
71© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_7

CHAPTER 7

Managing Entities

Creating a New Entity
Once the domain model has been constructed, it is time to use it. A new entity can be
created based simply on a new object of an entity class:

1 <?php
2 $newPost = new \Entity\Post();
3 $newPost->setTitle('A new post!');
4 $newPost->setContent('This is the body of the new post.');
5 $em->persist($newPost);
6 $em->flush();

The code shown above anticipates that $em references a ready-to-use entity manager.
First, a new Post is created, then data is assigned, and the object is passed to the entity
manager for persistence.

One must remember that the persist() method call does not yet cause an SQL
INSERT statement to be issued. The entity is only scheduled for persistence with the next
flushing. As long as no flushing has taken place, the entity is in a state called MANAGED,
meaning that the entity manager recognizes the new entity.

Only when the flush() method is invoked on the entity manager is a new record
written to the database. Otherwise, the entity will be lost after the script has finished.

Loading an Existing Entity
There are two main ways to load an existing entity: either by querying and retrieving
it from its corresponding repository or by accessing it through an association given by
another, already loaded entity.

Using a Repository
We already learned that a repository is a container for all entities of a specific type. A
repository provides finder methods to search for entities based on a query. While several
finder methods are available out-of-the-box, custom finder methods can also be added
later on. A custom finder method can be imagined as a “quick access” to a typical query.
With the help of finder methods, you can look up an entity, for example by its ID, like this:

Chapter 7 ■ Managing Entities

72

1 <?php
2 $post = $em->getRepository('Entity\Post')->findOneById($id);

First we request the repository from the entity manager and then we execute a finder
method on it. By default, four finder methods are available. To find a single entity based
on its ID, use the find() method:

1 <?php
2 public function find($id, $lockMode = LockMode::NONE, $lockVersion =
null);

To find a single entity based on criteria, use the findOneBy() method:

1 <?php
2 public function findOneBy(array $criteria, array $orderBy = null);

To find all entities of a specific type, use the findAll() method:

1 <?php
2 public function findAll();

To find multiple entities based on criteria, use the findBy() method:

1 <?php
2 public function findBy(
3 array $criteria,
4 array $orderBy = null,
5 $limit = null,
6 $offset = null
7);

You can define the order, limit, and offset values when using findBy().
Also helpful are the so-called magic finders. They allow you to include search criteria

directly in a finder method’s name. The next two statements produce the same result:

1 <?php
2 $tag = $em->getRepository('Entity\Tag')->findOneBy(array('label'=>$label));
3 $tag = $em->getRepository('Entity\Tag')->findOneByLabel($label);

Adding a custom repository with individual finder methods is a two-step process.
First, a new repository class needs to be set up:

 1 <?php
 2 namespace Repository;
 3
 4 use Doctrine\ORM\EntityRepository;
 5

Chapter 7 ■ Managing Entities

73

 6 class Post extends EntityRepository
 7 {
 8 public function findAllPostsWithTag($tag)
 9 {
10 // DQL statement goes here
11 }
12 }

Next, Doctrine 2 needs to know about the new repository. This is done through the
corresponding entity:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 // [..]
11 }

That’s all! The findAllPostsWithTag() finder method can now be easily invoked:

1 <?php
2 $posts = $em->getRepository('Entity\Post')->findAllPostsWithTag($tag);

We will learn more about DQL, the Doctrine Query Language, later in the book. It is
used to phrase a query.

Using an Association
Let’s assume we already have a loaded User entity available. Instead of loading the User's
contact data by using its repository, we can also reach this entity from the given User entity:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11

Chapter 7 ■ Managing Entities

74

12 /**
13 * @OneToOne(targetEntity="Entity\ContactData")
14 */
15 private $contactData;
16
17 // [..]
18
19 public function getContactData()
20 {
21 return $this->contactData;
22 }
23 }

In this case, when calling getContactData(), the referenced ContactData entity is
loaded on demand by Doctrine’s proxy mechanism.

We could even make sure that the referenced ContactData entity is already loaded
when loading the User itself, and save an additional database query:

1 <?php
2 // [..]
3 /**
4 * @OneToOne(targetEntity="Entity\ContactData", fetch="EAGER")
5 */
6 private $contactData;

By using fetch="EAGER," we tell Doctrine 2 to always load the referenced
ContactData entity when the User itself is loaded.

