
3© Michael Romer 2016 
M. Romer, PHP Persistence, DOI 10.1007/978-1-4842-2559-2_2

CHAPTER 2

Introduction

Object-Oriented Programming (OOP) and the 
Domain Model
PHP developers nowadays generally think and code in an object-oriented way. 
Application functionality is built using classes, objects, methods, inheritance, and other 
object-oriented techniques. In the beginning, OOP was used primarily for the general 
technical aspects of applications, such as MVC frameworks or logging and mailing 
libraries. All these components can be used more or less “as is” in other applications, 
regardless of the domains those applications inhabit: for example, e-commerce, portal, 
or community site. For complex systems, or if aspects such as maintainability and 
extensibility are important, OOP is also an advantage in the domain-specific code. 
Basically, every application consists of two types of code: general technical code and 
domain-specific code. General technical code is often reusable when built as a library or 
framework; domain-specific code is often too customized to be reused.

Object-oriented domain-specific code is characterized by the existence of a so-called 
domain model. A domain model includes:

•	 Classes and objects representing the main concepts of a domain, 
the so-called entities. These elements can also be value objects, 
to be precise, but compared to entities, value objects don’t have 
a persistent identity. In an online shop, the main elements would 
be “Customer,” “Order,” “Product,” “Cart,” and so forth.

•	 Associations between domain-specific classes and objects. In 
our online shop example, an Order would have at least one 
Customer that it references as well as one or more references to 
the Product(s) ordered.

•	 Domain-specific functions implemented as a part of an entity. 
In our online shop, a Cart could have a calculateTotalPrice() 
method to calculate the final price based on the items in the Cart 
and their quantities.



Chapter 2 ■ Introduction

4

•	 Functions that span multiple entities usually implemented in so-
called services, simply because they cannot clearly be assigned to 
one single entity. In our online shop, the “Checkout” service may 
take care of lowering the inventory, invoicing, updating the order 
history, etc. The service deals with several entities at once.

•	 Domain-specific objects used instead of generic data containers 
such as PHP arrays whenever possible (exceptions prove the rule 
here).

•	 Business logic (such as business rules) implemented within 
the domain objects of an application whenever possible, not 
in controllers, for example (controllers are used in MVC–based 
frameworks to handle user input).

The main advantage of the domain model lies in having the domain-specific code 
centrally defined in classes and objects, an approach which facilitates maintenance and 
changes. The possibility of incidentally breaking a function, when changing or extending 
code, drops. By isolating domain-specific code from general technical code, portability is 
supported. That’s helpful, for example, when migrating from one application framework 
to another.

Besides the advantages mentioned above, the domain model also supports 
teamwork. Often, when building and launching a new software product, programmers 
work together with business and marketing folks. A domain model can bridge the mental 
gap between business and IT by unifying the terminology used. This alone makes a 
domain model invaluable.

Demo Application
Concrete examples make things easier to understand. Throughout this book, a demo 
application called “Talking” will help to put theory into practice. Talking is a (simple) 
web application allowing users to publish content online. Figure 2-1 shows the 
application’s domain model:



Chapter 2 ■ Introduction

5

In the Talking demo application, a User can write Posts. A Post always has only one 
author (the User), and the two entities reference each other. A User can act in one or more 
Roles. A User references its Roles, but from a given Role, one cannot access the Users who 
reference the Role. A User references UserInfo holding the date of registration and the 
date of de-registration, if available. UserInfo references back to a User. A User references 
ContactData where the User’s email and phone number are saved. ContactData does 
not reference back to its User. A User may reference another User as its life partner. The 
User’s life partner references back if known. A User may have an unlimited number of 
friends. Given a User, one can identify its friends, but there is no reference back. The Post 
of a User can have an unlimited number of Tags. A Tag can be reused in several Posts. 
There is a bidirectional association between a Post and its Tags. A Post references its 
Category, however, there is no reference from a Category to its Posts. A Category can have 
subcategories which it references, as well as a parent Category, if given. Categories are 
user-specific. A User references its categories, but there is no reference back.

Figure 2-1.  Demo application “Talking” - Domain Model



Chapter 2 ■ Introduction

6

Our demo domain model is designed to use as many different association types as 
possible, so that we can see most of the features of Doctrine 2 in action in the scope of 
the demo application. In a real application, the domain model would probably look a bit 
different. As you can see, not every association between entities is bidirectional. And as we 
will see later in this book, this is an essential feature of an object-relational mapping (ORM) 
system such as Doctrine 2 living in the object-oriented world. In relational databases, there 
are no unidirectional associations; they are always bidirectional by design.


	Chapter 2: Introduction
	Object-Oriented Programming (OOP) and the Domain Model
	Demo Application


