
35© Michael Romer 2016
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_5

CHAPTER 5

Defining Entities

We have already learned how easy it is to map member variables to fields in a database
table. Let’s take a look at exactly how this works.

Mapping Formats
In general, mappings can be defined using annotations within the entities themselves,
or with external XML or YAML files. In terms of performance, there is no difference
between the different ways of implementing the mapping when using a cache. Therefore,
using annotations is often preferred, simply because they make coding easier, as all the
persistence metadata is located in the same file. In the following examples, annotations
are used exclusively.

Annotations are meta information used to tell Doctrine how to persist data.
Syntactically, Doctrine annotations follow the PHPDoc standard which is also used to
auto-generate code documentation using compatible tools. PHPDoc uses individual
DocBlocks to provide meta information on certain code elements. In several IDEs,
annotations are also used to provide improved code completion, type hinting and to
support debugging.

Mapping Objects to Tables
First of all, a class that acts as a template for persistent objects needs to have the @Entity
annotation:

1 <?php
2 /**
3 * @Entity
4 */
5 class User
6 {
7 // [..]
8 }

Chapter 5 ■ Defining entities

36

A DocBlock is an extended PHP comment that begins with "/**" and has an "*" at
the beginning of every line. Simply adding @Entity without additional configuration
means that Doctrine 2 looks for a database table named user, in this case. If the table has
another name, the table name can be configured like this:

1 <?php
2 /**
3 * @Entity
4 * @Table(name="users")
5 */
6 class User
7 {
8 // [..]
9 }

An optional attribute, “indexes,” of the @Table annotation can be used to create
indexes automatically using Doctrine’s schema tool, which we will discuss later in the
book. For now, one should remember that this attribute has no meaning during runtime.
Some persistence metadata is important only in conjunction with offline tools such as the
schema tool, while other metadata is evaluated during runtime. An index definition to the
users table goes like this:

 1 <?php
 2 /**
 3 * @Entity
 4 * @Table(name="users",
 5 * indexes={@Index(name="search_idx", columns={"name", "email"})}
 6 *)
 7 */
 8 class User
 9 {
10 // [..]
11 }

The indexes attribute of annotation @Table itself has an annotation with attributes
as its value. The annotation @Index needs the name attribute (name of the index) and the
list of columns to be considered. Multiple values may be given using curly braces.

The same applies to another optional attribute called uniqueConstraints which
defines special unique value indexes:

.1 <?php
 2 /**
 3 * @Entity
 4 * @Table(name="users",
 5 * uniqueConstraints={@UniqueConstraint(name="user_unique",
 6 * columns={"username"})},

Chapter 5 ■ Defining entities

37

 7 * indexes={@Index(name="user_idx", columns={"email"})}
 8 *)
 9 */
10 class User
11 {
12 // [..]
13 }

Mapping Scalar Member Variables to Fields
Mapping scalar-valued member variables (numbers or strings, for example) to a database
table is super simple:

1 <?php
2
3 / [..]
4
5 /** @Column(type="string") */
6 private $lastName;

First, it’s important that all member variables mapped to database fields are declared
as private or protected. Doctrine 2 often applies a technique called lazy loading, which
means that data is loaded just in the moment it is needed, but not earlier. To make this
happen, Doctrine 2 implements so-called proxy objects which rely on the entities’ getter
methods. Therefore, one will want to make sure they are set-up.

The main annotation here is @Column. Its attribute type is the only mandatory
attribute and is important to make persistence work correctly. If a wrong type is defined,
you may lose information while saving to or reading from the database. In addition, there
are many other optional attributes, such as name, which allows you to configure a table
column name. It defaults to the name of the member variable. The length attribute is
needed only for strings, where it defines the maximum length of a string value. It defaults
to 255 if not defined differently. If one encounters truncated values in the database, a
wrong length configuration often is the root cause.

