
49© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_6

CHAPTER 6

References Between Entities

Entities usually are part of a bigger, interconnected object graph. They have references
to other entities. A User holds references to its Posts, while a Post references a Category
which references back to the User, who (in turn) sets up the Category, and so forth. As
we will see, there are many different ways to establish connections between entities.
Connections are characterized by the number of items they connect and the association’s
direction. Let’s take a look!

 Domain model of the demo app Talking The following code samples are related
to the domain model of the demo app introduced earlier in the book. The drawing of the
domain model might be helpful as a reference throughout this chapter.

One-to-One Relationship, Unidirectional
In contrast to foreign key relationships in a database, which always join two tables in
both directions, this is not true for objects. Therefore, Doctrine 2 differentiates between
unidirectional and bidirectional associations between objects. Unidirectional means that
one objects points to the other, but the latter does not have a pointer back.

To set up this type of a relationship between two entities, we simply need to pick a
member variable acting as the pointer:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11

ChapTer 6 ■ referenCes BeTween enTiTies

50

12 /**
13 * @OneToOne(targetEntity="Entity\ContactData")
14 */
15 private $contactData;
16
17 // [..]
18 }

The @OneToOne annotation defines the type of the relationship: a one-to-one
relationship. The targetEntity attribute defines the entity class to which the pointer
points. The class given with the targetEntity attribute needs to be fully qualified,
including a namespace if applicable. In any case, you must not add a leading backslash.

It’s now already possible to reach a referenced entity (ContactData) through a
loaded User, if a getter method has been added:

1 <?php
2 var_dump($user->getContactData());

However, the simple persistence configuration shown above only works because
ContactData has a member variable called id:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="contact_data")
 7 */
 8 class ContactData
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 // [..]
17 }

If the member variable has a different name, such as contactDataId or something
similar, we need to tell Doctrine 2 about it:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")

ChapTer 6 ■ referenCes BeTween enTiTies

51

 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @OneToOne(targetEntity="Entity\ContactData")
14 * @JoinColumn(name="id", referencedColumnName="contactDataId")
15 */
16 private $contactData;
17
18 // [..]
19 }

Later in this book we will learn more about t the @JoinColumn annotation.
Loading a User and its ContactData as shown above works only if the data structure

in the database has also been set up beforehand, in addition to the PHP class and the
persistence configuration. If not, all this won’t work and errors are reported by Doctrine
2. Based on this situation, one of the following will be true:

•	 We have an existing data structure given in the database and we
adapt the persistence configuration to it.

•	 We do not have an existing data structure and the persistence
configuration has no external restrictions. In this case, the
Doctrine 2 schema tool can create the data structure in the
database based simply on the persistence configuration. More
about how to auto-create a data structure in a database can be
found in Chapter 9, “Command Line Tools” later in this book.

In any case, it’s important that the data structure and the Doctrine 2 persistence
mappings match. If not, we will be in trouble for sure. The schema tool can also be used
to verify that data structure and persistence mappings match.

In the following, let’s assume that we always create the data structure for the demo
application using the schema tool. In this case, the users table will be created after
invoking the proper schema tool commands:

Col Type Length NULL? KEY Extras

Id INT 11 PRI auto_increment

first_name VARCHAR 255 Y

last_name VARCHAR 255 Y

gender INT 11 Y

name_prefix VARCHAR 255 Y

contactData_id INT 11 Y UNI

http://dx.doi.org/10.1007/978-1-4842-2559-2_9

ChapTer 6 ■ referenCes BeTween enTiTies

52

The contact_data table created looks like this:

Col Type Length NULL? KEY Extras

id INT 11 PRI

email VARCHAR 255 Y

phone VARCHAR 255 Y

One-to-One Relationship, Bidirectional
In contrast to the unidirectional one-to-one relationship, in a bidirectional relationship
two pointers exist: one pointing from object A to object B, and another pointing from
object B to object A. It is important that we talk about two separate pointers here, as we
will see in a minute. Let’s take a User entity again with a reference to a UserInfo entity:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @OneToOne(targetEntity="Entity\UserInfo")
14 */
15 private $userInfo;
16
17 // [..]
18 }