Loading eagerly sometimes has its advantages, especially when it’s likely to access a
referenced entity later in the process. If the fetch attribute is omitted, Doctrine 2 fetches
LAZY by default. This means it loads the entity on first access. The third option is EXTRA_
LAZY, which is helpful for huge datasets. Even if one decides to lazy load references, the
referenced entities are still all loaded fully into RAM. Depending on the amount and size
of the entities referenced, this could be a serious performance issue. When EXTRA_LAZY
is used, several methods can be executed on the collection of referenced entities without
fully loading them into the RAM right away. This is true for:

•	 contains()

•	 count()

•	 offsetSet()

•	 add()

•	 count()

•	 slice()

In this way, a pagination feature, for example, can be built without performance
issues.

Chapter 7 ■ Managing Entities

75

Changing an Existing Entity
Modifying an existing, already loaded entity is easy. All changes made to such an entity
are auto-detected by Doctrine 2 when flushing the entity manager:

1 <?php
2 // [..]
3 $post = $em->getRepository('Entity\Post')->find(1);
4 $post->setTitle("New title");
5 $em->flush();

There is no need for explicitly telling Doctrine 2 again about the fact that this entity
has been changed. The method persist($entity) does not need to be called on the
entity manager again.

Removing an Entity
Removing an existing entity can easily be done through the entity manager, if a handle to
a loaded entity is available:

1 <?php
2 $em->remove($post);
3 $em->flush();

The SQL statement needed to physically delete the record in the database is not
issued as long as flush() has not yet been invoked.

Sorting an Association
When accessing entities via an association, the order of the entities retrieved is not
defined. As a part of the entity mapping definitions, one can define the order of entities
using the @OrderBy annotation. If we get back to our demo application, we could define
the order of a User’s Posts in such a way that the most recent Post is shown first in its
list of Posts, simply by modifying the mapping configuration in the User entity:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]

Chapter 7 ■ Managing Entities

76

11
12 /**
13 * @OneToMany(targetEntity="Entity\Post", mappedBy="user")
14 * @OrderBy({"id" = "DESC"})
15 */
16 private $posts;
17
18 // [..]
19 }

Alternatively, you can sort a collection usng PHP after retrieving the entities from the
database.

Removing an Association
Removing an association is as straightforward as removing an entity:

 1 <?php
 2 $newPost = new \Entity\Post();
 3 $newPost->setTitle('A new post!');
 4 $newPost->setContent('This is the body of the new post.');
 5 $user = $em->getRepository('Entity\User')->findOneById(1);
 6 $newPost->setUser($user);
 7 $em->flush();
 8
 9 $newPost->setUser(null);
10 $em->flush();

In the example above, a new Post entity is created. Then, an existing User entity is
loaded and associated with the new post. After flushing, the reference has been persisted
to the database. Next, we remove the association again by setting User to null. After the
next flushing, the reference is gone in the database.

We need to keep in mind here that we have established a bidirectional relationship
between the User and its Posts, and the Post entity is the owning side of the association.
If, for example, we would take the User entity and remove the Post from its collection
$posts, nothing would happen on flushing:

1 <?php
2 // [..]
3 $user->getPosts()->removeElement($newPost);
4 $em->flush();

The removeElement() method, which is used to remove an element from a given
Doctrine 2 collection based on an entity loaded, is without the desired effect. However,
there is an effect. While the change won’t be persisted, the element has been removed
from the collection in RAM. One won’t find the element anymore when looking it up in
the collection.

Chapter 7 ■ Managing Entities

77

Lifecycle Events
When working with entities, several events are triggered by Doctrine 2:

preRemove: Occurs for a given entity before the respective
EntityManager remove operation for that entity is executed.

postRemove: Occurs for an entity after the entity has been
deleted. It will be invoked after the database delete
operations.

prePersist: Occurs for a given entity before the respective
EntityManager persist operation for that entity is executed.

postPersist: Occurs for an entity after the entity has been
made persistent. It will be invoked after the database insert
operations.

preUpdate: Occurs before the database update operations to
entity data.

postUpdate: Occurs after the database update operations to
entity data.

postLoad: Occurs for an entity after the entity has been loaded
from the database.

