
83© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_8

CHAPTER 8

Doctrine Query Language

Introduction
Earlier in this book, we learned about repositories, containers for entities of a specific
type. They are used to look up entities by specific criteria, do updates or deletes, and
so on. They do their work with the help of finder methods, which are implemented
using Doctrine’s own entity query language DQL, the Doctrine Query Language. Strictly
speaking, DQL is not bound to finder methods or repositories; however, it is usually good
practice to put all DQL statements there, just to keep things organized.

DQL itself is a language to query entities. It looks much like SQL, which makes learning
DQL easier, but it isn’t SQL. While DQL statements can be written as a string like this

1 <?php
2 // [..]
3 $query = $em->createQuery(
4 'SELECT u FROM Entity\User u WHERE u.lastName = "Mustermann"'
5);
6
7 $users = $query->getResult();

it is much more convenient to use the query builder, especially when constructing
dynamic queries:

 1 <?php
 2 // [..]
 3 $qb = $this->_em->createQueryBuilder();
 4
 5 $qb->select('u')
 6 ->from('Entity\User', 'u')
 7 ->where($qb->expr()->eq('u.lastName', '?1'))
 8 ->setParameter(1, "Mustermann");
 9
10 $users = $qb->getQuery()->getResult();

Chapter 8 ■ DoCtrine Query Language

84

We assume that $this->_em holds a reference to the entity manager (which is true
for every repository that extends Doctrine\ORM\EntityRepository). The entity manager
is capable of providing a query builder, which in turn can be used to programmatically
construct a query. Thanks to its fluent interface, the code looks pretty elegant. In contrast
to the first example, we also utilize value parameters and the Expr class, which we will
look at in detail in a minute.

Retrieving Results
When executing a query, multiple options exist for retrieving results. When calling
getResult() on a query object, a PHP array is returned containing all matching entity
objects. Alternatively, getArrayResult() can be used to get all data in the form of an
array. No objects are returned, only all entities’ data as an array in a container array. This
is useful when dealing with large datasets or for simple display tasks, where no objects are
needed in the processing. The method getScalarResult() returns a similar result, but
fully flat, not nested at all. When a single result is desired, calling getSingleResult() or
getSingleScalarResult() will do. Method getOneOrNullResult() may be used if null is
desired when no match was found.

If a query includes objects as well as scalar values as well, the result set returned is
called “mixed”:

 1 <?php
 2 // [..]
 3 $qb = $this->_em->createQueryBuilder();
 4
 5 $qb->select('u')
 6 ->addSelect($qb->expr()->concat('u.firstName', 'u.lastName'))
 7 ->from('Entity\User', 'u')
 8 ->where($qb->expr()->eq('u.lastName', '?1'))
 9 ->setParameter(1, "Mustermann");
10
11 $users = $qb->getQuery()->getResult();

In this query, we not only retrieve entities, but also concatenate the user’s first and
last names. The result of the query looks like this:

1 array
2 [0]
3 [0] => Object
4 [1] => "Max Mustermann"
5 [1]
6 // ..

The result set can be limited, via setFirstResult($offset) and
setMaxResults($limit), as when building a pagination feature.

Another feature Doctrine 2 offers is retrieving partial objects, entities which have
been only partially recreated from the database. To retrieve a partial object, a special
syntax is required:

Chapter 8 ■ DoCtrine Query Language

85

 1 <?php
 2 // [..]
 3 $qb = $this->_em->createQueryBuilder();
 4
 5 $qb->select('partial u.{id, firstName}')
 6 ->from('Entity\User', 'u')
 7 ->where($qb->expr()->eq('u.lastName', '?1'))
 8 ->setParameter(1, "Mustermann");
 9
10 $users = $qb->getQuery()->getResult();

This way, we get back partly reconstituted User objects from the database. When
omitting the partial syntax and simply stating individual fields, the result is a plain array
without objects:

1 array(1) {
2 [0]=>
3 array(2) {
4 ["id"]=> int(1)
5 ["firstName"]=> string(3) "Max"
6 }
7 }

It’s important to always include the identifier (id in this case) in a partial object
definition. Otherwise an exception is thrown.

While Partial objects can be very helpful, such as while tweaking the performance
of an app, they can be problematic as well. Code dealing with partial objects needs to be
aware of the fact that no “real” entities are returned, and certain fields or associations
might not be available. Use partial objects with care.

Constructing Basic Queries
The query builder provides methods for the different parts of a query, such as the one
shown above:

•	 public function select($select = null);

•	 public function delete($delete = null, $alias = null);

•	 public function update($update = null, $alias = null);

•	 public function set($key, $value);

•	 public function from($from, $alias = null);

•	 public function where($where);

•	 public function andWhere($where);

•	 public function orWhere($where);

•	 public function groupBy($groupBy);

Chapter 8 ■ DoCtrine Query Language

86

•	 public function addGroupBy($groupBy);

•	 public function having($having);

•	 public function andHaving($having);

•	 public function orHaving($having);

•	 public function orderBy($sort, $order = null);

•	 public function addOrderBy($sort, $order = null);

Expressions like the ones shown above are built using an Expr object, which is
provided by the query builder when calling its expr() method. The Expr object provides
several methods with which to construct an expression:

•	 public function andX($x = null);

•	 public function orX($x = null);

•	 public function eq($x, $y);

•	 public function neq($x, $y);

