
91© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_9

CHAPTER 9

Command Line Tools

Doctrine 2 ships with powerful command line support. The command line tools can
broadly be divided into those that support a database abstraction layer (DBAL-related
operations) and those that provide object-relational mapping (ORM-related operations).
A list of all commands available can be printed via the list command:

1 $./doctrine list

The help command, or the command parameter --help in conjunction with other
commands, prints the instructions for a given command. For example, if we need help
dealing with the orm:info command, we can ask for help like this:

1 $./doctrine orm:info --help

This will also work:

1 $./doctrine help orm:info

Both commands print the identical output to the console.

Setting Up the Command Line Tools
Before Doctrine 2 can be used on the command line, some basic configuration code
is needed. Like the application itself, the command line tools require a ready-to-go
database connection and entity manager if ORM-related commands are needed.

The configuration of the command line tools first looks somewhat strange. Doctrine
2 requires that a file called cli-config.php exists within the folder in which the tools
are executed on the command line. If Doctrine 2 was installed using Composer, the
command line tools are located in vendor/bin. Therefore, this is the place where a file
called cli-config.php needs to be set up with the following basic code:

 1 <?php
 2 include '../../vendor/autoload.php';
 3
 4 use Doctrine\ORM\Tools\Setup;

Chapter 9 ■ Command Line tooLs

92

 5 use Doctrine\ORM\EntityManager;
 6
 7 $paths = array(__DIR__ . "/../../entity/");
 8 $isDevMode = true;
 9
10 $dbParams = array(
11 'driver' => 'pdo_mysql',
12 'user' => 'root',
13 'password' => '',
14 'dbname' => 'app',
15);
16
17 $config = Setup::createAnnotationMetadataConfiguration($paths,$isDevMode);
18 $em = EntityManager::create($dbParams, $config);
19
20 $helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(
21 'db' => new \Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper(
22 $em->getConnection()
23),
24 'em' => new \Doctrine\ORM\Tools\Console\Helper\EntityManagerHelper(
25 $em
26)
27));

The code shown above is similar to the index.php file used in the demo app. First,
autoloading is configured, then the entity manager is instantiated. If both clients, the web
application and the command line tools, share the same credentials, externalizing this
data may be helpful.

When the command line tools are invoked, Doctrine 2 automatically includes
the cli-config.php file and also looks for a so-called helper set defined in the global
namespace. The helper set provides the command line tools with the database connection
via key db (needed for the DBAL commands) as well as the entity manager via key em
(needed for the ORM commands).

DBAL Commands
Execute an SQL Statement
SQL commands can easily be executed via the command line with Doctrine’s command
line tooling. The command dbal:run-sql requires a single parameter, a valid SQL
statement:

1 $./doctrine dbal:run-sql "SELECT * FROM users;"

The result of the query is printed to the console.

Chapter 9 ■ Command Line tooLs

93

Import SQL Files
If you need to execute multiple statements, importing an SQL file via the./doctrine
dbal:import command might be a great option. It takes one or more paths to SQL files,
delimited by space:

1 $./doctrine dbal:import /tmp/import-data.sql

ORM Commands
Validate Persistence Configuration
One of the most helpful commands is orm:validate-schema, which validates the current
persistence configuration and makes sure that it matches the existing data schema in the
database. If all is good, the following command prints a positive message to the console:

1 $./doctrine orm:validate-schema
2 > [Mapping] OK - The mapping files are correct.
3 > [Database] OK - The database schema is in sync with the mapping files.

The command orm:info prints an overview of the application entities known to
Doctrine:

1 $./doctrine orm:info
2 > Found 2 mapped entities:
3 > [OK] Entity\Post
4 > [OK] Entity\User

The Schema Tool
With the help of the commands

 1. orm:schema-tool:create,

 2. orm:schema-tool:drop

 3. orm:schema-tool:update

one can manipulate a database data schema based on the entity persistence
configuration. However, when running these commands, nothing actually happens—it’s
just a “dry run”. If the commands are executed with parameter --dump-sql, again, only
a dry run occurs. However, this time, the schema tool prints all SQL statements, which
would otherwise have been fired against the database, to the screen. Only if one uses the
parameter --force, does the schema tool finally execute the statements:

1 $./doctrine orm:schema-tool:drop --force

Chapter 9 ■ Command Line tooLs

94

The command shown above makes all tables and data disappear:

1 > Dropping database schema...
2 > Database schema dropped successfully!

 Danger! Potential loss of data! the schema tool can delete tables and/or data.
Use these commands with caution.

The execution of

1 $./doctrine orm:schema-tool:create

creates the data structure from scratch, while

1 $./doctrine orm:schema-tool:update

migrates an existing data schema from status quo to match the current persistence
configuration, if the existing data schema is not yet up-to-date.

Generate Commands
With the help of the command orm:generate-proxies, the proxy classes for the entities
defined can be created, which otherwise are created by Doctrine 2 automatically when
needed. Via the command orm:generate-entities, the entity classes themselves can
be generated; this is especially helpful if the persistence configuration is given via XML or
YAML. Executing the command

1 $./doctrine orm:generate-entities /tmp

creates the entity classes in /tmp, or to be precise, in /tmp/Entity. More options for
the command orm:generate-entities can be identified running the following command:

1 $./doctrine orm:generate-entities --help

With the help of the command orm:generate-repositories, repository classes can
also be auto-generated.

Execute a DQL Command
Similar to dbal:run-sql, DQL statements can also easily be executed using the command
orm:run-dql.

Chapter 9 ■ Command Line tooLs

95

Cache-Related Commands
With the commands

 1. orm:clear-cache:metadata,

 2. orm:clear-cache:query

 3. orm:clear-cache:result

the various Doctrine caches can be purged. These commands are especially helpful when
deploying a new application version. They make sure that no outdated configuration or
data is used in conjunction with a new application version—usually, this would lead to
unrecoverable errors.

Converting Commands
Rarely used, but very helpful, are the commands orm:convert-d1-schema and
orm:convert-mapping. The command orm:convert-d1-schema is used to transform the
old Doctrine 1 persistence configuration format to the one used by Doctrine 2, which
is very handy when upgrading an existing application. The command orm:convert-
mapping, on the other hand, allows you to go from one Doctrine 2 mapping format to
another, such as from XML to YAML.

Production-Ready Configuration
The following command validates that Doctrine’s configuration is ready for production
usage:

1 $./doctrine orm:ensure-production-settings

If this is the case, it prints a positive message on the console:

1 > Environment is correctly configured for production

Many configuration aspects can cause a negative result. This could be missing proxy
classes created by running the proper command or missing caches. Both are considered
by Doctrine 2 to be a requirement for usage in productive systems.

 Custom commands doctrine 2 allows you to develop custom commands that can
be hooked into the command line tooling. more information about this topic can be found in
the official documentation.1

1http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands

http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands
http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands
http://docs.doctrine-project.org/en/latest/reference/tools.html#adding-own-commands

Chapter 9 ■ Command Line tooLs

96

Summary
The Doctrine CLI tools are extremely helpful. They can be used in shell or build scripts
and also serve well when importing external data such as test fixtures or dealing with
database schema changes. Since the CLI tools are also extendable, they are very versatile
and should be part of every developer’s toolkit.

	Chapter 9: Command Line Tools
	Setting Up the Command Line Tools
	DBAL Commands
	Execute an SQL Statement
	Import SQL Files

	ORM Commands
	Validate Persistence Configuration
	The Schema Tool
	Generate Commands
	Execute a DQL Command
	Cache-Related Commands
	Converting Commands
	Production-Ready Configuration