With loadClassMetadata, onFlush, and onClear, additional events are triggered
that are persistence-related, but are not specific to a single entity.

With these events available, you can hook into persistence processing, with a so-
called lifecycle callback, which is implemented as a method of an entity class.

Let’s assume we want to add login data for each User to our demo application. While
the username can be picked by the user, the password is auto-generated on signup. This
can be achieved by adding a lifecycle callback to the User class:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @HasLifecycleCallbacks
 7 * @Table(name="users")
 8 */
 9 class User
10 {
11 // [..]
12
13 const GENERATED_PASSWORD_LENGTH = 6;
14
15 // [..]
16

Chapter 7 ■ Managing Entities

78

17 /** @PrePersist */
18 public function generatePassword()
19 {
20 �for($i = 1; $i <= self::GENERATED_PASSWORD_LENGTH;

$i++) {
21 �$this->password .= chr(rand(65, 90)); // 65 ->

A, 90 -> Z
22 }
23 }
24 }

First, we need to declare that lifecycle callbacks are present by using the @
HasLifecycleCallbacks annotation. Then we add the lifecycle annotation @PrePersist
to the generatePassword() method.

That’s it! Now, before persisting a new entity, this method is called automatically,
and the User’s password is auto-generated.

Cascading Operations
When creating a new entity or modifying an existing one, all operations by default affect
only a single entity. A powerful, but somewhat dangerous, feature is the option to define
“operation cascades.” Let’s consider the following example. If we delete a User in our
demo application, we also want all of its Posts to be deleted. This can be achieved by
adding the cascade attribute to the association definition:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @HasLifecycleCallbacks
 7 * @Table(name="users")
 8 */
 9 class User
10 {
11 // [..]
12
13 /**
14 * �@OneToMany(targetEntity="Entity\Post", mappedBy="user",

cascade={"remove"})
15 */
16 private $posts;
17
18 // [..]
19 }

Now, when removing a user via

Chapter 7 ■ Managing Entities

79

1 <?php
2 $user = $em->getRepository('Entity\User')->find($id);
3 $em->remove($user);
4 $em->flush();

the User is gone, and so are all its Posts. When setting cascade to value all, the
cascade will be applied on other operations, such as persist, as well.

When adding the cascade attribute, the side matters. In the code shown above, all
referenced Post entities are removed when a User is removed. When adding cascade to
the Post entity as shown in the following code, the User entity will be removed if one of its
referenced Post entities is deleted:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 // [..]
11
12 /**
13 * �@ManyToOne(targetEntity="Entity\User", inversedBy="posts",

cascade={"remove"})
14 * @JoinColumn(name="user_id", referencedColumnName="id")
15 */
16 protected $user;
17
18 // [..]
19 }

Assuming that this is not the desired behavior, it is absolutely crucial to verify the
cascade configuration to prevent data loss.

Another way to achieve automatic deletion of referenced entities as shown above is
orphan removal for one-to-one and one-to-many associations. Orphan removal means
Doctrine 2 will automatically remove referenced entities without a parent entity:

 1 /**
 2 * @Entity
 3 * @HasLifecycleCallbacks
 4 * @Table(name="users")
 5 */
 6 class User
 7 {
 8 // [..]
 9

Chapter 7 ■ Managing Entities

80

10 /**
11 * �@OneToMany(targetEntity="Entity\Post", mappedBy="user",

orphanRemoval=true)
12 private $posts;
13
14 // [..]
15 }

Again, when the User is gone, all of its Posts are also gone.
While cascading operation are useful, they can be expensive. The reason is that all

operations on the referenced entities happen in RAM. The entities must first be loaded
and reconstructed from the database, and then modified. Depending on the size of the
collection, this could be resource intensive.

Luckily, Doctrine 2 also offers “database level” cascading operations for updates and
deletes via the @JoinColumn annotation:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 /**
11 * @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
12 * �@JoinColumn(name="user_id", referencedColumnName="id",

onDelete="CASCADE")
13 */
14 protected $user;
15
16 // [..]
17 }

Transactions
A transaction is an atomic unit of one or more database statements. All insert, update, or
delete operations done through the entity manager are queued, as long as the flush()
method has been called on the entity manager. Technically speaking, the queue is an
implementation of the so-called unit of work1 pattern. When calling flush(), all queued
operations in the unit of work are fired against the database as a single transaction. If one
of these operations fails Doctrine 2 automatically rolls back the entire transaction—that is,
all operations queued—and then quits, itself, to prevent data loss due to inconsistencies.