•	 public function lt($x, $y);

•	 public function lte($x, $y);

•	 public function gt($x, $y);

•	 public function gte($x, $y);

•	 public function isNull($x);

•	 public function isNotNull($x);

•	 public function prod($x, $y);

•	 public function diff($x, $y);

•	 public function sum($x, $y);

•	 public function quot($x, $y);

•	 public function exists($subquery);

•	 public function all($subquery);

•	 public function some($subquery);

•	 public function any($subquery);

•	 public function not($restriction);

•	 public function in($x, $y);

•	 public function notIn($x, $y);

•	 public function like($x, $y);

•	 public function between($val, $x, $y);

Chapter 8 ■ DoCtrine Query Language

87

•	 public function trim($x);

•	 public function concat($x, $y);

•	 public function lower($x);

•	 public function upper($x);

•	 public function length($x);

•	 public function avg($x);

•	 public function max ($x);

•	 public function substr($x, $from, $len);

•	 public function min($x);

•	 public function abs($x);

•	 public function sqrt($x);

•	 public function count($x);

•	 public function countDistinct($x);

Expressions are used in the SELECT, WHERE, HAVING or GROUP part of a query. However,
the query shown above can also be created without using the Expr class:

 1 <?php
 2 $qb = $this->_em->createQueryBuilder();
 3
 4 $qb->select('u')
 5 ->addSelect("CONCAT(u.firstName, u.lastName)")
 6 ->from('Entity\User', 'u')
 7 ->where('u.lastName = ?1')
 8 ->setParameter(1, "Mustermann");
 9
10 $users = $qb->getQuery()->getResult();

This might be necessary sometimes, since not every function or arithmetic operator
can be constructed via the Expr class. The following aggregate functions are allowed in
SELECT and GROUP BY clauses:

•	 AVG

•	 COUNT

•	 MIN

•	 MAX

•	 SUM

Chapter 8 ■ DoCtrine Query Language

88

The following functions are supported in SELECT, WHERE, and HAVING clauses:

•	 IDENTITY

•	 ABS(arithmetic_expression)

•	 CONCAT(str1, str2)

•	 CURRENT_DATE()

•	 CURRENT_TIME()

•	 CURRENT_TIMESTAMP()

•	 LENGTH(str)

•	 LOCATE(needle, haystack [, offset])

•	 LOWER(str)

•	 MOD(a, b)

•	 SIZE(collection)

•	 SQRT(q)

•	 SUBSTRING(str, start [, length])

•	 TRIM([LEADING | TRAILING | BOTH] [“trchar” FROM] str)

•	 UPPER(str)

•	 DATE_ADD(date, days, unit)

•	 DATE_SUB(date, days, unit)

•	 DATE_DIFF(date1, date2)

Values can be given for placeholders within queries via setParameter() or
setParameters($array). In the example shown above, number placeholders are used
(starting with a “?” symbol). Alternatively, a string placeholder may be used (starting with
a “:” symbol):

 1 <?php
 2 // [..]
 3 $qb = $this->_em->createQueryBuilder();
 4
 5 $qb->select('u')
 6 ->addSelect($qb->expr()->concat('u.firstName', 'u.lastName'))
 7 ->from('Entity\User', 'u')
 8 ->where($qb->expr()->eq('u.lastName', ':lastName'))
 9 ->setParameter("lastName", "Mustermann");
10
11 $users = $qb->getQuery()->getResult();

Chapter 8 ■ DoCtrine Query Language

89

Whichever way is preferred, one needs to stick to it within a query. Mixing is not
allowed.

Constructing Join Queries
Doctrine 2 supports two different types of joins. While regular joins are needed, for
example, to limit results via a WHERE clause, so-called fetch joins are used to fetch related
entities for further usage:

 1 <?php
 2 // [..]
 3 $qb = $this->_em->createQueryBuilder();
 4
 5 $qb->select('u', 'c')
 6 ->from('Entity\User', 'u')
 7 ->leftJoin('u.contactData', 'c')
 8 ->where($qb->expr()->eq('u.lastName', '?1'))
 9 ->setParameter(1, "Mustermann");
10
11 $users = $qb->getQuery()->getResult();

The select('u', 'c') makes the join a fetch join. The referenced ContactData
object is part of the result set. However, when omitting the 'c' in the select clause, the
ContactData object is not part of the result anymore, however, it can still be used, for
example, within the where clause:

 1 <?php
 2 // [..]
 3
 4 $qb = $this->_em->createQueryBuilder();
 5
 6 $qb->select('u')
 7 ->from('Entity\User', 'u')
 8 ->leftJoin('u.contactData', 'c')
 9 ->where($qb->expr()->eq('u.lastName', '?1'))
10 ->andWhere($qb->expr()->eq('c.email', '?2'))
11 ->setParameter(1, "Mustermann")
12 ->setParameter(2, "max.mustermann@example.com");
13
14 $users = $qb->getQuery()->getResult();

Chapter 8 ■ DoCtrine Query Language

90

Summary
We covered the most fundamental aspects of Doctrine’s very own query language. As
said earlier, DQL itself is a language to query entities. It looks much like SQL-which
makes learning DQL easier- but it isn’t SQL. When working with Doctrine, a proper
understanding of DQL is needed.

	Chapter 8: Doctrine Query Language
	Introduction
	Retrieving Results
	Constructing Basic Queries
	Constructing Join Queries

