resume()
 }

}

Chapter 7 ■ Testing URLSession

224

This class has an init method, the fetchFromURL method, and a couple of instance
variables. I would like to draw your attention to the session variable, which is declared as:

var session:URLSessionProtocol?

In most apps you may have built in the past, the session variable would be of type
URLSession and not URLSessionProtocol. In fact there is no protocol provided by Apple
by that name. The reason for using a protocol instead of a concrete type is to facilitate
injecting a mock/stub object from a unit test.

Create a new Swift file called URLSessionProtocol.swift under the Protocols group
and ensure the file is a member of both the build and test targets. Update the contents of
the new file to resemble Listing 7-3.

Listing 7-3.  URLSessionProtocol.swift

import Foundation

protocol URLSessionProtocol : class {
 func dataTask(with url: URL,
 completionHandler: @escaping (Data?,
 URLResponse?, Error?) -> Swift.Void) -> URLSessionDataTask
}

extension URLSession : URLSessionProtocol {

}

Creating the MockURLSession Class
Create a new Swift class under the Mocks group of the project explorer. Name the class
MockURLSession and ensure that the new file is only included in the test target
(see Figure 7-7).

Chapter 7 ■ Testing URLSession

225

Update the contents of MockURLSession.swift to resemble Listing 7-4.

Listing 7-4.  MockURLSession.swift

import Foundation
import XCTest

class MockURLSession : URLSessionProtocol {

 var dataTaskExpectation:
 (XCTestExpectation, expectedURL:URL)?
 var dataTaskToReturn:MockURLSessionDataTask?

 init() {
 self.dataTaskToReturn =
 MockURLSessionDataTask()
 }

 func dataTask(with url: URL,
 completionHandler: @escaping (Data?,

 URLResponse?,
 Error?) -> Swift.Void)
 -> URLSessionDataTask {

Figure 7-7.  Target Membership for the MockURLSession.swift File

Chapter 7 ■ Testing URLSession

226

 if let (expectation, expectedValue) =
 self.dataTaskExpectation {

 if expectedValue.absoluteString.compare(
 url.absoluteString) == .orderedSame {
 expectation.fulfill()
 }
 }

 self.dataTaskToReturn?.completionHandler =
 completionHandler
 return self.dataTaskToReturn!
 }

}

Creating the MockURLSessionDataTask Class
Create a new Swift class under the Mocks group of the project explorer. Name the class
MockURLSessionDataTask and ensure that the new file is only included in the test target.

Update the contents of MockURLSessionDataTask.swift to resemble Listing 7-5.

Listing 7-5.  MockURLSessionDataTask.swift

import Foundation
import XCTest

class MockURLSessionDataTask : URLSessionDataTask {

 var resumeExpectation: XCTestExpectation?

 var completionHandler:((Data?, URLResponse?, Error?) -> Swift.Void)?
 var dataToReturn:Data?
 var urlResponseToReturn:URLResponse?
 var errorToReturn:Error?

 override func resume() {
 resumeExpectation?.fulfill()

 if let
 completionHandler = completionHandler
 {
 DispatchQueue.main.asyncAfter(
 deadline: .now() + 0.1) {
 completionHandler(
 self.dataToReturn,
 self.urlResponseToReturn,
 self.errorToReturn)

Chapter 7 ■ Testing URLSession

227

 }
 }
 }
}

Save the file and use the Test Navigator to run all the tests in the ServiceController
test case (see Figure 7-8). You should see all the tests in ServiceControllerTests.swift pass.
However, if you try to run all tests using the Product ➤ Test menu item, you will see that
some of other tests that were previously passing at the end of Chapter 6 now crash altogether.

Over the rest of this chapter, you will fix/replace these broken tests to accommodate
the fact that the app will now use the new ServiceController class to download content
from the Internet.

Updating the Model Layer
The model layer of this app consists of three classes: Album, City, and Photo. The Album
and the Photo class will need to be updated to use the new ServiceController class
instead of the old method of loading a local .plist file and reading images from a local
asset bundle.

Figure 7-8.  All Test Cases in ServiceControllerTests.swift are Passing

http://dx.doi.org/10.1007/978-1-4842-2689-6_6

Chapter 7 ■ Testing URLSession

228

Updating the Album Class
The current version of Album class has a method called

func load(filePath:String?) -> Void

When the Album class has been updated, this method will be replaced by a new
method that has the same name, but accepts different parameters:

func load(urlString:String?,
 success:@escaping (Void) -> Void,

 failure:@escaping (NSError) -> Void)
-> Void

These new parameters are briefly described below:

•	 urlString: A URL that identifies a json file on the server. This json
file will contain all metadata on an album, the cities within the
album, and the photos within each city.

•	 success: A user-provided closure that will be called
asynchronously if the load method succeeds.

•	 failure: A user-provide closure that will be called asynchronously
if the load method encounters an error.

Let us adopt a test-driven approach to build the modified version of the load
method. To start with, let us delete the old version of the load method and any tests that
were built for the old method.

Open the Album.swift file in the project navigator and delete the
load(filePath:String?) method as it will no longer be needed. The Album class should now
resemble Listing 7-6.

Listing 7-6.  Album.swift

import Foundation

class Album: NSObject {

 var cities:[City]?

 override init() {
 super.init()

 if cities == nil {
 cities = [City]()
 }
 }
}

Chapter 7 ■ Testing URLSession

229

Open the AlbumTests.swift file in the project navigator and delete the following test
methods, as these tests are not relevant anymore:

•	 testLoad_NilFilePath_DoesNotUpdateCitiesArray()

•	 testLoad_ValidFilePathWithNoCities_
DoesNotUpdateCitiesArray()

•	 testLoad_ValidFilePath_InvalidRootElementType_
DoesNotUpdateCitiesArray()

•	 testLoad_ValidFilePath_ValidRootElementType_
InvalidChildElementType_DoesNotUpdateCitiesArray()

•	 testLoad_ValidFile_
AddsExpectedNumberOfEntriestoCitiesArray()

Delete the following instance variable declarations:

•	 var emptyAlbumPlistFile: String?

•	 var invalidAlbumPlistFile: String?

•	 var invalidAlbumPlistFile2: String?

•	 var validAlbumPlistFile: String?

Delete the following lines from the setUp() method:

let bundle = Bundle(for: type(of:self))

emptyAlbumPlistFile = bundle.path(
 forResource: "EmptyAlbum",
 ofType: "plist")

invalidAlbumPlistFile = bundle.path(
 forResource: "InvalidAlbum",
 ofType: "plist")

invalidAlbumPlistFile2 = bundle.path(
 forResource: "InvalidAlbum2",
 ofType: "plist")

validAlbumPlistFile = bundle.path(
 forResource: "ValidAlbum",
 ofType: "plist")

The AlbumTests class should now resemble Listing 7-7.

Chapter 7 ■ Testing URLSession

230

Listing 7-7.  AlbumTests.swift

import XCTest

class AlbumTests: XCTestCase {

 override func setUp() {
 super.setUp()
 }

 override func tearDown() {
 �// Put teardown code here. This method is called after the

invocation of each test method in the class.
 super.tearDown()
 }

 func testInit_CityArrayIsNotNil() {
 let album = Album()
 XCTAssertNotNil(album.cities)
 }

 func testInit_CityArrayIsEmpty() {
 let album = Album()
 XCTAssertEqual(album.cities?.count, 0)
 }
}

Writing New Tests for the load( ) Method
Add the following tests to the AlbumTests.swift file:

 func testLoad_nilURL_fails_withErrorCode101() {

 �let expectation = self.expectation(description: "Expected failure
block to be called with error code = 101")

 let album = Album()
 album.load(urlString: nil,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 if error.code == 101 {
 expectation.fulfill()
 }
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

Chapter 7 ■ Testing URLSession

231

 func testLoad_invalidURL_fails_withErrorCode101() {

 �let expectation = self.expectation(description: "Expected failure
block to be called with error code = 101")

 let album = Album()
 album.load(
 urlString: invalidURL,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 if error.code == 101 {
 expectation.fulfill()
 }

 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 �func testLoad_validURL_callsFromFetchURLonServiceController_
withExpectedURL() {

 �let expectation = self.expectation(description: "Expected fetchURL
to be called")

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 fetchFromURLExpectation =
 (expectation, validAlbumListURL)

 let album = Album()
 album.serviceController =
 mockServiceController

 album.load(
 urlString: validAlbumListURL,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 // do nothing
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

Chapter 7 ■ Testing URLSession

232

func testLoad_validURL_failsWhenServiceControllerFails() {
 let expectation =
 self.expectation(description:
 "Expected fetchURL to be called")

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = true

 let album = Album()
 album.serviceController =
 mockServiceController

 album.load(
 urlString: validAlbumListURL,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 expectation.fulfill()
 })

 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

 func testLoad_onServiceControllerFailure_doesNotUpdateCityArray() {

 let mockServiceController =
 MockServiceController()
 mockServiceController.
shouldFailOnFetch = true

 let album = Album()
 album.serviceController =
 mockServiceController

 album.load(
 urlString: validAlbumListURL,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 // do nothing
 })

 XCTAssertEqual(album.cities?.count, 0)
 }

Chapter 7 ■ Testing URLSession

233

 �func testLoad_validURL_serviceControllerReturnsValidData_
citiesArrayHasExpectedCount() {

 let bundle = Bundle(for: type(of:self))
 let filePath = bundle.path(
 forResource: "ValidAlbumList",
 ofType: "json")
 let stubResponseData = try!
 Data(contentsOf: URL(fileURLWithPath:
 filePath!))

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = false
 mockServiceController.
 dataToReturnOnSuccess =
 stubResponseData

 let album = Album()
 album.serviceController =
 mockServiceController

 album.load(
 urlString: validAlbumListURL,
 success: { (Void) in
 // do nothing
 }, failure: { (error) in
 // do nothing
 })

 XCTAssertEqual(album.cities?.count, 6)
 }

There are six unit tests in the preceding snippet, and each of them are briefly
described below:

testLoad_nilURL_fails_withErrorCode101()

This test calls the load(urlString, success, failure) method of the Album class with nil
for the urlString parameter. The test expects that the failure closure will be called with a
specific error code.

testLoad_invalidURL_fails_withErrorCode101()

This test calls the load(urlString, success, failure) method of the Album class with an
invalid vlaue for the urlString parameter. The test expects that the failure closure will be
called with a specific error code.

Chapter 7 ■ Testing URLSession

234

testLoad_validURL_callsFromFetchURLonServiceController_withExpectedURL()

This test calls the load(urlString, success, failure) method of the Album class
with a valid URL. The test expects that the load method of the Album class will call
the fetchFromURL method of the ServiceController class with the same URL that was
provided to the load method.

testLoad_validURL_failsWhenServiceControllerFails()

This test calls the load(urlString, success, failure) method of the Album class with a
valid URL and simulates a failure in the service controller class. The test expects that the
failure closure that was provided to the load method will be called.

testLoad_onServiceControllerFailure_doesNotUpdateCityArray()

This test calls the load(urlString, success, failure) method of the Album class with a
valid URL and simulates a failure in the service controller class. The test expects that the
number of elements in the city array of the Album class have not changed.

Simulating a failure in the service controller class is achieved by injecting a
MockServiceController object into the Album class:

let mockServiceController =
 MockServiceController()
mockServiceController.
 shouldFailOnFetch = true

let album = Album()
album.serviceController =
 mockServiceController

The MockServiceController class hasn’t been built yet, but will have a Boolean
instance variable called shouldFailOnFetch that will be used to simulate a failure within
the fetchFromURL method.

testLoad_validURL_serviceControllerReturnsValidData_
citiesArrayHasExpectedCount()

This test calls the load(urlString, success, failure) method of the Album class with a
valid URL and simulates a successfull download operation in the service controller class.
The test expects a specific number of elements in the city array of the Album class.

Simulating a successful download operation in the service controller class is
achieved by, once again, injecting a MockServiceController object into the Album class:

let bundle = Bundle(for: type(of:self))
let filePath = bundle.path(
 forResource: "ValidAlbumList",
 ofType: "json")

Chapter 7 ■ Testing URLSession

235

let stubResponseData = try!
 Data(contentsOf: URL(fileURLWithPath:
 filePath!))

let mockServiceController =
 MockServiceController()
mockServiceController.
 shouldFailOnFetch = false
mockServiceController.
 dataToReturnOnSuccess =
 stubResponseData

The MockServiceController will have an instance variable called
dataToReturnOnSuccess that can be preloaded with a stub response.

Let us now make a few changes to get these new tests to compile. Add the following
instance variables to the AlbumTests.swift file:

let invalidURL:String = ""
let validAlbumListURL:String = �http://www.asmtechnology.com/apress2017/

albumlist.json

Add the ValidAlbumList.json file into the TestData group. Ensure the file is included
with the test target only. You can get this file from the resource directory provided with
the downloadable code that accompanies this chapter (see Figure 7-9).

Figure 7-9.  Xcode Import File Dialog

Chapter 7 ■ Testing URLSession

236

Creating the MockServiceController Class
Create a new Swift class called MockServiceController under the Mocks group. Ensure the
file is included with the test target only (see Figure 7-10).

Update the contents of MockServiceController.swift to resemble Listing 7-8.

Listing 7-8.  MockServiceController.swift

import Foundation
import XCTest

class MockServiceController : ServiceController {

 �var fetchFromURLExpectation:(XCTestExpectation,
expectedURLString:String)?

 var shouldFailOnFetch:Bool = false
 var dataToReturnOnSuccess:Data?

 override func fetchFromURL(
 urlString: String?,
 success: @escaping (Data) -> Void,
 failure: @escaping (NSError) -> Void)
 {

Figure 7-10.  MockServiceController.swift Target Membership

Chapter 7 ■ Testing URLSession

237

 if let
 (expectation, expectedValue) =
 self.fetchFromURLExpectation {
 if urlString?.
 compare(expectedValue)
 == .orderedSame {
 expectation.fulfill()
 }
 }

 if shouldFailOnFetch == true {
 failure(NSError(
 domain: "ServiceController",
 code:102,
 userInfo: nil))
 return
 }

 if let
 dataToReturnOnSuccess = dataToReturnOnSuccess {
 success(dataToReturnOnSuccess)
 return
 }

 super.fetchFromURL(
 urlString: urlString,
 success: success,
 failure: failure)
 }
}

Add the following updated version of the load() method to the Album class:

func load(urlString:String?,
 success:@escaping (Void) -> Void,
 failure:@escaping (NSError) -> Void)
-> Void {

 serviceController.fetchFromURL(
 urlString: urlString,
 success: { (receivedData) in

 guard
 let array = try?
 JSONSerialization.jsonObject(
 with: receivedData,
 options: JSONSerialization.
 ReadingOptions.
 mutableContainers) as?

Chapter 7 ■ Testing URLSession

238

 NSArray else {

 failure(NSError(
 domain: "PhotoBook.Album",
 code:200,
 userInfo: nil))

 return
 }

 for item in array! {
 guard
 let dictionary = item as?
 [String : AnyObject] else {
 continue
 }

 if let city = City(dictionary) {
 self.cities?.append(city)
 }
 }

 success()

 },

 failure: { (error) in
 failure(error)
 })

}

Modifying the Album Class
Add the following instance variable declaration to the Album class:

var serviceController = ServiceController()

Save the file and use the Product ➤ Test menu item to run all tests. You will notice
that the project fails to compile, this is because the CollectionViewModel class is using
the old load() method of the Album class.

For now, comment out the following lines from the initializer of the
CollectionViewModelClass:

let path = Bundle.main.path(
forResource: "Albums",
 ofType: "plist")
photoAlbum?.load(filePath:path)

Chapter 7 ■ Testing URLSession

239

Save the file and use the Test Navigator to run all the tests in the AlbumTests test case
(see Figure 7-11). You should see all the tests in AlbumTests.swift pass.

Updating the Photo Class
The Photo class will be updated to use the ServiceController to download an image from
the Internet. The current version of the Photo class only stores the name of the image
resource. Prior to the update of the Album class, this was the name of an image asset in
the project’s asset catalog. With the update of the Album class, this will now be the path of
jpeg file on the server relative to the path of the albumlist.json file.

The new version of the Photo class will contain the following changes:

•	 The code to build an absolute URL of an image on the server
given the base URL of the albumlist.json file and the filename of
the image.

•	 A new method called downloadImage that will initiate the
download of an image using a ServiceController instance.

•	 A UIImage instance that contains the image after it has been
downloaded.

•	 A reference to a listener object that is notified when the image has
finished downloading. The listener object will be an instance of
CollectionViewCellViewModel.

•	 Call a method on the listener object once the image has finished
downloading. The listener will, in turn, update the Collection
view cell with the downloaded image.

Figure 7-11.  All Tests in AlbumTests.swift are now Passing

Chapter 7 ■ Testing URLSession

240

Writing New Tests for the Photo Class
Open the PhotoTests.swift file in the project navigator and add the following test methods
to the end of the class:

 func testInit_ValidDictionary_downloadedImage_IsNil() {

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = true

 let photo =
 Photo(validPhotoDictionary1)
 photo?.serviceController =
 mockServiceController

 XCTAssertNil(photo?.downloadedImage)
 }

 �func testInit_ValidDictionary_whenDownloadedImageIsCalled_
callsDownloadImage() {

 let expectation = self.expectation(
 description: "Expected
 downloadImage to be called")

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = true

 let photo =
 MockPhoto(validPhotoDictionary1)
 photo?.downloadImageExpectation =
 expectation
 photo?.imageName = "11.jpg"
 photo?.baseURL =
 "http://www.asmtechnology.com/apress2017/"
 photo?.serviceController =
 mockServiceController

 let _ = photo?.downloadedImage
 self.waitForExpectations(timeout: 1.0,
 handler: nil)
 }

Chapter 7 ■ Testing URLSession

241

 func testBuildImageDownloadURL_nilImageName_returnsNil() {
 let photo =
 Photo(validPhotoDictionary1)
 photo?.imageName = nil

 XCTAssertNil(
 photo!.buildImageDownloadURL()
)
 }

 �func testBuildImageDownloadURL_validBaseURL_validImageName_
returnsCorrectImageURL() {

 let photo =
 Photo(validPhotoDictionary1)
 photo?.imageName = "11.jpg"
 photo?.baseURL = "http://www.asmtechnology.com/apress2017/"

 let expectedURL = "http://www.asmtechnology.com/apress2017/11.jpg"
 XCTAssertEqual(
 photo!.buildImageDownloadURL(),
 expectedURL)
 }

 �func testDownloadImage_validImageURL_

callsFromFetchURLonServiceController_withExpectedURL() {

 let expectation = self.expectation(
 description: "Expected fetchURL
 to be called")
 let expectedURL = "http://www.asmtechnology.com/apress2017/11.jpg"

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 fetchFromURLExpectation =
 (expectation, expectedURL)

 let photo =
 Photo(validPhotoDictionary1)
 photo?.imageName = "11.jpg"
 photo?.baseURL = "http://www.asmtechnology.com/apress2017/"
 photo?.serviceController = mockServiceController

 photo?.downloadImage()

 self.waitForExpectations(
 timeout: 1.0, handler: nil)
 }

Chapter 7 ■ Testing URLSession

242

 �func testDownloadImage_validImageURL_serviceControllerReturnsValidData_
updatesImage() {

 let bundle = Bundle(for: type(of:self))
 let filePath = bundle.path(forResource: "bar1", ofType: "jpg")
 let stubResponseData = try!
 Data(contentsOf:
 URL(fileURLWithPath: filePath!))

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = false
 mockServiceController.
 dataToReturnOnSuccess =
 stubResponseData

 let photo =
 Photo(validPhotoDictionary1)
 photo?.imageName = "11.jpg"

 photo?.baseURL = "http://www.asmtechnology.com/apress2017/"
 photo?.serviceController =
 mockServiceController

 photo?.downloadImage()

 XCTAssertNotNil(photo?.downloadedImage)
 }

 �func testDownloadImage_validImageURL_validListener_calls_
didDownloadImage_onListener() {

 let expectation =
 self.expectation(description:
 "Expected fetchURL to be called")

 let mockDownloadListener =
 MockDownloadListener()
 mockDownloadListener.
 didDownloadImageExpectation =
 expectation

 let bundle = Bundle(for: type(of:self))
 let filePath = bundle.path(
 forResource: "bar1", ofType: "jpg")
 let stubResponseData = try!

Chapter 7 ■ Testing URLSession

243

 Data(contentsOf:
 URL(fileURLWithPath: filePath!))

 let mockServiceController =
 MockServiceController()
 mockServiceController.
 shouldFailOnFetch = false

 mockServiceController.
 dataToReturnOnSuccess =
 stubResponseData

 let photo =
 Photo(validPhotoDictionary1)
 photo?.imageName = "11.jpg"
 photo?.baseURL = "http://www.asmtechnology.com/apress2017/"
 photo?.serviceController =
 mockServiceController
 photo?.listener = mockDownloadListener

 photo?.downloadImage()

 self.waitForExpectations(
 timeout: 1.0, handler: nil)
 }

There are seven unit tests in the preceding snippet, and each of them are briefly
described below:

testInit_ValidDictionary_downloadedImage_IsNil()

This test creates a Photo instance with a valid dictionary and expects that the
downloadedImage instance variable is nil. This is a new instance variable that will be
added to the Photo class and will contain the image after it has been downloaded.

testInit_ValidDictionary_whenDownloadedImageIsCalled_callsDownloadImage()

This test creates a Photo instance with a valid dictionary and accesses the
downloadedImage instance variable. The test expects that by trying to access this
instance variable (which is nil as proven by the previous test), the downloadImage
method will be called.

The downloadImage method is a new method that will be added to the Photo class
and will contain the code to use a ServiceController instance to download an image.

testBuildImageDownloadURL_nilImageName_returnsNil()

This test calls the buildImageDownloadURL method on a Photo instance whose
imageName instance variable is nil. The test expects that the buildImageDownloadURL
method will return nil.

Chapter 7 ■ Testing URLSession

244

The buildImageDownloadURL method is a new method that will be added to the
Photo class and will contain the code to compose the URL of the image on the server from
a base URL and the filename of the image.

testBuildImageDownloadURL_validBaseURL_validImageName_
returnsCorrectImageURL()

This test calls the buildImageDownloadURL method on a Photo instance that has
valid values for the baseURL and imageName instance variables. The test expects that the
buildImageDownloadURL method will return a correctly formed URL.

The baseURL instance variable is a new addition to the Photo class and will contain
the URL to a folder on the server where images are stored.

testDownloadImage_validImageURL_callsFromFetchURLonServiceController_
withExpectedURL()

This test calls the downloadImage method on a Photo instance and expects that the
fetchURL method will be called on a ServiceController instance.

The downloadImage method is a new method that will be added to the Photo class.
The photo class will also have a new ServiceController instance variable.

testDownloadImage_validImageURL_serviceControllerReturnsValidData_
updatesImage()

This test calls the downloadImage method on a Photo instance and simulates
a successful download operation in the service controller class. The test expects the
downloadedImage instance variable to be non-nil.

Simulating a successful download operation in the service controller class
is achieved by injecting a MockServiceController object into the Photo class, and
configuring the MockServiceController to return a stubbed response:

let bundle = Bundle(for: type(of:self))

let filePath = bundle.path(
 forResource: "bar1", ofType: "jpg")
let stubResponseData = try!
 Data(contentsOf:
 URL(fileURLWithPath: filePath!))

let mockServiceController =
 MockServiceController()
mockServiceController.shouldFailOnFetch = false
mockServiceController.dataToReturnOnSuccess =
 stubResponseData

let photo = Photo(validPhotoDictionary1)
photo?.serviceController =
 mockServiceController

Chapter 7 ■ Testing URLSession

245

As expected, these tests will not compile just yet as a few mock objects need to be
created and a few instance variables and methods need to be added to the Photo class.

Add the bar1.jpg file into the TestData group. Ensure the file is included with the
test target only. You can get this file from the resource directory provided with the
downloadable code that accompanies this chapter (see Figure 7-12).

Creating the MockPhoto Class
Create a new class under the Mocks group called MockPhoto. Ensure that this new class
is only included in the test target. Update the contents of MockPhoto.swift to resemble
Listing 7-9.

Listing 7-9.  MockPhoto.swift

import Foundation
import XCTest

class MockPhoto : Photo {

 var downloadImageExpectation: XCTestExpectation?

 override func downloadImage() -> Void {
 downloadImageExpectation?.fulfill()
 super.downloadImage()
 }

}

Figure 7-12.  Xcode File Import Dialog

Chapter 7 ■ Testing URLSession

246

Modifying the Photo Class
Import the UIKit framework in the Photo.swift file and add the following instance
variables to the Photo.swift class:

weak var listener:DownloadListenerProtocol?

var serviceController = ServiceController()

var baseURL = "http://www.asmtechnology.com/apress2017/"

private var image: UIImage?

Add a computed UIImage property to the Photo class called downloadedImage and
implement it as follows:

var downloadedImage: UIImage? {
 get {

 if image == nil {
 downloadImage()
 }

 return image
 }
}

Add the following implementation for the buildImageDownloadURL method to the
Photo class:

func buildImageDownloadURL() -> String? {
 guard let imageName = imageName else {
 return nil
 }

 return "\(baseURL)\(imageName)"
}

Add the following implementation of the downloadImage method to the Photo class:

func downloadImage() -> Void {

 guard let urlToFetch =
 buildImageDownloadURL() else {
 return
 }

Chapter 7 ■ Testing URLSession

247

 serviceController.fetchFromURL(
 urlString: urlToFetch,
 success: { (data) in
 self.image = UIImage(data: data)
 self.listener?.didDownloadImage()
 }, failure: { (error) in
 // do nothing.
 })
}

Creating the DownloadListenerProtocol.swift File
Create a new file under the Protocols group called DownloadListenerProtocol. Ensure the
file is included in both the build and test targets (see Figure 7-13).

Update the contents of the DownloadListenerProtocol.swift file to match Listing 7-10.

Listing 7-10.  DownloadListenerProtocol.swift

import Foundation

protocol DownloadListenerProtocol : class {
 func didDownloadImage() -> Void
}

Figure 7-13.  Xcode New File Options Dialog Showing Target Membership Settings for the
DownloadListenterProtocol.swift File

Chapter 7 ■ Testing URLSession

248

Creating the MockDownloadListener Class
Create a new class under the Mocks group called MockDownloadListener. Ensure
that this new class is only included in the test target. Update the contents of
MockDownloadListener.swift to resemble Listing 7-11.

Listing 7-11.  MockDownloadListener.swift

import Foundation
import XCTest

class MockDownloadListener : DownloadListenerProtocol {

 var didDownloadImageExpectation:XCTestExpectation?

 func didDownloadImage() -> Void {
 didDownloadImageExpectation?.fulfill()
 }
}

Save the file and use the Test Navigator to run all the tests in the PhotoTests test case
(see Figure 7-14). You should see all the tests in PhotoTests.swift pass.

Figure 7-14.  All Test Cases in PhotoTests.swift Pass

Chapter 7 ■ Testing URLSession

249

Updating the View Model Layer
Both the collection view model and the collection view cell view model classes require
minor updates. As this chapter is about testing networking code, this section and the next
one will not adopt a test-driven approach. Several examples of testing the view model and
view controller layers have been presented in previous chapters.

Updates to the Collection View Model
Earlier in the chapter, you have commented out two lines from the initializer of the
CollectionViewModel.swift class to get your test code to compile:

//let path = Bundle.main.path(
// forResource:"Albums", ofType: "plist")
//photoAlbum?.load(filePath:path)

These lines were calling the load method on the album object with the path to a plist
file bundled into the application.

The changes that have been made to the Album class now allow the album class to
download album meta data from a JSON file on the Internet.

Replace the initializer of the CollectionViewModel class with the following updated
version:

init(view:CollectionViewControllerProtocol,
 album:Album? = nil) {

 super.init()
 self.view = view

 photoAlbum = album ?? Album()

 �photoAlbum?.load(urlString: "http://www.asmtechnology.com/apress2017/
albumlist.json",

 success: { () in
 DispatchQueue.main.async {

 self.view?.
 reloadCollectionView()
 }
 },
 failure: { (error) in

 print(error.description)
 })
}

Chapter 7 ■ Testing URLSession

250

The updated initializer takes an optional Album parameter that can be used to inject a
mock or stub object by a test if needed and calls the new load() method on the Album object.

Add the following method declaration to the CollectionViewControllerProtocol.swift
file:

func reloadCollectionView() -> Void

Although we are not writing any new tests to cover this functionality in this chapter,
we do need to delete obsolete tests and fix broken tests. Most of the old tests written for
the collection view model will continue to pass; however, some will need updating.

The main reason the tests need updating is that the load() method of the
photoAlbum class is now asynchronous, and the previous tests were written for a
synchronous version of load().

To fix these tests, we will need to inject a modified Album instance into the
CollectionViewModel that uses a stubbed service controller instance internally. Since
this modified album instance is likely to be used in several tests, the code to create this
instance will be placed in the setUp() method of the test case class:

let bundle = Bundle(for: type(of:self))
let filePath = bundle.path(
 forResource: "ValidAlbumList",
 ofType: "json")
stubResponseData = try!
 Data(contentsOf:
 URL(fileURLWithPath: filePath!))

stubServiceController = MockServiceController()
stubServiceController!.shouldFailOnFetch =
 false
stubServiceController!.dataToReturnOnSuccess =
 stubResponseData!

albumWithStubbedServiceController = Album()
albumWithStubbedServiceController!.
 serviceController = stubServiceController!

The rest of this section lists the tests that need to be updated; the updated versions of
these tests can be found in the finished project that accompanies this chapter.

•	 testNumberOfItemsInSection_ValidSectionIndex_
ReturnsExpectedValue()

•	 testCellViewModel_ValidViewModelNilPhotos_ReturnsNil ()

•	 testCellViewModel_ValidSectionIndex_DoesNotReturnNil ()

•	 testCellViewModel_ValidSectionIndex_
ReturnsViewModelWithExpectedModelObject()

•	 testHeaderViewModel_ValidSectionIndex_DoesNotReturnNil()

Chapter 7 ■ Testing URLSession

251

Updates to the Collection View Cell View Model
The cell view model will be modified to act as a listener object for the Photo model class.
By doing so, the cell view model call will be notified by the Photo class of the completion
of an asynchronous image download.