If we now want the UserInfo entity to point back to the User entity, we need to
extend the configuration of the User entity by adding inversedBy="user":

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {

ChapTer 6 ■ referenCes BeTween enTiTies

53

10 // [..]
11
12 /**
13 * @OneToOne(targetEntity="Entity\UserInfo", inversedBy="user")
14 */
15 private $userInfo;
16
17 // [..]
18 }

We configured the UserInfo with a pointer called $user to a UserInfo entity. The
UserInfo entity itself looks like this:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="user_info")
 7 */
 8 class UserInfo
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 /** @Column(type="datetime", nullable=true) */
17 private $signUpDate;
18
19 /** @Column(type="datetime", nullable=true) */
20 private $signOffDate = null;
21
22 /**
23 * @OneToOne(targetEntity="Entity\User", mappedBy="userInfo")
24 */
25 private $user;
26
27 public function setId($id)
28 {
29 $this->id = $id;
30 }
31
32 public function getId()
33 {
34 return $this->id;
35 }

ChapTer 6 ■ referenCes BeTween enTiTies

54

36
37 public function setSignOffDate($signOffDate)
38 {
39 $this->signOffDate = $signOffDate;
40 }
41
42 public function getSignOffDate()
43 {
44 return $this->signOffDate;
45 }
46
47 public function setSignUpDate($signUpDate)
48 {
49 $this->signUpDate = $signUpDate;
50 }
51
52 public function getSignUpDate()
53 {
54 return $this->signUpDate;
55 }
56
57 public function setUser($user)
58 {
59 $this->user = $user;
60 }
61
62 public function getUser()
63 {
64 return $this->user;
65 }
66 }

In the UserInfo entity we define the target entity class via targetEntity="Entity\
User" and let Doctrine 2 know by adding mappedBy="contactData" that the User entity
references back via contactData.

So far, so good! We just established a bidirectional connection between two entities.
Let’s now talk about the inversedBy and mappedBy configuration.

For a moment, let’s image there exists a User entity and a UserInfo entity, belonging
together and pointing to each other in a bidirectional manner: $userInfo points to a
UserInfo instance and $user points to a User instance. If we now want to disconnect the
two, we remove both pointers:

1 <?php
2 // [..]
3 $user = $em->getRepository('Entity\User')->findOneById($id);
4 $user->getUserInfo()->setUser(null);
5 $user->setUserInfo(null);
6 $em->flush();

ChapTer 6 ■ referenCes BeTween enTiTies

55

But what if we remove only one of the two pointers? We would create an inconsistency.
Which reference tells Doctrine 2 the truth about the two objects and their association?
One entity says “yes, we are connected,” the other says “no, we aren’t connected at all.”
Remember that this problem exists only in the object oriented world, not in the relational
database universe. In a relational database, references are always bidirectional. There is no
concept of a unidirectional relationship. Back to the inconsistency issue: to which entity
should Doctrine 2 listen when taking care of persistence? The solution looks like this: when
in doubt, Doctrine 2 listens to the entity which carries the inversedBy attribute. This means
that the following code would not remove the association between the two entities:

1 <?php
2 // [..]
3 $user = $em->getRepository('Entity\User')->findOneById($id);
4 $user->getUserInfo()->setUser(null);
5 $em->flush();

In contrast, the following code would remove the association:

1 <?php
2 // [..]
3 $user = $em->getRepository('Entity\User')->findOneById($id);
4 $user->setUserInfo(null);
5 $em->flush();

The reason is that the User entity has the inversedBy attribute and acts as the so-
called owning side of the connection. The owning side is the side Doctrine 2 checks to
determine whether a connection exists. The other side, the so-called inverse side, doesn’t
matter here. Doctrine 2 doesn’t care what the inverse side says.