The attributes precision and scale are valid only for values of type decimal, while
unique ensures uniqueness, and nullable tells Doctrine 2 whether a NULL value is
allowed (true) or not (false):

1 <?php
2
3 // [..]
4
5 /**
6 * @Column(type="string",
7 * name="last_name", length=32, unique=true, nullable=false)
8 */
9 protected $lastName;

Chapter 5 ■ Defining entities

38

Data Types
Doctrine 2 ships with a set of data types that map PHP data types to SQL data types.
Doctrine 2 data types are compatible with most common database systems:

string: Type that maps an SQL VARCHAR to a PHP string

integer: Type that maps an SQL INT to a PHP integer

smallint: Type that maps a database SMALLINT to a PHP
integer

bigint: Type that maps a database BIGINT to a PHP string

boolean: Type that maps an SQL boolean to a PHP boolean

decimal: Type that maps an SQL DECIMAL to a PHP double

date: Type that maps an SQL DATETIME to a PHP DateTime
object

time: Type that maps an SQL TIME to a PHP DateTime object

datetime: Type that maps an SQL DATETIME/TIMESTAMP to a
PHP DateTime object

text: Type that maps an SQL CLOB to a PHP string

object: Type that maps an SQL CLOB to a PHP object using
serialize() and unserialize()

array: Type that maps an SQL CLOB to a PHP object using
serialize() and unserialize()

float: Type that maps an SQL Float (Double Precision) to a
PHP double. IMPORTANT: Type float works only with locale
settings that use decimal points as separators.

 Custom data types if needed, you can define custom data types, mappings between
php data types and sQL data types. the official documentation covers this topic in depth.1

1http://docs.doctrine-project.org/en/latest/reference/basic-mapping.
html#custom-mapping-types

http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types
http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types
http://docs.doctrine-project.org/en/latest/reference/basic-mapping.html#custom-mapping-types

Chapter 5 ■ Defining entities

39

Entity Identifier
An entity class must define a unique identifier. The @Id annotation is used for this:

1 <?php
2
3 // [..]
4
5 /**
6 * @Id @Column(type="integer")
7 */
8 private $id;

If the @GeneratedValue annotation is used as well, the unique identifier doesn’t need
to be given by the application developer but is assigned automatically by the database
system. The way this value is generated depends on the strategy defined. By default,
Doctrine 2 identifies the best approach on its own. When using MySQL, for instance,
Doctrine 2 uses the auto_increment function. There are additional strategies that can be
used; however, they usually don’t work across platforms and therefore should be avoided.

By the way, the @Id annotation can be used with multiple member variables to define
composite keys. Clearly, the @GeneratedValue annotation then cannot be used anymore.
In this case, the application developer needs to take care in assigning unique keys.

Inheritance
Doctrine 2 supports persistence of hereditary structures with three different strategies:

•	 Single Table Inheritance

•	 Class Table Inheritance

•	 Mapped Superclass

Single Table Inheritance
The single table inheritance strategy uses a single database table with a so-called
“discriminator column” to differentiate between the different types. All classes of a
hierarchy go into the same table. Let’s say our demo application differentiates between
different types of posts. The supported types are:

Post: A simple, text based post

ImagePost: A post with text and image

VideoPost: A post with text and video

Chapter 5 ■ Defining entities

40

Both ImagePost and VideoPost extend Post and add an image or video URL. To set
up this hierarchy, the topmost Post class holds the configuration needed as well as all
member variables and associations that are shared between the three types:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 * @InheritanceType("SINGLE_TABLE")
 8 * @DiscriminatorColumn(name="discr", type="string")
 9 * @DiscriminatorMap({"text"="Post","video"="VideoPost","image"=

"ImagePost"})
10 */
11 class Post
12 {
13 // member variables and associations shared between all types
14 }

Since the Post itself can be an entity, it has the typical entity-related annotations.
In addition, via the @InheritanceType annotation, it configures single table inheritance.
The @DiscriminatorColumn annotation is used to label the column which indicates the
type persisted. Lastly, @DiscriminatorMap defines the values that can be present in the
discriminator column. In our case, Doctrine 2 writes “text” into the discriminator column
if the entity is a Post. If the entity is a VideoPost, Doctrine 2 writes “video,” and if the
entity is an ImagePost, the value used is “image.”