Add the following line to the end of the initializer of the
CollectionViewCellViewModel class:

photo?.listener = self

Delete the existing implementation of the setup() method and replace it with the
following implementation:

func setup() {

 guard let collectionViewCell =
 collectionViewCell ,
 let photo = photo,
 let aperture = photo.aperture,
 let shutterSpeed =
 photo.shutterSpeed,
 let iso = photo.iso,
 let comments =
 photo.comments else {
 return
 }

 collectionViewCell.updateImage(
 image: photo.downloadedImage)
 collectionViewCell.setCaption(
 captionText: comments)
 collectionViewCell.setShotDetails(
 shotDetailsText: "\(aperture),
 \(shutterSpeed), ISO \(iso)")
}

Add the following class extension to the CollectionViewCellViewModel.swift file:

extension CollectionViewCellViewModel : DownloadListenerProtocol {
 func didDownloadImage() -> Void {
 DispatchQueue.main.async {
 self.collectionViewCell?.
 updateImage(
 image: self.photo?
 .downloadedImage)
 }
 }
}

Chapter 7 ■ Testing URLSession

252

This code will not compile just yet as it requires some changes to be made to the
collection view cell class. You will make these changes in the next section.

You may have noticed that the modified version of the setup() method calls
updateImage() on the collectionViewCell object, instead of loadImage(). In the previous
chapter you have created a test that checks to ensure that a call to the setup() method
calls the loadImage() method. This test is now obsolete and will have to be deleted.

Open the CollectionViewCellViewModelTests.swift file and delete the following test
from the file:

testSetup_ValidPhoto_Calls_LoadImage_WithExpectedImageName()

You could alternately modify the test to check that updateImage() is being called;
however this is left as an exercise for you and will not be addressed in this chapter.

Updating the View Layer
Both the collection view and the collection view cell classes require minor updates. Let us
update the collection view controller class first.

Updates to the Collection View Controller
Earlier in this chapter you added a new method to the CollectionViewControllerProtocol.
swift file:

func reloadCollectionView() -> Void

You will now need to implement this method in the collection view controller class.
Modify the class extension in CollectionViewController.swift file by adding the following
method implementation to the extension:

func reloadCollectionView() -> Void {
 self.collectionView?.reloadData()
}

Update the MockCollectionViewController.swift file by adding a stub
implementation for the reloadCollectionView method. The modified
MockCollectionViewController.swift file should resemble Listing 7-12.

Listing 7-12.  MockCollectionViewController.swift

import UIKit

import XCTest

class MockCollectionViewController : CollectionViewControllerProtocol {

Chapter 7 ■ Testing URLSession

253

 var expectationForSetNavigationTitle:XCTestExpectation?
 var expectationForSetSectionInset:XCTestExpectation?
 var expectationForSetupCollectionViewCellToUseMaxWidth:XCTestExpectation?

 func setNavigationTitle(_ title:String) -> Void {
 expectationForSetNavigationTitle?.fulfill()
 }

 func setSectionInset(top:Float,
 left:Float,
 bottom:Float,
 right:Float) -> Void {

 expectationForSetSectionInset?.fulfill()
 }

 func setupCollectionViewCellToUseMaxWidth()
 -> Void {
expectationForSetupCollectionViewCellToUseMaxWidth?.fulfill()
 }

 func reloadCollectionView() {

 }

}

Updates to the Collection View Cell
Open the CollectionViewCellProtocol.swift file from the project navigator, and add a
statement to the top of the file to import the UIKit framework.

Remove the following method declaration from the protocol:

func loadImage(resourceName:String)

Add the following method declaration to the protocol:

func updateImage(image:UIImage?)

The contents of CollectionViewCellProtocol.swift should now resemble Listing 7-13.

Listing 7-13.  CollectionViewCellProtocol.swift

import Foundation
import UIKit

protocol CollectionViewCellProtocol : class {
 func setCaption(captionText:String)

Chapter 7 ■ Testing URLSession

254

 func setShotDetails(shotDetailsText:String)
 func updateImage(image:UIImage?)
}

Open the CollectionViewCell.swift file in the project navigator and delete the
implementation of the loadImage method.

Add the following code to the class to implement the updateImage method:

func updateImage(image:UIImage?) {
 imageView.image = image
 self.setNeedsLayout()
}

The contents of CollectionViewCell.swift should now resemble Listing 7-14.

Listing 7-14.  CollectionViewCell.swift

import UIKit

class CollectionViewCell: UICollectionViewCell {

 @IBOutlet weak var imageView: UIImageView!
 @IBOutlet weak var captionLabel: UILabel!
 @IBOutlet weak var shotDetailsLabel: UILabel!

 var viewModel:CollectionViewCellViewModel?

 func setup() {
 viewModel?.setup()
 }
}

extension CollectionViewCell : CollectionViewCellProtocol {

 func setCaption(captionText:String) {
 captionLabel.text = captionText
 }

 func setShotDetails(shotDetailsText:String)
 {
 shotDetailsLabel.text = shotDetailsText
 }

 func updateImage(image:UIImage?) {
 imageView.image = image
 self.setNeedsLayout()
 }

}

Chapter 7 ■ Testing URLSession

255

Update the MockCollectionViewCell.swift file by removing the existing
implementation of the loadImage method and adding a stub implementation for the new
updateImage method. The modified MockCollectionViewCell.swift file should resemble
Listing 7-15.

Listing 7-15.  MockCollectionViewCell.swift

import Foundation
import XCTest

class MockCollectionViewCell : CollectionViewCellProtocol {

 var expectationForLoadImage:(XCTestExpectation, String?)?
 var expectationForSetCaption:(XCTestExpectation, String?)?
 var expectationForSetupShotDetails:(XCTestExpectation, String?)?

 func setCaption(captionText:String) {
 guard
 let (expectation, expectedValue) =
 self.expectationForSetCaption else {
 return
 }

 if let expectedValue = expectedValue {
 if (captionText.compare
 (expectedValue) != .orderedSame)
 {
 return
 }
 }

 expectation.fulfill()
 }

 func setShotDetails(shotDetailsText:String)
 {
 guard
 let (expectation, expectedValue) =
 self.expectationForSetupShotDetails
 else {
 return
 }

 if
 let expectedValue = expectedValue {
 if (shotDetailsText.compare(
 expectedValue) != .orderedSame)
 {

Chapter 7 ■ Testing URLSession

256

 return
 }
 }

 expectation.fulfill()
 }

 func updateImage(image: UIImage?) {

 }
}

Save the file and use the Product ➤ Test menu item to run all tests. You should see
that all tests pass. Try out the modified app by running the app on the iOS Simulator.

This concludes the update of this collection view controller-based photo browser
app to download content asynchronously over the Internet.

Summary
In this chapter you have learned to test network-related code in your app that uses
URLSession using mocks and stubs. Testing network layer code using mocks and stubs
allows you to build your application without having to explicitly connect to a server. For
this technique to work the interface of the server-side APIs must be well defined. If the
server-side APIs change, the tests in your iOS app will also need to be updated.

257© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_8

CHAPTER 8

Working with Legacy Code

If you have been developing iOS applications for a few years, chances are that you have
been brought on to add new features to an existing app with a large code base that has
been built over a few years and has been worked on by dozens of developers, most of
whom have moved on to other projects.

There is little to no documentation, and there are either no unit tests at all, or just
a handful of obsolete tests, some of which fail when run. This is an unfortunate reality
on many projects in the industry. In some cases the developers involved may not have
known of the benefits of testing, or what to test. In other cases there isn’t sufficient buy-in
from the business to invest into TDD or BDD techniques, and so developers only write
tests when they have the time.

It is often not possible to spend months refactoring years of legacy code, and the
best you can do as a new member of the team is to cover any new code you write with an
appropriate level of tests.

This chapter will examine a few techniques that you can use to add new code to a
large legacy code base, and, at the same time, write meaningful tests for the new code.
It is not possible to cover every possible refactoring technique in a single chapter. There
are entire books dedicated to the topic of refactoring. An excellent book on refactoring
techniques (though not specific to iOS) is Working Effectively With Legacy Code by
Michael C. Feathers.1

Splitting a Large Class
In many situations, the class in which you wish to make changes is already very large. The
reason it may have become so large is probably that no one took the effort to refactor the
class, and at some point it became so large that nobody quite knew where to begin.

When faced with this problem, an approach that you can apply is to split the class
into smaller classes based on assigning a single responsibility to each of the fragment
classes. This is also known as the single responsibility principle: it basically means that
any given class should perform a discrete and well-defined function, and rely on other
classes for other functions.

As an example, consider a large view controller class that makes a network
request to download a JSON document from the Internet, parse the document, and
update a few UI elements on the screen. Listing 8-1 presents the code for a class called
LargeViewController.swift.

Chapter 8 ■ Working with Legacy Code

258

Listing 8-1.  LargeViewController.swift

import UIKit

class LargeViewController: UIViewController {

 @IBOutlet weak var userNameLabel: UILabel!
 @IBOutlet weak var emailAddressLabel: UILabel!

 private var session:URLSession?
 private var dataTask:URLSessionDataTask?

 override func viewDidLoad() {
 super.viewDidLoad()

 downloadUserProfile()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func downloadUserProfile() {

 self.session = URLSession(configuration: URLSessionConfiguration.default)

 guard let session = self.session,
 let url = URL(string: "http://someservice.com/getuser/") else {
 return
 }

 dataTask = session.dataTask(with: url,
 completionHandler: { (data, response, error) in

 if let _ = error {

 DispatchQueue.main.async {
 let alertController = UIAlertController(title: "Error",
 message: �"Unable to download user

profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)

 alertController.addAction(defaultAction)

Chapter 8 ■ Working with Legacy Code

259

 self.present(alertController, animated: true, completion: nil)
 }

 return
 }

 if let response = response as? HTTPURLResponse,
 let data = data {

 if response.statusCode != 200 {
 DispatchQueue.main.async {
 let alertController = UIAlertController(title: "Error",
 message: "Unable to download user profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)

 alertController.addAction(defaultAction)

 �self.present(alertController, animated: true,
completion: nil)

 }
 }

 guard let dictionary =
 try? JSONSerialization.jsonObject(with: data,
 options: �JSONSerialization.ReadingOptions.

mutableContainers)
 as? [String : AnyObject] else {

 DispatchQueue.main.async {
 �let alertController =

UIAlertController(title: "Error",
 message: �"Unable to download user

profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 �style: .default, handler:

nil)
 alertController.addAction(defaultAction)

 self.present(alertController,
 animated: true, completion: nil)
 }
 return
 }

Chapter 8 ■ Working with Legacy Code

260

 if let userName = dictionary?["username"] as? String,
 let emailAddress = dictionary?["emailAddress"] as? String {

 DispatchQueue.main.async {
 self.userNameLabel.text = userName
 self.emailAddressLabel.text = emailAddress
 }
 }

 }

 return
 })

 dataTask?.resume()
 }
}

The fundamental problem with this class is that it is doing too much. Its
responsibilities currently include the following:

•	 Handling view lifecycle events.

•	 Making network requests.

•	 Handling network errors.

•	 Parsing data.

•	 Updating the user interface.

In order to split this class into smaller classes, you need to decide where to make
the split, and how many smaller classes to create. You could base these decisions on the
current responsibilities of the class.

Being a view controller, it can be expected to handle view life cycle events and
contain the code to update the user interface. The other responsibilities can be farmed
out to other objects. Using this line of reasoning, you can come up with the following
classes:

•	 LargeViewController.swift: This is the view controller class and
handles view lifecycle events and contains logic to update the UI.

•	 NetworkController.swift: This is a class dedicated to making
network requests and handling relevant errors.

•	 UserProfile.swift: This class represents a user profile model
object, and contains the logic to parse the contents of a dictionary
into instance variables.

•	 AlertFactory.swift: This class handles the task of creating an alert
controller.

Chapter 8 ■ Working with Legacy Code

261

Figure 8-1 represents the class diagram for this new approach.

The revised LargeViewController.swift class is shown in Listing 8-2.

Listing 8-2.  RefactoredLargeViewController.swift

import UIKit

class RefactoredLargeViewController: UIViewController {

 @IBOutlet weak var userNameLabel: UILabel!
 @IBOutlet weak var emailAddressLabel: UILabel!

 private var networkController:NetworkController?

 override func viewDidLoad() {
 super.viewDidLoad()

 downloadUserProfile()
 }

Figure 8-1.  Class Diagram of Refactored LargeViewController Class

Chapter 8 ■ Working with Legacy Code

262

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 func downloadUserProfile() {

 self.networkController = NetworkController()

 networkController?.downloadUserProfile(success: { (data) in
 if let userProfile = UserProfile(data) {
 DispatchQueue.main.async {
 self.userNameLabel.text = userProfile.userName
 self.emailAddressLabel.text = userProfile.emailAddress
 }
 }
 }, failure: { (error) in
 self.displayErrorAlert()
 })

 }

 func displayErrorAlert() {
 DispatchQueue.main.async {
 �self.present(AlertFactory.networkErrorAlert(), animated: true,

completion: nil)
 }
 }
}

The NetworkController.swift class is presented next in Listing 8-3.

Listing 8-3.  NetworkController.swift

import Foundation

class NetworkController: NSObject {

 var session:URLSession?
 var dataTask:URLSessionDataTask?

 let userProfileURL = "http://someservice.com/getuser/"

 override init() {
 super.init()
 self.session = URLSession(configuration:
 URLSessionConfiguration.default)
 }

Chapter 8 ■ Working with Legacy Code

263

 func downloadUserProfile(success:@escaping (Data) -> Void,
 failure:@escaping (NSError) -> Void) -> Void {

 guard let session = session else {
 failure(NSError(domain: "NetworkController",
 code:100, userInfo: nil))
 return
 }

 guard let url = URL(string: userProfileURL) else {
 failure(NSError(domain: "NetworkController",
 code:101, userInfo: nil))
 return
 }

 dataTask = session.dataTask(with: url,
 completionHandler: { (data, response, error) in

 if let error = error {
 failure(error as NSError)
 return
 }

 if let response = response as? HTTPURLResponse,
 let data = data {
 if response.statusCode == 200 {
 success(data)
 return
 }
 }

 failure(NSError(domain: "ServiceController",
 code:102, userInfo: nil))
 return
 })

 dataTask?.resume()
 }

}

Chapter 8 ■ Working with Legacy Code

264

The UserProfile.swift class is presented next in Listing 8-4.

Listing 8-4.  UserProfile.swift

import Foundation

class UserProfile : NSObject {

 var userName:String?
 var emailAddress:String?

 init?(_ data:Data?) {

 guard let data = data,
 let dictionary = try? JSONSerialization.jsonObject(with: data,
 options: JSONSerialization.ReadingOptions.mutableContainers)
 as? [String : AnyObject],
 let userName = dictionary?["username"] as? String ,
 let emailAddress = dictionary?["emailAddress"] as? String else {
 return nil
 }

 self.userName = userName
 self.emailAddress = emailAddress

 }
}

The AlertFactory.swift class is presented next in Listing 8-5.

Listing 8-5.  AlertFactory.swift

import UIKit

class AlertFactory : NSObject {

 static func networkErrorAlert() -> UIAlertController {

 let alertController = UIAlertController(title: "Error",
 message: "Unable to download user profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)
 alertController.addAction(defaultAction)

 return alertController
 }
}

Chapter 8 ■ Working with Legacy Code

265

Strictly speaking, LargeViewController.swift still has multiple responsibilities: that
of managing lifecycle events, and that of updating the user interface. If you would like
to refactor this class even further, you could use the MV-VM architectural pattern to
introduce a view model object and move the responsibility of updating the user interface
to the view model.

This exercise should give you an idea of how to approach the problem of splitting
large classes into smaller, more focused, and more manageable classes.

Adding Functionality to an Existing Class
Refactoring a large class into smaller classes can in some cases involve a significant
amount of time and effort. As a developer, you may be asked to add features to an existing
legacy class without being given sufficient time to refactor the class first.

In this section we will look at techniques that will allow you to add functionality to
existing classes in such a way that you could revisit the class in the future, when time
permits, and move code into separate helper classes.

Encapsulate Using Classes and Methods
When adding code to an existing method in a legacy class, it is best to try and encapsulate
your new code in a new method, and call the new method from the existing method.
There are a few advantages to this approach:

•	 You could write tests for the new method.

•	 You would not be adding more code to a large untested legacy
method.

•	 This technique may require you to inject some of the local
variables from the source method as dependencies into the
new method; this practice helps lay the foundation for more
refactoring in the future.

In some situations, the class into which you are planning on adding a new method is
very complex and is difficult to bring under test. This will typically occur when the class has
a long list of dependencies and requires several parameters to be provided in its initializer.

In such a situation, you could encapsulate your new code within a method of a new
class, and create an object of the new class within the legacy method. This technique is
also known as Break Out Method Object.1 Using new classes in this manner, however,
should be treated as a stop-gap arrangement. You should aim to revisit the source
method/class and refactor it properly in the near future. If you do not do so then you risk
creating hundreds of small classes in your code base with no clearly defined purpose.

As an example, let us revisit the LargeViewController class from Listing 8-1. Let
us assume you were asked to write some code to perform field-level validation on the
email address of the downloaded user profile and reject profiles that contain invalid
email addresses. Let us also assume that there are no tests for any of the current code in
LargeViewController, and that you do not have the time to refactor the class.

Chapter 8 ■ Working with Legacy Code

266

One possible approach is to write the validation logic inside the
downloadUserProfile() function, as shown in boldface in Listing 8-6.

Listing 8-6.  Inline implementation within downloadUserProfile()

func downloadUserProfile() {

 self.session = URLSession(configuration:
 URLSessionConfiguration.default)

 guard let session = self.session,
 let url = URL(string: "http://someservice.com/getuser/") else {
 return
 }

 dataTask = session.dataTask(with: url,
 completionHandler: { (data, response, error) in

 if let _ = error {

 DispatchQueue.main.async {
 let alertController = UIAlertController(title: "Error",
 message: "Unable to download user profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)
 alertController.addAction(defaultAction)

 self.present(alertController, animated: true,
 completion: nil)
 }

 return
 }

 if let response = response as? HTTPURLResponse,
 let data = data {

 if response.statusCode != 200 {
 DispatchQueue.main.async {
 let alertController = UIAlertController(title: "Error",
 message: "Unable to download user profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)
 alertController.addAction(defaultAction)

Chapter 8 ■ Working with Legacy Code

267

 self.present(alertController,
 animated: true, completion: nil)
 }
 }

 guard let dictionary =
 try? JSONSerialization.jsonObject(with: data,
 options: JSONSerialization.ReadingOptions.mutableContainers)
 as? [String : AnyObject] else {

 DispatchQueue.main.async {
 let alertController = UIAlertController(title: "Error",
 message: "Unable to download user profile",
 preferredStyle: .alert)

 let defaultAction = UIAlertAction(title: "OK",
 style: .default, handler: nil)
 alertController.addAction(defaultAction)

 self.present(alertController,
 animated: true, completion: nil)
 }

 }

 if let userName = dictionary?["username"] as? String,
 let emailAddress = dictionary?["emailAddress"] as? String {

 // validate email address
 if (emailAddress.characters.count < 6) {
 return
 }

 let whitespace = Set(" ".characters)
 if (emailAddress.characters.filter
 {whitespace.contains($0)}).count > 0 {
 return
 }

 let numbers = Set("0123456789".characters)
 if (emailAddress.characters.filter
 {numbers.contains($0)}).count > 0 {
 return
 }

 let specialCharacters =
 Set("+,!#$%^&*();\\/|<>\"".characters)

Chapter 8 ■ Working with Legacy Code

268

 if (emailAddress.characters.filter
 {specialCharacters.contains($0)}).count > 0 {
 return
 }

 guard let regexValidator = try? NSRegularExpression(pattern:
 "([A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4})",
 options: .caseInsensitive) else {
 return
 }

 if regexValidator.numberOfMatches(in: emailAddress,
 options:
 NSRegularExpression.MatchingOptions.reportCompletion,
 range: NSMakeRange(0, emailAddress.characters.count))> 0{
 return
 }

 DispatchQueue.main.async {
 self.userNameLabel.text = userName
 self.emailAddressLabel.text = emailAddress
 }
 }

 }

 return
 })

 dataTask?.resume()
}

The drawback with this approach is that it adds more code to a method that not only
already has a lot of code, but is also untested. An alternate approach would be to create a
new class to handle email address validation with the validation logic encapsulated within a
single method of this class. A class called EmailAddressValidator is presented in Listing 8-7.

Listing 8-7.  EmailAddressValidator.swift

import Foundation

class EmailAddressValidator: NSObject {

 func validate(_ value:String) -> Bool {
 if (value.characters.count < 6) {
 return false
 }

Chapter 8 ■ Working with Legacy Code

269

 let whitespace = Set(" ".characters)
 if (value.characters.filter {whitespace.contains($0)}).count > 0 {
 return false
 }

 let numbers = Set("0123456789".characters)
 if (value.characters.filter {numbers.contains($0)}).count > 0 {
 return false
 }

 let specialCharacters = Set("+,!#$%^&*();\\/|<>\"".characters)
 if (value.characters.filter {specialCharacters.contains($0)}).count > 0 {
 return false
 }

 �guard let regexValidator = try? NSRegularExpression(pattern: "([A-Z0-
9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4})", options: .caseInsensitive) else {

 return false
 }

 if regexValidator.numberOfMatches(in: value,
 options: �NSRegularExpression.

MatchingOptions.
reportCompletion,

 range: �NSMakeRange(0, value.
characters.count)) > 0 {

 return true
 }

 return false
 }

}

Since this class is new, and has no dependencies on any of the existing classes, it can
easily be brought under test. With this class in place, adding email address validation to
the downloadUserProfile() is a simple matter of adding three lines of code to the method:

if let userName = dictionary?["username"] as? String,
 let emailAddress = dictionary?["emailAddress"] as? String {

 let validator = EmailAddressValidator()
 if validator.validate(emailAddress) == false {
 return
 }

Chapter 8 ■ Working with Legacy Code

270

 DispatchQueue.main.async {
 self.userNameLabel.text = userName
 self.emailAddressLabel.text = emailAddress
 }
}

Rename and Replace
If the change you wish to make to a method is such that it adds either a precondition or a
post condition, then instead of adding code to the beginning/end of the source method,
you could rename the source method and create a new method with the same name as
the source method. You can now add your code to this new method, and make a call to the
original method from your new method. This technique is also known as Wrap Method.1

As an example, consider another scenario where you have been asked to initiate the
process of downloading credentials only if an Internet connection is available, and save
the credentials to the system keychain if valid credentials were downloaded.

These modifications will require you to add some code before you start the
download, and then some code if the download was successful. If you were to use the
strategy described in this section, then you would create a new private method called
downloadProfileHelper() and move all the existing code from downloadProfile() into
downloadProfileHelper().

As far as the public interface of the class is concerned, there are no changes. From
the new (currently empty) downloadProfile() method, you would still make a call to
downloadProfileHelper(); however, you would surround this call with calls to two new
methods, one which contains the logic to check for an Internet connection, and the other
that saves credentials to the keychain.

Your solution would resemble the following:

func downloadUserProfile() {
 if internetConnectionExists() {
 downloadUserProfileHelper()
 saveUserCredentialsToKeychain()
 }
}

func internetConnectionExists() -> Bool {
 // code to check if an internet connection exists
}

func saveUserCredentialsToKeychain() {
 // code to save user credentials to the keychain
}

func downloadUserProfileHelper() {
 // all the code that was previously present in downloadUserProfile
}

Chapter 8 ■ Working with Legacy Code

271

Decorators
Another neat trick when it comes to adding new code to a legacy code base is to make
use of the decorator design pattern. The decorator design pattern allows you to add
functionality to a class by wrapping that class within another class, with new functionality
being provided by the wrapping class.

The decorator pattern is best explained using an example. Listing 8-8 presents the
BankAccount class that was developed in Chapter 4.

Listing 8-8.  BankAccount.swift

import Foundation

class BankAccount: NSObject {

 var accountName:String
 var accountNumber:String
 var sortingCode:String
 var accountType:AccountType
 var transactions:[Transaction]
 var owners:[AccountOwner]

 var accountBalance:Float {
 get {
 var balance:Float = 0.0
 for transaction in self.transactions {
 if let amount = Float(transaction.amount) {
 if transaction.isIncoming {
 balance += amount
 } else {
 balance -= amount
 }
 }
 }
 return balance
 }
 }

 init?(accountName:String,
 accountNumber:String,
 sortingCode:String,
 accountType:AccountType,
 owners:[AccountOwner],
 accountNameValidator:AccountNameValidator? = nil,
 accountNumberValidator:AccountNumberValidator? = nil,
 sortingCodeValidator:SortingCodeValidator? = nil) {

http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 8 ■ Working with Legacy Code

272

 let validator1 = accountNameValidator ?? AccountNameValidator()
 if validator1.validate(accountName) == false {
 return nil
 }

 let validator2 = accountNumberValidator ?? AccountNumberValidator()
 if validator2.validate(accountNumber) == false {
 return nil
 }

 let validator3 = sortingCodeValidator ?? SortingCodeValidator()
 if validator3.validate(sortingCode) == false {
 return nil
 }

 if (owners.count == 0 || owners.count > 2) {
 return nil
 }

 self.accountName = accountName
 self.accountNumber = accountNumber
 self.sortingCode = sortingCode
 self.accountType = accountType
 self.owners = owners
 self.transactions = [Transaction]()
 }

 func setOpeningBalance(_ amount:Float) -> Void {
 �if let openingBalanceTransaction = Transaction(txDescription: "Opening

Balance", date: NSDate(), isIncoming: true, amount: "100.0") {
 self.transactions.removeAll()
 self.transactions.append(openingBalanceTransaction)
 }
 }

 func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 �if let newTransaction = Transaction(txDescription: "ATM Withdrawal",

date: NSDate(), isIncoming: false, amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 �if let newTransaction = Transaction(txDescription: "Cash Deposit",

date: NSDate(), isIncoming: true, amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

}

Chapter 8 ■ Working with Legacy Code

273

This class has a very simple interface and can be used to represent a bank account,
with a list of transactions in a banking system.

Now, let us assume that due to changing business needs, the banking system needs
to be upgraded to differentiate between personal accounts and business accounts. Daily
deposit and withdrawal limits are to be applied to both types of accounts. Additionally, all
deposits and withdrawals for business accounts need to be logged into a special auditing
system.

These requirements can easily be handled by creating decorator classes called
PersonalBankAccount and BusinessBankAccount, which provide additional features over
what currently exists in the BankAccount class, so that the needs of these specific account
types can be met.

To start with, let us move the external interface of the BankAccount class to a
protocol called BankAccountProtocol (see Listing 8-9), and have the BankAccount class
implement this protocol.

Listing 8-9.  BankAccountProtocol.swift

protocol BankAccountProtocol : class {

 var accountName:String {get set}
 var accountNumber:String {get set}
 var sortingCode:String {get set}
 var accountType:AccountType {get set}
 var transactions:[Transaction] {get set}
 var owners:[AccountOwner] {get set}

 func setOpeningBalance(_ amount:Float) -> Void
 func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void
 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void

}

The only change needed to ensure the BankAccount class implements this protocol
is to add the name of the protocol to the class declaration:

class BankAccount: NSObject, BankAccountProtocol

With this change in place, we can use the decorator pattern to create the
PersonalBankAccount class, which will impose daily deposit and withdrawal limits
(Listing 8-10).

Chapter 8 ■ Working with Legacy Code

274

Listing 8-10.  PersonalBankAccount.swift

import Foundation

class PersonalBankAccount : NSObject , BankAccountProtocol {

 var bankAccount:BankAccount

 var accountName:String {
 get {
 return bankAccount.accountName
 }

 set {
 bankAccount.accountName = newValue
 }
 }

 var accountNumber:String {
 get {
 return bankAccount.accountNumber
 }

 set {
 bankAccount.accountNumber = newValue
 }
 }

 var sortingCode:String {
 get {
 return bankAccount.sortingCode
 }

 set {
 bankAccount.sortingCode = newValue
 }
 }

 var accountType:AccountType {
 get {
 return bankAccount.accountType
 }

 set {
 bankAccount.accountType = newValue
 }
 }

Chapter 8 ■ Working with Legacy Code

275

 var transactions:[Transaction] {
 get {
 return bankAccount.transactions
 }

 set {
 bankAccount.transactions = newValue
 }
 }

 var owners:[AccountOwner] {
 get {
 return bankAccount.owners
 }

 set {
 bankAccount.owners = newValue
 }
 }

 var accountBalance:Float {
 get {
 return bankAccount.accountBalance
 }
 }

 init(_ bankAccount:BankAccount) {
 self.bankAccount = bankAccount
 super.init()
 }

 func setOpeningBalance(_ amount:Float) -> Void {
 bankAccount.setOpeningBalance(amount)
 }

 func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyWithdrawalLimit(amount) {
 bankAccount.withdraw(amount, person)
 }
 }

 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyDepositlLimit(amount) {
 bankAccount.deposit(amount, person)
 }
 }
}

Chapter 8 ■ Working with Legacy Code

276

extension PersonalBankAccount {
 func withinDailyWithdrawalLimit(_ amount:Float) -> Bool {
 // add code to ensure this transaction does not exceed daily
 // withrawal limits.
 return true
 }

 func withinDailyDepositlLimit(_ amount:Float) -> Bool {
 // add code to ensure this transaction does not exceed daily
 // deposit limits.
 return true
 }
}

Some of the key points to note about the PersonalBankAccount class are the
following:

	 1.	 An instance variable of type BankAccount has been created,
and the initializer accepts a BankAccount instance to be
injected. The PersonalBankAccount class, in effect, wraps
around a BankAccount class:

var bankAccount:BankAccount

init(_ bankAccount:BankAccount) {
 self.bankAccount = bankAccount
 super.init()
}

	 2.	 All the property declarations in the decorator class call the
corresponding properties of the wrapped class:

var accountName:String {
 get {
 return bankAccount.accountName
 }

 set {
 bankAccount.accountName = newValue
 }
}

	 3.	 The deposit and withdraw methods implement additional
logic before calling the corresponding methods of the
wrapped class:

func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyWithdrawalLimit(amount) {

Chapter 8 ■ Working with Legacy Code

277

 bankAccount.withdraw(amount, person)
 }
}

func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyDepositlLimit(amount) {
 bankAccount.deposit(amount, person)
 }
}

This is the essence of the decorator pattern. The
PersonalBankAccount class decorates the BankAccount
class by adding some additional functionality on top of what
is offered by BankAccount. You can use an instance of a
PersonalBankAcccount anywhere in your code in place of a
BankAccount instance. You could also implement this pattern
by sub classing BankAccount, and modifying the methods
implemented by the subclass.