However, even if we correctly cut the connection between the two from the owning
side, this change is durable only after flushing:

1 <?php
2 use Doctrine\ORM\EntityManager;
3 // [..]
4 $em = EntityManager::create($dbParams, $config);
5 $em->flush();

Until flushing happens, we still have an inconsistency in the running program:

1 <?php
2 $user = $em->getRepository('Entity\User')->findOneById($id);
3 $userInfo = $user->getUserInfo();
4 $user->setUserInfo(null);
5 var_dump($user->getUserInfo()); // NULL
6 var_dump($userInfo->getUser()); // object(Entity\User)
7 $em->flush();
8 var_dump($user->getUserInfo()); // NULL
9 var_dump($userInfo->getUser()); // NULL

ChapTer 6 ■ referenCes BeTween enTiTies

56

Only once $em->flush() has been executed will var_dump($userInfo->getUser())
finally return NULL. Before that, it returns the referenced object. In some cases, this situation
may lead to difficult-to-debug issues. A piece of good advice here is to always make sure
that both references are removed simultaneously so that the running program stays intact:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 public function removeUserInfo()
13 {
14 $this->userInfo->setUser(null);
15 $this->userInfo = null;
16 }
17 }

The following code now always deals with a consistent state:

1 <?php
2 $user = $em->getRepository('Entity\User')->findOneById($id);
3 $userInfo = $user->getUserInfo();
4 $user->removeUserInfo();
5 var_dump($user->getUserInfo()); // NULL
6 var_dump($userInfo->getUser()); // NULL
7 $em->flush();
8 var_dump($user->getUserInfo()); // NULL
9 var_dump($userInfo->getUser()); // NULL

As a good practice, you should always add a persistence supporting method on the
owning side.

Let’s recap: A bidirectional relationship always has an owning side and an inverse
side. Unidirectional relationships have only an owning side, which also does not need
to be declared explicitly. Regarding associations, only changes to the owning side are
relevant for persistence. Doctrine 2 doesn’t care about the inverse side in this concern.
The data base table of the entity declared as the owning side holds the foreign key. Which
side of the connection is defined as the owning side is up to the application developer.

Given a bidirectional association, the owning side can be identified by spotting the
inversedBy attribute, while the inverse side carries the mappedBy attribute.

ChapTer 6 ■ referenCes BeTween enTiTies

57

One-to-Many Relationship, Bidirectional
In the chapter “Hello, Doctrine 2!” we added a bidirectional one-to-many relationship
to the demo app between a User and its Posts. Let’s take a close look at how we got that
working. The User entity has a member variable called $posts:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 /**
11 * @OneToMany(targetEntity="Entity\Post", mappedBy="user")
12 */
13 private $posts;
14
15 // [..]
16 }

The @OneToMany annotation defines the one-to-many relationship to the Post entity
(targetEntity). As the mappedBy attribute is given, it’s a bidirectional relationship. The
Post entity looks like this:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 /**
11 * @ManyToOne(targetEntity="Entity\User", inversedBy="posts")
12 */
13 private $user;
14
15 // [..]
16 }

ChapTer 6 ■ referenCes BeTween enTiTies

58

Here we find the counterpart annotation @ManyToOne. In a one-to-one relationship,
the application developer can decide freely which side to declare as the owning side. That
is not the case here. The entity carrying the @ManyToOne annotation must become the
owning side and get the inversedBy attribute.

If (as before) we use the schema tool to create the data structure based on the
persistence configuration, the following tables are set up:

Col Type Length NULL? KEY Extras

id INT 11 PRI auto_increment

first_name VARCHAR 255 Y

last_name VARCHAR 255 Y

gender INT 11 Y

name_prefix VARCHAR 255 Y

contactData_id INT 11 Y UNI

userInfo_id INT 11 Y UNI

The user_info table looks like this:

Col Type Length NULL? KEY Extras

id INT 11 PRI

user_id INT 11 MUL

title VARCHAR 255

content VARCHAR 255

As we can see, table user_info holds the foreign key, which may occur more than
once. When accessing a User’s Posts from a given User entity, Doctrine uses a Doctrine\
ORM\PersistentCollection to provide the referenced Post entities. It extends other
classes such as \Countable, \IteratorAggregate and \ArrayAccess, which makes a
Doctrine\ORM\PersistentCollection very similar to a regular PHP array, meaning it can
easily be used, for example, in PHP foreach loops.