1http://martinfowler.com/eaaCatalog/unitOfWork.html

http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/unitOfWork.html

Chapter 7 ■ Managing Entities

81

Doctrine 2 offers a convenient way to wrap several database operations into a
single transaction. The following code demonstrates how to “reset” a User in the demo
application. First, the existing User is deleted, then a new one is created by using its
current first and last name:

 1 <?php
 2 // [..]
 3 $em->transactional(function($em) {
 4 $oldUser = $em->getRepository('Entity\User')->find(1);
 5 $newUser = new Entity\User();
 6 $newUser->setFirstName($oldUser->getFirstname());
 7 $newUser->setLastName($oldUser->getLastname());
 8 $em->persist($newUser);
 9 $em->remove($oldUser);
10 });

Both operations take effect only if no exception was thrown for either of them.
Otherwise, both operations are rolled back.

Another issue may arise when two or more persons simultaneously work on the same
sets of data, which is not unlikely for web applications. Doctrine 2 fully supports a strategy
called optimistic locking. The core idea behind optimistic locking is that multiple users
can all read data sets, however, whenever changing data, only the first person writing is
privileged to persist its changes. All other users, now working with an outdated version
of the entity, will get an exception when trying to persist their individual changes. As this
strategy allows for concurrent reading operations and controls only write operations, read-
intensive applications won’t be slowed down, compared to a pessimistic locking strategy.

To make optimistic locking happen, Doctrine 2 allows us to add a special integer or
datetime version field to an entity. The current value of this field is compared to the value
loaded before, and if it doesn’t match on write, an OptimisticLockException is thrown.
If this happens, another user must have already modified the entity. A version field can be
set up by adding the @Version annotation:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 // [..]
11
12 /** @Version @Column(type="integer") */
13 protected $version;
14
15 // [..]
16 }

Chapter 7 ■ Managing Entities

82

When creating the corresponding data schema via Doctrine 2, a column called
version is added to the posts table. For every new Post entity, Doctrine 2 automatically
assigns a value of 1. The value is increased by one with each subsequent modification:

1 $post = $em->getRepository('Entity\Post')->find(1);
2 $post->setTitle("New title");
3 $em->flush();
4 $em->clear();
5 $post = $em->getRepository('Entity\Post')->find(1);
6 $post->setTitle("Again, a new title");
7 $em->flush();

The code shown above modifies the Post entity two times with an ID value of
1. After both changes have been applied, the value column has a value of 3.
The $em->clear() statement is important here: if we omit it, we would produce an
OptimisticLockException ourselves. The reason is that changing the title to “New
title” and flushing the entity manager increments the version value for this entity by
one in the database. However, the value stored in the Post entity object in RAM still
has the old value of 1, and therefore is now outdated—it is not being updated to the
latest version value automatically. Therefore, trying to modifying the title again will fail
with an OptimisticLockException. The same will be true if we try to persist changes
to an entity which has been modified in the meantime by somebody else. How an
OptimisticLockException situation is handled is fully up to the application developer.

Summary
In this chapter, we got our hands dirty creating and manipulating entities programatically.
We also looked at the entity lifecycle and cascading features making our code even more
compact, but also introduces some „magic“ and should be used with care. Transactions
are another major aspect of data persistence and is covered well by Doctrine. For the most
part, Doctrine already takes care of proper transaction demarcation for you: All the write
operations are queued until EntityManager#flush() is invoked which wraps all of these
changes in a single transaction. However, Doctrine also allows (and encourages) you to
take over and control transaction demarcation yourself.

	Chapter 7: Managing Entities
	Creating a New Entity
	Loading an Existing Entity
	Using a Repository
	Using an Association

	Changing an Existing Entity
	Removing an Entity
	Sorting an Association
	Removing an Association
	Lifecycle Events
	Cascading Operations
	Transactions
	Summary