Continuing with the approach used to create the
PersonalBankAccount class, the BusinessBankAccount class
will be very similar to the PersonalBankAccount class, with
the only difference being the implementation of the deposit()
and withdraw() methods:

func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyWithdrawalLimit(amount) {
 bankAccount.withdraw(amount, person)
 logWidthdrawalForAudit(amount, person)
 }
}

func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 if withinDailyDepositlLimit(amount) {
 bankAccount.deposit(amount, person)
 logDepositForAudit(amount, person)
 }
}

Decoupling Classes Using Protocols
In the previous section we looked at techniques you can use to add code to legacy
classes so as to be able to write tests for the new code, with minimal impact on the
existing legacy code.

In time, when you decide to start writing tests for your legacy code, you are likely to
try and write unit tests for one class at a time. However, classes in legacy code bases are
often tightly coupled, and it is impossible to instantiate a single class in isolation.

Chapter 8 ■ Working with Legacy Code

278

This tight coupling manifests itself as a tree of of dependent classes, all of which need
to be instantiated just in order to instantiate the one class you are truly interested in.

Managing the dependencies between classes will be one of the biggest challenges
you will face when you bring legacy classes in to test. In this section we will look at using
Protocols to break the tight coupling between classes often found in legacy code bases.

Consider for a moment, the instance variables of the BankAccount class, part of
which is reproduced below:

class BankAccount: NSObject {

 var accountName:String
 var accountNumber:String
 var sortingCode:String
 var accountType:AccountType
 var transactions:[Transaction]
 var owners:[AccountOwner]

 ...
 ...
}

The ‘transactions’ and ‘owners’ variables create a strong coupling between the this
class and the Transaction and AccountOwner classes. It is not possible to instantiate
BankAccount under test without bringing in the other two classes as well.

You can break the tight coupling between these classes by using protocols as follows:

	 1.	 Create two new protocols: TransactionProtocol and
AccountOwnerProtocol.

	 2.	 Declare all the methods and public instance variables of the
Transaction class in the TransactionProtocol protocol.

	 3.	 Declare all the methods and public instance variables of the
AccountOwner class in the AccountOwnerProtocol protocol.

	 4.	 Modify the declaration of the Transaction class to implement
the TransactionProtocol protocol.

	 5.	 Modify the declaration of the AccountOwner class to
implement the AccountOwnerProtocol protocol.

	 6.	 Modify the declaration of the BankAccount class to use
protocols instead of the respective classes:

class BankAccount: NSObject {

 ...
 ...

Chapter 8 ■ Working with Legacy Code

279

 var transactions:[TransactionProtocol]
 var owners:[AccountOwnerProtocol]
 ...
 ...
}

By using protocols for instance variables, instead of concrete class names you
have broken the tight coupling that previously existed in the BankAccount class.
The BankAccount class can now easily be brought under test, without bringing in
the Transaction and AccountOwner classes. You can use stub objects in place of the
Transaction and AccountOwner classes.

Using Dependency Injection to Create More
Testable Code
The idea behind dependency injection (DI) is to make dependencies between classes and
methods more explicit. Consider the following seemingly innocent method added to the
BankAccount class to provide the balance of the class at a particular instance in time.

func accountBalanceDescription() -> String {
 let dateFormatter = DateFormatter()
 dateFormatter.dateFormat = "MMMM dd yyyy"
 return "The balance in your account as of \(dateFormatter.string(from:
 Date())) is \(accountBalance)"
}

There are two problems with this method:

	 1.	 A new DateFormatter instance is created every time this
method is called. This is very inefficient.

	 2.	 There is nothing in the method signature itself that suggests the
method will create a date formatter, with a specific date format.

The method clearly has a dependency on a DateFormatter instance, and the
dependency is hidden because you need to look into the implementation of the method
to realize that it exists. In this case to make it more explicit, you could simply inject the
date formatter as a parameter into the method:

func accountBalanceDescription(_ dateFormatter:DateFormatter) -> String {
 return "The balance in your account as of \(dateFormatter.string(from:
 Date())) is \(accountBalance)"
}

Chapter 8 ■ Working with Legacy Code

280

The problem is far worse if the hidden dependency is on a resource, or a data source
that is shared between methods of the class. Consider, for example, the following pair of
methods:

func deposit(_ amount:Float, _ person:AccountOwner) -> Void {

 let transactionDate = NSDate()

 if let newTransaction = Transaction(txDescription: "Cash Deposit",
 date: transactionDate,
 isIncoming: true,
 amount: "\(amount)") {

 self.transactions.append(newTransaction)

 UserDefaults.standard.set(transactionDate,
 forKey: "lastDepositDate")
 }
}

func lastDepositDate() -> NSDate? {
 return UserDefaults.standard.object(forKey: "lastDepositDate")
 as? NSDate
}

The problem with these methods is the hidden dependency on a UserDefaults
instance shared between the methods. This kind of code is very difficult to test. Once
again, you could break the tight coupling between these methods and the UserDefaults
class by exposing the dependency in the list of parameters provided as input to the
methods:

func deposit(_ amount:Float, _ person:AccountOwner?,
 _ defaults:UserDefaults) -> Void {

 let transactionDate = NSDate()

 if let newTransaction = Transaction(txDescription: "Cash Deposit",
 date: transactionDate,
 isIncoming: true,
 amount: "\(amount)") {

 self.transactions.append(newTransaction)

 defaults.set(transactionDate, forKey: "lastDepositDate")
 }
}

Chapter 8 ■ Working with Legacy Code

281

func lastDepositDate(_ defaults:UserDefaults) -> NSDate? {
 return defaults.object(forKey: "lastDepositDate") as? NSDate
}

However, this solution presents us with a new problem - the two methods were
designed to access the same UserDefaults instance. By exposing the UserDefaults
instance in the parameter list, you are now allowing a user to potentially inject different
UserDefaults instances into these methods.

A better solution in this situation would be to make the UserDefaults instance an
instance variable of the class in which both these methods exist, and not expose the
UserDefaults object in the method signatures:

class BankAccount: NSObject {

 var defaults:UserDefaults?

 ...
 ...
 ...

 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {

 let transactionDate = NSDate()

 if let newTransaction = Transaction(txDescription: "Cash Deposit",
 date: transactionDate,
 isIncoming: true,
 amount: "\(amount)") {

 self.transactions.append(newTransaction)

 self.defaults?.set(transactionDate, forKey: "lastDepositDate")
 }
 }

 func lastDepositDate() -> NSDate? {
 return self.defaults?.object(forKey: "lastDepositDate") as? NSDate
 }

 ...
 ...
 ...

}

Making dependencies explicit leads to looser coupling between objects, and makes it
easier to test methods in isolation.

Chapter 8 ■ Working with Legacy Code

282

Summary
In this chapter you have looked at different ways to refactor legacy code, or add
well-tested code to a legacy code base. You have learned to split large classes into smaller
classes using the Single Responsibility Principle and encapsulate new code into methods
or new classes.

You have also learned to use protocols as a way to decouple classes, use the
decorator pattern, and inject dependencies to create more testable code.

Note
	 1.	 Refactoring Legacy Code, Michael C. Feathers, Prentice Hall

Professional Technical Reference. ISBN 0-13-117705-2.

283© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_9

CHAPTER 9

Continuous Integration

Continuous Integration (CI) is an approach to software development that requires
developers to push their code into a shared repository frequently, triggering an
automated test and build cycle on a dedicated build computer. Build cycles can be
triggered either periodically or after each code push.

When suites of unit (or user interface) tests are included in the build cycle, a CI
system will only produce a build if all the tests pass. Failing tests usually send out email
notifications to all members of the development team.

While a CI system does not mandate having a suite of automated tests run before as
part of the build process, the key advantage to having the tests is the ability to catch issues
early. If a developer on the team makes a change and the build breaks immediately after
he pushes his change to the repository, chances are there is something in the files pushed
that broke the build.

When a build is created successfully by a CI system, the build is stored on the CI
system and is available for team members to download. Testers can always get the latest
build straight from the CI system.

For a CI system to work, developers on the team must agree to the following principles:

•	 Push code frequently to the repository.

•	 Do Not push broken code to the repository.

•	 Do Not push to the repository before running a set of tests on
their development machines.

Apple provides their own CI system called Xcode server, which integrates seamlessly
with the Xcode development environment. Xcode server is part of macOS Server, and it
is not installed automatically when you install Xcode. To use Xcode Server, you need to
install and configure both the macOS Server application and Xcode on a Mac.

Chapter 9 ■ Continuous Integration

284

■■ Note  A continuous integration workflow typically has developers use development Macs
and a separate dedicated Mac called the build server. The build server has both Xcode installed
as well as Xcode Server on it. The build computer can also host your source repositories, or it
can connect to remote repositories hosted on GitHub/BitBucket. If you do not have a dedicated
build computer, you can install the macOS Server app on your development Mac.

Installing macOS Server
Installing the macOS server is a straightforward process. As mentioned earlier in this
chapter, it is quite common for companies to use a dedicated Mac on the network as the
continuous integration server. The instructions in this chapter are agnostic to the Mac on
which you install macOS server.

■■ Note  Before you install macOS server on your Mac, you must ensure the following:

•	 You have the latest version of Xcode installed on the Mac.

•	 You have downloaded and installed relevant provisioning profiles,
simulators, and certificates.

•	 Have administrator credentials for the Mac.

•	 Have an iTunes account (for the Mac App Store).

•	 Have credentials to access a Git repository where your source
code is staged.

To begin the installation process on the Mac on which you intend to use Xcode
server, locate the macOS Server application in the Mac App Store and click Install
(see Figure 9-1).

Chapter 9 ■ Continuous Integration

285

Launching macOS Server
Once macOS server has been installed on your Mac, launch it by launching the “Server.
app” application from your Applications directory, or typing “Server” in spotlight, or
clicking on the Launchpad icon in the dock and clicking on “Server.” The first time you
launch the macOS server application, you will be asked to configure it (see Figure 9-2).

Figure 9-1.  macOS Server on the Mac App Store

Chapter 9 ■ Continuous Integration

286

Clicking on Continue will ask you to accept the terms of a license agreement.
Once you have accepted the license agreement, you will then be prompted to provide
credentials for an Administrator account on the Mac. Once appropriate credentials are
provided, macOS server will take a few minutes to install and configure various services
on the Mac (See Figure 9-3).

Figure 9-2.  macOS Server Configuration Screen

Chapter 9 ■ Continuous Integration

287

On subsequent launches, you will be asked to select a server instance to administer
(see Figure 9-4). If you have installed macOS Server on both development Macs as well as
a dedicated build Mac, then you can choose to administer the local server instance on the
development Mac, or the server instance on the build Mac. Select the appropriate option
and click Continue.

Figure 9-3.  macOS Server Set Up Procedure

Chapter 9 ■ Continuous Integration

288

You can administer remote Macs only if the remote Mac has macOS Server installed
and the “Using Server app on a remote computer” option is enabled in the settings tab of
the Server app on the remote computer. (See Figure 9-5.)

Figure 9-4.  Choose a Server Instance to Administer

Chapter 9 ■ Continuous Integration

289

Setting Up Access for Team Members
If you are running macOS Server on a dedicated Mac, you should create user accounts to
allow other users on other Macs to connect to the server and access available services.

Click on Users under the Accounts section in the sidebar (see Figure 9-6). This will
bring up a list of users who can access the macOS Server. Use the Add (+) button to create
accounts for other Mac users on your network. The credentials you create here will be
used by other users to connect to this server instance from their Macs, and are not related
to the credentials they use to log in to their Macs.

Figure 9-5.  Settings Required to Administer a macOS Server Instance Remotely

Chapter 9 ■ Continuous Integration

290

Your team members will need to provide these credentials when connecting to
Xcode Server from Xcode. This is covered later in this chapter under the topic “Adding
Xcode Server Credentials to Xcode.”

Starting Xcode Server
Launch the macOS server app and navigate to the Xcode option under the Services
section in the sidebar. (See Figure 9-7.)

Figure 9-6.  Creating User Accounts for Other Team Members

Chapter 9 ■ Continuous Integration

291

You can use the on/off switch on the top right corner of the window to start/stop
the Xcode Server process. By default, all services provided by the macOS server app are
turned off.

If this is the first time you are running Xcode Server on the computer, you will be
asked to provide a path to Xcode on the local computer that can be used to create builds.
If you have not installed Xcode, quit the macOS server app, install the latest version of
Xcode from the Mac App Store, and resume the lesson from this point.

Click on the “Choose Xcode…” button and select the Xcode.app application in your
“Applications” directory. You can, in the future, choose to use a different version of Xcode
to create builds from the Xcode server settings page.

Xcode Server runs in its own user account. In previous versions this was a hidden
user account created on the Mac. Since version 5.2 of Xcode Server, this account is just
like any other account on your system and you can even log in to this account.

When asked to provide an account for Xcode Server (see Figure 9-8), you can choose
to create a new account or use an existing one. It is best practice to keep a dedicated non-
administrative account for Xcode server, and not use your everyday account.

Figure 9-7.  Starting Xcode Server

Chapter 9 ■ Continuous Integration

292

If you are using a single Mac setup that has Xcode server running on the same
computer that you use for everyday development, you must log in to the dedicated user
account that you have created for Xcode server .You can then use fast user switching to
switch from the Xcode Server user account back to your everyday use account, and keep
the Xcode Server process running in the background.

■■ Note  Xcode server refers to “builds” as “integrations.”

Once you provide a user account to the Xcode server that it can use, you will be
prompted to log in as that user (See Figure 9-9).

Figure 9-8.  Xcode Server User Account

Figure 9-9.  Log in using a Dedicated User Account

You can either choose to log in now, or do so later. If you chose to log in later then
you can do so in a number of ways, including using the Login option built into the Xcode
Server configuration page (see Figure 9-10).

Chapter 9 ■ Continuous Integration

293

■■ Note  You can still proceed to configure the Xcode server without logging in to the
designated account. However, you will not be able to integrate until you log in to the
dedicated user account you have provided.

Configuring Xcode Server
Xcode Server allows you to configure various parameters, through a settings page
including the following:

•	 The Xcode version to use for integrations.

•	 Developer Teams

•	 Permissions

•	 Repositories

This settings page can be accessed using the View ➤ Xcode menu item. The settings
page has two tabs labeled “Settings” and “Repositories” (see Figure 9-11).

Figure 9-10.  Login Option Within the Xcode Server Configuration Page

Chapter 9 ■ Continuous Integration

294

Xcode versions, permissions, and developer teams can be configured under
the tab labeled “Settings,” and repositories can be configured under the tab labeled
“Repositories.”

Xcode Version
To change the Xcode version that will be used for subsequent integrations, click on
the “Choose Xcode…” button in the Xcode service settings page and select the .app file
corresponding to the version of Xcode that you would like to use.

Apple Developer Teams
If you would like to use Xcode Server to deploy builds and run tests on provisioned
development devices, you will need to add the server to one of the development teams
that you use with your Apple developer account.

Adding the server to a development team will allow Xcode Server to download the
provisioning profiles and signing certificates it needs to prepare builds for your devices.

To add the server to your development team, click on the “Add Team…” button in the
Xcode service settings page (see Figure 9-12).

Figure 9-11.  Xcode Server Configurtion Page

Figure 9-12.  Adding Xcode Server to your Apple Developer Account

You will be asked to log in to your iOS developer account and select a developer team.
Enter your iOS developer account credentials and click on “Sign-In” (see Figure 9-13).

Chapter 9 ■ Continuous Integration

295

Development Devices
After having added a developer team to Xcode server, you can connect a provisioned
development device to the Mac that is running Xcode Server. This device can be used to
run automated tests. You will see all connected devices in the Development Devices list
(see Figure 9-14). If you disconnect a device from the Mac, it will be removed from this list.

Figure 9-13.  Sign In With Apple Developer Credentials

Figure 9-14.  Connected Devices are Visible in the Development Devices Section

Repositories
Xcode Server requires you to connect it to one or more source code repositories. The
repositories themselves can be hosted remotely, or hosted within Xcode Server. For
remotely hosted repositories, Xcode Server supports both Git and Subversion; however
for locally hosted repositories, Xcode Server supports Git only.

If your repositories are hosted on a remote server (such as BitBucket or GitHub),
then you do not need to use any of the options within the repositories tab. Instead you
will need to configure appropriate access credentials within Xcode on your development
machine and these credentials will also need to be provided when creating a build job
(also known as a Bot) on Xcode server from within Xcode.

If your repositories are not hosted on a remote server, you can use the options in the
repositories tab to create Git repositories that will be hosted within Xcode Server.

Chapter 9 ■ Continuous Integration

296

Creating a New Git Repository on Xcode Server
Figure 9-15 depicts the options available in the repositories tab. On this tab you can
manage the repositories that are hosted within Xcode Server, configure security protocols,
as well as set up a list of users who can access these repositories.

Figure 9-15.  Xcode Server Repositories Tab

To configure the security protocols that can be used to authenticate users connecting
to your repositories hosted within Xcode server, click on the “Edit Repository Access…”
button. You will be presented with a dialog box that asks you to select the protocols to
allow. Choices available are HTTPS and SSH (see Figure 9-16).

Figure 9-16.  Security Protocol Settings for Repositories Hosted Within Xcode Server

Chapter 9 ■ Continuous Integration

297

To configure the list of users who can access your repositories hosted within Xcode
Server, click on “Edit Repository Creators.” By default, any users who have logged in to
Xcode Server from within Xcode can access your repositories and create Bots.

Users who wish to connect to these repositories will need to add account credentials
into Xcode on their development Mac so that Xocde can access these repositories. This is
typically done using the Account preferences section within Xcode and is covered later in
this chapter.

To create a new repository, click on the Add (+) button under the list of repositories
(see Figure 9-17).

Figure 9-17.  Creating a New Repository Within Xcode Server

Type in the name of the repository, and this name will appear in the Hosted
Repositories list and will be part of the access URL.

Click the Edit button to specify the users that will be able to access the repository via
SSH. To enable HTTPS access, select the “Allow logged in users to read and write” check box.

Click on Create to finish creating the new Git repository. The new repository will
appear in the list of repositories. To make changes to who can access the repository, select
the repository from the list of repositories, and click on the Edit button located below the
list (see Figure 9-18).

Chapter 9 ■ Continuous Integration

298

Configuring Xcode
In this section we will look at connecting Xcode on a development Mac to an instance of
Xcode server and cloning repositories.

Adding Xcode Server Credentials to Xcode
To access Git repositories hosted on Xcode Server on your development Mac, and to
create bots on Xcode Server, you need to connect Xcode on your development Mac to
Xcode Server.

Launch Xcode on your development Mac and select the Xcode ➤ Preferences menu
item. Switch to the Accounts tab (see Figure 9-19).

Figure 9-18.  Edit Who Can Access an Existing Repository

Chapter 9 ■ Continuous Integration

299

This tab lists your development accounts, remotely hosted repositories, as well as
Xcode server instances. To connect Xcode to your Xcode Server instance, click on the Add
(+) button at the bottom of the list and select “Add Server…” from the list of options.

Choose a Xcode Server instance from the list of servers and click on Add
(see Figure 9-20).

Figure 9-19.  Xcode Accounts Preferences

Chapter 9 ■ Continuous Integration

300

When prompted for access credentials, type user name and password (this should
have been provided to you by your Xcode Server administrator).

You will now see the build server listed under the Servers section of the Accounts tab
(see Figure 9-21).

Figure 9-20.  Add a Bookmark to a Remote Xcode Server Instance in Xcode

Chapter 9 ■ Continuous Integration

301

Create a New Xcode Project and Host Its Repository on
Xcode Server
Once you have added credentials into Xcode to access Xcode Server, you can host the
repository for every new project you create on the server. To do this, enable the “Source
control” check box when you are asked to select a location for the new project, and select
the name of the server from the list of available options (see Figure 9-22).

Figure 9-21.  Xcode Accounts Page Showing Xcode Server Instance

Chapter 9 ■ Continuous Integration

302

If the server doesn’t appear in the list, ensure you have added the server to Xcode,
and that your user account has permission to create a repository on Xcode Server.

Clone an Existing Local Repository to Xcode Server
If you have an existing Xcode project within a Git repository on your development Mac
and want to clone the repository to Xcode server, open the Xcode project and click on
the Source Control ➤ YourProjectName ➤ Configure menu item. YourProjectName is a
placeholder for the name of your Xcode project (see Figure 9-23).

Figure 9-22.  Hosting the Repository for a new Project on Xcode Server

Chapter 9 ■ Continuous Integration

303

Switch to the Remotes tab and click on the Add (+) button and select “Create New
Remote” from the context menu (see Figure 9-24).

Figure 9-23.  Configuring Source Control Options for an Existing Xcode Project

Figure 9-24.  Repository Configuration Dialog

Chapter 9 ■ Continuous Integration

304

Select a running instance of Xcode Server, type a name that helps you identify the
remote repository, and click on Create.

Clone a Git Repository from Xcode Server
If you have an existing repository on Xcode Server that you would like to clone on your
development Mac, launch Xcode on your development Mac and select the Xcode ➤
Preferences menu item.

Switch to the Accounts tab, and click on the Add(+) button at the bottom of the list of
Accounts/Repositories/Servers and select “Add Repository…” from the list of options.

You will be presented with a dialog box where you need to provide details on the new
repository (see Figure 9-25).

Figure 9-25.  Cloning a Repository From Xcode Server

In the “Address” field, type the URL of the repository within Xcode Server. The URL
will begin with either https or ssh depending on the security protocol you wish to use. The
URL can be obtained from the repository settings within Xcode Server.

For example the following URL represents a repository called
“TestGitRepositoryHostedOnXcodeServer” hosted within Xcode Server running on the
Mac called “Abhisheks-MacBook,” accessed via HTTPS.

https://Abhisheks-MacBook.local/git/TestGitRepositoryHostedOnXcodeServer.git

Specify “Git” in the repository type combo box, and set authentication to “User Name
and Password.” Type the credentials required to access this repository and click on Add.

Your repository will now appear in the list of repositories in the accounts dialog
box (see Figure 9-26). You have now successfully added a bookmark to the Git repository
in Xcode.

https://abhisheks-macbook.local/git/TestGitRepositoryHostedOnXcodeServer.git

Chapter 9 ■ Continuous Integration

305

To check out the repository on your development Mac, close the accounts dialog
box, and use the Source Control ➤ Check Out menu item. Select the repository from the
list of available repository names and click on Next. Specify a location on your hard disk
where you would like to save the repository clone and click Download.

Cloning a Git Repository from GitHub
If you have an existing repository hosted on GitHub/BitBucket that you would like to
clone on your development Mac, launch Xcode on your development Mac and select the
Xcode ➤ Preferences menu item.

Switch to the Accounts tab, and click on the Add(+) button at the bottom of the list of
Accounts/Repositories/Servers and select “Add Repository…” from the list of options.

In the “Address” field, type the URL of the remote repository, Specify “Git” in the
repository type combo box, and set authentication to “User Name and Password”. Type
the credentials required to access this repository and click on Add. The repository will
now appear in the list of repositories in the accounts dialog box.

To check out the repository on your development Mac, close the accounts dialog
box, and use the Source Control ➤ Check Out menu item. Select the repository from the
list of available repository names and click on Next. Specify a location on your hard disk
where you would like to save the repository clone and click Download.

Figure 9-26.  Remote Repository Listed in the Xcode Accounts Dialog Box

Chapter 9 ■ Continuous Integration

306

Creating and Integrating Bots
A Bot is a server-side process (one which executes on Xcode Server) that performs
integrations on the current version of your project. A single run of a bot is called an
Integration and consists of pulling the latest version of your project’s code from a
repository, building the project, running tests, creating the build artifact (.ipa file), and
archiving the build artifact.

You can configure a bot to perform integrations on-demand, or based on a schedule,
or each time some code is pushed to the repository. The ability to create a bot that can
perform an integration when any member of your development team pushes code to the
repository make bots (and Xcode Server) a valuable tool in any continuous integration
pipeline.

In addition to scheduled and on-demand integrations, a bot will also integrate
automatically whenever you update the installed version of Xcode. These integrations run
immediately, prior to running any normally scheduled integrations. You can compare
these integrations with previous integrations to identify issues that may have been
encountered as a result of the upgrade.

■■ Note  The screenshots in this section of the chapter are based on checking out an
existing project from an existing repository from GitHub. You will need to use your own
project hosted in your own repository to follow these steps.

Create a Bot
To create a bot on Xcode Server for a project, your project’s code must be committed to a
repository, and the repository must be added to Xcode or Xcode Server using one of the
techniques listed earlier in this chapter.

In addition to having your project in a repository, you will also need to share
the project’s build scheme. A build scheme collates information about specific build
configurations and targets. A shared scheme is one that is published to the repository,
thus making it visible to Xcode Server.

When you create a new iOS project, Xcode creates a default scheme that performs
the following actions:

•	 Analyze:Perform static code analysis.

•	 Test: Run unit and/or UI tests.

•	 Archive: Create a .ipa executable file.

Chapter 9 ■ Continuous Integration

307

■■ Note  The archive action in the debug scheme is set up by default to archive a release
build. Creating a release build requires that appropriate provisioning profiles and certificates
are setup in the project. You will also need to make sure these profiles and certificates are
installed on the build Mac.

The default build scheme is, however, not shared. To share a build scheme, open
the project that contains the build scheme in Xcode and use the Product ➤ Scheme ➤
Manage Schemes menu item. This will present a list of all build schemes defined for the
project (see Figure 9-27).

Figure 9-27.  Xcode Schemes

Select the shared check box for the schemes you want to share, commit the changes,
and push the commit (if you are using a Git repository.)

After sharing the scheme, you can create a bot using the Product ➤ Create Bot menu
item. Type in a name that helps you identify the bot, select an instance of Xcode server
(Figure 9-28), and click Next.

Chapter 9 ■ Continuous Integration

308

You will be asked to log in to the Xcode server instance using credentials provided
by your server administrator. Each bot stores its own set of credentials securely in the
keychain

Next, select the branch in your repository that you wish to create a bot for (see
Figure 9-29). The branch that is currently checked out will be selected by default. Select
the appropriate branch and click on Next.

Figure 9-28.  Creating a New Bot

Figure 9-29.  Configuring Source Control for a Bot

Chapter 9 ■ Continuous Integration

309

If you would like to perform a clean build, select the appropriate option under the
Cleaning drop-down. Available options are:

•	 Always

•	 Once a day

•	 Once a week

•	 Never

A clean build involves a cleanup operation prior to the building operation. During
the cleanup operation, temporary build files left over from previous builds are deleted.

If you would like to override the build configuration defined in the scheme, you can
use the options in the Configuration drop-down. Available options are these:

•	 Use Scheme Setting

•	 Debug

•	 Release

When you have finished setting up the options on this page, click on next to go to the
second configuration page (see Figure 9-31).

Figure 9-30.  Configuring Build Configuration for a Bot

You will now be presented with the first of five configuration pages (see Figure 9-30).
In the first configuration page, you specify the scheme, and build actions you wish to
perform. Available choices for actions are Analyze, Test, and Archive.

Chapter 9 ■ Continuous Integration

310

On this page, you configure the integration schedule for the bot. You can create three
types of schedules:

•	 Periodic: Xcode Server will integrate the bot as per a specific
recurring schedule.

•	 On commit: Xcode Server will integrate the bot after each
commit/push by any team member.

•	 Manual: The bot will only be integrated when you request it
manually.

In addition to the specified schedule, if you would also like to have Xcode
Server integrate the bot whenever Xcode is upgraded on the build Mac, ensure the
“Automatically integrate when Xcode is upgraded” check box is selected.

When you have finished setting up the options on this page, click on next to go to the
third configuration page (see Figure 9-32).

Figure 9-31.  Configuring an Integration Schedule

Chapter 9 ■ Continuous Integration

311

On this page, you configure the devices (or simulators) on which the test build action
should be executed. You will only be presented with this page if you opted to enable the
test action while creating the bot. Available options are the following:

•	 All iOS Devices and Simulators

•	 All iOS Devices

•	 All iOS Simulators

•	 Specific iOS Devices

■■ Note  When you select a simulator, you must ensure the simulator is also installed on
the build Mac.

When you have finished setting up the options on this page, click on next to go to the
fourth configuration page (see Figure 9-33).

Figure 9-32.  Configuring Test Devices

Chapter 9 ■ Continuous Integration

312

Figure 9-33.  Configuring Environment Variables

On this page, you can provide a dictionary of environment variables that can be used
by pre-integration and post-integration scripts. The scripts themselves, however, are
defined in the next step.

Each environment variable consists of a key and a value. Both the key and the value
are strings. To add an environment variable, use the Add(+) button.

When you have finished setting up environment variables on this page, click on next
to go to the fifth configuration page (see Figure 9-34).

Figure 9-34.  Configuring Triggers

Chapter 9 ■ Continuous Integration

313

Post-Integration script: A bash shell script that is executed after the application
has been built successfully (see Figure 9-36). The most common tasks performed
by developers at this step include submitting the app to a security audit service, or
submitting the app to a third-party build repository. Any user-defined environment
variables (defined in the previous step), as well as standard Xcode environment
variables are accessible by the post-integration script. The post-integration script may be
configured to run conditionally on success, test failures, build errors, build warnings, or
static analysis warnings.

On this page you can provide custom triggers for the bot. To create a trigger, click on
the Add(+) button.

A trigger is an optional action that can be performed by a bot. By default no triggers
are defined. You can define three types of triggers:

Pre-Integraton script: A bash shell script that is executed before the bot is
integrated (see Figure 9-35). The most common task that some developers like to perform
at this step is to remove any files from the project that they do not wish to ship with the
app. Examples could be files with customer data, or files used to create client-side web
service stubs. Any user-defined environment variables (defined in the previous step), as
well as standard Xcode environment variables are accessible by the pre-integration script.