If the referenced Posts haven’t been accessed at least once, the member variable
$user has the value null and has not yet been assigned an object of class Doctrine\ORM\
PersistentCollection. If one wants to work with the collection before it has been set up
by Doctrine 2, this could be an issue. Therefore, as a good practice, a member variable
holding a persistent association should always be initialized:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")

ChapTer 6 ■ referenCes BeTween enTiTies

59

 7 */
 8 class User
 9 {
10 // [..]
11
12 public function construct()
13 {
14 $this->posts = new \Doctrine\Common\Collections\

ArrayCollection();
15 }
16
17 // [..]
18 }

Many-to-Many Relationship, Unidirectional
In our demo app, one User may act in different Roles with different access rights. Let’s
distinguish between base- and pro-users and administrators. User with the base Role
can read Posts, but can’t write Posts. Pro-users can also write Posts. Administrators can
manage the overall application and various settings. We design the relationship so that,
from given a User entity, we can access the User’s Roles, but not the other way around. To
do so, we simply need to add the following persistence configuration:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @ManyToMany(targetEntity="Entity\Role")
14 **/
15 private $roles;
16
17 // [..]
18 }

The Role entity definitions are straightforward as well:

 1 <?php
 2 namespace Entity;
 3

ChapTer 6 ■ referenCes BeTween enTiTies

60

 4 /**
 5 * @Entity
 6 * @Table(name="role")
 7 */
 8 class Role
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 /** @Column(type="string") */
17 private $label;
18
19 public function setId($id)
20 {
21 $this->id = $id;
22 }
23
24 public function getId()
25 {
26 return $this->id;
27 }
28
29 public function setLabel($label)
30 {
31 $this->label = $label;
32 }
33
34 public function getLabel()
35 {
36 return $this->label;
37 }
38 }

Running the schema tool to create the data structure in the database, we now have a
new table called role:

Col Type Length NULL? KEY Extras

Id INT 11 PRI auto_increment

Label VARCHAR 255

ChapTer 6 ■ referenCes BeTween enTiTies

61

Also, we find a table called user_role allowing us to persist a many-to-many reference:

Col Type Length NULL? KEY Extras

user_id INT 11 MUL

role_id INT 11 MUL

The reason that the join table shown above looks like it does is that Doctrine 2 has
again applied a default configuration to the @JoinTable annotation, which itself is not
given with our code, but which implicitly is considered by Doctrine 2. If needed, our join
table can be defined differently. For example, if an existing data structure in a database
needs to be used:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @ManyToMany(targetEntity="Entity\Role")
14 * @JoinTable(name="users_roles",
15 * joinColumns={@JoinColumn(name="user",

referencedColumnName="id")},
16 * inverseJoinColumns={@JoinColumn(name="role",
17 * referencedColumnName="id")
18 * }
19 *)
20 **/
21 private $roles;
22
23 // [..]
24 }

The persistence configuration now looks much more complex and tells Doctrine to
deal with a join table that looks like this:

Col Type Length NULL? KEY Extras

user INT 11 MUL

role INT 11 MUL

ChapTer 6 ■ referenCes BeTween enTiTies

62

The @JoinTable annotation has an attribute called name to define the join table
name as well as the attributes joinColumns and inverseJoinColumns, both of which use
another annotation, called @JoinColumn, to map the individual columns.

Many-to-Many Relationship, Bidirectional
The author of a Post (a User) should be able to assign one or more Tags. A Tag itself may
be reused in different Posts. In contrast to the relationship between a User and its Roles,
we design the association to be bidirectional. First, let’s set up the new Tag entity:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="tag")
 7 */
 8 class Tag
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 /** @Column(type="string") */
17 private $label;
18
19 /**
20 * @ManyToMany(targetEntity="Entity\Post", mappedBy="tags")
21 */
22 private $posts;
23
24 public function __construct()
25 {
26 $this->posts = new \Doctrine\Common\Collections\

ArrayCollection();
27 }
28
29 public function setId($id)
30 {
31 $this->id = $id;
32 }
33
34 public function getId()
35 {
36 return $this->id;
37 }

ChapTer 6 ■ referenCes BeTween enTiTies

63

38
39 public function setLabel($label)
40 {
41 $this->label = $label;
42 }
43
44 public function getLabel()
45 {
46 return $this->label;
47 }
48
49 public function setPosts($posts)
50 {
51 $this->posts = $posts;
52 }
53
54 public function getPosts()
55 {
56 return $this->posts;
57 }
58 }