The ImagePost itself is straightforward:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 */
 7 class ImagePost extends Post
 8 {
 9 /** @Column(type="string") */
10 protected $imageUrl;
11
12 /**
13 * @param mixed $imageUrl
14 */
15 public function setImageUrl($imageUrl)
16 {
17 $this->imageUrl = $imageUrl;
18 }
19

Chapter 5 ■ Defining entities

41

20 /**
21 * @return mixed
22 */
23 public function getImageUrl()
24 {
25 return $this->imageUrl;
26 }
27 }

The same is true for the VideoPost:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 */
 7 class VideoPost extends Post
 8 {
 9 /** @Column(type="string") */
10 protected $videoUrl;
11
12 /**
13 * @param mixed $videoUrl
14 */
15 public function setVideoUrl($videoUrl)
16 {
17 $this->videoUrl = $videoUrl;
18 }
19
20 /**
21 * @return mixed
22 */
23 public function getVideoUrl()
24 {
25 return $this->videoUrl;
26 }
27 }

Chapter 5 ■ Defining entities

42

The data structure used by Doctrine 2 looks like this:

Col Type Length NULL? KEY Extras

Id INT 11 PRI auto_
increment

user_id INT 11 YES MUL

category_id INT 11 YES MUL

title VARCHAR 255

content LONGTEXT

discr VARCHAR 255

videoUrl VARCHAR 255 YES

imageUrl VARCHAR 255 YES

Now all three types of entities can easily be persisted. The downside of this approach
is that, depending on how complex the hierarchy is and how different the types involved
are, the table grows and grows, with many fields never used by certain types. In our case,
the videoUrl won’t ever be used by entities of type ImagePost. The imageUrl won’t be
used by VideoPost entities, and for Post entities, both fields will remain blank.

The upside is that this strategy—due to its very nature—allows for very efficient
queueing across all types in the hierarchy without any joins.

Class Table Inheritance
While single table inheritance uses only one table for all types, with class table inheritance
each class in the hierarchy is mapped to several tables. While this gives the best flexibility
of the three strategies, this also means that reconstructing entities will require joins in the
database. Since joins are usually expensive operations, the performance with class table
inheritance is not as good as with single table inheritance.

The main difference in configuration is in Post:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity(repositoryClass="Repository\Post")
 6 * @Table(name="posts")
 7 * @InheritanceType("JOINED")
 8 * @DiscriminatorColumn(name="discr", type="string")
 9 * @DiscriminatorMap({"text"="Post","video"="VideoPost","image"=

"ImagePost"})
10 */

Chapter 5 ■ Defining entities

43

11 class Post
12 {
13 // member variables and associations shared between all types
14 }

Instead of inheritance type “SINGLE_TABLE,” now “JOINED” is used. This tells
Doctrine 2 to apply the class table inheritance strategy. Since tables will be used for each
type, configuring the table names may be useful for subclasses:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts_image")
 7 */
 8 class ImagePost extends Post
 9 {
10 /** @Column(type="string") */
11 protected $imageUrl;
12
13 /**
14 * @param mixed $imageUrl
15 */
16 public function setImageUrl($imageUrl)
17 {
18 $this->imageUrl = $imageUrl;
19 }
20
21 /**
22 * @return mixed
23 */
24 public function getImageUrl()
25 {
26 return $this->imageUrl;
27 }
28 }

The table name posts_image is handy for ImagesPost entities. We add the same style
of configuration to VideoPost entities as well:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts_video")

Chapter 5 ■ Defining entities

44

 7 */
 8 class VideoPost extends Post
 9 {
10 /** @Column(type="string") */
11 protected $videoUrl;
12
13 /**
14 * @param mixed $videoUrl
15 */
16 public function setVideoUrl($videoUrl)
17 {
18 $this->videoUrl = $videoUrl;
19 }
20
21 /**
22 * @return mixed
23 */
24 public function getVideoUrl()
25 {
26 return $this->videoUrl;
27 }
28 }