Figure 9-35.  Configuring a Pre-Integration Script

Chapter 9 ■ Continuous Integration

314

Email notifications: Email messages to be sent to a select list of recipients either
periodically (regular summary reports) or when a build issue occurs (new issue reports).
Build issues in this context are static analyzer warnings, unit test failures, and outright
build failures (see Figure 9-37).

Figure 9-36.  Configuring a Post-Integration Script

Figure 9-37.  Configuring Email Notifications

When you have finished setting up appropriate triggers, click on the Create button to
finish creating the bot.

Chapter 9 ■ Continuous Integration

315

Integrate a Bot
You can use the report navigator within Xcode to view a list of bots on connected server
instances. To view the report navigator, launch Xcode and use the View ➤ Navigators ➤
Show Report Navigator menu item.

■■ Note  If you do not see your bots in the report navigator, ensure that you have
connected Xcode to the Xcode Server instance.

Click on a bot within the report navigator to view details on the bot (see Figure 9-38).
Click on “Edit Bot…” to edit some of the parameters that were set when the bot was created.
Click on Integrate to integrate the bot manually.

Figure 9-38.  Using Xcode to Integrate a Bot

You do not need to integrate bots manually if the bot’s schedule implies that Xcode
Server will integrate the bot automatically at specific times, or due to a commit/push to
the repository.

Click on the triangle beside the name of the bot to view a list of previous integrations
(see Figure 9-39). For each integration you can access test logs, code coverage reports,
build logs, and commit history. If the bot was created with the Archive action enabled,
then you can access the build products through the summary tab.

Chapter 9 ■ Continuous Integration

316

Summary
In this chapter you have been introuduced to the concept of continuous integration and
have learned to install and configure Xcode Server to act as a continuous integration
server in your development pipeline.

You have also learned how to link Xcode and Xcode Server so that you can create and
integrate Bots using Xcode.

Figure 9-39.  An Integration Report

317© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_10

CHAPTER 10

Introduction to
Behavior-Driven Development

Behavior-Driven Development (BDD) is an approach to software development that was
built with the aim of formalizing the best practices followed by Test-Driven Development
practitioners. BDD as we know it today is the result of the efforts of Dan North and
numerous others over the years. To read a detailed introduction to BDD, visit Dan North’s
website at https://dannorth.net/introducing-bdd/. This chapter will introduce you to
BDD concepts and techniques.

What Is Behavior Driven Development
One of the key issues faced by people who are new to TDD is deciding what to test.
Unfortunately TDD leaves this aspect open to the practitioner to decide. While
experienced TDD practitioners know from experience what to test (and what not to),
newcomers to TDD often do not know and, in some cases, give up on TDD altogether.

Behavior-driven development is about testing the behavior of a system, and not the
implementation details. A system could be either an individual class or a group of classes
that make up an aggregate unit of functionality.

As an example, consider the bank account project discussed in Chapter 4 with three
key classes – BankAccount, AccountOwner, and Transaction. In terms of relationships, a
BankAccount can have up to two AccountOwners and a variable number of Transactions
(Figure 10-1).

Figure 10-1.  Relationship Between Model Layer Objects

https://dannorth.net/introducing-bdd/
http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ Introduction to Behavior-Driven Development

318

These model objects in isolation are not very useful from a business perspective.
We have followed a rigid test-driven approach to developing these components in
Chapter 4. The tests that we wrote verified that a number of validator objects worked as
expected, and that creating a Model layer object makes calls to a number of validator
objects. These tests, however, are of little value to a product owner as they don’t directly
tell him whether a business requirement is met.

The business requirement could, for instance, be something like this: As a joint
account customer, I want to be able to withdraw money from my account if there is
money in the account, so that I can use the cash to make a purchase.

To put it another way, the tests that we have written while following a test-driven
approach are too detailed to be useful for a product owner to be able to verify that the
developers have built the system that was asked of them.

The Difference between BDD and TDD
The key difference between behavior-driven development and test-driven development is
that BDD tests are written at a different level of detail than TDD tests.

BDD-style tests system behavior is where the acceptable behavior of the system is
defined by a set of scenarios, which are, in turn, derived from business requirements.

BDD-style tests are generally more descriptive and meaningful to the business. They
are described in a language called Domain Specific Language (DSL) that contains terms
and concepts encountered in the business domain.

BDD-style tests could, in theory, be written using the existing XCTest framework with
cleverly thought of method names, and a fair bit of mocking and stubbing. In practice,
BDD-style tests are written using a special framework. One such framework for iOS
developers using Swift is called Quick.

Business Requirements and User Scenarios
The best way to understand how BDD works is to examine a concrete example. Let us
assume that your company has been contracted to build a new banking system for retail
operations, and after a few weeks of analysis, the business analyst has documented the
following two requirements:

As a [customer]

I want to [deposit money in my savings bank account]

So that [I can reach my savings goals]

As a [customer].

I want to [withdraw money from my savings bank account].

So that [I can meet a financial obligation].

This is obviously an oversimplification of a real-world scenario where the business
analyst has probably documented a few hundred requirements, but it serves to illustrate
how a team practicing BDD would approach this problem.

http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ Introduction to Behavior-Driven Development

319

A developer would then sit with the business analyst and a member of the QA team
to agree on a set of user scenarios. Let us assume the team has been able to come up with
the following two scenarios (again an oversimplification; in real life each requirement
would expand into multiple scenarios):

Given [A joint savings account has a credit balance of $100]

When [An account holder withdraws $50 from the account]

Then [The account should have a credit balance of $50]

Given [A joint savings account has a credit balance of $100]

When [An account holder deposits $50 into the account]

Then [The account should have a credit balance of $150]

Once a set of user scenarios has been mutually agreed upon, the QA team will
proceed to write QA scripts to test the scenarios when the system is testable using either
automated testing techniques or manual testing techniques.

From User Scenarios to BDD Tests
The developer will then create a Swift class in the test target and write BDD-style tests
using Quick. The name of the class will have the word “Specification” (or Spec) in it, as
BDD tests are written to a specification provided by the business. Listing 10-1 presents a
BDD-style test class called BankAccountSpecification.swift.

Listing 10-1.  BankAccountSpecification.swift

import Foundation
import Quick
import Nimble

class BankAccountSpecification : QuickSpec {

 override func spec() {
 var mary:AccountOwner?
 var phil:AccountOwner?
 var maryAndPhil:[AccountOwner] = [AccountOwner]()
 var jointSavingsAccount:BankAccount?

 beforeEach {

 mary = AccountOwner(firstName: "Mary",
 lastName: "Daniels",
 emailAddress: "mdaniels@domain.com")

 phil = AccountOwner(firstName: "Phil",
 lastName: "Burlington",
 emailAddress: "p.burlington@domain.com")

Chapter 10 ■ Introduction to Behavior-Driven Development

320

 maryAndPhil.removeAll()
 maryAndPhil.append(mary!)
 maryAndPhil.append(phil!)

 jointSavingsAccount =
 BankAccount(accountName: "Savings Account",
 accountNumber: "87548390",
 sortingCode: "498711",
 accountType: .savingsAccount,
 owners: maryAndPhil)
 }

 describe("A joint savings account has a credit balance of $100") {
 context("An account holder withdraws $50 from the account") {
 it("The account should have a credit balance of $50") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.withdraw(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(50))
 }
 }
 }

 describe("A joint savings account has a credit balance of $100") {
 context("An account holder deposits $50 into the account") {
 it("The account should have a credit balance of $150") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.deposit(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(150))
 }
 }
 }

 }
}

The test case file starts out by importing the Quick and Nimble frameworks:

import Foundation
import Quick
import Nimble

Quick is a framework that allows you to write BDD-style tests in Swift. Nimble is
a framework that lets you create assertions that are more verbose than the standard
XCTAssert macros provide by Xcode.

Chapter 10 ■ Introduction to Behavior-Driven Development

321

Anatomy of a Quick Test Case
A Quick test case class is always a subclass of QuickSpec, and must have a method called
spec in it. Tests for all user scenarios that define the specification are placed within the
body of the spec() method:

class BankAccountSpecification : QuickSpec {

 override func spec() {

 // All test code goes here.

 }
}

Inside the spec() method, you will find call to a function called beforeEach with a
single closure as the function argument:

class BankAccountSpecification : QuickSpec {

 override func spec() {

 beforeEach {

 // Setup code goes here

 }
 }
}

The beforeEach method of a Quick test case is equivalent to the setUp() method of
an XCTestCase. Quick test cases can also have an afterEach method that would be the
equivalent of the teardown() method of a unit test.

After the call to the beforeEach method (and before the call to the afterEach method
if the test class has one), a number of BDD-style tests are written using nested calls to
three functions: describe(), context(), it():

override func spec() {

 beforeEach {
 }

 describe(/* the "Given" part of a scenario statement*/) {
 context(/* the "When" part of a scenario statement*/){
 it(/* the "Then" part of a scenario statement */) {
 // test logic goes here
 }
 }
 }
}

Chapter 10 ■ Introduction to Behavior-Driven Development

322

The describe() function takes a string argument that corresponds to the “Given” part
of the scenario that you are testing and a trailing closure that contains statements to be
executed by Quick when testing the scenario.

The context() function takes a string argument that corresponds to the “When”
part of the scenario you are testing and a trailing closure that contains statements to be
executed by Quick when testing the scenario.

The it() function also takes a string argument that corresponds to the “Then” part of
the scenario you are testing and a trailing closure that contains the actual statements that
will test your production code.

There is a one-to-one correspondence between a user scenario and a Quick BDD
test. To make things easier to understand, Listing 10-2 presents a user scenario and its
corresponding BDD test, written using Quick.

Given [A joint savings account has a credit balance of $100]

When [An account holder withdraws $50 from the account]

Then [The account should have a credit balance of $50]

Listing 10-2.  User Scenario and Corresponding Quick BDD Test

describe("A joint savings account has a credit balance of $100") {
 context("An account holder withdraws $50 from the account") {
 it("The account should have a credit balance of $50") {

 jointSavingsAccount?.setOpeningBalance(100)
 jointSavingsAccount?.withdraw(50, mary)
 expect(jointSavingsAccount!.accountBalance).to(equal(50))
 }
 }
}

From a business perspective, if this test passes it means that some tangible unit of
functionality has been built – something that a customer can relate to.

Your test statements go in the it() block of a Quick BDD test. In the case of
Listing 10-1, the test statements are the following:

jointSavingsAccount?.setOpeningBalance(100)
jointSavingsAccount?.withdraw(50, mary)
expect(jointSavingsAccount!.accountBalance).to(equal(50))

These tests are built assuming that a BankAccount object has methods called
setOpeningBalance, withdraw(), and a computed property called accountBalance, which
will behave in a manner consistent with the scenario being described.

To ensure that the BankAccount class behaves as expected, a test expectation
statement is used:

expect(jointSavingsAccount!.accountBalance).to(equal(50))

Chapter 10 ■ Introduction to Behavior-Driven Development

323

The expectation statement is expressed using constructs available in the Nimble
framework. Nimble is included with Quick and provides a more verbose method of
creating an expectation.

However, there is nothing stopping you from using XCTest assert macros to make these
expectations; the equivalent statement using the XCTAssertEqual macro would be this:

XCTAssertEqual(jointSavingsAccount!.accountBalance, 50)

Whether you choose to use Nimble over XCTest assert macros is a matter of personal
preference. If you would like more information on Nimble assertions, visit the following URL:

https://github.com/Quick/Nimble

If you compare the BDD-style test with TDD-style tests, you should see that BDD
style tests are more verbose, and focus on the what and not the how. There is nothing
in these BDD tests that focuses on the details of the underlying implementation of the
BankAccount class, just how it should behave in different scenarios.

The BankAccount class as developed in chapter 4 does not contain methods
called setOpeningBalance(), withdraw(), deposit() or a computed property called
accountBalance. Therefore, as with any test code, these tests will not compile just yet.

To get these tests to compile, the BankAccount class will have to be modified to
resemble Listing 10-3.

Listing 10-3.  Modified BankAccount.swift

import Foundation

enum AccountType {
 case currentAccount
 case savingsAccount
}

class BankAccount: NSObject {

 var accountName:String
 var accountNumber:String
 var sortingCode:String
 var accountType:AccountType
 var transactions:[Transaction]
 var owners:[AccountOwner]

 var accountBalance:Float {
 get {
 var balance:Float = 0.0
 for transaction in self.transactions {
 if let amount = Float(transaction.amount) {

https://github.com/Quick/Nimble
http://dx.doi.org/10.1007/978-1-4842-2689-6_4

Chapter 10 ■ Introduction to Behavior-Driven Development

324

 if transaction.isIncoming {
 balance += amount
 } else {
 balance -= amount
 }
 }
 }
 return balance
 }
 }

 init?(accountName:String,
 accountNumber:String,
 sortingCode:String,
 accountType:AccountType,
 owners:[AccountOwner],
 accountNameValidator:AccountNameValidator? = nil,
 accountNumberValidator:AccountNumberValidator? = nil,
 sortingCodeValidator:SortingCodeValidator? = nil) {

 let validator1 = accountNameValidator ?? AccountNameValidator()
 if validator1.validate(accountName) == false {
 return nil
 }

 let validator2 = accountNumberValidator ?? AccountNumberValidator()
 if validator2.validate(accountNumber) == false {
 return nil
 }

 let validator3 = sortingCodeValidator ?? SortingCodeValidator()
 if validator3.validate(sortingCode) == false {
 return nil
 }

 if (owners.count == 0 || owners.count > 2) {
 return nil
 }

 self.accountName = accountName
 self.accountNumber = accountNumber
 self.sortingCode = sortingCode
 self.accountType = accountType
 self.owners = owners
 self.transactions = [Transaction]()
 }

Chapter 10 ■ Introduction to Behavior-Driven Development

325

 func setOpeningBalance(_ amount:Float) -> Void {
 if let openingBalanceTransaction =
 Transaction(txDescription: "Opening Balance",
 date: NSDate(),
 isIncoming: true,
 amount: "100.0") {
 self.transactions.removeAll()
 self.transactions.append(openingBalanceTransaction)
 }
 }

 func withdraw(_ amount:Float, _ person:AccountOwner?) -> Void {
 if let newTransaction =
 Transaction(txDescription: "ATM Withdrawal",
 date: NSDate(),
 isIncoming: false,
 amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

 func deposit(_ amount:Float, _ person:AccountOwner?) -> Void {
 if let newTransaction =
 Transaction(txDescription: "Cash Deposit",
 date: NSDate(),
 isIncoming: true,
 amount: "\(amount)") {
 self.transactions.append(newTransaction)
 }
 }

}

You can execute Quick BDD-style tests just as you do any other test, using the
Product ➤ Test menu item. After executing the tests, if you were to look at the test
navigator for a test report, you would see that BDD style tests appear alongside regular
unit tests, but are more human readable (Figure 10-2).

Chapter 10 ■ Introduction to Behavior-Driven Development

326

In the next two chapters, you will learn to integrate Quick and Nimble into a Swift
project and try out a few Quick tests.

Advantages and Disadvantages of BDD
After having being introduced to behavior-driven development, you might be wondering
whether BDD is a replacement for TDD. Both TDD and BDD have their own uses: test-
driven development focuses on how your code is structured and operates at a lower level
than BDD. Behavior-driven development helps ensure that the code you are writing
fulfills business objectives.

As with any technique, behavior-driven development has its own advantages and
disadvantages. Some of the advantages of BDD over TDD are the following:

•	 Tests are more verbose.

•	 Each passing test proves that the product is closer to what the
customer wants.

•	 BDD tests are useful to business analysts and product owners as
well as developers.

•	 BDD tests are not as fragile as TDD tests. If you change the
manner in which a scenario is implemented, BDD tests are less
likely to break.

Figure 10-2.  BDD Tests Have More Verbose Names Than TDD Tests

Chapter 10 ■ Introduction to Behavior-Driven Development

327

Some of the disadvantages of BDD are the following:

•	 BDD requires product owners, testers, and business analysts
to buy into the process. All too often teams start out with good
intentions, but after a few weeks the business loses interest in
writing specifications, and it becomes the responsibility to the
developer to write the scenarios as well as the code to make those
scenarios pass.

•	 User requirements change as the project evolves, and BDD
requires that user requirements are documented in a usable
format before the developers start developing. For this to work,
the project has a well-defined road map of upcoming features.
Having up-front, well-defined requirements before development
does not necessarily mean that the project has to follow the
waterfall model. BDD can be used in Agile Scrum projects, but the
business will need to commit to making sure those requirements
for all the stories that are picked up in a sprint are well defined
before the sprint begins.

•	 BDD works best in a team where iterative development is
practiced.

•	 BDD requires collaboration between the business and the
development team. The business has to factor the technical
constraints of the current system before creating new user stories.
All too often the business analysts and product owners work
in their own camps and hand over their requirements to the
developers in a sprint planning session.

Summary
In this chapter you have learned about the core concepts involved in Behavior-Driven
Development. Using a hypothetical example of a development team that has been
contracted to build a simple banking solution, you have examined the process of business
requirement analysis and user story creation.

You have also been introduced to two popular open source frameworks called
Quick and Nimble. These frameworks are commonly used to develop BDD-style tests for
iOS projects.

329© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_11

CHAPTER 11

Installing Quick

In the previous chapter you learned about the Behavior-Driven Development and its
relationship with Test-Driven development. In this chapter you will download a popular
Swift BDD testing framework, called Quick, and set up an Xcode project to use it.

Quick includes a framework called Nimble that provides better replacements for
XCTAssert() statements. Nimble will be examined in a little more detail in this chapter,
but from an installation perspective you need to be aware that the version of Quick and
Nimble you install will depend on the Swift version you intend to use.

Table 11-1 provides information on the versions of Swift and compatible versions of
Quick and Nimble respectively. This book is written for Swift 3 users; hence, all examples
will be using Quick version 1.0.0 and Nimble version 5.0.0

Table 11-1.  Swift, Quick, Nimble version compatibility matrix

Swift Version Quick Version Nimble Version

2.2 / 2.3 0.9.3 4.1.0

3 1.0.0 (or newer) 5.0.0 (or newer)

Adding Quick to an Xcode Project
In this section you will learn of three alternate ways to include Quick in an Xcode project:

•	 Using CocoaPods

•	 Using Carthage

•	 Using Git Submodules

Adding Quick to an Xcode Project Using CocoaPods
CocoaPods is a dependency management solution for Swift and Objective-C projects.
It simplifies the task of adding third-party frameworks in your project along with their
dependencies.

Chapter 11 ■ Installing Quick

330

If you have never used CocoaPods on your Mac, you will need to first install it.
Installing CocoaPods will require that you have administrative privileges on your Mac.

Launch the Terminal app on your Mac and type the following at the shell prompt:

$ sudo gem install cocoapods

You will be asked to enter your password. The download process can take a few
minutes after which installation will kick off automatically. During the installation
process, numerous status messages will be displayed (Figure 11-1).

At the end of the installation process, you should see a line in your Terminal window
that is similar to this:

13 gems installed

To test your CocoaPods installation, type the following command into the Terminal
window, and the output should resemble Figure 11-2.

$ pod

Figure 11-1.  Cocoapods Installation in Terminal

Chapter 11 ■ Installing Quick

331

Now that you have verified your CocoaPods installation, you can proceed with
creating a new Xcode project and using CocoaPods to add the Quick library and its
dependencies to the project.

Launch Xcode and create a new iOS project based on the Single View Application
template. Use the following options while creating the new project (see Figure 11-3):

•	 Product Name: TryQuickWithCocoaPods

•	 Team: None

•	 Organization Name: Provide a suitable name

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

Figure 11-2.  Testing the Cocoapods Installation

Chapter 11 ■ Installing Quick

332

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

Figure 11-3.  Xcode Project Options Dialog

Once the project is created, quit Xcode and go back to the Terminal window and
navigate to the folder on your Mac where you have created the new Xcode project.
Create a new file called Podfile in this directory (with no extension) using the following
command:

$ touch Podfile

Open the new file in TextEdit by typing the following command in the Terminal
window and hitting Enter.

$ open –e Podfile

Using TextEdit, add the following lines to the Podfile, and save the file. Close TextEdit
when you are finished making the changes.

Podfile

use_frameworks!

Chapter 11 ■ Installing Quick

333

def testing_pods
 pod 'Quick'
 pod 'Nimble'
end

target 'TryQuickWithCocoaPodsTests' do
 testing_pods
end

Return to the Terminal window and type the following command, and hit Enter:

$ pod install

After a few minutes, you will see a message similar to the following indicating that
the installation and setup is complete (Figure 11-4).

Pod installation complete! There are two dependencies from the Podfile and
two total pods installed.

Figure 11-4.  Result of the Pod Install Command

Chapter 11 ■ Installing Quick

334

Look in the project directory for a new workspace file that has been created by
CocoaPods. From now on you will have to use this workspace file and not the original
.xcodeproj file (Figure 11-5).

When you open the new workspace file (with extension .xcode workspace), you
should see two projects in the workspace:

•	 TryQuickWithCocoaPods

•	 Pods

If you expand the Pods project you will see folders for both Quick and Nimble
(Figure 11-6). It is important to note that you will not make any changes to any of
the files in the Pods project. All the code that you write, including tests, will be in the
TryQuickWithCocoaPods project.

Figure 11-5.  New Workspace Created by Cocoapods

Chapter 11 ■ Installing Quick

335

At this point you have added Quick (and Nimble) to your Xcode project, and your
project should be able to build and run on the iOS Simulator without any issues.

Adding Quick to an Xcode Project Using Carthage
Carthage is another dependency management solution that is designed to simplify the
process of adding third-party frameworks and their dependencies into an iOS project.

The merits of using one dependency management solution over the other are
beyond the scope of this chapter. Often it comes down to individual preference. One of
the key differences between CocoaPods and Carthage is that Carthage downloads and
builds frameworks for you, but you need to add the frameworks to your project manually.

If you do not have Carthage installed on your Mac, the easiest way to install it is by
visiting the following URL and downloading the latest Carthage.pkg file (Figure 11-7).

https://github.com/Carthage/Carthage/releases

Figure 11-6.  The Pods Project with Quick and Nimble

Chapter 11 ■ Installing Quick

336

Once the file has downloaded, locate it in your Downloads folder and double-click it
to launch the installer. Follow the on-screen instructions to install Carthage (Figure 11-8).

Figure 11-8.  The Carthage Installer Welcome Screen

Figure 11-7.  Downloading the Carthage Installer

Chapter 11 ■ Installing Quick

337

You will need administrative access on your Mac to finish the installation process.
To test your Carthage installation, type the following command into the Terminal

window, and the output should resemble Figure 11-9.

$ carthage

Figure 11-9.  Testing Your Carthage Installation

Now that you have verified your Carthage installation, you can proceed with creating
a new Xcode project and using Carthage to add the Quick library and its dependencies to
the project.

Launch Xcode and create a new iOS project based on the Single View Application
template. Use the following options while creating the new project (see Figure 11-10):

•	 Product Name: TryQuickWithCarthage

•	 Team: None

•	 Organization Name: Provide a suitable name

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

Chapter 11 ■ Installing Quick

338

Once the project is created, quit Xcode and go back to the Terminal window and
navigate to the folder on your Mac where you have created the new Xcode project. Create
a new file called Cartfile in this directory (with no extension) using the following
command:

$ touch Cartfile

Open the new file in TextEdit by typing the following command in the Terminal
window and hitting Enter.

$ open –e Carfile

Using TextEdit, add the following lines to the Podfile, and save the file. Close TextEdit
when you are finished making the changes.

github "Quick/Quick"
github "Quick/Nimble"

The content of a Cartfile is somewhat simpler than that of Podfile. Each line is just
the name of the repository in which the framework resides and the path to the framework
on that repository.

Figure 11-10.  Xcode Project Options Dialog Box

Chapter 11 ■ Installing Quick

339

Return to the Terminal window and type the following command, and hit Enter:

$ carthage update --platform iOS

After a few minutes, you will see status messages similar to the following indicating
that both the Nimble and Quick source files have been downloaded and built into
frameworks (Figure 11-11).

*** Cloning Nimble
*** Cloning Quick
*** Checking out Nimble at "v5.1.1"
*** Checking out Quick at "v1.0.0"
*** xcodebuild output can be found in /var/folders/zz/40885yyd4sj5y_1c4d4q8d
n40000gn/T/carthage-xcodebuild.xO1qbs.log
*** Building scheme "Nimble-iOS" in Nimble.xcodeproj
*** Building scheme "Quick-iOS" in Quick.xcworkspace

Figure 11-11.  Successful Build of Quick and Nimble

Figure 11-12.  Carthage Folder in Your Project Directory

When Carthage finishes, you will find a new folder called Carthage created alongside
your Xcode project in finder (Figure 11-12).

Chapter 11 ■ Installing Quick

340

Inside the Carthage folder, you will find two additional folders:

•	 Checkouts: This is where Carthage checks out the source code for
each library that you added into the Cartfile.

•	 Build: This folder contains the frameworks built from the sources
in the Checkouts folder.

Unlike CocoaPods, Carthage does not modify the Xcode project. You will need to add
the frameworks into your project manually.

Open the TryQuickWithCarthage project that you have created earlier and add both
the Quick.framework and Nimble.framework files from the Build directory into your
project’s test target (Figure 11-13).

Figure 11-13.  Ensure the Quick and Nimble Frameworks are Added to the Test Target

Add a new Copy Files Phase to the test target by clicking on the + button and
selecting New Copy File Phase from the drop-down menu (Figure 11-14).

Chapter 11 ■ Installing Quick

341

Set the value of the Destination combo box of the new build phase to Frameworks
and add both frameworks to the list (Figure 11-15).

Figure 11-14.  Adding a New Copy Files Phase

Figure 11-15.  New Build Phase Added to the Test Target

At this point you have added Quick and Nimble to your Xcode project using
Carthage, and your project should be able to build and run on the iOS Simulator without
any issues.

Chapter 11 ■ Installing Quick

342

Adding Quick to an Xcode Project Using Git Submodules
Adding the Quick and Nimble repositories as submodules of your Xcode project’s
repository does not require you to install any additional tools beforehand.

Launch Xcode and create a new iOS project based on the Single View Application
template. Use the following options while creating the new project (see Figure 11-16):

•	 Product Name: TryQuickWithSubmodules

•	 Team: None

•	 Organization Name: Provide a suitable name

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

Figure 11-16.  Xcode Project Options Dialog

Chapter 11 ■ Installing Quick

343

In the Project location dialog box, select an empty folder and ensure you have
checked the Create Git repository option (Figure 11-17).

Figure 11-17.  Xcode Project Location Dialog Box

Once the project is created, quit Xcode and go back to the Terminal window and
navigate to the folder on your Mac where you have created the new Xcode project.

Type the following command into the Terminal window and press Enter to add the
Quick Git repository as a submodule of your project’s Git repository:

$ git submodule add https://github.com/Quick/Quick.git Vendor/Quick

The output in your Terminal window should resemble the following:

Cloning into '/Users/abhishekmishra/Desktop/TryQuickWithSubmodules/Vendor/
Quick'...
remote: Counting objects: 6736, done.
remote: Compressing objects: 100% (71/71), done.
remote: Total 6736 (delta 23), reused 0 (delta 0), pack-reused 6664
Receiving objects: 100% (6736/6736), 1.93 MiB | 1.74 MiB/s, done.
Resolving deltas: 100% (4026/4026), done.

Chapter 11 ■ Installing Quick

344

Type the following command into the Terminal window and press Enter to add the
Nimble Git repository as a submodule of your project’s Git repository:

$ git submodule add https://github.com/Quick/Nimble.git Vendor/Nimble

The output in your Terminal window should resemble the following:

Cloning into '/Users/abhishekmishra/Desktop/TryQuickWithSubmodules/Vendor/
Nimble'...
remote: Counting objects: 6782, done.
remote: Total 6782 (delta 0), reused 0 (delta 0), pack-reused 6782
Receiving objects: 100% (6782/6782), 1.39 MiB | 1.03 MiB/s, done.
Resolving deltas: 100% (4575/4575), done.

You will now create a new Xcode workspace, and include your Xcode project into
this workspace along with Xcode projects for the Quick and Nimble submodules that you
have just cloned.

Open your project in Xcode and use the File ➤ New ➤ Workspace menu item
to create a new Xcode workspace. Name the workspace TryQuickWithSubmodules.
xcworkspace and save it in the same directory as your Xcode project (Figure 11-18).

Figure 11-18.  Saving the Workspace to the Same Directory as the Xcode Project

Chapter 11 ■ Installing Quick

345

Xcode will create an empty workspace for you. Close the TryQuickWithSubmodule
Xcode project window (not the empty workspace) if it is open, and use the File ➤ Add
Files to “TryQuickWithSubmodules”… menu item (Figure 11-19).

Figure 11-19.  Adding a Project to a Workspace

Navigate to the TryQuickWithSubmodules.xcodeproj file to add the Xcode project to
the workspace (Figure 11-20).

Figure 11-20.  Locating the Xcode Project That Will be Added to the Workspace

Chapter 11 ■ Installing Quick

346

You will see a new node appear in the Project Navigator that contains the entire
TryQuickWithSubmodules project under the workspace (Figure 11-21).

Figure 11-21.  TryQuickWithSubmodules Project in the Xcode Workspace

Drag and drop the Quick.xcodeproj file onto the Project Navigator. The Quick.
xcodeproj file will be located in the Vendor/Quick subdirectory of your project’s directory
in Finder. While dropping the .xcodeproj file onto the Project Nsvigator, make sure to drop
it above the TryQuickWithSubmodules node so as to make the new node a sibling node
and not a child node (Figure 11-22).

Chapter 11 ■ Installing Quick

347

Using drag-and-drop operations, add the Nimble.xcodeproj file into the Project
Navigator make sure to drop it above the TryQuickWithSubmodules node so as to make
the new node a sibling node and not a child node. The Project Navigator should now
contain nodes for each project in the workspace (Figure 11-23).

Figure 11-22.  Using Drag-and-Drop Operations to Add the Quick Xcode Project to the
Workspace

Chapter 11 ■ Installing Quick

348

Figure 11-23.  Xcode Project Navigator Showing the Workspace with Three Projects

Open the Poject settings page for the TryQuickWithSubmodules project, select the
test target, and add the Quick.framework and Nimble.framework files to the Link Binaries
with Libraries list (Figure 11-24).