The Post entity needs to be extended, as well, by a new member variable:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10 // [..]
11
12 /**
13 * @ManyToMany(targetEntity="Entity\Tag", inversedBy="posts")
14 */
15 private $tags;
16
17 public function __construct()
18 {
19 $this->tags = new \Doctrine\Common\Collections\

ArrayCollection();
20 }
21
22 // [..]
23 }

ChapTer 6 ■ referenCes BeTween enTiTies

64

When setting up a many-to-many relationship, you can freely choose the owning side.
The schema tool, once more, creates the join table post_tag for us, if we run the

proper commands:

Col Type Length NULL? KEY Extras

post_id INT 11 MUL

tag_id INT 11 MUL

Again, defaults are applied here. If desired, the @JoinTable annotation can be used
to alter the labels of the table and its columns.

One-to-Many Relationship, Unidirectional
A User can set up multiple Category entities for its Posts. We will use a unidirectional
association for this domain model aspect, which requires—in contrast to the bidirectional
one-to-many relationship—a join table as well. Also, we need to use the @ManyToMany
annotation, even though we don’t set up a many-to-many annotation (this might be
somewhat confusing). With the help of a unique constraint, it finally results in a one-to-
many relationship. The User entity is extended by the $categories member variable:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @ManyToMany(targetEntity="Entity\Category")
14 * @JoinTable(name="users_categories",
15 * joinColumns={@JoinColumn(name="user",

referencedColumnName="id")},
16 * inverseJoinColumns={@JoinColumn(name="category",
17 * referencedColumnName="id", unique=true)}
18 *)
19 */
20 private $categories;
21
22 public function __construct()
23 {
24 // [..]

ChapTer 6 ■ referenCes BeTween enTiTies

65

25 $this->categories = new \Doctrine\Common\Collections\
ArrayCollection();

26 }
27
28 public function setCategories($categories)
29 {
30 $this->categories = $categories;
31 }
32
33 public function getCategories()
34 {
35 return $this->categories;
36 }
37
38 // [..]
39 }

The annotations and attributes used are already known from the many-to-many
relationship. The unique=true configuration, which makes it a one-to-many relationship,
is new. The Category entity is simple:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="category")
 7 */
 8 class Category
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */
14 private $id;
15
16 /** @Column(type="string") */
17 private $label;
18
19 public function setId($id)
20 {
21 $this->id = $id;
22 }
23
24 public function getId()
25 {
26 return $this->id;
27 }
28

ChapTer 6 ■ referenCes BeTween enTiTies

66

29 public function setLabel($label)
30 {
31 $this->label = $label;
32 }
33
34 public function getLabel()
35 {
36 return $this->label;
37 }
38 }

Many-to-One Relationship, Unidirectional
Multiple posts can be grouped in a Category, but each Post can be in only one Category.
To allow access to a Category from a Post, the Post must be extended:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts")
 7 */
 8 class Post
 9 {
10
11 // [..]
12
13 /**
14 * @ManyToOne(targetEntity="Entity\Category")
15 * @JoinColumn(name="category_id", referencedColumnName="id")
16 **/
17 private $category;
18
19 // [..]
20
21 public function setCategory($category)
22 {
23 $this->category = $category;
24 }
25
26 public function getCategory()
27 {
28 return $this->category;
29 }
30 }

ChapTer 6 ■ referenCes BeTween enTiTies

67

And that’s it—no more configuration is needed, as it’s a unidirectional association.
The Category doesn’t need to be extended. In fact, even the @JoinColumn annotation is
redundant, because its configuration is identical with Doctrine’s defaults.

One-to-One Relationship, Self-Referencing
Doctrine 2 allows us to define associations between entities of the same type, so-called
self-referencing relations. In our demo app, a User can declare another User as its life
partner. Both ends of the association allow us to access the referenced life partner. The
persistence configuration needed for a self-referencing association looks like this:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 /**
11 * @OneToOne(targetEntity="Entity\User")
12 **/
13 private $lifePartner;
14
15 // [..]
16
17 public function setLifePartner($lifePartner)
18 {
19 $this->lifePartner = $lifePartner;
20 }
21
22 public function getLifePartner()
23 {
24 return $this->lifePartner;
25 }
26 }

If the database structure is created by the schema tool, Doctrine 2 automatically
adds a column called lifeParter_id to the users table to maintain the reference. Again,
Doctrine’s defaults are at play here. If needed, you can add the @JoinColumn annotation
and overwrite the defaults:

 1 <?php
 2 // [..]
 3
 4 /**

ChapTer 6 ■ referenCes BeTween enTiTies

68

 5 * @OneToOne(targetEntity="Entity\User")
 6 * @JoinColumn(name="partner", referencedColumnName="id")
 7 **/
 8 private $lifePartner;
 9
10 // [..]