When letting Doctrine 2 create the database schema, we will end up with three tables
for this hierarchy, while the posts table holds the main information:

Col Type Length NULL? KEY Extras

id INT 11 PRI auto_
increment

user_id INT 11 YES MUL

category_id INT 11 YES MUL

title VARCHAR 255

content LONGTEXT

discr VARCHAR 255

The posts_video table holds only the specifics of this type:

Col Type Length NULL? KEY Extras

id INT 11 PRI

videoUrl VARCHAR 255 YES

Chapter 5 ■ Defining entities

45

The same is true for posts_image:

Col Type Length NULL? KEY Extras

id INT 11 PRI

imageUrl VARCHAR 255 YES

By evaluating the foreign key reference, entities of type ImagePost and VideoPost
can be reconstructed by table joins.

Mapped Superclass
Lastly, a mapped superclass strategy can be used. The main difference from the other two
strategies already discussed is that the superclass itself cannot be an entity. Taking the
example above, this means that class Post cannot itself be an entity. It simply provides
member variables and associations to be inherited by its subclasses.

To configure the mapped superclass strategy means adding the @MappedSuperclass
annotation to the Post class:

1 <?php
2 namespace Entity;
3
4 /** @MappedSuperclass */
5 class Post
6 {
7 // member variables and associations shared between all types
8 }

The two subclasses, ImagePost and VideoPost, do not need to be changed.
However, with the mapped superclass strategy applied, we cannot persist objects of type
Post anymore, which mainly consisted of text. We could fix this by adding another new
type called TextPost:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts_text")
 7 */
 8 class TextPost extends Post
 9 {
10 /**
11 * @Id @Column(type="integer")
12 * @GeneratedValue
13 */

Chapter 5 ■ Defining entities

46

14 protected $id;
15
16 }

Now we have three concrete entity types and one superclass that is not an entity.
This results in three tables in the database: posts_text, posts_images and posts_video.

As shown above, it’s important that each entity specifies its ID column, while the
mapped superclass does not. It only imparts member variables and associations, but not
the ID column definition.

When inheriting attributes or associations as shown above, one may want to
overwrite certain definitions.

Let’s assume we don’t want to talk about content in a VideoPost, but call it closed_
caption. This requires the following configuration:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity
 6 * @Table(name="posts_video")
 7 * @AttributeOverrides({
 8 * @AttributeOverride(name="content",
 9 * column=@Column(
10 * name = "closed_caption",
11 * type = "text"
12 *)
13 *)
14 * })
15 */
16 class VideoPost extends Post
17 {
18 // [..]
19 }

While Doctrine 2 requires member variables to be either private or protected, it’s
important to remember that member variables need to be protected here; otherwise
they won’t be available in the subclass. When overwriting the property content with
closed_caption as shown above, this leads to a closed_caption column in the database
for this type of entity.

Also, entities of type VideoPost are organized in categories called channels.
We can overwrite the association as shown below:

 1 <?php
 2 namespace Entity;
 3
 4 /**
 5 * @Entity

Chapter 5 ■ Defining entities

47

 6 * @Table(name="posts_video")
 7 * @AssociationOverrides({
 8 * @AssociationOverride(name="category",
 9 * joinColumns=@JoinColumn(
10 * name="channel_id", referencedColumnName="id"
11 *)
12 *)
13 * })
14 */
15 class VideoPost extends Post
16 {
17 // [..]
18 }

Summary
In this chapter, we learned all about entities, the most important aspect of ORM and
Doctrine. Designing entities properly can be fiddly at times, but Doctrine makes it as
simple as possible to lay out the foundation for persisting PHP objects. Since entities
alone already are a great thing to have, it get’s even better, once we start interlinking
them by using associations, which we will cover next.

	Chapter 5: Defining Entities
	Mapping Formats
	Mapping Objects to Tables
	Mapping Scalar Member Variables to Fields
	Data Types
	Entity Identifier

	Inheritance
	Single Table Inheritance
	Class Table Inheritance
	Mapped Superclass

	Summary