Chapter 11 ■ Installing Quick

349

At this point you have added Quick and Nimble to your Xcode project using Git
submodules, and your project should be able to build and run on the iOS Simulator
without any issues.

Summary
In this chapter you have learned three different ways by which you can add the Quick
and Nimble frameworks to an Xcode project. You have learned to use two popular
dependency management frameworks – CocoaPods and Carthage. You have also learned
to include the Quick and Nimble frameworks using Git submodules.

Figure 11-24.  Adding the Quick and Nimble Framewok Files to the Test Target

351© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_12

CHAPTER 12

Applying TDD and BDD
Techniques

In the previous chapter you learned how to add Quick and Nimble to an Xcode project.
In this chapter you will build an app using a combination of TDD and BDD techniques.

You will build a simple app that lets users browse restaurant listings in London.
Users will be able to select from a list of locations within London, and the app will
present a list of restaurants in the selected locations. The app will have the data for all
the restaurants included within the app bundle and will not need to make calls to a web
service to fetch this data.

Reviewing the Business Requirements
While building this app, your business has decided to try a behavior-driven approach.
The product owners and business analyst have interviewed various users groups and
studied reports on user trends in the target demographic. After a few weeks of collective
analysis and documentation, they have come up with a set of business requirements
listed in Table 12-1.

Chapter 12 ■ Applying TDD and BDD Techniques

352

These requirements were then handed over to the development team. The business
analyst who documented these requirements then sat down with a developer and a tester
and prepared a set of user scenarios based on these requirements. The user scenarios are
listed in Table 12-2.

Table 12-1.  RestaurantDirectory Application Requirements

Number Requirement

1 As a [customer],
I want to [view a list of restaurants near my chosen area within London],
So that [I can plan my next meal].

2 As a [customer],
I want to [get an idea of the distance between my chosen restaurant and the
closest underground station],
So that [I can make my travel plans].

3 As a [customer],
I want to [get an idea of the quality of food served at a restaurant],
So that [I can make a well informed decision to eat there].

4 As a [customer],
I want to [know the type of cuisine served at a restaurant],
So that [I can make a well informed decision to eat there].

Table 12-2.  RestaurantDirectory User Scenarios

Number User Scenario

1 Given [the app is launched],
When [the main screen of the app is loaded],
Then [there is an option in the user interface to select an area of London
from a list].

2 Given [the app is launched],
When [the main screen of the app is loaded],
Then [there is a Next button in the user interface].

3 Given [the main screen of the app is loaded],
When [no area has been selected],
Then [the Next button is not enabled].

4 Given [the main screen of the app is loaded],
When [an area in London has been selected],
Then [the Next button is enabled].

5 Given [the user has selected a location],
When [the Next button is tapped],
Then [a new screen appears with a list of restaurants in that location].

(continued)

Chapter 12 ■ Applying TDD and BDD Techniques

353

From the perspective of the QA team, each of these user stories is testable by running
the app and inspecting the results visually. However, from the perspective of an app
developer, many of these requirements are visual in nature and cannot be tested using
TDD or BDD techniques.

Take, for instance, Scenario 1, which requires a UI element, is visible on the screen.
This scenario is easy to test using visual inspection, but is not easy to test programmatically.

Therefore, while the QA team will test each of these scenarios using a variety of
techniques available to them, the developers will only be able to create Quick tests for a
subset of the scenarios. Table 12-3 lists the subset of scenarios that will be tested by the
developers using Quick.

Table 12-2.  (continued)

Number User Scenario

6 Given [the list of restaurants is visible on the screen],
When [a restaurant’s name is displayed in that list],
Then [the listing should be accompanied by the name of the nearest tube
station].

7 Given [the list of restaurants is visible on the screen],
When [a restaurant’s name is displayed in that list],
Then [the listing should be accompanied by the approximate distance in
miles to the nearest tube station].

8 Given [the list of restaurants is visible on the screen],
When [a restaurant’s name is displayed in that list],
Then [the listing should be accompanied by an integer between 1 to 5 that
indicates the quality of the restaurant, with 1 being the poorest and 5 the best].

9 Given [the list of restaurants is visible on the screen],
When [a restaurant’s name is displayed in that list],
Then [the listing should be accompanied by the cuisine served at the
restaurant].

Chapter 12 ■ Applying TDD and BDD Techniques

354

Table 12-3.  RestaurantDirectory User Scenarios Testable with Quick

Number User Scenario Notes

1 Given [the app is launched],
When [the main screen of the app is loaded],
Then [there is an option in the user interface
to select an area of London from a list].

Not testable using Quick
as it requires visual
verification.

2 Given [the app is launched],
When [the main screen of the app is loaded],
Then [there is a Next button in the user
interface].

Not testable using Quick
as it requires visual
verification.

3 Given [the main screen of the app is loaded],
When [no area has been selected],
Then [the Next button is not enabled].

4 Given [the main screen of the app is loaded],
When [an area in London has been
selected],
Then [the Next button is enabled].

5 Given [the user has selected a location],
When [the Next button is tapped],
Then [a new screen appears with a list of
restaurants in that location].

Partially testable. The
developer can test that
tapping the button initiates
the process of displaying
a new screen, but cannot
test that the new screen has
actually appeared.

6 Given [the list of restaurants is visible on the
screen],
When [a restaurant’s name is displayed in
that list],
Then [the listing should be accompanied by
the name of the nearest tube station].

Partially testable. The
developer can test that a
specific method is being
called on the view controller
with an expected value. The
developer, however, cannot
test that the text has actually
updated on the screen
without visual inspection of
the results.

7 Given [the list of restaurants is visible on the
screen],
When [a restaurant’s name is displayed in
that list],
Then [the listing should be accompanied
by the approximate distance in miles to the
nearest tube station].

Partially testable. The
developer can test that a
specific method is being
called on the view controller
with an expected value. The
developer, however, cannot
test that the text has actually
updated on the screen
without visual inspection of
the results.

(continued)

Chapter 12 ■ Applying TDD and BDD Techniques

355

The contents of Table 12-3 are clearly communicated across the team so that all parties
have clear expectations on who will test what aspects of the system. In addition to that, it
has been agreed that the following field validation criteria will apply to restaurant listings:

•	 Restaurant name: Between 2 to 30 characters in length, cannot
have numbers or special characters. The ampersand (&) character
is allowed.

•	 Cuisine type: Between 4 to 10 characters in length, cannot have
numbers, special characters, or white space. A restaurant can
have up only one cuisine.

•	 Nearest Tube station name: Between 4 to 30 characters in length,
cannot contain numbers or special characters. The ampersand
(&) character is allowed.

•	 Rating: A number between 0 and 5 inclusive. Cannot contain
white space, alphanumeric, or special characters.

High-Level Application Architecture
The application architecture consists of three distinct layers (see Figure 12-1).

Table 12-3.  (continued)

Number User Scenario Notes

8 Given [the list of restaurants is visible on the
screen],
When [a restaurant’s name is displayed in
that list],
Then [the listing should be accompanied by
an integer between 1 to 5 that indicates the
quality of the restaurant, with 1 being the
poorest and 5 the best].

Partially testable. The
developer can test that a
specific method is being
called on the view controller
with an expected value. The
developer, however, cannot
test that the text has actually
updated on the screen
without visual inspection of
the results.

9 Given [the list of restaurants is visible on the
screen],
When [a restaurant’s name is displayed in
that list],
Then [the listing should be accompanied by
the cuisine served at the restaurant].

Partially testable. The
developer can test that a
specific method is being
called on the view controller
with an expected value. The
developer, however, cannot
test that the text has actually
updated on the screen
without visual inspection of
the results.

Chapter 12 ■ Applying TDD and BDD Techniques

356

A brief description of the layers and the component classes follows:

•	 Model Layer: Consists of the Restaurant class, instances of which
are used to hold the data that will be displayed to the user. The
model layer also contains validator objects that encapsulate the
validation logic for the fields of the Restaurant object.

•	 View Model Layer: Consists of the SearchViewModel,
RestaurantTableViewModel, RestaurantTableViewCellViewModel
classes.

•	 View/View Controller Layer: Consists of the
SearchViewController, RestaurantTableViewController. and
classes.

Figure 12-2 depicts the user interface of the finished application.

Figure 12-1.  High-Level Application Architecture

Chapter 12 ■ Applying TDD and BDD Techniques

357

The complete source code for the app can be downloaded anonymously from github
using the following URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Creating the Xcode Project
Launch Xcode and create a new iOS project based on the Single View Application
template. Use the following options while creating the new project (see Figure 12-3):

•	 Product Name: RestaurantDirectory

•	 Team: None

•	 Organization Name: Provide a suitable name

•	 Organization Identifier: Provide a suitable identifier

•	 Language: Swift

•	 Devices: iPhone

Figure 12-2.  User Interface of the RestaurantFinder Application

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Chapter 12 ■ Applying TDD and BDD Techniques

358

•	 Use Core Data: Unchecked

•	 Include Unit Tests: Checked

•	 Include UI Tests: Unchecked

■■ Note  The project being created in this chapter does not include user interface (UI)
tests. If you wish, you can add UI tests to a project retrospectively. Chapter 13 covers the
topic of user interface testing.

Save the project to a suitable location on your computer and click Create. Since this
project will contain several new classes, it will be a good idea to place class files under
appropriate groups within the project navigator.

Create the following groups in the Xcode project navigator, nested under the
RestaurantDirectory folder:

•	 View

•	 Model

•	 ViewModel

•	 Protocols

Figure 12-3.  Xcode Project Options Dialog

http://dx.doi.org/10.1007/978-1-4842-2689-6_13

Chapter 12 ■ Applying TDD and BDD Techniques

359

Adding Resources to the Project
Add the RestaurantData.json file included with this lesson’s downloads into the project.
While adding this file, ensure the “Copy Items if Needed” option is checked in the import
dialog box (see Figure 12-4).

The JSON file you have imported contains data on restaurants, and a sample of the
contents of the JSON file is presented in Listing 12-1.

Listing 12-1.  RestaurantData.json

[
 {
 "area": "Notting Hill",
 "rating": "4",
 "cuisine": "Persian",
 "distance": "0.3",
 "tubeStation": "Notting Hill Gate",
 "restaurantName": "Alibaba's"
 }
]

Figure 12-4.  Xcode File Import Dialog

Chapter 12 ■ Applying TDD and BDD Techniques

360

Building the User Interface Layer
The user interface for this application consists of two storyboard scenes embedded within
a navigation controller (see Figure 12-5).

Delete the ViewController.swift file from the project navigator, and create the
following Swift classes under the View group:

•	 A UIViewController subclass called SearchViewController.

•	 A UITableViewController subclass called
RestaurantTableViewController.

•	 A UITableViewCell subclass called RestaurantTableViewCell.

Ensure these classes are included in both the RestaurantDirectory and
RestaurantDirectoryTests targets. The project navigator should resemble Figure 12-6.

Figure 12-5.  Storyboard Layout for the RestaurantFinder Application

Chapter 12 ■ Applying TDD and BDD Techniques

361

Open the Main.storyboard file and select the default scene in the storyboard.
Switch to the Identity Inspector and change the class associated with the scene to
SearchViewController (see Figure 12-7).

Drag and drop a label, picker view, and button from the Object Library onto the
search view controller scene. Set the text displayed in the label to “Select a location in
London” and the font size of the text in the label to 14 points. Set the text displayed in
the button to “View Restaurant Listings” and the background color to a shade of gray.
Position the objects on the scene to resemble Figure 12-8. Use appropriate constraints for
the object to maintain their relative position on different screen sizes.

Figure 12-6.  Target Membership for New Classes Added to the Project

Figure 12-7.  Using the Identity Inspector to Change the Class Associated with a Stroyboard
Scene

Chapter 12 ■ Applying TDD and BDD Techniques

362

Using the storyboard, set up the SearchViewController class to act as the delegate
and data source for the picker view. Table 12-4 lists the outlets and action methods that
you need to create in the SearchViewController class along with their associated user
interface elements.

Implement the UIPickerViewDelegate protocol in a separate class extension
on SearchViewController by adding the following code to the end of the
SearchViewController.swift file:

Table 12-4.  Search view controller outlets and actions

Name Type Description

@IBOutlet weak var
locationPicker:
UIPickerView!

IB Outlet Connect this outlet to the picker view in
the storyboard scene.

@IBOutlet weak var
viewRestaurantButton:
UIButton!

IB Outlet Connect this outlet to the View
Restaurant Listings button of the
storyboard scene.

@IBAction func
onViewListings
(_ sender: Any)

IB Action Connect this method to the Touch Up
Inside event of the View Restaurant
Listings button.

Figure 12-8.  User Interface Elements Added to Default Storyboard Scene

Chapter 12 ■ Applying TDD and BDD Techniques

363

extension SearchViewController : UIPickerViewDelegate {

 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int,
 forComponent component: Int) -> String? {

 return nil
 }

 func pickerView(_ pickerView: UIPickerView,
 didSelectRow row: Int, inComponent component: Int) {

 }
}

Implement the UIPickerViewDataSource protocol in a separate class
extension on SearchViewController by adding the following code to the end of the
SearchViewController.swift file:

extension SearchViewController : UIPickerViewDataSource {

 func numberOfComponents(in pickerView: UIPickerView) -> Int {

 return 0
 }

 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {

 return 0
 }

}

The above snippets contain bare-bones implementations of the picker view delegate
and data source methods. The code in SearchViewController.swift should now resemble
Listing 12-2.

Listing 12-2.  SearchViewController.swift

import UIKit

class SearchViewController: UIViewController {

 @IBOutlet weak var locationPicker: UIPickerView!
 @IBOutlet weak var viewRestaurantButton: UIButton!

Chapter 12 ■ Applying TDD and BDD Techniques

364

 override func viewDidLoad() {
 super.viewDidLoad()

 // Do any additional setup after loading the view.
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func onViewListings(_ sender: Any) {
 }
}

extension SearchViewController : UIPickerViewDelegate {

 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int,
 forComponent component: Int) -> String? {

 return nil
 }

 func pickerView(_ pickerView: UIPickerView,
 didSelectRow row: Int,
 inComponent component: Int) {

 }
}

extension SearchViewController : UIPickerViewDataSource {

 func numberOfComponents(in pickerView: UIPickerView) -> Int {

 return 0
 }

 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {

 return 0
 }

}

Drag and drop a Table View Controller from the Object Library onto the storyboard
scene. With the Table View Controller scene selected, switch to the Identity Inspector
and change the class associated with the scene to be RestaurantTableViewController
(see Figure 12-9).

Chapter 12 ■ Applying TDD and BDD Techniques

365

Select the table view cell and use the Identity Inspector to change the class
associated with the cell to be RestaurantTableViewCell (see Figure 12-10).

With the table view cell still selected, switch to the Attributes Inspector and set the
value of the Identitifier attribute to RestaurantTableViewCellIdentifier.

Drag and drop five labels from the Object library onto the prototype cell of the table
view. Name and arrange the labels to resemble Figure 12-11. Create appropriate layout
constraints to maintain this arrangement on different screen sizes.

Figure 12-9.  Xcode Identity Inspector

Figure 12-10.  Using the Identity Inspector to Change the Class Associated with a
UITableViewCell

Chapter 12 ■ Applying TDD and BDD Techniques

366

Table 12-5 lists the outlets and action methods that you need to create in the
RestaurantTableViewCell class along with their associated user interface elements.

Select the Search View Controller scene in the storyboard and use the Editor ➤
Embed In ➤ Navigation Controller menu item to add a navigation controller to the
beginning of the storyboard (Figure 12-12).

Table 12-5.  Restaurant table view cell outlets and actions.

Name Type Description

@IBOutlet weak var
name: UILabel!

IB Outlet Connect this outlet to the
Restaurant Name label.

@IBOutlet weak var
rating: UILabel!

IB Outlet Connect this outlet to the Rating
label.

@IBOutlet weak var
location: UILabel!

IB Outlet Connect this outlet to the
Location label.

@IBOutlet weak var
distance: UILabel!

IB Outlet Connect this outlet to the
Distance label.

@IBOutlet weak var
cuisine: UILabel!

IB Outlet Connect this outlet to the Cuisine
label.

Figure 12-11.  Prototype Cell Layout

Chapter 12 ■ Applying TDD and BDD Techniques

367

Create a Show Detail segue from the search view controller scene to the restaurant
list view controller scene of the storyboard. With the segue selected, switch to the
Attributes Inspector and set the value of the Identifier attribute to presentSearchResults
(Figure 12-13).

Figure 12-12.  Embedding the Default Storyboard Scene in a Navigation Controller

Figure 12-13.  Using the Identity Inspector to Specify a Segue Identifier

Chapter 12 ■ Applying TDD and BDD Techniques

368

Writing BDD Tests with Quick
Follow the instructions in Chapter 11 to integrate Quick and Nimble into your project.
Once you have integrated Quick, it is time to write tests for each of the user scenarios
presented earlier in this chapter.

Delete the RestaurantDirectoryTests.swift file from the project. Create a new Group
under the RestaurantDirectoryTests group of the project navigator. Name the new group BDD.

Create a new Swift file called RestaurantDirectorySpecificaton.swift under the BDD
group and make sure the new file is only included in the test target (Figure 12-14).

Replace the contents of the RestaurantDirectorySpecificaton.swift file with the
contents of Listing 12-3.

Listing 12-3.  RestaurantDirectorySpecificaton.swift

import Foundation
import Quick
import Nimble

class RestaurantDirectorySpecification : QuickSpec {

 // mocks and stubs for tests around SearchViewController funcationality
 var locationPickerStub:UIPickerViewStub?
 var viewRestaurantButtonStub:UIButtonStub?

Figure 12-14.  Target Membership for the BDD Test File

http://dx.doi.org/10.1007/978-1-4842-2689-6_11

Chapter 12 ■ Applying TDD and BDD Techniques

369

 var searchViewController:MockSearchViewController?
 var searchViewModel:SearchViewModel?

 // mocks and stubs for tests around RestaurantTableViewCell
 // funcationality
 var restaurantNameLabelStub:UILabelStub?
 var restaurantRatingLabelStub:UILabelStub?
 var restaurantDistanceLabelStub:UILabelStub?
 var restaurantLocationLabelStub:UILabelStub?
 var restaurantCuisineLabelStub:UILabelStub?
 var restaurantTableViewCell:MockRestaurantTableViewCell?

 var validRestaurantDataFile1:String?
 var validRestaurant: Restaurant?
 var cellViewModel: RestaurantTableViewCellViewModel?

 func prepareForSearchViewControllerTests() {
 let bundle = Bundle(for: type(of:self))
 validRestaurantDataFile1 = bundle.path(forResource:
 "ValidRestaurantDataFile1",
 ofType: "json")

 locationPickerStub = UIPickerViewStub()
 viewRestaurantButtonStub = UIButtonStub()

 searchViewController = MockSearchViewController()
 searchViewController!.locationPicker = locationPickerStub!
 searchViewController!.viewRestaurantButton =
 viewRestaurantButtonStub!

 searchViewModel = SearchViewModel(view: searchViewController!)
 searchViewModel!.loadRestaurantData(filePath:
 validRestaurantDataFile1!)

 searchViewController!.viewModel = searchViewModel!
 }

 func prepareForRestaurantTableViewCellTests() {

 restaurantNameLabelStub = UILabelStub()
 restaurantRatingLabelStub = UILabelStub()
 restaurantDistanceLabelStub = UILabelStub()
 restaurantLocationLabelStub = UILabelStub()
 restaurantCuisineLabelStub = UILabelStub()

 restaurantTableViewCell = MockRestaurantTableViewCell()
 restaurantTableViewCell!.name = restaurantNameLabelStub!
 restaurantTableViewCell!.rating = restaurantRatingLabelStub!

Chapter 12 ■ Applying TDD and BDD Techniques

370

 restaurantTableViewCell!.distance = restaurantDistanceLabelStub!
 restaurantTableViewCell!.location = restaurantLocationLabelStub!
 restaurantTableViewCell!.cuisine = restaurantCuisineLabelStub!

 var validDictionary = [String : AnyObject]()
 validDictionary["area"] = "Oxford Street" as AnyObject
 validDictionary["rating"] = "5" as AnyObject
 validDictionary["cuisine"] = "Indian" as AnyObject
 validDictionary["distance"] = "0.05" as AnyObject
 validDictionary["tubeStation"] = "Bayswater" as AnyObject
 validDictionary["restaurantName"] = "Curry King" as AnyObject

 validRestaurant = Restaurant(validDictionary)

 cellViewModel = RestaurantTableViewCellViewModel(model:
 validRestaurant!)
 cellViewModel!.view = restaurantTableViewCell!

 restaurantTableViewCell!.viewModel = cellViewModel!
 }

 override func spec() {

 beforeEach {

 }

 describe("the main screen of the app is loaded") {
 context("no area has been selected") {
 it("the Next button is not enabled") {

 self.prepareForSearchViewControllerTests()
 self.searchViewController!.viewDidLoad()

 expect(self.viewRestaurantButtonStub!.isEnabled).
 to(equal(false))

 }
 }
 }

 describe("the main screen of the app is loaded") {
 context("an area in London has been selected") {
 it("the Next button is enabled") {

 self.prepareForSearchViewControllerTests()

Chapter 12 ■ Applying TDD and BDD Techniques

371

 self.searchViewController!.pickerView(
 self.locationPickerStub!, didSelectRow: 0,
 inComponent: 0)

 expect(self.viewRestaurantButtonStub!.isEnabled).
 to(equal(true))
 }
 }
 }

 describe("the user has selected a location") {
 context("the Next button is tapped") {
 it("a new screen appears with a list of restaurants in
 that location") {

 self.prepareForSearchViewControllerTests()

 self.searchViewController!.pickerView(
 self.locationPickerStub!,
 didSelectRow: 0, inComponent: 0)

 self.searchViewController!.onViewListings(self)

 expect(self.searchViewController!.
 displayResultsScreenCalled).to(equal(true))
 }
 }
 }

 describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied with the name
 of the nearest tube station") {

 self.prepareForRestaurantTableViewCellTests()

 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.distance!)
 miles(s) from \(self.validRestaurant!.tubeStation!)"

 expect(self.restaurantDistanceLabelStub!.text).
 to(equal(expectedValue))
 }
 }
 }

Chapter 12 ■ Applying TDD and BDD Techniques

372

 describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by the approximate
 distance in miles to the nearest tube station") {

 self.prepareForRestaurantTableViewCellTests()

 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.distance!)
 miles(s) from \(self.validRestaurant!.tubeStation!)"

 expect(self.restaurantDistanceLabelStub!.text).
 to(equal(expectedValue))
 }
 }
 }

 describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by an integer between
 1 to 5 that indicates the quality of the restaurant,
 with 1 being the poorest and 5 the best") {

 self.prepareForRestaurantTableViewCellTests()

 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.rating!)
 stars"
 expect(self.restaurantRatingLabelStub!.text).
 to(equal(expectedValue))
 }
 }
 }

 describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by the cuisine served
 at the restaurant") {

 self.prepareForRestaurantTableViewCellTests()

 self.restaurantTableViewCell!.setup()

 let expectedValue = self.validRestaurant!.cuisine!

 expect(self.restaurantCuisineLabelStub!.text).
 to(equal(expectedValue))

Chapter 12 ■ Applying TDD and BDD Techniques

373

 }
 }
 }

 }
}

The code in Listing 12-3 defines a BDD specification class called
RestaurantDirectorySpecification that is a subclass of QuickSpec and has a number of
BDD-style tests, one for each user scenario described in Table 12-3, which we saw earlier.
An analysis of the contents of the file is presented next.

At the top of the file are three import statements that import the Foundation, Quick,
and Nimble frameworks:

import Foundation
import Quick
import Nimble

The RestaurantDirectorySpecification class is declared as a subclass of QuickSpec
(and not XCTest) as we intend to write BDD-style tests:

class RestaurantDirectorySpecification : QuickSpec

The class contains a number of Ivars that are used to create stubbed versions of the
SearchViewController and the RestaurantTableViewCell classes:

// mocks and stubs for tests around SearchViewController funcationality
var locationPickerStub:UIPickerViewStub?
var viewRestaurantButtonStub:UIButtonStub?
var searchViewController:MockSearchViewController?
var searchViewModel:SearchViewModel?

// mocks and stubs for tests around RestaurantTableViewCell funcationality
var restaurantNameLabelStub:UILabelStub?
var restaurantRatingLabelStub:UILabelStub?
var restaurantDistanceLabelStub:UILabelStub?
var restaurantLocationLabelStub:UILabelStub?
var restaurantCuisineLabelStub:UILabelStub?
var restaurantTableViewCell:MockRestaurantTableViewCell?

var validRestaurantDataFile1:String?
var validRestaurant: Restaurant?
var cellViewModel: RestaurantTableViewCellViewModel?

Immediately following the instance variable declarations are a couple of methods
that perform the necessary object instantiation and assignment into the instance
variables. These methods are named the following:

•	 prepareForSearchViewControllerTests(), and

•	 prepareForRestaurantTableViewCellTests()

Chapter 12 ■ Applying TDD and BDD Techniques

374

The class has one other method called spec(), which is where the Quick tests are
written. As described in Chapter 10, each BDD test is written in the following format:

override func spec() {

 beforeEach {
 }

 describe(/* the "Given" part of a scenario statement*/) {
 context(/* the "When" part of a scenario statement*/){
 it(/* the "Then" part of a scenario statement */) {
 // test logic goes here
 }
 }
 }
}

The beforeEach() method of a Quick test case is equivalent to the setUp() method of
an XCTestCase. After the call to the beforeEach() method, a number of BDD-style tests are
written using nested calls to three functions: describe(), context(), it().

Let us examine each testable BDD scenario listed in Table 12-3 and the
corresponding BDD test code (scenarios 1 and 2 are not testable using Quick as they rely
on visual inspection of the user interface).

Examining the BDD Test for Scenario Number 3
Let us examine Scenario number 3, which is the first test scenario that can be tested using
BDD techniques:

Given [the main screen of the app is loaded],

When [no area has been selected],

Then [the Next button is not enabled].

The BDD-style test case to test this scenario is presented below:

describe("the main screen of the app is loaded") {
 context("no area has been selected") {
 it("the Next button is not enabled") {

 self.prepareForSearchViewControllerTests()
 self.searchViewController!.viewDidLoad()

 expect(self.viewRestaurantButtonStub!.isEnabled).
 to(equal(false))

 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-2689-6_10

Chapter 12 ■ Applying TDD and BDD Techniques

375

The main screen of this app is represented by an instance of the
SearchViewController class, which has a picker with a list of locations, and a button that
will allow a user to view a list of restaurants in the location selected in the picker.

The aim of this scenario is to ensure that the button is not enabled before the user
has selected a location in the picker.

In order to test that the criteria defined in this scenario are met, all you need to do
is call the viewDidLoad method on a SearchViewController instance, and check that the
isEnabled property of the button is false.

Instantiating the view controller within a test requires that stub objects are
assigned to the outlets defined in the view controller. This is achieved using a call to
prepareForSearchViewControllerTests() at the beginning of the test.

Examining the BDD Test for Scenario Number 4
Let us examine Scenario number 4, which is the next test scenario that can be tested
using BDD techniques:

Given [the main screen of the app is loaded],

When [an area in London has been selected],

Then [the Next button is enabled].

The BDD-style test case to test this scenario is presented below:

describe("the main screen of the app is loaded") {
 context("an area in London has been selected") {
 it("the Next button is enabled") {

 self.prepareForSearchViewControllerTests()

 self.searchViewController!.pickerView(
 self.locationPickerStub!, didSelectRow: 0,
 inComponent: 0)

 expect(self.viewRestaurantButtonStub!.isEnabled).
 to(equal(true))
 }
 }
}

This scenario also describes the behavior of the SearchViewController class. The aim
of this scenario is to ensure that the button on the view controller is enabled when the
user has selected a location in the picker.

In order to test that the criteria defined in this scenario are met, all you need
to do is call the pickerView(picker, didSelectRow, inComponent) method on a
SearchViewController instance, and check that the isEnabled property of the button is true.

Chapter 12 ■ Applying TDD and BDD Techniques

376

Examining the BDD Test for Scenario Number 5
Let us examine Scenario number 5, which is the next test scenario that can be tested
using BDD techniques:

Given [the user has selected a location],

When [the Next button is tapped],

Then [a new screen appears with a list of restaurants in that
location].

The BDD-style test case to test this scenario is presented below:

describe("the user has selected a location") {
 context("the Next button is tapped") {
 it("a new screen appears with a list of restaurants in that
 location") {

 self.prepareForSearchViewControllerTests()

 self.searchViewController!.pickerView(
 self.locationPickerStub!, didSelectRow: 0,
 inComponent: 0)

 self.searchViewController!.onViewListings(self)

 expect(self.searchViewController!.displayResultsScreenCalled).
 to(equal(true))
 }
 }
}

This scenario describes what happens after the user taps on the View Restaurant
Listings button in the SearchViewController. The expected behavior is that the results
screen appears with a list of restaurants. The result screen is represented by an instance of
the RestaurantListTableViewController class.

Trying to confirm that the result screen has visually appeared would be a user
interface test and will be better suited to tools used by the QA team. From a code
perspective, we could test that tapping on the button will call a method, which, in turn,
would have the logic to display the next screen.

This project will be built using the MV-VM architectural pattern; therefore
the SearchViewController class will have an associated view model class called
SearchViewModel. The view model class will contain the presentation logic,
and to support this logic, the view controller class will provide a method called
displayResultsScreen() that the view model can call.

In order to test that the criteria defined in this scenario are met, all you need to do is
select a row in the picker, then call the onViewListings() action method, and check that
the displayResultsScreen() method is called on the view controller.

Chapter 12 ■ Applying TDD and BDD Techniques

377

But how do you check if the displayResultsScreen() is called? In this project I
will create a subclass of SearchViewController called MockSearchViewController
that will contain a Boolean instance variable that will be set to true when the
displayResultsScreen() method is called.

Examining the BDD Test for Scenario Number 6
Let us examine Scenario number 6, which is the next test scenario that can be tested
using BDD techniques:

Given [the list of restaurants is visible on the screen],

When [a restaurant’s name is displayed in that list],

Then [the listing should be accompanied by the name of the
nearest tube station].