One-to-Many Relationship, Self-Referencing
With a self-referencing one-to-many relationship, a category tree can be built. A Category
may have multiple child categories and one parent category (the root node won’t have
a parent category). The persistence configuration for a self-referencing one-to-many
relationship is similar to a regular bidirectional one-to-many relationship:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="category")
 7 */
 8 class Category
 9 {
10 /**
11 * @OneToMany(targetEntity="Entity\Category", mappedBy="parent")
12 **/
13 private $children;
14
15 /**
16 * @ManyToOne(targetEntity="Entity\Category",

inversedBy="children")
17 * @JoinColumn(name="parent_id", referencedColumnName="id")
18 **/
19 private $parent;
20
21 // [..]
22
23 public function __construct() {
24 $this->children = new \Doctrine\Common\Collections\

ArrayCollection();
25 }
26
27 public function setParent($parent)
28 {
29 $this->parent = $parent;
30 }
31

ChapTer 6 ■ referenCes BeTween enTiTies

69

32 public function getParent()
33 {
34 return $this->parent;
35 }
36
37 // [..]
38 }

The configuration shown above extends table category by column parent_id, if
the already developed data structure is extended using Doctrine’s schema tool. The
relationship is designed in a way that allows us to reach a parent and children from a
given Category.

Many-to-many Relationship, Self-Referencing
Many-to-many self-referencing relationships can be defined as well. In our demo app,
this type of a relationship is used to describe the social network of a User:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="users")
 7 */
 8 class User
 9 {
10 // [..]
11
12 /**
13 * @ManyToMany(targetEntity="Entity\User")
14 * @JoinTable(name="friends",
15 * joinColumns={@JoinColumn(name="user_id",
16 * referencedColumnName="id")},
17 * inverseJoinColumns={@JoinColumn(name="friend_user_id",
18 * referencedColumnName="id")}
19 *)
20 **/
21 private $myFriends;
22
23 public function __construct()
24 {
25 // [..]
26 $this->myFriends = new \Doctrine\Common\Collections\

ArrayCollection();
27 }
28

ChapTer 6 ■ referenCes BeTween enTiTies

70

29 // [..]
30
31 public function setMyFriends($myFriends)
32 {
33 $this->myFriends = $myFriends;
34 }
35
36 public function getMyFriends()
37 {
38 return $this->myFriends;
39 }
40 }

If the schema tool is applied, it will report an error here, because Doctrine 2 wants to
label both columns of the join table with “user_id,” which is invalid. In this case, we will need
to add the @JoinTable annotation to provide a different persistence configuration. Also, by
default, the join table will be called users_users, if not defined otherwise. In our case, we tell
Doctrine 2 to call it friends, a more meaningful table name in our case. If you are dealing
with an existing data structure, custom configuration would be necessary anyway.

Summary
Another important milestone is reached! We are now able to design and persist complex
PHP object graphs connecting multiple individual entities. This is a huge step forward
and completes most of the work needed related to configuring persistence using
Doctrine. In the next chapter, we will start to create and manipulate entities and their
associations programmatically using PHP code.

	Chapter 6: References Between Entities
	One-to-One Relationship, Unidirectional
	One-to-One Relationship, Bidirectional
	One-to-Many Relationship, Bidirectional
	Many-to-Many Relationship, Unidirectional
	Many-to-Many Relationship, Bidirectional
	One-to-Many Relationship, Unidirectional
	Many-to-One Relationship, Unidirectional
	One-to-One Relationship, Self-Referencing
	One-to-Many Relationship, Self-Referencing
	Many-to-many Relationship, Self-Referencing
	Summary