The BDD-style test case to test this scenario is presented below:

describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied with the name of the nearest
 tube station") {

 self.prepareForRestaurantTableViewCellTests()
 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.distance!)
 miles(s) from \(self.validRestaurant!.tubeStation!)"

 expect(self.restaurantDistanceLabelStub!.text).
 to(equal(expectedValue))
 }
 }
}

This scenario describes the behavior of the RestaurantListTableViewCell class and
can be tested by ensuring that a given cell of the table view has some specific text in the
restaurantDistanceLabel.

The test code requires that an instance of RestaurantListTableViewCell
is instantiated with stub objects for the outlets. This is achieved by a call to
prepareForRestaurantTableViewCellTests() at the beginning of the test.

The test code also assumes that the table view cell will have a method called setup()
that will be called by the table view controller before presenting the cell.

Examining the BDD Test for Scenario Number 7
Let us examine Scenario number 7, which is the next test scenario that can be tested
using BDD techniques:

Chapter 12 ■ Applying TDD and BDD Techniques

378

Given [the list of restaurants is visible on the screen],

When [a restaurant’s name is displayed in that list],

Then [the listing should be accompanied by the approximate
distance in miles to the nearest tube station].

The BDD-style test case to test this scenario is presented below:

describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by the approximate distance in
 miles to the nearest tube station") {

 self.prepareForRestaurantTableViewCellTests()
 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.distance!)
 miles(s) from \(self.validRestaurant!.tubeStation!)"

 expect(self.restaurantDistanceLabelStub!.text).
 to(equal(expectedValue))
 }
 }
}

This scenario is similar to the previous one, and can also be tested by ensuring that a
given cell of the table view has some specific text in the restaurantDistanceLabel.

Examining the BDD Test for Scenario Number 8
Let us examine Scenario number 8, which is the next test scenario that can be tested
using BDD techniques:

Given [the list of restaurants is visible on the screen],

When [a restaurant’s name is displayed in that list],

Then [the listing should be accompanied by an integer
between 1 to 5 that indicates the quality of the restaurant, with
1 being the poorest and 5 the best].

The BDD-style test case to test this scenario is presented below:

describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by an integer between 1 to 5
 that indicates the quality of the restaurant, with 1 being the
 poorest and 5 the best") {

Chapter 12 ■ Applying TDD and BDD Techniques

379

 self.prepareForRestaurantTableViewCellTests()
 self.restaurantTableViewCell!.setup()

 let expectedValue = "\(self.validRestaurant!.rating!) stars"

 expect(self.restaurantRatingLabelStub!.text).
 to(equal(expectedValue))
 }
 }
}

This scenario also describes the behavior of the RestaurantListTableViewCell class
and can be tested by ensuring that a given cell of the table view has some specific text in
the restaurantRatingLabel.

Examining the BDD Test for Scenario Number 9
Let us examine Scenario number 9, which is the next test scenario that can be tested
using BDD techniques:

Given [the list of restaurants is visible on the screen],

When [a restaurant’s name is displayed in that list],

Then [the listing should be accompanied by the cuisine
served at the restaurant].

The BDD-style test case to test this scenario is presented below:

describe("the list of restaurants is visible on the screen") {
 context("a restaurant’s name is displayed in that list") {
 it("the listing should be accompanied by the cuisine served at the
 restaurant") {

 self.prepareForRestaurantTableViewCellTests()
 self.restaurantTableViewCell!.setup()

 let expectedValue = self.validRestaurant!.cuisine!

 expect(self.restaurantCuisineLabelStub!.text).
 to(equal(expectedValue))
 }
 }
}

This scenario also describes the behavior of the RestaurantListTableViewCell class
and can be tested by ensuring that a given cell of the table view has some specific text in
the restaurantCuisineLabel UILabel.

Chapter 12 ■ Applying TDD and BDD Techniques

380

Creating Stub Objects
At this point, your project will have several code compilation issues as these tests rely
on many objects that have not been created. The stub text fields, labels, and pickers are
straightforward to create using subclassing techniques.

Create a new group called Stubs under the RestaurantDirectoryTests group in the
Project Navigator, and create a new Swift file called UILabelStub.swift under this group.
Ensure the file is only included in the test target (Figure 12-15).

Update the code in UILabelStub.swift to match the contents of Listing 12-4.

Listing 12-4.  UILabelStub.swift

import UIKit

class UILabelStub: UILabel {

 init() {
 super.init(frame: CGRect.zero)
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

}

Figure 12-15.  Target Membership for the UILabelStub Class

Chapter 12 ■ Applying TDD and BDD Techniques

381

Create a new Swift file called UIButtonStub.swift under the Stubs group, ensuring the
file is only included in the test target and update the contents of the new file to match the
contents of Listing 12-5.

Listing 12-5.  UIButtonStub.swift

import UIKit

class UILabelStub: UILabel {

 init() {
 super.init(frame: CGRect.zero)
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

}

Create a new Swift file called UITextFieldStub.swift under the Stubs group, ensuring
the file is only included in the test target, and update the contents of the new file to match
the contents of Listing 12-6.

Listing 12-6.  UITextFieldStub.swift

import UIKit

class UITextFieldStub : UITextField {

 init(text:String) {
 super.init(frame: CGRect.zero)
 super.text = text
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }
}

Create a new Swift file called UITableViewStub.swift under the Stubs group, ensuring
the file is only included in the test target, and update the contents of the new file to match
the contents of Listing 12-7.

Listing 12-7.  UITableViewStub.swift

import UIKit

class UITableViewStub: UITableView {

Chapter 12 ■ Applying TDD and BDD Techniques

382

 init() {
 super.init(frame: CGRect.zero, style: UITableViewStyle.plain)
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

 �override func dequeueReusableCell(withIdentifier identifier: String) ->
UITableViewCell? {

 return RestaurantTableViewCell()
 }
}

Create a new Swift file called UIPickerViewStub.swift under the Stubs group,
ensuring the file is only included in the test target, and update the contents of the new file
to match the contents of Listing 12-8.

Listing 12-8.  UIPickerViewStub.swift

import UIKit

class UIPickerViewStub : UIPickerView {

 init() {
 super.init(frame: CGRect.zero)
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 }

}

Adding The Restaurant Data File to the Project
Create a new group called TestData under the RestaurantDirectoryTests group in the
Project Navigator, and add the ValidRestaurantDataFile1.json file included with this
lesson’s downloads into the project. While adding this flle, ensure the “Copy Items if
Needed” option is checked in the import dialog box and that the file is only included in
the test target (Figure 12-16).

Chapter 12 ■ Applying TDD and BDD Techniques

383

Examining the Remaining Compilation Errors
If you switch to the RestaurantDirectorySpecification.swift file, you will notice that several
compilation error messages that were previously visible have disappeared; however, there
are still 10 errors remaining (Figure 12-17).

Figure 12-16.  Xcode File Import Dialog

Figure 12-17.  RestaurantDirectorySpecification.Swift Compilation Errors

Chapter 12 ■ Applying TDD and BDD Techniques

384

The reason for these errors is that there are still quite a few classes that are being
referenced in these BDD tests but do not yet exist:

•	 SearchViewModel

•	 Restaurant

•	 RestaurantTableViewCellViewModel

•	 MockSearchViewController

•	 MockRestaurantTableViewCell

These classes will be created as we build the code for the app using the MV-VM
application architecture.

You may have noticed that the BDD tests themselves do not impose any particular
application architecture. For instance, there is nothing in these tests that suggest how the
model layer should be built, whether there should be validator objects, where you should
use view models, etc.

This is because BDD tests operate at a higher level of abstraction. To help define the
architecture of your code, you will need to revert to TDD techniques in the same project.

At the start of a project that uses both BDD and TDD techniques, you will write a set
of BDD tests using Quick, which may not initially compile, and if they do, will not pass.

You will then move on to develop your application’s code using TDD techniques,
while at the same time keeping an eye on the BDD tests. If initially your BDD tests were
not compiling, you will need to temporarily comment out the portions of the test code
that do not compile so that you can focus on building your application’s code.

Periodically, you will need to uncomment the BDD tests and execute the BDD tests.
Doing so frequently will ensure that the code you are writing using TDD techniques is
moving toward satisfying the requirements provided by the business. In time, as more of
your application’s code is built along with their associated unit tests, your BDD tests will
begin to pass as well.

The rest of this chapter will describe the characteristics of the model, view model,
and view controller layers of the application, and then we will build these using standard
TDD techniques that have been covered in earlier chapters.

Building the Model Layer
There is only one model class that we need to build – Restaurant. The Restaurant class
contains properties that store the information for a single restaurant. Table 12-6 lists the
desired properties and methods of the Photo class.

Chapter 12 ■ Applying TDD and BDD Techniques

385

The init() method will require a dictionary with all of the following mandatory keys
to be present:

•	 restaurantName

•	 rating

•	 cuisine

•	 area

•	 distance

•	 tubeStation

The complete Restaurant class is shown in Listing 12-9. If you would like to examine
the code for the validator objects and associated tests, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Listing 12-9.  Restaurant.swift

import Foundation

class Restaurant : NSObject {

 var area:String?
 var rating:String?
 var cuisine:String?

Table 12-6.  Properties and Methods of the Photo Class

Item Type Description

var area:String? Variable The location in London where the
restaurant is based.

var rating:String? Variable A number between 0 and 5, which
represented the average rating received by
the restaurant.

var cuisine:String? Variable The cuisine served at the restaurant.

var distance:String? Variable The distance between the restaurant and
the nearest tube station.

var tubeStation:String? Variable The name of the nearest London
underground station.

var
restaurantName:String?

Variable The name of the restaurant.

init?
(_ dictionary:[String :
AnyObject]?)

Method Allows other code to create Restaurant
instances. Requires a dictionary with
certain mandatory keys as input.

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 12 ■ Applying TDD and BDD Techniques

386

 var distance:String?
 var tubeStation:String?
 var restaurantName:String?

 var restaurantNameValidator:RestaurantNameValidator?
 var tubeStationValidator:TubeStationValidator?
 var cuisineValidator:CuisineValidator?
 var ratingValidator:RatingValidator?

 let areaKey = "area"
 let ratingKey = "rating"
 let cuisineKey = "cuisine"
 let distanceKey = "distance"
 let tubeStationKey = "tubeStation"
 let restaurantNameKey = "restaurantName"

 init?(_ dictionary:[String : AnyObject]?) {

 guard let dictionary = dictionary,
 let area = dictionary[areaKey] as? String,
 let rating = dictionary[ratingKey] as? String,
 let cuisine = dictionary[cuisineKey] as? String,
 let distance = dictionary[distanceKey] as? String,
 let tubeStation = dictionary[tubeStationKey] as? String,
 �let restaurantName = dictionary[restaurantNameKey] as? String

else {
 return nil
 }

 super.init()

 �let restaurantNameValidator = self.restaurantNameValidator ??
RestaurantNameValidator()

 if restaurantNameValidator.validate(restaurantName) == false {
 return nil
 }

 �let tubeStationValidator = self.tubeStationValidator ??
TubeStationValidator()

 if tubeStationValidator.validate(tubeStation) == false {
 return nil
 }

Chapter 12 ■ Applying TDD and BDD Techniques

387

 let cuisineValidator = self.cuisineValidator ?? CuisineValidator()
 if cuisineValidator.validate(cuisine) == false {
 return nil
 }

 let ratingValidator = self.ratingValidator ?? RatingValidator()
 if ratingValidator.validate(rating) == false {
 return nil
 }

 self.area = area
 self.rating = rating
 self.cuisine = cuisine
 self.distance = distance
 self.tubeStation = tubeStation
 self.restaurantName = restaurantName
 }

}

Building the ViewModel Layer
There are three view model classes that we need to build - SearchViewModel,
RestaurantTableViewModel, and RestaurantTableViewCellViewModel. These
correspond to the SearchViewController, RestaurantTableViewController, and
RestaurantTableViewCell classes respectively.

The view models will use protocols to establish an interface through which they can
communicate with their respective view controllers.

The SearchViewModel Class
The SearchViewModel class represents the view model between the
SearchViewController class and the Restaurant model object. The desired instance
variables and methods of the view model class are described in Table 12-7.

Chapter 12 ■ Applying TDD and BDD Techniques

388

Table 12-7.  SearchViewModel instance variables and methods

Name Type Description

weak var view:SearchViewContr
ollerProtocol?

Ivar Reference to the view controller, uses
a protocol to define a list of methods
that the view model can use.

var selectedArea:String? Ivar Represents the location within
London selected by the user by
interacting with the picker view.

var restaurants: [String:
[Restaurant]]

Ivar A dictionary of restaurants, with one
entry for each location of London.

func
performInitialViewSetup()

Method Called from the viewDidLoad()
method of the view controller.

func numberOfComponents() ->
Int

Method Called from the
numberOfComponents(in
pickerView: UIPickerView)
method of the view controller.

func
numberOfRowsInComponent(_
component:Int) -> Int

Method Called from the pickerView
(_ pickerView: UIPickerView,
numberOfRowsInComponent
component: Int) method of the
view controller.

func titleForRow(_ row:Int,
component:Int) -> String?

Method Called from the pickerView
(_ pickerView: UIPickerView,
titleForRow row: Int,
forComponent component: Int)
method of the view controller.

func didSelectRow(_ row:Int,
component:Int) -> Void

Method Called from the pickerView
(_ pickerView: UIPickerView,
didSelectRow row: Int,
inComponent component: Int)
method of the view controller.

func onViewListings() -> Void Method Called from the onViewListings
(_ sender: Any) method of the
view controller.

func
viewModelForSelectedArea() ->
RestaurantTableViewModel?

Method Called from the prepare(for
segue: UIStoryboardSegue,
sender: Any?) method of the view
controller.

func loadRestaurantData(fileP
ath:String?) -> Void

Method Called from the init() method of
the view model class.

init(view:SearchViewControlle
rProtocol)

Method Called from the viewDidLoad()
method of the view controller.

Chapter 12 ■ Applying TDD and BDD Techniques

389

The SearchViewModel class requires that a protocol called
SearchViewControllerProtocol is defined and implemented by the SearchViewController
class. Listing 12-10 decribes the protocol.

Listing 12-10.  SearchViewControllerProtocol.swift

import Foundation

protocol SearchViewControllerProtocol : class {
 func setNavigationTitle(_ title:String)
 func enableRestaurantListingsButton(_ state:Bool)
 func displayResultsScreen()
}

These methods are implemented in SearchViewController.swift by adding the
following class extension to the end of the file:

extension SearchViewController : SearchViewControllerProtocol {
 func setNavigationTitle(_ title:String) {
 self.title = title
 }

 func enableRestaurantListingsButton(_ state:Bool) {
 self.viewRestaurantButton.isEnabled = state
 }

 func displayResultsScreen() {
 �self.performSegue(withIdentifier: "presentSearchResults", sender:

self)
 }
}

The complete SearchViewModel class is provided in Listing 12-11. If you would like
to examine the code for the associated tests, download the finished project anonymously
from github using the following URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Listing 12-11.  SearchViewModel.swift

import Foundation

class SearchViewModel : NSObject {

 var restaurants: [String: [Restaurant]]
 var selectedArea:String?

 weak var view:SearchViewControllerProtocol?

 init(view:SearchViewControllerProtocol) {

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 12 ■ Applying TDD and BDD Techniques

390

 self.view = view
 self.restaurants = [String: [Restaurant]]()

 super.init()

 �let path = Bundle.main.path(forResource: "RestaurantData", ofType:
"json")

 loadRestaurantData(filePath:path)
 }

 func loadRestaurantData(filePath:String?) -> Void {

 guard let filePath = filePath,
 �let fileData = try? Data(contentsOf: URL(fileURLWithPath:

filePath)),
 �let array = try? JSONSerialization.jsonObject(with: fileData,

options: JSONSerialization.ReadingOptions.mutableContainers) as?
NSArray else {

 return
 }

 for item in array! {
 guard let dictionary = item as? [String : AnyObject] else {
 continue
 }

 if let restaurant = Restaurant(dictionary),
 let area = restaurant.area {

 if self.restaurants[area] == nil {
 self.restaurants[area] = [Restaurant]()
 }

 self.restaurants[area]?.append(restaurant)
 }
 }
 }

 func performInitialViewSetup() {
 view?.setNavigationTitle("Restaurant Finder")
 view?.enableRestaurantListingsButton(false)
 }

 func numberOfComponents() -> Int {
 return 1
 }

Chapter 12 ■ Applying TDD and BDD Techniques

391

 func numberOfRowsInComponent(_ component:Int) -> Int {
 return self.restaurants.count
 }

 func titleForRow(_ row:Int, component:Int) -> String? {
 let keys = [String](self.restaurants.keys)

 if row < 0 || row >= keys.count {
 return nil
 }

 return keys[row]
 }

 func didSelectRow(_ row:Int, component:Int) -> Void {
 let keys = [String](self.restaurants.keys)

 if row < 0 || row >= keys.count {
 return
 }

 self.selectedArea = keys[row]

 self.view?.enableRestaurantListingsButton(true)
 }

 func onViewListings() -> Void {
 self.view?.displayResultsScreen()
 }

 func viewModelForSelectedArea() -> RestaurantTableViewModel? {
 guard let selectedArea = self.selectedArea else {
 return nil
 }

 let keys = [String](self.restaurants.keys)
 if keys.contains(selectedArea) == false {
 return nil
 }

 �return RestaurantTableViewModel(selectedArea, restaurantList:self.
restaurants[selectedArea])

 }

}

Chapter 12 ■ Applying TDD and BDD Techniques

392

While building the SearchViewModel class using a test-driven approach, you will
need to create a mock view controller object to instantiate the view model, and to test the
binding between the view model and the view controller.

As it turns out, a mock search view controller class was also one of the missing classes
needed to make the Quick BDD tests compile. Listing 12-12 contains the code in a class
called MockSearchViewController that will be used by both unit tests and Quick BDD tests.

Listing 12-12.  MockSearchViewController.swift

import Foundation
import XCTest

class MockSearchViewController : SearchViewController {

 var expectationForSetNavigationTitle:XCTestExpectation?
 �var expectationForEnableRestaurantListingsButton:(XCTestExpectation,

Bool)?
 var expectationForDisplayResultsScreen:XCTestExpectation?

 var displayResultsScreenCalled:Bool

 init() {
 displayResultsScreenCalled = false
 super.init(nibName: nil, bundle: nil)
 }

 required init?(coder aDecoder: NSCoder) {
 displayResultsScreenCalled = false
 super.init(coder: aDecoder)
 }

 override func setNavigationTitle(_ title:String) {
 expectationForSetNavigationTitle?.fulfill()
 super.setNavigationTitle(title)
 }

 override func enableRestaurantListingsButton(_ state:Bool) {
 �guard let (expectation, expectedValue) = self.

expectationForEnableRestaurantListingsButton else {
 super.enableRestaurantListingsButton(state)
 return
 }

 if state == expectedValue {
 expectation.fulfill()
 }

Chapter 12 ■ Applying TDD and BDD Techniques

393

 super.enableRestaurantListingsButton(state)
 }

 override func displayResultsScreen() {
 expectationForDisplayResultsScreen?.fulfill()
 displayResultsScreenCalled = true
 }
}

The RestaurantTableViewModel Class
The RestaurantTableViewModel class represents the view model between the
RestaurantTableViewController class and an array of Restaurant model objects. The desired
instance variables and methods of the view model class are described in Table 12-8.

Table 12-8.  RestaurantTableViewModel instance variables and methods

Name Type Description

var view:RestaurantTableViewContr
ollerProtocol?

Ivar Reference to the view controller, uses
a protocol to define a list of methods
that the view model can use.

var area:String Ivar Represents the location within
London selected by the user. This
will be displayed as the title in the
navigation bar.

var restaurantList:[Restaurant] Ivar An array of Restaurant objects.

func performInitialViewSetup() Method Called from the viewDidLoad()
method of the view controller.

func numberOfSections() -> Int Method Called from the
numberOfSections(in tableView:
UITableView) -> Int method of
the view controller.

func numberOfRowsInSection(_
section:Int) -> Int

Method Called from the tableView
(_ tableView: UITableView,
numberOfRowsInSection section:
Int) -> Int method of the view
controller.

func cellViewModel(forIndexPath
indexPath:IndexPath) ->
RestaurantTableViewCellViewModel?

Method Called from the tableView
(_ tableView: UITableView,
cellForRowAt indexPath:
IndexPath) -> UITableViewCell
method of the view controller.

init? (_ area:String,
restaurantList:[Restaurant]?)

Method Called from the viewDidLoad()
method of the view controller.

Chapter 12 ■ Applying TDD and BDD Techniques

394

The RestaurantTableViewModel class requires that a protocol called
RestaurantTableViewControllerProtocol is defined in the project, and implemented by
the RestaurantTableViewController class. Listing 12-13 decribes the protocol:

Listing 12-13.  RestaurantTableViewControllerProtocol.swift

import Foundation

protocol RestaurantTableViewControllerProtocol : class {
 func setNavigationTitle(_ title:String)
}

These methods are implemented in RestaurantTableViewController.swift by adding
the following class extension to the end of the file:

extension RestaurantTableViewController :
RestaurantTableViewControllerProtocol {
 func setNavigationTitle(_ title:String) {
 self.title = title
 }
}

Listing 12-14 provides the complete RestaurantTableViewModel class and is listed
below. If you would like to examine the code for the associated tests, download the
finished project anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Listing 12-14.  RestaurantTableViewModel.swift

import Foundation

class RestaurantTableViewModel : NSObject {

 var area:String
 var restaurantList:[Restaurant]
 var view:RestaurantTableViewControllerProtocol?

 init? (_ area:String, restaurantList:[Restaurant]?) {
 guard let restaurantList = restaurantList else {
 return nil
 }

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 12 ■ Applying TDD and BDD Techniques

395

 self.area = area
 self.restaurantList = restaurantList

 super.init()
 }

 func performInitialViewSetup() {
 view?.setNavigationTitle("Restaurants in \(area).")
 }

 func numberOfSections() -> Int {
 return 1
 }

 func numberOfRowsInSection(_ section:Int) -> Int {
 return restaurantList.count
 }

 �func cellViewModel(forIndexPath indexPath:IndexPath) ->
RestaurantTableViewCellViewModel? {

 let row = indexPath.row
 if row < 0 || row >= self.restaurantList.count {
 return nil
 }

 let restaurant = restaurantList[row]
 return RestaurantTableViewCellViewModel(model:restaurant)
 }
}

The RestaurantTableViewCellViewModel Class
The RestaurantTableViewCellViewModel class represents the view model between
the RestaurantTableViewCell class and a single Restaurant model object. The desired
instance variables and methods of the view model class are described in Table 12-9.

Chapter 12 ■ Applying TDD and BDD Techniques

396

The RestaurantTableViewCellViewModel class requires that a protocol called
RestaurantTableViewCellProtocol is defined in the project, and implemented by the
RestaurantTableViewCellr class. Listing 12-15 describes the protocol.

Listing 12-15.  RestaurantTableViewCellProtocol.swift

import Foundation

protocol RestaurantTableViewCellProtocol : class {
 func setRestaurantLocation(_ location:String)
 func setRestaurantRating(_ rating:String)
 func setRestaurantCuisine(_ cuisine:String)
 func setRestarantDistance(_ distance:String)
 func setRestaurantName(_ restaurantName:String)
}

These methods are implemented in RestaurantTableViewCellr.swift by adding the
following class extension to the end of the file:

extension RestaurantTableViewCell : RestaurantTableViewCellProtocol {

 func setRestaurantLocation(_ location:String) {
 self.location.text = location
 }

 func setRestaurantRating(_ rating:String) {
 self.rating.text = rating
 }

Table 12-9.  RestaurantTableViewCellViewModel instance variables and methods

Name Type Description

var view:RestaurantTable
ViewCellProtocol?

Ivar Reference to the view controller, uses a
protocol to define a list of methods that the
view model can use.

var model:Restaurant? Ivar Represents the data for a restaurant in London.

func setup() Method Called from the setup () method of the
table view cell, which in turn is called from
the tableView(_ tableView: UITableView,
cellForRowAt indexPath: IndexPath) ->
UITableViewCell method of the table view
controller.

init(model:Restaurant?) Method Used to create an instance of the view
model.

Chapter 12 ■ Applying TDD and BDD Techniques

397

 func setRestaurantCuisine(_ cuisine:String) {
 self.cuisine.text = cuisine
 }

 func setRestarantDistance(_ distance:String) {
 self.distance.text = distance
 }

 func setRestaurantName(_ restaurantName:String) {
 self.name.text = restaurantName
 }
}

The complete RestaurantTableViewCellViewModel class is provided in Listing 12-16.
If you would like to examine the code for the associated tests, download the finished project
anonymously from github using the following URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

Listing 12-16.  RestaurantTableViewCellViewModel.swift

import Foundation

class RestaurantTableViewCellViewModel : NSObject {

 var model:Restaurant?
 var view:RestaurantTableViewCellProtocol?

 init(model:Restaurant?) {
 self.model = model
 super.init()
 }

 func setup() {

 guard let view = view ,
 let model = model,
 let area = model.area,
 let rating = model.rating,
 let cuisine = model.cuisine,
 let distance = model.distance,
 let tubeStation = model.tubeStation,
 let restaurantName = model.restaurantName else {
 return
 }

 view.setRestaurantLocation(area)
 view.setRestaurantRating("\(rating) stars")
 view.setRestaurantCuisine(cuisine)

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

Chapter 12 ■ Applying TDD and BDD Techniques

398

 view.setRestarantDistance("\(distance) miles(s) from \(tubeStation)")
 view.setRestaurantName(restaurantName)
 }
}

While building the RestaurantTableViewCellViewModel class using a test-driven
approach, you will need to create a mock table view cell object to test the binding
between the view model and the cell.

As it turns out a mock table view cell class was one of the missing classes needed
to make the Quick BDD tests compile. Listing 12-17 contains the code in a class called
MockRestaurantTableViewCell that will be used by both unit tests and Quick BDD tests.

Listing 12-17.  MockRestaurantTableViewCell.swift

import Foundation
import XCTest

class MockRestaurantTableViewCell : RestaurantTableViewCell {

 var expectationForSetRestaurantLocation:(XCTestExpectation, String)?
 var expectationForSetRestaurantRating:(XCTestExpectation, String)?
 var expectationForSetRestaurantCuisine:(XCTestExpectation, String)?
 var expectationForSetRestaurantDistance:(XCTestExpectation, String)?
 var expectationForSetRestaurantName:(XCTestExpectation, String)?

 override func setRestaurantLocation(_ location:String) {
 �guard let (expectation, expectedValue) = self.

expectationForSetRestaurantLocation else {
 super.setRestaurantLocation(location)
 return
 }

 if location.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }

 super.setRestaurantLocation(location)
 }

 override func setRestaurantRating(_ rating:String) {
 �guard let (expectation, expectedValue) = self.

expectationForSetRestaurantRating else {
 super.setRestaurantRating(rating)
 return
 }

 if rating.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }

Chapter 12 ■ Applying TDD and BDD Techniques

399

 super.setRestaurantRating(rating)
 }

 override func setRestaurantCuisine(_ cuisine:String) {
 �guard let (expectation, expectedValue) = self.

expectationForSetRestaurantCuisine else {
 super.setRestaurantCuisine(cuisine)
 return
 }

 if cuisine.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }

 super.setRestaurantCuisine(cuisine)
 }

 override func setRestarantDistance(_ distance:String) {
 �guard let (expectation, expectedValue) = self.

expectationForSetRestaurantDistance else {
 super.setRestarantDistance(distance)
 return
 }

 if distance.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }

 super.setRestarantDistance(distance)
 }

 override func setRestaurantName(_ restaurantName:String) {
 �guard let (expectation, expectedValue) = self.

expectationForSetRestaurantName else {
 super.setRestaurantName(restaurantName)
 return
 }

 if restaurantName.compare(expectedValue) == .orderedSame {
 expectation.fulfill()
 }

 super.setRestaurantName(restaurantName)
 }

}

Chapter 12 ■ Applying TDD and BDD Techniques

400

View Controller to View Model Bindings
The model and view model layers are now ready. All that remains is to instatiate view
model objects and integrate calls to these view model objects from their corresponding
view controllers.

Listing 12-18 presents the final SearchViewController class, fully integrated with the
SearchViewModel class.

Listing 12-18.  SearchViewController.swift

import UIKit

class SearchViewController: UIViewController {

 @IBOutlet weak var locationPicker: UIPickerView!
 @IBOutlet weak var viewRestaurantButton: UIButton!

 var viewModel:SearchViewModel?

 override func viewDidLoad() {
 super.viewDidLoad()

 if self.viewModel == nil {
 self.viewModel = SearchViewModel(view: self)
 }

 self.viewModel?.performInitialViewSetup()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 @IBAction func onViewListings(_ sender: Any) {
 self.viewModel?.onViewListings()
 }

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 guard let identifier = segue.identifier,
 �let destination = segue.destination as?

RestaurantTableViewController,
 let viewModel = self.viewModel else {
 return
 }

 if identifier.compare("presentSearchResults") != .orderedSame {
 return
 }

Chapter 12 ■ Applying TDD and BDD Techniques

401

 let detailViewModel = viewModel.viewModelForSelectedArea()
 �detailViewModel?.view = destination as

RestaurantTableViewControllerProtocol
 destination.viewModel = detailViewModel
 }

}

extension SearchViewController : UIPickerViewDelegate {

 �func pickerView(_ pickerView: UIPickerView, titleForRow row: Int,
forComponent component: Int) -> String? {

 guard let viewModel = self.viewModel else {
 return nil
 }

 return viewModel.titleForRow(row, component:component)
 }

 �func pickerView(_ pickerView: UIPickerView, didSelectRow row: Int,
inComponent component: Int) {

 guard let viewModel = self.viewModel else {
 return
 }

 return viewModel.didSelectRow(row, component:component)
 }
}

extension SearchViewController : UIPickerViewDataSource {

 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 guard let viewModel = self.viewModel else {
 return 0
 }

 return viewModel.numberOfComponents()
 }

 �func pickerView(_ pickerView: UIPickerView, numberOfRowsInComponent
component: Int) -> Int {

 guard let viewModel = self.viewModel else {
 return 0
 }

Chapter 12 ■ Applying TDD and BDD Techniques

402

 return viewModel.numberOfRowsInComponent(component)
 }

}

extension SearchViewController : SearchViewControllerProtocol {
 func setNavigationTitle(_ title:String) {
 self.title = title
 }

 func enableRestaurantListingsButton(_ state:Bool) {
 self.viewRestaurantButton.isEnabled = state
 }

 func displayResultsScreen() {
 �self.performSegue(withIdentifier: "presentSearchResults", sender:

self)
 }
}

Listing 12-19 presents the final RestaurantListTableViewController class, fully
integrated with the RestaurantTableViewModel class.

Listing 12-19.  RestaurantListTableViewController.swift

import UIKit

class RestaurantTableViewController: UITableViewController {

 var viewModel: RestaurantTableViewModel?

 override func viewDidLoad() {
 super.viewDidLoad()
 viewModel?.performInitialViewSetup()
 }

 override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 // Dispose of any resources that can be recreated.
 }

 // MARK: - Table view data source

 override func numberOfSections(in tableView: UITableView) -> Int {
 guard let viewModel = self.viewModel else {
 return 0
 }

Chapter 12 ■ Applying TDD and BDD Techniques

403

 return viewModel.numberOfSections()
 }

 �override func tableView(_ tableView: UITableView, numberOfRowsInSection
section: Int) -> Int {

 guard let viewModel = self.viewModel else {
 return 0
 }

 return viewModel.numberOfRowsInSection(section)
 }

 �override func tableView(_ tableView: UITableView, cellForRowAt
indexPath: IndexPath) -> UITableViewCell {

 �let cell = tableView.dequeueReusableCell(withIdentifier:
"RestaurantTableViewCellIdentifier", for: indexPath) as?
RestaurantTableViewCell

 guard let viewModel = viewModel,
 let restaurantTableViewCell = cell else {
 return UITableViewCell()
 }

 �let detailViewModel = viewModel.cellViewModel(forIndexPath:
indexPath)

 detailViewModel?.view = restaurantTableViewCell

 restaurantTableViewCell.viewModel = detailViewModel
 restaurantTableViewCell.setup()

 return restaurantTableViewCell
 }

}

extension RestaurantTableViewController :
RestaurantTableViewControllerProtocol {
 func setNavigationTitle(_ title:String) {
 self.title = title
 }
}

Listing 12-20 presents the final RestaurantListTableViewCell class, fully integrated
with the RestaurantTableViewCellViewModel class.

Chapter 12 ■ Applying TDD and BDD Techniques

404

Listing 12-20.  RestaurantListTableViewCell.swift

import UIKit

class RestaurantTableViewCell: UITableViewCell {

 @IBOutlet weak var name: UILabel!
 @IBOutlet weak var rating: UILabel!
 @IBOutlet weak var distance: UILabel!
 @IBOutlet weak var location: UILabel!
 @IBOutlet weak var cuisine: UILabel!

 var viewModel:RestaurantTableViewCellViewModel?

 override func awakeFromNib() {
 super.awakeFromNib()
 // Initialization code
 }

 override func setSelected(_ selected: Bool, animated: Bool) {
 super.setSelected(selected, animated: animated)

 // Configure the view for the selected state
 }

 func setup() {
 viewModel?.setup()
 }

}

extension RestaurantTableViewCell : RestaurantTableViewCellProtocol {

 func setRestaurantLocation(_ location:String) {
 self.location.text = location
 }

 func setRestaurantRating(_ rating:String) {
 self.rating.text = rating
 }

 func setRestaurantCuisine(_ cuisine:String) {
 self.cuisine.text = cuisine
 }

 func setRestarantDistance(_ distance:String) {
 self.distance.text = distance
 }

Chapter 12 ■ Applying TDD and BDD Techniques

405

 func setRestaurantName(_ restaurantName:String) {
 self.name.text = restaurantName
 }
}

You can download the finished project anonymously from github using the following
URL:

https://github.com/asmtechnology/Lesson12.iOSTesting.2017.Apress.git

If you execute all tests using the Product > Test menu item, you will see that all BDD
and TDD tests pass.

Summary
In this chapter you have learned to combine BDD and TDD techniques while building
an iOS App. You started by reviewing the business reuirements and creating a set of
user stories to cover the requirements. You then determined that not all user stories
were testable by BDD techniques; some scenarios would be better tested using visual
inspection techniques.

For the scenarios that could be tested using BDD techniques, you learned to create
BDD tests using Quick. The BDD tests were failing initially, and you determined that you
will need to create the required application functionality to make the BDD tests pass.

Since BDD tests do not dictate the manner in which you write the underlying code,
you opted to use TDD techniques and the application architecture to build the underlying
application functionality.

By doing so, you used a combination of both BDD and TDD techniques to build the
application.

https://github.com/asmtechnology/Lesson05.iOSTesting.2017.Apress.git

407© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6_13

CHAPTER 13

Testing the User Interface

User Interface (UI) tests allow you to test your application from the outside, just as your
users would see the application. Every time you decide to run your application on the
simulator or device, you are, in effect, testing the UI of your application. Since Xcode 7,
Apple has provided the ability to create automated UI tests. These automated UI tests are
great at finding regression defects, and used correctly can reduce the regression testing
effort for your apps.

UI tests are built using a set of classes in XCTest. Unlike unit tests that derive from
XCTest, UI tests derive from XCUITest. UI tests are typically assigned their own group and
build target in an Xcode project as shown in Figure 13-1.

As you can see from Figure 13-1, the code that makes your app, its associated unit
tests, and user interface tests is part of the same Xcode project. However, unlike unit tests,
UI tests are packaged and deployed into a separate application called the Test Runner.

Figure 13-1.  Separate Folder Group and Build Targets for UI Tests

Chapter 13 ■ Testing the User Interface

408

The code that makes up your UI test cases executes within the test runner app and
not the main app being tested (subject under test). Naturally, the first order of business
for the test runner is to launch an instance of the app to be tested.

How does the test runner app interact with the UI of the subject under test
programmatically? The answer is through the use of proxy user interface elements that
are set up by Xcode during the test session. This is depicted in Figure 13-2.

The code in a typical UI test case attempts to find a proxy user interface element in
the subject under test, and creates assertions based on the state of the proxy element.
Proxy elements are instances of XCUIElement and have a very limited list of properties
and methods that you can use within your UI test.

Xcode also provides a related feature called UI recording. UI recording is a tool to
help you create UI tests. When UI recording is enabled, an instance of the subject under
test is launched in the iOS simulator and you can interact with it as you normally would.
Xcode records your interaction with the app and builds a user interface test that can
perform the same sequence of interactions for you.

Adding Support for UI Testing to Your Project
Adding support for UI testing involves linking XCTest, making a new file group in the
Xcode project, and creating a new build target.

New Projects
The process is slightly simpler if you are creating a new project. Simply ensure the Include
UI Tests check box is selected in the project options dialog box (see Figure 13-3).

Figure 13-2.  The Test Runner and the Application Under Test

Chapter 13 ■ Testing the User Interface

409

When you do this, you will notice a few changes:

•	 A new group has been added to the Xcode project. This group will
be used to contain your UI test files.

•	 A new build target, also known as the UI test target, is added to
the project.

•	 The test target is preconfigured to test the host application.

All of these points are visible in Figure 13-4.

Figure 13-3.  Xcode Project Options Dialog Box

Chapter 13 ■ Testing the User Interface

410

Existing Projects
Adding support for UI testing to an existing project requires that you add a new test target
to your Xcode project by selecting File ➤ New ➤ Target.

In the target template dialog box, select iOS UI Testing Bundle under the Test
category (Figure 13-5).

Figure 13-5.  Xcode Target Template Dialog Box

Figure 13-4.  New Folder Group and Build Target For UI Tests

Chapter 13 ■ Testing the User Interface

411

Accept the default values in the target options dialog box and click Finish (Figure 13-6).

UI Test Classes
A UI test class is just a Swift class that inherits from XCUITestCase. Similar in many
respects to unit test classes, UI test classes also contain setup, teardown, and test methods.

Setup method: There is only one setup method in a UI test class. The signature of the
setup method is this:

override func setUp()

The setup is called before each UI test method is executed in the UI test class. Note
the use of the override keyword to indicate that the base method definition is in the super
class (XCUITestCase).

Teardown method: There is only one teardown method in a UI test class. The
signature of the setup method is this:

override func tearDown()

The teardown method is also prefixed with the override keyword, and is called after
each UI test method has finished executing in the UI test class.

Test methods: A UI test class usually has multiple test methods, and each method
contains a single UI test. The names of Test methods all begin with the word test, for example:

func testTappingOnDeleteButtonDisplaysAlert() {

}

Figure 13-6.  Xcode Target Options Dialog Box

Chapter 13 ■ Testing the User Interface

412

The names of test methods should describe the user interaction they intend to test,
and the length of the user journey being tested in a single method should be kept as short
as possible.

The following code snippet shows what a typical UI test class looks like:

import XCTest

class CountriesAndCitiesUITests: XCTestCase {

 override func setUp() {
 super.setUp()

 XCUIApplication().launch()
 }

 override func tearDown() {
 super.tearDown()
 }

 func testTappingOnDeleteButtonDisplaysAlert() {

 }

 func testCountryListAppearsOnAppLaunch() {

 }

}

■■ Note  You may choose to create a single UI test class per view controller of your app,
but sometimes it may be better to create UI test classes that represent user journeys. View
controllers seldom exist in isolation; usually your users will start on an initial view controller and
move on to other view controllers by interacting with your app. If your UI tests involve multiple
view controllers, it may be better to name them based on the user journeys they represent.

To execute all tests (in all test classes) in a project, use the Product ➤ Test menu
item. This will launch the app on the iOS Simulator (or device) and execute all test cases
sequentially.

If your project has both unit tests and UI tests, then the unit tests will execute first
and the UI tests will be executed only after all unit tests finish. If you want to execute UI
tests without waiting for unit tests, you need to create a new build scheme that does not
include unit tests.

Chapter 13 ■ Testing the User Interface

413

The most common approach when it comes to creating new build schemes is to
duplicate an existing one, and make changes on the copy. To duplicate an existing build
scheme, begin by selecting the Product ➤ Schemes ➤ Manage Schemes menu item.

You will be presented with a list of build schemes in your project. Ensure that the
scheme you wish to duplicate is selected, and click on the settings icon at the bottom-left
corner of the scheme list (Figure 13-7).

Selecting the “Duplicate” option from the context menu that appears when you click
on the settings icon will create a copy of the scheme, and open the scheme properties dialog
box. Specify a meaningful name for the new scheme and then ensure the unit test target is
unchecked under the Test section of the scheme properties dialog box (Figure 13-8).

Figure 13-7.  Duplicating an Existing Build Scheme

Chapter 13 ■ Testing the User Interface

414

As with unit tests, the result of the UI testing phase is also visible in the Test
Navigator, which can be accessed by selecting View ➤ Navigators ➤ Show Test Navigator
(Figure 13-9).

Figure 13-9.  Results of UI Tests are Visible in the Test Navigator

Figure 13-8.  Unchecking the Unit Test Target From the Scheme Built for UI Testing

Chapter 13 ■ Testing the User Interface

415

Tests that have passed have a green tick box next to their names. A Red tick box
beside the name of a test means that the test did not pass. Keep in mind that Xcode needs
to compile your test code before it can run the tests, so this means that you will need to fix
any compilation errors in your project before any tests can run.

Creating New Test Classes
You can add new UI test classes to your project in one of two ways:

	 1.	 Command-Click on the UI test group in the project navigator
and select the “New File…” option from the context menu.
This will present a dialog box with a list of file templates to
choose from. Select the “UI Test Case class” template under
the iOS Category (Figure 13-10).

	 2.	 With the Test Navigator visible, click on the Add button (+) at
the bottom of the navigator and select the “New UI Test Class”
menu item from the context menu (Figure 13-11).

Figure 13-10.  Xcode File Template Dialog Box

Chapter 13 ■ Testing the User Interface

416

Changes to XCTest to Support UI Testing
In order to support UI testing, four new classes and two new protocols have been added
to XCTest. These are discussed in this section.

XCUIApplication
An XCUIApplication instance is a proxy object that represents the application being
tested. The Target application is specified in the “Target Application” field of the UI test
target settings (Figure 13-12).

Recall that UI tests are run within the context of a separate app from the one you are
testing, and they communicate with the subject under test using proxy opbjects.

The two most commonly used methods of XCUIApplication are launch() and
terminate(). Typically, you instantiate an XCUIApplication instance in your test class’s
setup() method and call the launch method:

Figure 13-11.  Creating a New UI Test Class

Figure 13-12.  The Target Application Setting Within the UI Test Target

Chapter 13 ■ Testing the User Interface

417

override func setUp() {
 super.setUp()

 XCUIApplication().launch()
}

The call to launch is synchronous, and returns when the application to be tested
is launched and ready for user interaction. If the application to be tested could not be
launched, then a test failure will be generated.

You can optionally pass an array of launch arguments by setting the
launchArguments properties. For example, the following snippet passes a launch
argument ENABLE_CLIENT_SIDE_MOCKS to the UIApplication instance, via the
XCUIApplication proxy.

override func setUp() {
 super.setUp()

 let application = XCUIApplication()
 application.launchArguments = ["ENABLE_CLIENT_SIDE_MOCKS"]
 application.launch()
}

It is up to the application under test to look out for these arguments and do something
meaningful with them. The array of values you provide to XCUIApplication.launchArguments
can be accessed in the application under test using CommandLine.arguments.

The following code snippet demonstrates how to retrieve launch arguments in the
application under test by calling CommandLine.arguments. The first element in this array
is always the full path to the application, which is why it examines elements from index 1
onward:

func application(_ application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [UIApplicationLaunchOptionsKey: Any]?) -> Bool {

 let launchArguments = CommandLine.arguments

 for index in 1...launchArguments.count {
 let argument = launchArguments[index] as String
 if argument.compare("ENABLE_CLIENT_SIDE_MOCKS") == .orderedSame {
 // do something here to enable client side mocks.
 }
 }

 return true
}

To terminate an app, you could call the terminate() method on the XCUIApplication
proxy object. This is not strictly necessary as XCTest will terminate the application
instance automatically every time a UI test finishes executing.

Chapter 13 ■ Testing the User Interface

418

XCUIDevice
An instance of this class represents the device on which the UI test is running.
XCUIDevice is a singleton, and there is always only one instance of this class, which can
be accessed as follows:

let device = XCUIDevice.shared()

XCUIDevice has one property called orientation that can be used to get or set
the orientation of the device on which UI tests are executing. Table 13-1 lists the most
commonly used values of the orientation property.

It is a good idea to set the orientation of the device explicitly in the setUp() method
before running a UI test. This is demonstrated in the following code snippet where the
device orientation is set to portrait after the application under test is launched:

override func setUp() {
 super.setUp()

 XCUIApplication().launch()

 let device = XCUIDevice.shared()
 device.orientation = .portrait
}

XCUIElement, XCUIElementAttributes
An XCUIElement instance is a proxy for a user interface element in the application under
test. It is almost always obtained by calling one of the methods on an XCUIElementQuery
instance.

It is possible to create proxies for elements that do not yet exist on the user interface
of the application under test. This is because an XCUIElement is only evaluated when a
method is called on it. At the time of evaluation, if the XCUIElement does not resolve into
an actual element, a test failure will be generated.

Table 13-1.  Orientation values

Value Description

portrait The device is oriented vertically with the home button at the
bottom.

portraitUpsideDown The device is oriented vertically with the home button at the
top.

landscapeLeft The device is oriented horizontally with the home button on
the right.

landscapeRight The device is oriented horizontally with the home button on
the left.

Chapter 13 ■ Testing the User Interface

419

It is important to keep in mind that the XCUIElement is just a proxy and provides a
very limited set of methods. XCUIElement instances do not let you access the underlying
user element directly. For instance, if you had an XCUIElement proxy that represents
a button instance on a view, you cannot dereference the XCUIElement to arrive at the
underlying UIButton object.

Table 13-2 lists some of the methods available to call on XCUIElement instances.
These methods are designed to provide the ability to interact with the underlying user
interface element in a manner similar to how the end user of your app would.

Table 13-2.  XCUIElement Methods

Property/Method Name Description

var exists: Bool { get } Returns true if the XCUIElement proxy resolves
into an actual UI element in the application
being tested.

func tap() Sends a tap event to the underlying UI element
in the application being tested.

func doubleTap() Sends a double tap event to the underlying UI
element in the application being tested.

func press(forDuration duration:
TimeInterval)

Sends a long press gesture event to the
underlying UI element in the application being
tested, holding for the specified duration.

func press(forDuration duration:
TimeInterval, thenDragTo
otherElement: XCUIElement)

Sends a press and hold gesture to the underlying
UI element in the application being tested that
then drags to another element. Useful for table
cell reordering tests.

func swipeUp() Sends a swipe up gesture to the underlying UI
element in the application being tested.

func swipeDown() Sends a swipe down gesture to the underlying
UI element in the application being tested.

func swipeLeft() Sends a swipe left gesture to the underlying UI
element in the application being tested.

func swipeRight() Sends a swipe left gesture to the underlying UI
element in the application being tested.

func pinch(withScale scale:
CGFloat, velocity: CGFloat)

Sends a pinch gesture to the underlying UI
element in the application being tested.

func rotate(_ rotation: CGFloat,
withVelocity velocity: CGFloat)

Sends a rotate gesture to the underlying UI
element in the application being tested.

func adjust(toNormalizedSliderPo
sition normalizedSliderPosition:
CGFloat)

Adjusts the value of a slider in the application
being tested. The desired slider position is sent as
a normalized value [0.0, 1.0].

func adjust(toPickerWheelValue
pickerWheelValue: String)

Adjusts the value of a picker wheel in the
application being tested.

Chapter 13 ■ Testing the User Interface

420

XCUIElement conforms to the XCUIElementAttributes protocol. This protocol
defines several properties that return the values of commonly used attributes of UI
elements, and is discussed next.

■■ Note  XCUIElement also conforms to the XCUIElementTypeQueryProvider protocols,
which are discussed later in this chapter.

XCUIElementAttributes
The XCUIElementAttributes protocol defines several properties that return commonly
used attributes. Table 13-3 lists some of the commonly used properties defined in
XCUIElementAttributes.

The elementType property is of type XCUIElementType and is a large enumeration
of values. Some of the more commonly used values are listed here:

•	 XCUIElementType.Alert

•	 XCUIElementType.Button

•	 XCUIElementType.NavigationBar

•	 XCUIElementType.TabBar

Table 13-3.  XCUIElementAttribute Properties

Property Name Description

var identifier: String { get } Returns the accessibility identifier of the
element.

var frame: CGRect { get } Returns the frame property of the
element in screen coordinate space.

var title: String { get } Returns the accessibility title of the
element.

var label: String { get } Returns the caption of the element
(if applicable).

var elementType: XCUIElementType Returns an enumeration value that
represents the type of the element.

var isEnabled: Bool { get } Returns true if the element is enabled for
user interaction.

var placeholderValue: String? { get } Returns the placeholder value that is
displayed when the element has no
value. Commonly used when the proxy
element refers to a UITextField.

Chapter 13 ■ Testing the User Interface

421

•	 XCUIElementType.ToolBar

•	 XCUIElementType.ActivityIndicator

•	 XCUIElementType.SegmentedControl

•	 XCUIElementType.Picker

•	 XCUIElementType.Image

•	 XCUIElementType.StaticText

•	 XCUIElementType.TextField

•	 XCUIElementType.DatePicker

•	 XCUIElementType.TextView

•	 XCUIElementType.WebView

•	 XCUIElementTypeQueryProvider

XCUIElementQuery and
XCUIElementTypeQueryProvider
Unlike the other classes discussed so far, an XCUIElementQuery does not represent a
proxy user interface element. Instead, an instance of this class represents a query used to
obtain a XCUIElement proxy.

Table 13-4 lists some of the properties and methods provided by XCUIElementQuery.
Some of these methods return an XCUIElement, while others return yet another
XCUIElementQuery instance. In the latter case, the returned XCUIElementQuery
instance is usually used to obtain a smaller subset of elements.

Table 13-4.  XCUIElementQuery Methods

Property/Method Name Description

var count: UInt { get } Evaluates the query at the time this property is
called and returns the number of matches found.

func element(boundBy index:
UInt) -> XCUIElement

Resolves the query at the time this method is called
and returns an element at the specified index.

func element(matching
elementType: XCUIElementType,
identifier: String?) ->
XCUIElement

Resolves the query at the time this method is
called and returns an element that matches a
specific type and accessibility identifier.

func children(matching
type: XCUIElementType) ->
XCUIElementQuery

Returns a new query that can be used to extract
children of a specific type.

Chapter 13 ■ Testing the User Interface

422

You do not instantiate an XCUIElementQuery directly; instead you use one
of the methods defined by the XCUIElementTypeQueryProvider protocol on an
object that implements it to get a suitable query. The following objects implement
XCUIElementTypeQueryProvider:

•	 XCUIApplication,

•	 XCUIElement, and

•	 XCUIElementQuery.

Table 13-5 lists some of the commonly used methods of the
XCUIElementTypeQueryProvider protocol. Typically, you will use one of these methods
on the XCUIApplication instance to return an initial XCUIElementQuery, and you will
then use the methods defined in XCUIElementQuery to recursively filter down to a
specific user interface element.

Table 13-5.  XCUIElementTypeQueryProvider Methods

Property/Method name Description

var windows: XCUIElementQuery
{ get }

Returns a query that provides access to all
windows that are currently visible in app. iOS
applications have just a single window.

var alerts: XCUIElementQuery
{ get }

Returns a query that provides access to
all alerts that are currently visible in app.
Usually there is only one alert visible in an
app at a time.

var buttons: XCUIElementQuery
{ get }

Returns an query that provides access to all
buttons that are currently visible in app.

var navigationBars:
XCUIElementQuery { get }

Returns a query that provides access to all
navigation bars that are currently visible in app.

tables: XCUIElementQuery { get } Returns a query that provides access to all
table views that are currently visible in app.

var collectionViews:
XCUIElementQuery { get }

Returns a query that provides access to all
collection views that are currently visible in app.

var staticTexts: XCUIElementQuery
{ get }

Returns a query that provides access to all
labels that are currently visible in app.

var textFields: XCUIElementQuery
{ get }

Returns a query that provides access to all text
fields that are currently visible in app.

textViews: XCUIElementQuery
{ get }

Returns a query that provides access to all text
views that are currently visible in app.

var maps: XCUIElementQuery
{ get }

Returns a query that provides access to all
map views that are currently visible in app.

var otherElements:
XCUIElementQuery { get }

Returns a query that provides access to all view
controllers that are currently visible in app.

Chapter 13 ■ Testing the User Interface

423

The following snippet uses application.staticTexts to create a query that can return
all the visible static labels on the device’s screen.

 let allLabels = XCUIApplication().staticTexts
 print (allLabels.count)

If you want to retrieve a XCUIElement proxy for the second static label (assuming
it exists), you can use the element(boundBy:) method of the query as shown in the
following statement:

let secondLabel = allLabels.element(boundBy: 1)

To retrieve the actual text displayed on the static label, you can use the label property
on the proxy as follows:

let caption = secondLabel.label

Using the element(boundBy:) method is sensitive to the layout of the user interface.
A better approach would be to set up accessibility identifiers for the user interface
elements that you wish to access in your UI tests and retrieve proxies to these elements
regardless of how they are laid out on the screen.

To set up an accessibility identifier for a user interface element, select the user
interface element in the storyboard and use the Identity Inspector (Figure 13-13).

Figure 13-13.  Setting Up an Accessibility Identifier

Chapter 13 ■ Testing the User Interface

424

After setting up accessibility identifiers, you can use the element(matching:,
identifier:) method to locate a particular user interface element, regardless of how the
user interface is laid out.

let application = XCUIApplication()
let query = application.staticTexts
let welcomeLabel = query.element(matching: .staticText, identifier:
"WelcomeMessage")

Assertions
Once you have located the user interface element of interest in your UI test, you will
either inspect one of its attributes and compare the results to an expected value, or
interact with the user interface element to display a new view and inspect one of the
attributes of the new view.

Just like unit tests, UI tests also use assertions to compare the state of an object with
an expected value. Table 13-6 lists some of these assertion functions used within UI tests.

Table 13-6.  XCTest Assertion Macros

Macro Description

XCTAssert(expression,
message)

Generates a failure if the expression evaluates to
false. An optional string message may be provided to
indicate the reason for failure.

XCTAssertEqualObjects(ex
pression1, expression2,
message)

Generates a failure when expression1 is not equal to
expression2, where both expression 1 and expression
2 are objects. Both objects involved must implement
Equatable. An optional string message may be
provided to indicate the reason for failure.

XCTAssertNotEqualObjects(
expression1, expression2,
message)

Generates a failure when expression1 is equal to
expression2, where both expression 1 and expression
2 are objects. Both objects involved must implement
Equatable. An optional string message may be
provided to indicate the reason for failure.

XCTAssertEqual(expression1,
expression2, message)

Generates a failure when expression1 is not equal to
expression2. This test is for primitive data types. An
optional string message may be provided to indicate
the reason for failure.

XCTAssertNotEqual(expressi
on1, expression2, message)

Generates a failure when expression1 is equal to
expression2. Both expression1 and expression 2 are
primitive data types. An optional string message may
be provided to indicate the reason for failure.

XCTAssertNil (expression,
message)

Generates a failure when the expression is not nil. An
optional string message may be provided to indicate
the reason for failure.

(continued)

Chapter 13 ■ Testing the User Interface

425

The following code snippet lists a UI test case that will try to locate a button with the
accessibility identifier “FacebookLoginButton” and assert if the button was not found:

func testFacebookLoginButtonExists() {
 let application = XCUIApplication()
 let query = application.buttons
 �let button = query.element(matching: .button, identifier:

"FacebookLoginButton")
 XCTAssert(button.exists)
}

Note that XCTAssert was used instead of XCTAssertNotNil. This is because button is
an instance of XCUIElement, which is just a proxy object. Proxy objects just contain the
information needed by the test runner to try and locate a user interface element.

Only when you try to access the underlying element (by calling exists() on the
XCUIElement) will the test runner try to resolve the XCUIElement into an actual user
interface element.

The following snippet builds on the previous test and asserts if the text displayed on
the button does not match a specific value. The text displayed on the button is not the
same as its accessibility identifier.

func testFacebookLoginButtonDisplaysCorrectLabel(){
 let application = XCUIApplication()
 let query = application.buttons
 �let button = query.element(matching: .button, identifier:

"FacebookLoginButton")
 let buttonLabel = button.label

 XCTAssertEqual(buttonLabel, "Login With Facebook")
}

Table 13-6.  (continued)

Macro Description

XCTAssertNotNil(expression,
message)

Generates a failure when the expression is nil. An
optional string message may be provided to indicate
the reason for failure.

XCTAssertTrue (expression,
message)

Generates a failure when the expression evaluates
to false. Identical to XCTAssert(), provided to create
more readable tests. An optional string message may
be provided to indicate the reason for failure.

XCTAssertFalse (expression,
message)

Generates a failure when the expression evaluates to
true. An optional string message may be provided to
indicate the reason for failure.

Chapter 13 ■ Testing the User Interface

426

UI Recording
Composing UI test scripts one line at a time is not something you would like to do if the
user journey was long and involved and consisted of several interactions to bring up the
object you want to test.

The good news is that you do not have to create UI test scripts one line at a time.
Xcode provides a feature called UI recording, which can be used to help create UI test
scripts. With UI recording, you can launch an instance of your application and interact
with it as normal. While you interact with your app, Xcode records your taps, gestures,
selections, and key strokes and generates an appropriate UI test script.

UI recording is tightly coupled with UI testing. To begin UI recording, simply place
the text cursor within a UI test case and tap the red record button at the bottom of the
Xcode editor (see Figure 13-14).

To stop recording, simply tap the stop button, which replaces the record button
during a recording session. UI recording is not foolproof, and often you may find that
you can generate a more efficient script to achieve the same objective. However, UI
recording can be used as a starting point to build UI tests that you can fine-tune and add
appropriate test assertions.

Waiting Before Asserting
Sometimes it is necessary to wait for an operation to complete before you can use your
assertion. This is usually the case when an animation is involved and you need to wait
for the animation to complete before the UI element you are interested in appears on the
screen. Take, for instance, a simple table view-based application in which the user taps on
a row to drill down to the next screen.

You could easily simulate a tap on a row using a simple statement such as this:

XCUIApplication().tables.cells.staticTexts["United Kingdom"].tap()

Figure 13-14.  The UI Recording Button

Chapter 13 ■ Testing the User Interface

427

However, you will need to wait for the next screen to appear before you can create
any assertions that are based on UI elements of that screen. Fortunately, XCTest has just
the thing in the form of test expectations.

A test expectation is an instance of XCTestExpectation and represents an expected
result. For example, to set up an expectation that indicates a text label with the caption
“Hello World!” exists, you could use the following snippet:

let label = XCUIApplication().staticTexts["Hello World!"]
let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectation(for: predicate, evaluatedWith: label, handler: nil)

The preceding snippet starts out by retrieving an XCUIElement proxy object for a
label with text “Hello World!”

let label = XCUIApplication().staticTexts["Hello World!"]

Recall that XCUIElement is a proxy object and just represents the information
needed to locate a UI element in the app being tested. It is therefore possible to create
XCUIElement instances even when the user interface elements are not on screen. Only
when you call a method on the XCUIElement instance does the test runner check to see if
the proxy can be resolved to an existing object on the screen.

Once an XCUIElement instance has been obtained, an expectation is set up using
the expectation (for:, evaluatedWith:, handler:) method of the XCTestCase class.

let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectation(for: predicate, evaluatedWith: label, handler: nil)

The expectation is expressed as a predicate that is evaluated on an object. The object
in this case is the label, and the predicate is set up to call the exists() method and ensure
the result is 1.

The net result is that the expectation represents a situation where a label with the
caption “Hello World!” exists.

Once an expectation has been set up, you need to call the waitForExpectations
(timeout:, handler:) method on an XCTestCase instance:

self.waitForExpectations(timeout: 5, handler: nil)

The waitForExpectations (timeout:, handler:) method waits a specified amount
of time (in seconds) and fails the test if one or more expectations are unfulfilled.
XCTestExpectation objects have an internal timer-based mechanism by which they
periodically check if they can be moved to the fulfilled state. This is a built-in mechanism
in an expectation object and you do not need to do anything to kick off the timer.

Putting It All Together
In this section you will write a few user interface tests for an existing application. The
application is called CountriesAndCities and can be downloaded from this book’s website.

Chapter 13 ■ Testing the User Interface

428

Download the project, open it in Xcode, and try it out on a simulator. As you can see,
the app is a master-detail type app with two simple screens: the first lists three countries,
and when you select a country from this list, a list of cities in that country are displayed in
the second screen (see Figure 13-15).

To begin writing a few UI tests, open the project in Xcode and open the
CountriesAndCitiesUITests.swift file in the project explorer (see Figure 13-16).

Figure 13-15.  Finished User Interface of Sample Application

Chapter 13 ■ Testing the User Interface

429

Modify the setUp() method to resemble the following snippet:

override func setUp() {
 super.setUp()

 continueAfterFailure = false
 XCUIApplication().launch()

 let device = XCUIDevice.shared()
 device.orientation = .portrait
}

This snippet first calls the setUp() method of the superclass, and then sets the
continueAfterFailure variable (inheritied from XCTestCase) to false. Setting this variable
to false will ensure that UI testing will stop immediately when a test fails. The default
behavior is to skip over the failed test and continue with the next test .

The next line in the snippet calls the launch() method of XCUIApplication, thereby
launching the subject under test. Finally, the snippet sets the device orientation to
portrait. It is a good idea to specify device orientation in the setUp() method of UI tests.

The first test you will create will ensure that the list of countries view controller
is visible onscreen after the app is launched. To do so, add a test method called
testCountryListAppearsOnAppLaunch and implement it as shown in the following snippet:

func testCountryListAppearsOnAppLaunch() {
 �let navBarTitle = XCUIApplication().navigationBars["Select a country"].

staticTexts["Select a country"]
 XCTAssert(navBarTitle.exists)
}

Figure 13-16.  CountriesAndCitiesUITests.swift File in the Project Explorer

Chapter 13 ■ Testing the User Interface

430

Since this particular app displays a title in the navigation bar, this test checks to see if
the title displayed in the navigation bar matches the text “Select a country.” Had this app
not made use of navigation controllers, or did not set a specific navigation bar title, then
you would have to use other means to determine the correct view was on screen. One
possible solution would be to examine if specific user interface elements, unique to the
view you expect to appear, exist on the screen.

To run this test, click on the hollow diamond symbol next to the name of the test (see
Figure 13-17). If you do not see the hollow diamond symbol next to the test name, make
sure you have saved the file.

Another useful test would be one that counts the number of countries displayed in the
app when it is launched. The following code snippet shows how such a test could be written:

func testCountryListHasThreeItemsOnAppLaunch() {
 let countryTable = XCUIApplication().tables.element
 let rows = countryTable.staticTexts
 XCTAssertEqual(rows.count, 3)
}

This test makes use of some internal knowledge of the way the app has been built.
For instance, it assumes there is only one table on the screen. This test will be labeled “too
specific” by most people, and to be honest, it is. Counting the number of items makes it
very specific, and somewhat fragile.

This test could, for instance, easily break if an extra row was added to the table, or
if the test was run on a device with a smaller screen size. The later situation can be of
particular importance if your test is counting the number of rows that are visible on a
full-screen table view on a plus-sized iPhone. Running such a test on a device with a
smaller screen implies fewer rows will be visible, and the test will break.

■■ Note  You can use UIDevice and UIScreen methods within the test to work out what
type of device you are running the test on, and use that information to work out the number
of rows you can expect to find onscreen.

Whether this type has business value depends on how critical is the number of initial
items that are visible on screen. This is something you will need to decide, keeping in
mind the needs of the business, and the inherent fragility of the test.

Figure 13-17.  Executing a Single UI Test

Chapter 13 ■ Testing the User Interface

431

The final test for this example will involve verifying that tapping on a country
name from the list of countries will drill down to a list of cities within that country. The
following code snippet shows how such a test could be written:

func testTappingOnCountryDisplaysDetailViewWithExpectedTitle() {

 let app = XCUIApplication()
 app.tables.staticTexts["United Kingdom"].tap()

 �let label = app.navigationBars["United Kingdom"].staticTexts["United
Kingdom"]

 �let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)

 �self.expectation(for: predicate, evaluatedWith: label.exists, handler:
nil)

 self.waitForExpectations(timeout: 5, handler: nil)
}

There are quite a few things going on in this test. The tests starts by simulating a tap
on one of the countries in the list of countries shown when the app is launched:

let app = XCUIApplication()
app.tables.staticTexts["United Kingdom"].tap()

Tapping on a row in a table will result in the list of cities being animated on screen
(sliding in from the right). This is standard behavior in a master-detail type of app build
with table view controllers and navigation controllers.

The slide-from-right animation implies that the list of countries will not be visible
instantly, and the test will need to wait for a few milliseconds before if can proceed to
inspect the view that has been animated on screen.

The code in the test achieves the wait, using expectations. An expectation is set up
to expect the existence of a navigation bar with the title of the country that was tapped on
the first screen.

let label = app.navigationBars["United Kingdom"].staticTexts["United Kingdom"]
let predicate = NSPredicate(format: "exists == 1", argumentArray: nil)
self.expectation(for: predicate, evaluatedWith: label.exists, handler: nil)

This expectation will be fulfilled when the slide-from-right animation finishes
animating the list of cities on screen. This expectation also makes use of a subtle design
fact of the application: the name of the country that was selected on the first screen
becomes the title of the second screen.

Chapter 13 ■ Testing the User Interface

432

With the expectation set up, the test uses the waitForExpectation(timeout:, handler:)
method to wait up to 5 seconds for the animation to complete, and the expectation to be
fulfilled.

self.waitForExpectations(timeout: 5, handler: nil)

To try all units and tests, select the Product ➤ Test menu item.

Summary
In this chapter you have learned how to add support for UI Testing to new and existing
Xcode projects. You have also learned how to write UI tests using the XCUITest framework
and how to use the UI Recording tool to help create UI Tests.

433© Abhishek Mishra 2017
A. Mishra, iOS Code Testing, DOI 10.1007/978-1-4842-2689-6

�       � A
AccountOwner class

AccountOwnerTests, 64
create additional tests, 68
create unit test method, 66–67
integrating validator classes

into, 85–94
nine test case, 69
parameters, 85
test case file, 66
variables and methods, 64

AccountOwnerTests, 65
addChocolateChipCookie(), 37
addGingerbreadCookie(), 37
addShortbreadCookie(), 37
Album class, 228
Album.swift, 228–229
AlertFactory.swift, 264
Apple developer teams, 294–295
Application Transport Security (ATS), 216
Assertions, 7–9
Asynchronous testing techniques, 213

�       � B
BankAccount class

swift, 96–97
transaction variables and

methods, 96
BankAccountProtocol.swift, 273
BankAccountSpecification.swift, 319–320
BankAccount.swift, 271–273
Behavior-driven development

(BDD), 1, 329
advantages and

disadvantages, 326–327

bank account project, 317
BankAccountSpecification.

swift, 319–320
business requirements and user

scenarios, 318–319
description, 317
Quick test case class, 322–323
Relationship Between Model Layer

Objects, 317
Behavior verification tests, 3
BitBucket, 295
Bots, 295, 306

configuring build configuration, 309
configuring source control, 308
configuring test devices, 311
creating, 306–308, 312–313
environment variables, 312
integrating, 315–316
integration schedule, 310
triggers, 313

email notifications, 314
post-integration script, 313–314
pre-integraton script, 313

BusinessBankAccount, 273
Business requirements, 351–355

�       � C
Carthage, 335

creating new project, 337–338
dependency management

solution, 335
folder, 339–340
installer, 336–337
repository, 338
testing, 337
test target, 340–341

Index

■ INDEX

434

CocoaPods, 329, 332
creating new project, 331–332
installation in terminal, 330
new workspace file, 334
pod install command, 333
pods project, 335
testing, 330–331
verification, 331

Code coverage report, 25
CollectionViewCellProtocol.swift, 253
CollectionViewCell.swift, 254
Collection view controller, TDD

application architecture, 162
model layer, building, 177

Album class, 181–182
City class, 180
Photo class, 178–179

user interface layer
application storyboard, 165–166
collection view cell, 172–177
creating new classes, 166
scene, 167–169
section header accessory

view, 169–172
ViewModel layer, building, 182

cellViewModel method, 195–198
CollectionViewCellViewModel

class, 200–201
CollectionViewModel class,

183–185, 187–188
CollectionViewSectionHeader

ViewModel class, 202
headerViewModel

method, 198–200
numberOfItemsInSection

method, 193–195
numberOfSections() method, 193
performInitialViewSetup

method, 189–192
view controller binding, 188–189
view layer to, 203–209

Xcode project, 162
adding resources, 164–165
navigator, 163

ColorDetailViewController, 51, 55
ColorDetailViewModel, 51, 58
ColorListTableViewController, 51–54
ColorTableViewModel, 51, 56–57
context() function, 322
Continuous integration (CI), 283

bots, 306

configuring build
configuration, 309

configuring source control, 308
configuring test devices, 311
creating, 306–308, 312–313
environment variables, 312
integrating, 315–316
integration schedule, 310
triggers, 313–314

macOS server, installing, 284
Apple developer

teams, 294–295
configuring Xcode

server, 293–294
development devices, 295
launching, 285–288
new Git repository on Xcode

server, 296–297
repositories, 295
setting up access for team

members, 289–290
starting Xcode server, 290–292
Xcode version, 294

Xcode server
clone Git repository

from, 304–305
clone existing local repository

to, 302–304
cloning Git repository from

GitHub, 305
credentials to Xcode, 298–301
hosting repository for new

project, 301–302
Controller component, 44
CookieController class

characteristics, 36–37
CookieController swift, 37
CookieControllerTests

swift, 32–36
CookieFactory app

iOS simulator, 13
project navigator, 18–19

Cookie factory app
code coverage data, 40–41
Cookie class, 28–32
CookieController class, 32–38
model layer, 28
View Controller class, 27, 39–40

Core Data, 98–99
CountriesAndCitiesUITests.swift

file, 428–429

■ INDEX

435

�       � D
dataToReturnOnSuccess, 235
Decorators

BankAccountProtocol.swift, 273
BankAccount.swift, 271–273
PersonalBankAccount.swift, 274–277

Dependency injection (DI), 279–281
describe(), 322
displayResultsScreen()

method, 376
Domain Specific Language

(DSL), 318
DownloadListenerProtocol, 247
downloadProfileHelper(), 270

�       � E
element(boundBy:) method, 423
Email address validator

class, 82–84, 268–269

�       � F
Factory method, 49–50
Fake objects, 9
FirstNameValidator class, 70

compile, 74–75
failing tests, 76
swift file, 71, 73–74
Unit Test Case, 71
validate(), 74

�       � G
GitHub, 295

cloning Git repository from, 305
Git submodules, 342–349
Green stage, 10

�       � H
High-level application

architecture, 355–357

�       � I, J, K
Include unit tests, 16
Instantiating class, 9
Interaction test, 3

�       � L
LargeViewController.swift, 258–261
Last name validator class, 76–81
launch() method, 429
Legacy code

AlertFactory.swift, 264
developing iOS applications, 257
DI, 279–281
downloadUserProfile(), 266–268
EmailAddressValidator.swift, 268–269
LargeViewController.swift, 258–261
NetworkController.swift, 262–263
protocols, 277–278
RefactoredLargeViewController.

swift, 261–262
rename and replace, 270
UserProfile.swift, 264

Login view controller
Identifier attribute, 114
Identity Inspector, 106–107
UI Components, 107
UITextFieldDelegate, 108–109

LoginViewControllerProtocol, 126

�       � M
Mac App Store, 14
macOS server, installing, 284

Apple developer teams, 294–295
development devices, 295
launching, 285–288
repositories, 295
setting up access for team

members, 289–290
Xcode server

configuring, 293–294
new Git repository on, 296–297
starting, 290–292
version, 294

Massive view controllers, 45
Master-detail apps, 50
Master view model, 50
Mock, 46

object, 9, 245
MockCollectionViewCell.swift, 255
MockCollectionViewController.

swift, 252–253
MockDownloadListener class, 248
MockPhoto class, 245

■ INDEX

436

MockServiceController
class, 234, 236–238

Mock/Stub based testing
techniques, 213

MockURLSession class, 224–225
MockURLSessionDataTask

class, 226–227
MockURLSession.swift, 225
Mock validator, 86–87, 90–91
Model component, 44
Model layer, 162, 356

AccountOwner class, 64–67, 69–70
bank account class, 61
building, 177, 384–386

Album class, 181–182
City class, 180
Photo class, 178–179

complex apps, 61
email address validator class, 82–84
first name validator class, 70, 72–76
last name validator class, 76–81
LoginModel class, 115–116
SignupModel class, 116–118
simple app, 61

Model layer, updation
Album class

AlbumTests.swift, 229–233
instance variables, 235
load method, 233, 234
MockServiceController class,

creation, 236–238
MockServiceController

object, 234
modification, 238
parameters, 228
setUp() method, 229
Xcode import file dialog, 235

Photo class
baseURL instance variable, 244
buildImageDownloadURL

method, 243
downloadedImage instance

variable, 243
DownloadListenerProtocol.

swift, 247
MockDownloadListener

class, 248
MockPhoto class, creation, 245
MockServiceController

object, 244
modification, 246–247

PhotoTests.swift file, 240–243
version, 239

Model-View-Controller (MVC), 44
architectural pattern, 44–45
controller component, 44
iOS apps, 44
model component, 44
testability issues, 45

Model, View, ViewModel
(MVVM), 48

advantages, 47–48
application architecture, 384
architectural pattern, 46
instantiation, 48
on iOS, 46
navigation controller-based

apps, 50–59
ReactiveCocoa, 47
RxSwift, 47
swift protocols, 47
table view controllers, 49

Modified BankAccount.
swift, 323–325

�       � N
Navigation controller-based apps

challenges, 50
color, 51, 59
ColorDetailViewController, 51, 55
ColorDetailViewModel, 51, 58
ColorList app, 51
ColorListTableViewController, 51–54
ColorTableViewModel, 51, 56–57
master view model, 50
MVVM pattern, 50

Negative unit test, 4–6
NetworkController.swift, 262–263
Networking layer, PhotoBook app

fetchFromURL method, 217, 221
MockURLSession class, 224–225
MockURLSessionDataTask

class, 226–227
ServiceController, 217, 221–224
ServiceControllerTests, 217–220

Nimble, 329

�       � O
Object-oriented system, 3
onViewListings() action method, 376

■ INDEX

437

�       � P
Performance testing methods, 21
PersonalBankAccount, 273–277
PhotoBook application

layers and component classes, 213
model layer (see Model layer,

updation)
modified application

architecture, 213
network layer (see Networking layer,

PhotoBook app)
remote content specification, 216
source code, 212
user interface, 212

Photo class, 239
Project navigator, 18–19

�       � Q
Quick

BDD tests with, 368
beforeEach() method, 374
creating stub objects, 380–382
examining, 374–379
instance variables, 373
remaining compilation

errors, 383–384
restaurant data file to

project, 382
RestaurantDirectorySpecificaton.

swift, 368–373
spec(), 374

Quick framework, 329
compatible versions of Nimble

and, 329
to Xcode project

using Carthage, 335–341
using CocoaPods, 329–332,

334–335
using Git submodules, 342–349

Quick test case class
BDD tests, 326
context() function, 322
modified BankAccount.

swift, 323–325
spec() method, 321
user scenario and corresponding

Quick BDD test, 322–323
XCTestCase, 321

�       � R
ReactiveCocoa, 47
Red-green-refactor approach, 10–11
RefactoredLargeViewController.

swift, 261–262
Remote content specification, 216
reset(), 37
RestaurantDirectorySpecification, 373
RxSwift, 47

�       � S
Segue identifier, 367
ServiceController class, 221–224
ServiceControllerTests, 217
setUp() method, 21, 411, 429
Signup view controller

Identifier attribute, 114
UITextFieldDelegate, 112–113

spec(), 374
State verification test, 3
Stub, 9, 380

based testing techniques, 213
Subject under test, 2
Swift methods, 21
Swift protocols, 47

�       � T
Table view controllers, 49
TDD and BDD techniques

adding resources to project, 359
BDD tests with Quick, 368

beforeEach() method, 374
creating stub objects, 380–382
examining, 374–379
instance variables, 373
remaining compilation

errors, 383–384
restaurant data file to

project, 382
RestaurantDirectorySpecificaton.

swift, 368–373
spec(), 374

business requirements,
reviewing, 351–353, 355

high-level application
architecture, 355–357

model layer, building, 384–386

■ INDEX

438

RestaurantDirectory application
requirements, 352

RestaurantDirectory user
scenarios, 352–355

restaurant table view cell, 366
search view controller, 362
user interface layer, 360–367
view controller to view model

bindings, 400–405
ViewModel layer, building, 387

RestaurantTableViewCellView
Model class, 395–399

RestaurantTableViewModel
class, 393–395

SearchViewModel
class, 387, 389–392

Xcode project, creating, 357–358
Teardown method, 21, 411
Test case. See unit test
Test case class

performance testing
methods, 21

setup method, 21
swift methods, 21
teardown method, 21
test methods, 21

testCountryListAppearsOnApp
Launch, 429

Test-Driven Development
(TDD), 329

assertions, 7–9
defined, 1
instantiating class, 9
interaction test, 3–4
negative test, 4–6
principles of

minimum amount of
code, 11

red-green-refactor
approach, 10

remove duplication, 11
test first, 10

state verification test, 3
subject under test, 2
test suite, 6
unit test, 2–3
writing test, 2

TestGitRepositoryHostedOnXcode
Server, 304

Testing networking layer, strategies

asynchronous testing
techniques, 213

mock/stub based testing
techniques, 213

Test methods, 21, 411
Test navigator, 23–24
Test suite, 6
Transaction class

swift, 95
validator objects, 94
variables and methods, 94

�       � U
Unit tests, 2–3, 66

add support for, 16, 18
assertions, 7–9
case class, 20, 22
create project, 15–16
first, 10
interaction test, 3
negative test, 4–5
state verification test, 3
UI layer, 46

URLSessionProtocol.swift, 224
User interface (UI), 360–367

application storyboard, 165–166
assertions, 424–425
collection view cell

adding labels, 175
image view, 172
navigation controller, 177
outlets, 176
Pin constraints button, 175
translucent view, 174

collection view controller
scene, 167–169

CountriesAndCitiesUITests.
swift file, 428–429

creating new classes, 166
login view controller, 106–109
recording, 408, 426
sample application, 428
section header accessory

view, 169–172
separate folder group and build

targets, 407
signup view

controller, 110, 112–113
slide-from-right animation, 431
Test class

TDD and BDD techniques  (cont.)

■ INDEX

439

creation, 415
duplicate option, 413
navigator, 414
setup method, 411
teardown method, 411
unchecking unit test

target, 414
XCUIApplication, 416–417

testCountryListAppearsOnApp
Launch, 429

testing
existing projects, 410
new projects, 408–410

test runner and application
under test, 408

UI recording, 408, 426
waiting before asserting, 426–427
XCTest, 407
XCUIDevice, 418
XCUIElement, 408, 418–419
XCUIElementAttributes, 420–421
XCUIElementQuery, 421–423
XCUIElementTypeQuery

Provider, 421–423
UserProfile.swift, 264

�       � V, W
View component, 44
View controllers class, 39–40, 44–45.

See also Collection view
controller, TDD

application architecture, 102
finished application, 101
user interface (see User

interface (UI))
view model (see View model)
Xcode project, 103–104

View controller to view model
bindings, 400–405

viewDidLoad() method, 48–49
View layer updation

collection view cell, 253–256
collection view controller, 252–253

View model, 46–51, 53–55, 57–58, 162, 356
login view controller

LoginViewControllerTests,
153–154

passwordDidEndOnExit, 152
passwordUpdated, 155–156
performInitialSetup, 148–149, 151

UITextFieldStub, 154
userNameDidEndOnExit, 151
userNameUpdated, 155–156

signup view controller, 157–159
test-driven approach, 147

ViewModel layer
login method

login controller, 138, 140
LoginViewModel, 142–143
MockLoginController, 140–141
tests, 137–138

login view controller
LoginViewControllerProtocol, 126
LoginViewModel methods, 125
passwordDidEndOnExit, 131
passwordUpdated, 134–136
performInitialViewSetup, 126–129
user interface, 123–124
userNameDidEndOnExit, 129–130
userNameUpdated, 131–134

LoginViewModel
LoginViewController

Protocol, 120–121
LoginViewModelTests, 118–119,

122–123
SignupViewModel, 143–146

ViewModel layer, building, 182, 387
cellViewModel method, 195–198
CollectionViewCellViewModel

class, 200–201
CollectionViewModel

class, 183–185, 187–188
CollectionViewSectionHeader

ViewModel class, 202
headerViewModel method, 198–200
numberOfItemsInSection

method, 193–195
numberOfSections() method, 193
performInitialViewSetup

method, testing, 189–192
RestaurantTableViewCellView

Model class, 395–399
RestaurantTableViewModel

class, 393–395
SearchViewModel class, 387, 389–392
view controller binding, 188–189
view layer to, 203

CollectionViewCell
class, 207–208

CollectionViewController
class, 204–207

■ INDEX

440

CollectionViewSectionHeader
class, 208–209

View Model layer, updation
collection view cell view

model, 251
collection view model, 249–250

View/view controller layer, 162, 356

�       � X, Y, Z
Xcode

code coverage report, 25
download and install, 14
project navigator, 18–19
report navigator, 25
test case classes, 20–22
test navigator, 23–24
test suite, 6
unit test, 15–16

Xcode 8, 15, 25
Xcode project, 162

adding resources, 164–165
creating, 357–358
navigator, 163
Quick to

using Carthage, 335–341
using CocoaPods, 329–332,

334–335
using Git submodules, 342–349

size inspector, 170
Xcode server

clone existing local repository
to, 302–304

clone Git repository from, 304–305
cloning Git repository from

GitHub, 305
configuring, 293–294
credentials to Xcode, 298–301
hosting repository for new

project, 301–302
new Git repository on, 296–297
repositories, 295
starting, 290–292
version, 294

XCTest, 407
assertion macros, 7

XCUIApplication, 416–417
XCUIDevice, 418
XCUIElement, 408, 418–419
XCUIElementAttributes, 420–421
XCUIElementQuery, 421–423

ViewModel layer, building  (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Test-Driven Development
	What Is Test-Driven Development?
	TDD Terminology
	Subject under Test
	Unit Test
	State Verification Test
	Interaction Test
	Negative Test
	Test Suite
	Assertions
	Instantiating Classes for Testing

	Principles of Test-Driven Development
	Test First
	Red – Green – Refactor
	Write the Minimum Amount of Code
	Remove Duplication

	Summary
	Note

	Chapter 2: Writing Your First Set of Unit Tests with Xcode
	Downloading and Installing Xcode
	Creating a New Project with Unit Test Support
	Adding Support for Unit Tests to an Existing Project
	A Tour of Xcode
	The Project Navigator
	Test Case Classes
	The Test Navigator
	Viewing Test Reports
	Code Coverage Reports

	Building the Cookie Factory App
	Building the Cookie Class
	Building the CookieController Class
	Updating the View Controller Class
	Viewing Code Coverage Data

	Summary

	Chapter 3: The MVVM Architectural Pattern
	The MVC Architectural Pattern
	The Model-ViewController Architectural Pattern
	Model-ViewController Testability Issues

	The Model-View-ViewModel Architectural Pattern
	Advantages of MVVM
	ViewModel Instantiation
	Isolated View Controller
	Table View Controllers
	Navigation Controller-Based Apps

	Summary

	Chapter 4: Applying TDD to the Model
	Creating the Xcode Project
	Building the Model Layer
	The AccountOwner Class
	Creating the First Name Validator Class
	Creating the Last Name Validator Class
	Creating the Email Address Validator Class

	Integrating the Validator Classes into the AccountOwner Class
	The Transaction Class
	The BankAccount Class
	Testing Core Data
	Summary

	Chapter 5: Applying TDD to View Controllers
	Application Architecture
	Creating the Xcode Project
	Building the User Interface Layer
	Building the Login View Controller Scene
	Building the Signup View Controller Scene
	Creating a Segue Between the Login Scene and the Signup Scene

	Building the Model Layer
	The LoginModel Class
	The SignupModel Class

	Building the ViewModel Layer
	The LoginViewModel Class
	View Model – View Controller Binding
	Building the performInitialViewSetup Method
	Building the userNameDidEndOnExit Method
	Building the passwordDidEndOnExit Method
	Building the userNameUpdated Method
	Building the passwordUpdated Method
	Building the Login Method
	Creating the Login Controller Class
	Creating the Mock Login Controller Class
	Updating the LoginViewModel Class

	The SignupViewModel Class

	Connecting the View Controller to the View Model
	Binding the Login View Controller Class to the View Model
	Calling the performInitialSetup Method of the View Model from the View Controller
	Calling the userNameDidEndOnExit Method of the View Model from the View Controller
	Calling the passwordDidEndOnExit Method of the View Model from the View Controller
	Calling the Login Method of the View Model from the View Controller
	Calling the userNameUpdated and passwordUpdated Methods of the View Model from the View Controller

	Binding the Signup View Controller Class to the View Model
	Transitioning from the Login View Controller to the Signup View Controller

	Summary

	Chapter 6: Applying TDD to Collection View Controllers
	Application Architecture
	Creating the Xcode Project
	Adding Resources to the Project
	Building the User Interface Layer
	Creating New Classes
	Building the Collection View Controller Scene
	Adding a Section Header Accessory View
	Building the Collection View Cell

	Building the Model Layer
	The Photo Class
	The City Class
	The Album Class

	Building the ViewModel Layer
	The CollectionViewModel Class
	View Model – View Controller Binding
	Testing the performInitialViewSetup Method
	Testing the numberOfSections Method
	Testing the numberOfItemsInSection Method
	Testing the cellViewModel Method
	Testing the headerViewModel Method

	The CollectionViewCellViewModel Class
	The CollectionViewSectionHeaderViewModel Class

	Binding the View Layer to the View Model
	Binding the Collection View Controller Class to the View Model
	Binding the CollectionViewCell Class to the View Model
	Binding the CollectionViewSectionHeader Class to the View Model

	Summary

	Chapter 7: Testing URLSession
	Strategies for Testing the Networking Layer
	Preparing the PhotoBook Project
	Remote Content Specification
	Configuring Application Transport Security
	Building the Networking Layer
	Creating the ServiceController Class
	Creating the MockURLSession Class
	Creating the MockURLSessionDataTask Class

	Updating the Model Layer
	Updating the Album Class
	Writing New Tests for the load() Method
	Creating the MockServiceController Class
	Modifying the Album Class

	Updating the Photo Class
	Writing New Tests for the Photo Class
	Creating the MockPhoto Class
	Modifying the Photo Class
	Creating the DownloadListenerProtocol.swift File
	Creating the MockDownloadListener Class

	Updating the View Model Layer
	Updates to the Collection View Model
	Updates to the Collection View Cell View Model

	Updating the View Layer
	Updates to the Collection View Controller
	Updates to the Collection View Cell

	Summary

	Chapter 8: Working with Legacy Code
	Splitting a Large Class
	Adding Functionality to an Existing Class
	Encapsulate Using Classes and Methods
	Rename and Replace
	Decorators

	Decoupling Classes Using Protocols
	Using Dependency Injection to Create More Testable Code
	Summary
	Note

	Chapter 9: Continuous Integration
	Installing macOS Server
	Launching macOS Server
	Setting Up Access for Team Members
	Starting Xcode Server
	Configuring Xcode Server
	Xcode Version
	Apple Developer Teams
	Development Devices
	Repositories
	Creating a New Git Repository on Xcode Server

	Configuring Xcode
	Adding Xcode Server Credentials to Xcode
	Create a New Xcode Project and Host Its Repository on Xcode Server
	Clone an Existing Local Repository to Xcode Server
	Clone a Git Repository from Xcode Server
	Cloning a Git Repository from GitHub

	Creating and Integrating Bots
	Create a Bot
	Integrate a Bot

	Summary

	Chapter 10: Introduction to Behavior-Driven Development
	What Is Behavior Driven Development
	The Difference between BDD and TDD
	Business Requirements and User Scenarios
	From User Scenarios to BDD Tests
	Anatomy of a Quick Test Case

	Advantages and Disadvantages of BDD
	Summary

	Chapter 11: Installing Quick
	Adding Quick to an Xcode Project
	Adding Quick to an Xcode Project Using CocoaPods
	Adding Quick to an Xcode Project Using Carthage
	Adding Quick to an Xcode Project Using Git Submodules

	Summary

	Chapter 12: Applying TDD and BDD Techniques
	Reviewing the Business Requirements
	High-Level Application Architecture
	Creating the Xcode Project
	Adding Resources to the Project
	Building the User Interface Layer
	Writing BDD Tests with Quick
	Examining the BDD Test for Scenario Number 3
	Examining the BDD Test for Scenario Number 4
	Examining the BDD Test for Scenario Number 5
	Examining the BDD Test for Scenario Number 6
	Examining the BDD Test for Scenario Number 7
	Examining the BDD Test for Scenario Number 8
	Examining the BDD Test for Scenario Number 9
	Creating Stub Objects
	Adding The Restaurant Data File to the Project
	Examining the Remaining Compilation Errors

	Building the Model Layer
	Building the ViewModel Layer
	The SearchViewModel Class
	The RestaurantTableViewModel Class
	The RestaurantTableViewCellViewModel Class

	View Controller to View Model Bindings
	Summary

	Chapter 13: Testing the User Interface
	Adding Support for UI Testing to Your Project
	New Projects
	Existing Projects
	UI Test Classes
	Creating New Test Classes
	Changes to XCTest to Support UI Testing
	XCUIApplication
	XCUIDevice
	XCUIElement, XCUIElementAttributes

	XCUIElementAttributes
	XCUIElementQuery and XCUIElementTypeQueryProvider
	Assertions
	UI Recording
	Waiting Before Asserting
	Putting It All Together
	Summary

	Index

